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Electromagnetic radiation in chiral matter: The Cherenkov case
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Starting from the modified Maxwell equations in Carroll-Field-Jackiw electrodynamics we study the

electromagnetic radiation in chiral matter characterized by an axion coupling 6(x) = b,x*, with b, = (0, b),

which gives rise to the magnetoelectric effect. Employing the stationary phase approximation we construct the

Green’s matrix in the radiation zone which allows the calculation of the corresponding electromagnetic

potentials and fields for arbitrary sources. We obtain a general expression for the angular distribution of the
radiated energy per unit frequency. As an application we consider a charge moving at constant velocity parallel
to b in the medium and discuss the resulting Cherenkov radiation. We recover the vacuum Cherenkov

radiation. For the case of a material with refraction index n > 1 we find that zero, one or two Cherenkov cones

can appear. The spectral distribution of the radiation together with the comparison of the radiation output of

each cone are presented, as well as some angular plots showing the appearance of the cones.

DOI: 10.1103/PhysRevD.107.096024

I. INTRODUCTION

Since its experimental discovery in 1934 [1,2],
Cherenkov radiation (CHR) has played a fundamental role
in the study of the high-energy particle physics, high-power
microwave sources and nuclear and cosmic-ray physics
[3.4], both theoretically and phenomenologically. CHR
occurs when charged particles propagate through a dielec-
tric medium with velocity » higher than ¢/+/e, where c is
the speed of light in vacuum and ¢ is the permittivity of the
medium, which determines the refractive index n = \/e.
The first theoretical description of such radiation in the
framework of Maxwell’s theory, developed by Frank and
Tamm in Ref. [5], reveals its unique directional properties.
In particular, CHR is produced in a forward cone defined
by the positive angle 8 = arccos [¢/(vn)] with respect to
the direction of the incident charge. Since the emergence of
accelerators in nuclear and high-energy physics CHR
has been widely used to design an impressive variety of
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detectors, such as e.g. the ring-imaging Cherenkov detec-
tors [6], which can identify charged particles and also
provide a straightforward effective tool to test its physical
properties, like velocity, energy, direction of motion and
charge [7]. As remarkable cases, one mentions that the
antiproton [8] and the J-particle [9] were discovered using
CHR detectors.

In this paper we deal with CHR in chiral matter [ 10], which
belongs to a class of materials characterized by having a
macroscopic electromagnetic response described by non-
dynamical axion electrodynamics [11,12]. This is an exten-
sion of conventional electrodynamics resulting from the
addition of the term L, = (a/47*)0(x)(E-B) to the
Lagrangian density [13-16], where a denotes the fine
structure constant. Here 0(x) is a field known as the axion
in particle physics which we take as a given parameter of the
media in the same footing as the permittivity e(x) and the
permeability y(x). Different materials can be characterized
according to the choice of 6(x). For example: (i) magneto-
electric media, that correspond to a nonquantized piecewise
constant 6(x), were discussed in Refs. [17-25], (ii) topologi-
cal insulators [26-28], described by a quantized piecewise
constant 6(x), have been also examined in several applied
aspects [29-37], (iii) chiral matter, including Weyl semimet-
als, for instance, which display 6(x) = b,x* [38—45], and
(iv) metamaterials that can realize a synthetic axion response
in nonreciprocal artificially designed structures [46,47].
The main property characterizing these materials is the
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magnetoelectric effect (MEE) arising from the additional
contribution L, [48]. This coupling produces effective field-
dependent charges and current densities which allow the
generation of an electric (magnetic) polarization due to the
presence of a magnetic (electric) field, even in the static case.
Such phenomena were also investigated in the context of the
chiral magnetic effect (CME) [49-56], which brings about
the magnetic current density J; = o3 B, with o playing the
role of the magnetic conductivity. Classical repercussions
arising from the presence of this current in a dielectric
medium were also examined considering symmetric
and antisymmetric tensor conductivities [57], with the
antisymmetric tensor conductivity further investigated in
Ref. [58].

A recently discovered new phenomenon in naturally
existing magnetoelectric materials with piecewise constant
0(x) is the emission of CHR in the backward direction with
respect to the incident particle [59]. This remarkable
theoretical prediction is analogue to what occurs in left-
handed media (LHM), non-natural materials having simul-
taneously a negative permittivity and permeability, first
examined by Veselago [60]. As these materials, also called
metamaterials, are not readily available in nature, they have
been artificially constructed and tested in the laboratory
[61-68]. Their production has fostered the investigations in
backward Cherenkov radiation [69-75].

After integration by parts, the contribution £y of axion-
ED with 6(x) = b,x* reduces to the K, ~ b term of the
CTP-odd contribution of the photon sector in the Standard
Model extension (SME) [76], which describes Lorentz
invariance violation (LIV) in high energy physics. In this
form the theory is also known as the Carroll-Field-Jackiw
(CFJ) electrodynamics [77]. Here, the vector b* is intro-
duced either as an explicit Lorentz violating parameter or as
the result of the spontaneous Lorentz symmetry breaking of
a more fundamental theory. The dynamics induced by the
addition of Ly on the usual Maxwell Lagrangian density
can be also understood as defining a particular case of
electrodynamics in a medium characterized by the gener-
alized constitutive relations, D = E — (af(x)/z)B and
H =B + (af(x)/7)E, in the case when ¢ = 1 = p.

It is interesting to remark that the CFJ electrodynamics
provides an effective theory for condensed-matter systems,
accounting for the anomalous Hall effect, the CME, and the
electromagnetic response of Weyl semimetals [78], which
also constitute a typical representative of chiral matter. In
the latter case one finds that the parameters b, and b denote
the shift in energy and momentum, respectively, of the two
Weyl nodes characterizing the material in the Brillouin
zone [79,80]. Our b, differs by a factor of two from that in
Ref. [80]. Contrary to the case of LIV in high energy
physics, all LIV parameters in condensed matter physics
arise from the microscopic theory describing the material,
thus being well defined and not necessarily suppressed
from an experimental perspective.

Vacuum Cherenkov radiation (VCHR) with n = 1 was
discovered in CPT-odd Lorentz-violating theories [81,82]
and further extended to the CPT-even sector of the SME
[83,84]. Reference [83] puts forward the idea that, besides
its description as a conventional radiation process in
electrodynamics, CHR can be studied from the matter
point of view as the decay, e~ — ¢~ + y, for an arbitrary
charge denoted here by e~. The latter approach was used to
study VCHR for all the Lorentz-violating couplings of
fermions that are described by the minimal SME, in the
cases with and without spin flip of the fermion [85]. A
complete list of references summarizing previous works on
this topic is also found in this paper. The matter approach
provides a natural way to find subsequent quantum
corrections to the process [86] and it was used to discuss
Cherenkov radiation in the standard vacuum under the
influence of strong electromagnetic fields [87], like those
produced by strong laser pulses or in the magnetic field
around a pulsar.

Further, a fast charged particle passing from a chiral
matter to the vacuum emits transition radiation. Using the
matter approach, the photon radiation, e~ — ¢~ +y, and
the pair creation, y — et + ¢~, were studied at the boun-
dary between chiral matter and the vacuum [88]. Also the
ultrarelativistic limit for the case of one infinite domain of
chiral matter, together with the case of two semi-infinite
domains separated by a domain wall was considered in
Ref. [89]. The main features of the radiation were shown to
depend on the parameters of the chiral anomaly in these
materials. Also the high energy limit of the frequency
spectrum and the angular distribution for Cherenkov
radiation in chiral matter was obtained [90]. Anomalous
scattering of fermions in matter induced by the chiral
anomaly was also investigated, concluding that the scatter-
ing angles are proportional to the chiral conductivity [91].
Recent studies on collisional energy loss and bremsstrah-
lung in chiral medium have also been reported with great
interest [92].

Our discussion of the CHR in a chiral media parallels the
analysis of radiation by charged particles described in regular
references of electrodynamics [93-95]. We obtain a general
formula for the radiation fields produced by arbitrary
sources, which can be subsequently used to determine all
the relevant observable quantities in the radiation processes.
As an application of these general findings we next concen-
trate in CHR, i.e. we consider a charge ¢ moving at constant
velocity in the medium, |v| > ¢/n, and neglect recoil effects.
We do not restrict ourselves to the ultra high energy limit,
thus allowing to address the whole range of (charge)
velocities, |v|/n < |v| < ¢. Also, we consider a material
with by = 0 and choose the charge velocity parallel to b, in
such a way to assure axial symmetry in our model.

The paper is organized as follows. In Sec. II we
summarize the main aspects of CFJ electrodynamics which
we use in the following. Section III is devoted to the
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construction of the Green’s function (GF) of the system in
momentum and coordinate space. To this end we further
extend to the time-dependent case the methods already
developed in Refs. [40,96-98] for the static case. In Sec. [V
we adopt the stationary phase approximation to calculate
the GF in the radiation zone. To make the subsequent
calculations still analytic we have to introduce a further
approximation in the solution of the stationary phase
equation, which determines the range of validity in our
calculations that must be verified after obtaining the
final results. The resulting electromagnetic fields in the
radiation zone are presented in Sec. V for an arbitrary
current J#. Our calculations up to Sec. V together with the
Appendices A—-C are for n = 1. An arbitrary index of
refraction  is introduced in Secs. VI and VII following the
transformations indicated in the Appendix D. In Sec. VI we
consider the particular case of CHR and we calculate the
electromagnetic fields, the angular distribution of the
radiated energy per unit frequency, the Cherenkov angles
and their behavior as a function of the parameter |b|. The
total radiated power per unit frequency is discussed in
Sec. VII, where the ratio between the radiation output of the
two possible cones in chiral matter is calculated, as well as
the ratio of the production of each of them with respect to
the conventional case. Section VIII contains the summary
and conclusions. Besides the Appendix D already men-
tioned, the details of the calculation of the GF for n = 1 in
the radiation zone are summarized in the Appendix A.
A general expression for the spectral distribution of the
radiation for arbitrary sources and n = 1 is obtained in the
Appendix B, which also summarizes the symmetry proper-
ties of some auxiliary functions introduced in the text. The
main steps in the calculation for the spectral distribution in
the particular case of CHR is presented in the Appendix C
for n = 1. Let us emphasize again that any result obtained
for n =1 can be generalized to arbitrary n following the
prescriptions indicated in the Appendix D.

II. CFJ ELECTRODYNAMICS

In terms of the electromagnetic potential, A, = (®,-A),
the action is

1 1
SIA,(x)] = / d*x [— Tog Pt =",
[04 ~
— /27
0P, M

where F,, =d,A, —3d,A, and Frv = %e"”ﬂ"F s are the
electromagnetic field strength and its dual tensor, respec-
tively, J# = (¢p,J) is a conserved external current while
0(x) = b,x" is the axion coupling. As usual, the electro-
magnetic fields are

10A
E=-VA'— - (2)

B=VxA, .
c ot

Our metric is 7 = diag(1,—1,—1,—1), we set A |
and employ the unrationalized Gaussian units, following
the conventions of Ref. [94].

For a general axion field 6(x) the action (1) violates
translation invariance and Lorentz symmetry [76], but it is
manifestly gauge invariant. Nevertheless, in the particular
case considered where b, is a constant vector, we still have
translational invariance. In fact, under the translation, x* —
x* + a* the additional term proportional to (b,a")F WF”"
appears in the action (1). Recalling that F WF”” is a total
derivative, the invariance of the action under translations is
thus recovered. An equivalent way to verify the invariance
under translations is integrating by parts the last term in
Eq. (1), which produces the Carroll-Field-Jackiw electro-
dynamics [77],

1 5 1 a -
SMCFJ:/d“x[_EFﬂDF” _EJ”Au +@byAuF” ,
(3)

where the translation invariance is manifest and the gauge
invariance is granted only up to a total derivative, however.
As expected, the resulting equations of motion are gauge
invariant, being

) 4n v T uv a
0, F" = 7] - b, F, b, = ;bﬂ, (4)
which read
[P — 0¥ — e°b,0,]A, = J*, (5)

in terms of the potential. The inhomogeneous Maxwell’s
equations are

V-E=4zp-b-B,

10E 4 - -
VxB--—=""J4+hB+bxE. (6)
c ot c
We still have the homogeneous Maxwell equations arising
from the Bianchi identity, 9,F* = 0,

10B
VXxE+-—=0. (7)

V-B=0,
c ot

In Eq. (6) we have b = V@ and b, = 9,0, where 0 is the
axion field. The terms involving derivatives of 6 play
relevant roles in condensed matter systems [99,100].
Indeed, while VOB represents an anomalous charge
density, VO x B appears in the anomalous Hall effect
(AHE) and (0,0)B stands for the chiral magnetic current
[49-58]. In the case when the axion field does not depend on
the space coordinates, VO = 0, the Maxwell equations (6)
read

096024-3



BARREDO-ALAMILLA, URRUTIA, and FERREIRA

PHYS. REV. D 107, 096024 (2023)

VxB- % _r 008, (3

V- E = dzp, cot ¢

with 0,0 representing the magnetic conductivity, o, in the
chiral current, Jp = o3 B. Effects of the CFJ term, together
with those arising from its higher derivative dimension five
counterpart, on the electromagnetic propagation in continu-
ous matter were analyzed from a classical perspective in
Ref. [100].

Since our main interest is in radiation processes, we look
for the energy density 7 and the energy flux S satisfying the
conservation equation d,it + V - S = 0 outside the sources.
From the standard manipulations of Maxwell’s equa-
tions (6) and (7) we obtain

ou c -
—J-E==—+V-S+—hy(E-B
J ” +V-S —1—471_ ol ), )
with
u—L (B2 4+B), S—=SExB. (10)
- 8 ’ 4z ’
The identity
E-B=-—2(A-B)+-V.-(AxE—-AB), (1)
- 2cot 2 ’

allows us to define the energy density i, together with the
corresponding Poynting vector S, as

1 -~
=u——>byA - B,
" 8z 0

_ 1 -~
S =5+ o-by(AxE-A'B). (12)
T

N

fulfilling the required conservation equation when J = 0.
Similar results are obtained from the covariant version of
the energy-momentum tensor in Refs. [77,81,82], which
confirms it and S, given in Eq. (12), as the energy density
and energy flux that respect the continuity equation.

Let us emphasize that under the gauge transformation,
SAAY =198 5 A = —V5A, the terms that depend on the
potential A# in Eq. (12) are gauge invariant up to a total
derivative, changing as

5r(A-B)=AV-B,

10B
5A(AXE—A0B):/1<VXE——E), (13)
c

which yield null results when one takes into account the
homogeneous Maxwell equations. From Eq. (12) we
realize that # is not positive definite, which prompts us
to set by = 0 in the following to avoid instabilities in the
system [99]. Also, we take the z-axis in the direction of the
b vector.

III. THE GREEN’S FUNCTION

A. Green’s function in momentum space

Our next step is to construct the Green’s function (GF)
G, (x — x") of CFJ electrodynamics in the time dependent
case. It is defined by

[ 0? — "0 — b,e"?0,|G,p(x —x') =& y5* (x—x'). (14)

Going to momentum space, we write

G (x—x’):/ 'k e k=V'G (0,K), ¥ = (ct,x)

yﬂ (2”)4 yﬂ ) ) 3 5

k' =(w/c, k), 0,=—ik,, (15)
obtaining

(K2 + kK + 169D k|G 5(k) = 85, (16)
which in the Lorenz gauge, dﬂA” = 0, reduces to
[~k + ie"7? b, k,|G,5(k) = 8. (17)

with k> = k§ — k. A long but straightforward calculation
yields

K20, + byby + i€, 050K
KPR = (b k)
(b-k)(bsk, + b,k;) = bk, k;
K2 (k* = b*k> + (b - k)?)

Gvﬂ(k) =

(18)

At this stage we can verify that k¥*G,,(k) = 0. The above
expression can be further simplified recalling the relation
A, (k) = G,;(k)J*(k). Since G,, (k) couples to a conserved
current, we can dispose of all factors proportional to k,J*.
Furthermore, note that any contribution proportional to k,
corresponds to a gauge transformation in the resulting A, .
Then, a simpler representation of the function (18), without
loss of generality, is

kz’/[yl =+ Z’ul;l =+ ieuﬁaﬂl;akﬂ
k* 4 b* = (b - k)?

G,M - ’ (19)

coinciding with the result of Refs. [81,82,99], but no longer
written in the Lorenz gauge.

B. Green’s function in coordinate space

In order to deal with radiation, we need to express the GF
in the coordinate space. To this end, we keep the depend-
ence on the frequency and perform the Fourier transform
only in coordinate space. We set Eﬂ = (0,0,0,b), with
b = |b| = a|b|/x. Starting from Eq. (19), we write
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&k ' ,
GH(x, X1 0) = / G (w0, k)R ),

(27)°
Pk K2g™ + ibet3k, + b*b
/ (2”)3 <k2)2 + EZkZ _ (E . k)2
X eik-(x—x’)’
—[(k§ + V?)g* + ikobe°
— be3i9; + DbV f (x, X w), (20)

G (x,x"s0) = —

G (x,x";0) =

in terms of dj = —ikj, and introduce the function,

Pk eik»(x—x’)

f(Xv Xl;w) = (2”)3 (k2)2 4 l;2k2 _

(b-k)* 1)

from which we calculate the Green’s function according to
Eq. (20). Under our conventions, the denominator in
Eq. (21) is

D = (k*)? + b*k* — (b - k)?
= (K} —K2)2 - b2 (k3 — K2) - p2K3.  (22)

The condition D = 0 yields the dispersion relation

(e rrasnn) @)

2=k
where

kzzki‘FkE, kJ_

= +\/ k3 + k5. (24)

Setting b = 0 in the dispersion relation (23), one recovers
the conventional vacuum result.

The evaluation of Eq. (21) is performed in cylindrical
coordinates using the integration over the polar angle to
introduce the Bessel function J, and, subsequently, calcu-
lating the integral over k, in the complex plane. To this end,
we rewrite the denominator D as

= (k2 = (k) (k2 = (k7)?), (25)

which allows the identification of the poles in &,
kE=\/k i T £ bk, (26)
with the redefinition,
k= \/k§— k7. (27)

The integration over k, is long but straightforward, yielding
the final result

k, dk
o) =g [T Rk

1 €i1 /kﬁ%’bkuz ei1 /kﬁ—kaZ
5 _
NG

where we stick to our independent variable k; > 0 and
define Z = |z — Z/|. Setting ky = 0, we recover the static
approximation considered in Ref. [99].

| e

IV. THE GREEN’S FUNCTION IN THE
RADIATION ZONE

The relations, Jy(x) = (H(()l)(x) + (Hf)z) (x))/2 and
H(()1>(ei”x) = —H(()2) (x), allow us to extend the integration

limit of k; from —oo to +oco, yielding the convenient
expression

f(x,x";0) anxx )
n==1
f (X N ) i /OokldkL ()(k R ) 1 e'/ 2tnbk Z
) W) =———
! 167) - K +

b b

(29)

with b > 0 everywhere, and the sum on # = +1 contem-
plates the two square roots present in Eq. (28). The
extension to the complex plane of the integral on the
variable k, is made by introducing the Sommerfeld path,
shown schematically in Fig. 1.

In the following we concentrate upon the calculation of
fy(x.x';@) in the far-zone regime, r = [x| > [x'| =7/,
where we have highly oscillating functions in the integrand
of Eq. (29). This property suggests the use of the stationary
phase approximation (SPA) to evaluate the integral. We
consider the approximation R, = |[(x —X') || = R|sin#)|,
together with Z=|x; —x| =R|cosf|, where R = |(x — x')
and @ is the polar angle of the observation point determined

Im [k ]

+ko

Re [k1]

— ko

FIG. 1. The Sommerfeld integration path. The path is above the
logarithmic branch point singularity of H(() ) (K R,) atk, =0.

Furthermore k| = +/kj — k7 has singularities at k| = k.
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by x. To assess the validity of the approximation we have to
compare the directions of the vectors x and R = (x — x/),
with respect to the z-axis. In the most unfavorable situation,
when x’ is orthogonal to x, we can show that the angle ©
that the vector (x — x’) makes with the z-axis is such that
cos® = cos @ — (r'/r) sin 6, to first order in #//r. That is to
say, it is a very good approximation to take ® ~ @ in the
regime »'/r < 1. This, together with the asymptotic

behavior
H(l)(klRl) _ LeikJ_RJ_—iﬂM’ (30)
0 ﬂ'klRL

yields
fr(x.x"; ) ie~/t \/7/ ki dky 1 1
1 167 ky ki rsin@ nb
iR(k, |sin@|+ +nka\cosﬁD
x & . (31)

As usual, we further replace R by r, except in the phase of
the exponential, where we assume R = (r — i - x’), with
n = x/r, thus taking into account the phase modifications
induced by the source.

We recall the general expression for the SPA

2ri

Ay

+0o0 X .
I = / dte’Rh(’)f(t) — e'Rh("’)f(to)

where R > 1 and ¢, is the solution of 4'(r) = 0, which
makes /'(#y) an extremum of A(z). The prime (') denotes
the derivatives with respect to ¢ in the usual fashion. The
functions A(z) and f(¢) are identified by comparing with

Stationary phase approximation for =0.5
I R e

08

06

Ky /Ko

*4r Classical SPA
R Chiral positive SPA

h Chiral negative SPA

0.0k " " " " 1 N
0.0 0.5

those in Eq. (31) after the far field approximation is
imposed. In Eq. (31), we choose to find the stationary
phase by looking at the extreme of the functions,

hy(ky) =ky|sin0| + \/ki +nbk|cos6] > 0.  (33)

To this end, we take the derivative of &, with respect to k|
for simplicity. Since dk|/dk, # 0 and the resulting relation
is set equal to zero, the outcome is independent of the
variable chosen to calculate the derivative. After rearrang-
ing the result of dh,(k,)/dk, we find it convenient to
present the condition for the extremum as

\/1K__K2tan9: <1 +g§> (1 +n§)_1/2, (34)

in terms of the dimensionless variables « and f, defined as

b
ko > p= o > 0. (35)
The Eq. (34) is a quartic equation for x which is difficult to
solve analytically. For a given f, the exact numerical
solution (@) of Eq. (34) is indicated with the dashed
(red) line for 7 = +1 and with de dotted (blue) line for
n = —1, in the panels of Fig. 2. To proceed further we resort
to an approximation in the solution of Eq. (34) considering
the limit b < k| < ko, where f/k < 1. Then, Eq. (34)
simplifies as

. L(P\? 3
5 tan 9:1—1-1(;) +0(p). (36)

— K

To first order in f/x, we obtain x = cos # as our approxi-
mate SPA solution, for each value of #. This choice yields

Stationary phase approximation for 3=0.9
— e e
1.0y

0.8

0.6

Ky /Ko

04l
----- Chiral positive SPA
-------- Chiral negative SPA

0.2

0.0k n n n n 1 n n n n 1 " " " " A
0.0 0.5 1.0 1.5

FIG. 2. The exact numerical solution () of Eq. (34) is indicated with the dashed (red) line for 7 = 41 and with the dotted (blue) line
for = —1. The solution x(6) of the approximation in Eq. (37), called classical SPA, is plotted as a solid (magenta) line. The vertical

solid (green) line indicates the angle 6, = arccos f3, to the right of which , /kﬁ — bk becomes imaginary. Left panel: # = 0.5. Right

panel: = 0.9.
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kj(6,17) = ko| cos 6], ky(0.n) = ko|sin@|.  (37)
The solution (37), called the classical SPA, is plotted as the
solid (magenta) line in Fig. 2. Let us emphasize that this
approximation is taken only to have a simpler analytic way
to proceed with the calculation and that b, (f), is taken
nonzero in all the required remaining functions. The
approximation is valid whenever cos 6 > f3/(2v/2), which
should be verified at the end of any determination of a
Cherenkov angle. In any case, Fig. 2 provide a qualitative
idea of the validity of the approximation (37), showing that
it is very good for the contribution # = +1 in the whole
angular range. Looking back to Eq. (29) we realize that this
is not the case for the contribution # = —1, which is
suppressed to the right of the vertical (green) line shown

in the figures, where , /kﬁ — bk becomes imaginary. This

line corresponds to 6, = arccos f3.
Recalling Egs. (31) and (32), and substituting the SPA
(37), we arrive at

f(x.x50)|spa =F(x, X 0),
1
87rrk0b|cosé?|n:il

ikoCy(O)(r—hx')

9,(0) ’

j(x,x"0) = (38)

with

C,(0) = (sin? @ + cos® 61/1 + np| secd]),  (39)

1
1+ np| seco])*

9,(0) = (

>
P tanZ0.

X \/(1 +np| se09|)(1 +%B|sec¢9|) + 1

(40)

Let us remark the following obvious symmetry properties

which will be useful in the following. A word of caution is
required here. If we had solved the stationary phase
equation exactly, any change of variables in the subsequent
integration would produce the same result. This is not the
case when using an approximation as we have done. Since
we have chosen k| as our integration variable, we have to
make sure that the second derivative ) is calculated with
respect to k. Notice that in the limit f =0 we have
C,(0) =1, and we recover the phase ikyR describing
conventional radiation. Also, g,(#) = 1 in that limit.
We choose to split the GF in Eq. (20) as

Gy (x,xs0) = =g (k§ + V2 f(x.X"s0),  (42)
G (x,x';0) = —bliwe"® — 319} f(x,X;w), (43)

G (x, X 0) = Db f(x, X ), (44)

whose evaluation requires the calculation on the action of
the operators,

02
(k3 +V?) = (kg +V2 + @> , (45)

and 0; on the function f(x,x’; ), which is the far field
approximation of f(x,x’;®). Instead of applying these
operators directly on f(x, x’; @), we choose to act upon the
exact expressions (29) for f,(x,x;®) and subsequently
evaluate the results in terms of the stationary phase
proposed previously. The calculation is sketched in the
Appendix A, yielding the result

ikoC, (6
1 e'ko 17( )r /u/(ﬁ) le_ikoﬁ'x/cﬂ(e)

G (x,x;0) = — —_— )
Sﬂr/:il g,(0) " r

in terms of the frequency (46)
Cy(~w) =C_y(w),  g)(-o) =g, (@), “41)  imn
|
1 —in|tand|sin¢g in|tan 6| cos ¢ 0
in| tan 6| sin -1 in| secd 0
T B el , ()
—in| tan 6| cos ¢ —in| sec 6| -1 0
0 0 0 —(1 + np|secd)).
fulfilling the following symmetry property
H,/"(-0) = (H_ /" (o))" (48)

As another check of consistency, let us recover the conventional GF when # = 0. Recalling C,(#) = 1 and g,(6) = 1 in this

case, the GF turns into
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1 eiko(r—ﬁAX’)
G (x,x';0) =——— Y HM(1)
87 r W;I g

1 elko(r—ﬁ-x’)
=g - 49
— 4z r (49)
since the nondiagonal terms in Eq. (47) cancel in the sum,
while those in the diagonal get a factor of two.

V. THE ELECTROMAGNETIC FIELDS IN THE
RADIATION ZONE

In this section we calculate E and B in the far-field
approximation, for an arbitrary localized current J,(x', w).
We start from the vector potential together with the relation

4
A*(x, w) :ﬂ/d3x’G"”(X,X/;w)Jy(X/sw)’ (50)
c

which, with the GF (46) implemented, yields

(xw) =S g wa)le
2¢ ] 9,(0) g r

/d3x’e kG OBRX (%! @), (51)

ikoC,(6)r

where the only dependence of the GF on the source points
x' is in the exponential exp(—ikohi - x'C,(6)). Thus, the
relevant integral is the space Fourier transform

with

k, =1tkyC,(0), t=(sinfcos¢,sinfsing,cosd), (53)

n
where 6 and ¢ are the observation angles in spherical
coordinates. Let us remark that no absolute values in the 6-
dependent angular functions appear in 7. The electromag-
netic potential is then

1 1
2 2 o)

At (X, @) =
n==19n

H/M ()T, (k, o) (% eikoC,,(e)r> '
(54)

Collecting the symmetry properties given in Eqgs. (41) and
(48) and using J#(x, —w) = (J*(x,w))*, we arrive at the
relation

Ay(x,~w) = (A% (x.@))". (55)
We can verify again the correct limit f = 0, since now
k, = fik, independently of #, because C,(0) = 1, so that
the sum in (54) reduces to J, ), _.; Hy . As mentioned

previously, the off-diagonal terms cancel and those in the
diagonal yield 2#**. Remember also that g,(0) =1
when f = 0.

To calculate the electromagnetic fields E(x,w) =
ikyA(x,w) — VA’ (x,w) and B(x,w) =V x A(x,w), it
is convenient to write the vector potential (54) in the form

Al = ZA", !

Leikocn(wr) ,
= 9,(0)2cr

=H/M("T,(k,. o). (56)

Al = A(0.4) (
A(0.9)

As usual, the form of the outgoing wave exp(ikoC,(0)r)/r
in the radiation zone provides an important simplification
when considering the action of the gradient operator. It is a
direct calculation to show that

((94») et ) ikoN (w) o) )

(57)

for an arbitrary angular function U(6, ¢) in the far-field
approximation, with

N, = {c,,(e)f 1+ %(0) }

30 9. (58)
In accordance with the expression (57), the equivalence

= ikoN, holds for the action of V on the function
between parenthesis in (57), to first order in 1/r. This is
the generalization of the familiar property, V — ik(7, in the
scenario of conventional radiation. Let us observe that the
dependence on 9, which is not present in the standard case,
arises because the #-dependent phase factor C,(6) in the
exponential exp(ikoC,(0)r). The electromagnetic fields
can also be decomposed into their -contributions and
they are

B=>"B,

n==+1

E=)E,

n==1

B, = iky(N, x A,),  (59)

E, = iky(A, - N,A0),  (60)

where we recall that the expression of the vector potential
A* in terms of the sources is given in Eq. (56).
Equations (59) and (60) yield

N, x E, = iko(N, x A,) = B, (61)
Then we obtain iky(N, x E,) =V x E, = ikyB, which
readily implies Faraday law V x E(x, ) = ikyB(x, w).

The explicit expression for the electric field in spherical
coordinates is
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oC, s 44
E,(x,0) =ik [(A,; —-C, ANt + (Ag —a—;A2>0+A,‘f¢} :

(62)
such that
- E, = iky(A; — C,A), (63)

which will be nonzero in general. From Egs. (60) and (61),
we get

E.B- ko

= (B xE,)-(N.-N,). (64)

showing that E and B are generally non orthogonal.
Furthermore, from Egs. (61) and (62), we obtain the
additional projection

aC,(6)

T AL, (65)

This, together with Egs. (63) and (64) indicates that the
triad ¥, E, B is not orthogonal as it is in the conventional
case. The results (59) and (60) completely describe the
properties of the radiation emitted by an arbitrary current
J*(x', ) in a chiral material having b, = (0,0,0, b).

The ordinary properties of the radiation field when f = 0
are easily recovered from previous equations. In this case
N, = N_ = f, with C,(¢) = 1, which yield E - B = 0 and
B =0. Also, A (x,0) = A“(x,0) = 92 J* (k) w),
which allows us to write Eq. (63) as

ikgr
£ E = iky(f- A —A%) = i (koi - T — koJ°)
2cr
) eikor R
iy K, J*"(Fky, w) = 0, (66)

where the last term is zero by current conservation, with
K, = (ko, kot) in the radiation regime.

The explicit form of the electromagnetic potential in
terms of an arbitrary current J#(k,, w), together with the
components of the electromagnetic fields and a general
expression for the spectral distribution of the radiation, are
given in the Appendix B.

Until now we have only considered the electromagnetic
radiation produced in an ideal chiral medium with refrac-
tion index n = 1. This case corresponds to what is called
vacuum Cherenkov radiation in the literature [81,82],
where it is assumed that the standard vacuum is filled
with background fields codifying LIV, whose electromag-
netic effects turn out to be analogous to a material medium.
On the other hand, nonmagnetic (u = 1) chiral materials
have refraction indices n > 1, which we need to take into
account. The transformations relating both regimes are

presented in the Appendix D and for our immediate
purposes they include the following replacements
c—c/n,

q/n, b— b/n,

q g
-~ ¢cb1 1

— = —_— -, 67

poB="r=ps (67)

In the following we denote with a tilde the quantities which

now are presented for arbitrary n mainly to distinguish

them from those in previous notation with n = 1. In an

abuse of notation we do not make this distinction in the
resulting electromagnetic potentials and fields.

VI. THE CHERENKOV RADIATION

Now we apply the general method developed in the
previous sections to the case of a charge ¢ moving in chiral
matter with constant velocity, v = veé_, parallel to b, along
the z-axis, in order to maintain axial symmetry. The
developments in this section rely heavily on previous
results together of those in the Appendices B and C, all
of which were obtained for n = 1. Nevertheless, as neces-
sary for the description of nonmagnetic chiral matter with
refraction index n > 1, we need to perform the substitu-
tions indicated in Eq. (67). These are carried over for all the
quantities we use for the remaining calculations and plots,
and are indicated by adding an upper tilde over the
respective seed function previously calculated for n = 1.
In other words, F(n) is obtained from F(n =1) after
making the substitutions indicated in Eq. (67). The remain-
ing symbols ¢, ¢, b, @, B retain their original meaning
indicated in the preceding sections.

A. The electromagnetic fields

The sources in the frequency space are

/ q / N o
s :—5 5 lwl,"
p(x'0) = L 5)5(r)e

I(x . 0) = %5(xf)5(y/)eiw%. (68)

In order to have a well-defined limiting process in our
calculation, we follow Refs. [59,95] integrating the charge
trajectory in the interval z € (=&, &) and taking the limit
& — oo, at the end of the calculation. From the charge and
current densities, we obtain

_,4c sin[fgn]

T (k) nv g, '
T (K, w) = 22%, (69)
n =,

n

where now we have
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[1]:

w nv ~
0)=—(1—-——C,(0 o),
J0.0) =2 (1-"7¢,0)c050)

v
C,(w.0) = sin®0 + cos?0\/ 1 + np seco, (70)
31(@.0) 1
0,0)=—
n (1 + npseco)/*
7 n
X \/(1 + nf sec ) <1 + gsec9> +%tan29,

(71)
and k, = £22C,(6), with # being the unit vector in the
direction of the observation point. Using Eq. (47), the

components of the electromagnetic potential (54) are
conveniently written as

1 ~ ~
A =20, A= (1 +nlseco)Q,  (72)

.. 7
A; — ;(17] s1n(]§| tal’l9|)Qﬂ’

1 ~
Ay = ——(incos ¢[tan6])Q,, (73)
v
with

5 _q 1 sin[Nfén] 1wt o)
" ong(9) B, r

(74)

An important simplifying feature in the calculation is the
deltalike behavior of the function Q,7 in the limit

lim Sin[fé”] — 75 <9 (1 ~ M eosot, (9)) ) (75)

{—o0 5,7 v c

which determines the allowed Cherenkov angles,

cos0C, (0) = —, (76)
nv

in complete analogy with the ordinary case. Since we
discard the imaginary contributions to 5’,7(9) in Eq. (70),
the allowed values are positive and we conclude that the
resulting angles 6,, determined from Eq. (76), are in the
range [0, 7/2]. In other words, there is radiation only in
the forward direction.

An additional advantage is that now we can replace
| cos 8| by cos @ in all previous functions. Making explicit
the axial symmetry in polar coordinates, we introduce

¢ = [~ sin e, + cos ¢é,], leading to

A, (x,w) = Aj(x, ®) cos Of — A} (X, ) sin 06

+ A7 (x. @), (77)
in spherical coordinates, with
# ! -
Ay (x,0) = ~in—tan 00,. (78)
The associated electromagnetic fields are

E(x.0) = Y E,(x.0), (79)

n==+1

E,(x0) = i% [(cos 0A; — C,(0)A0)F

_ (Sin 0A + 6659(9) Ag>@) + A%], (80)
B(x.0)= ) <~n(e)f+aégg(9)é> x E,(x,), (81)

Al - C,(0)A00

aC, (0
B(x,w) = i 2(6)
c “ 20
n==1

_ <C,7 (0) sin 6 + 660”0(9) cos 9> A;JJ] . (82)

B. The spectral distribution of the radiated energy

From Eq. (12) we recover the standard energy-momentum
conservation law with the wusual Poynting vector,
S = £ E x B, when we adopt b, = 0. Taking into account
the fields (79)—(82), the spectral energy distribution (SED)

d°E
o ﬁrzf' ‘Re[E*(x, ) x B(x, )], (83)
reads
’E  no’q? sin’[£5, ] 1
=23 =5 ! T ,(@.0) =
dQdw  4n°c He G,(0)

+—= = [7—2,+(0)7 0) + 72,—(0)’ 0)]
cos (2 (', (0) — C_(e))r) y
e (54

To express ’ZN'L,? and 712‘,7 in a compact way, it is first
convenient to introduce the auxiliary functions
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B, (@, 0) = sin6 + it 0+ %
Py(@,0) = sin np tan o
Z]n(w, 0) = cosf + 11,5 — %Cn’ (85)
which yield
~ . c? ~ __aC
Tl,” = <[)% + nz—vztan29> Cﬂ + pﬂq”a—;,
=~ o c? ~ o oC_
T2,” = <p_p+ — mtaﬁ@) C_” -+ pnq_n#. (86)

For simplicity we have not written the dependence upon
(@, 6) in Eq. (86). In the Appendix B we list the symmetry
properties of some of the above functions under the change
w — —w. From the condition (76), we note that C+ =C_
only when b = 0, so that the resulting angles 6, will be
different in a chiral media (b #0), only coinciding
when the material is nonchiral. This, together with the
deltalike limit in Eq. (75), means that the cross term in
Eq. (84),

=]

—
—

sin[¢Z, ] sin[&

becomes zero in the final limit £ — oo, leading to the
following simpler expression for the SED

dI’E  no’q® sin[£8,] -~ 1
= = T, (,0)= . (88
dQdw  47°c? = = 1a(@.6) 7:(0) (88)

C. Determination of the Cherenkov angles

Now we consider in detail the Cherenkov condition (76),
which can be expressed in terms of the function

H,(6) = cos 9<sin29 4 cos?04/ 1 + nfsec 9) . (89)

in such a way the Cherenkov angles, 6, (with n = +, —,
clas), are determined by the intersection of the H,(6)
curves with the horizontal lines ¢/(nv), in accordance with
the relation (76). See the plot of H,(6) intersecting the
horizontal lines in Fig. 3, for n = 1. In the limit of standard
electrodynamics in vacuum (n =1, b =0), one has
H,s = cos 0, implying the known condition cos@=c/v,
which forbids the Cherenkov radiation.

In the following we list some important properties of the
functions H, (). They are decreasing functions of € that
satisfy H_ < H,, < H, for all values of 8. This justifies

L o , (87) the name of outer (inner) cone that we give to the radiation
=+ = emitted at the angles 6, (6_), respectively.
n n n n Sm T
0 12 6 4 3 12 2
B=05
I = u = 0.816
£ p— u =085
328 w=0.90
I 0493 u =095
1.0p —————==—— u=0.99
Y \\\ """ Hclas (9)
E 0.8 .
—H.(0)
....................... \\\\\ I H_ (0)
L S
0.4y RN
0 L ™ i 7 5 T
12 6 4 3 ) 2
0

FIG. 3.
0.5 (n = 1). The horizontal lines labeled by u = v/c correspond to H
though n = 1 the hatched region indicates the presence of CHR in

096024-

Plot of the functions H, () (solid line, red), H,(6) (dashed line, magenta) and H_(6) (dotted line, blue), for f = bc/w =

= 1/u in the ordinate. The Cherenkov angles are in radians. Even
chiral matter.
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The function H , is real for any value of B, while H_ has
the following restrictions: (i) it is imaginary when § > 1,
so that it does not contribute to the radiation in this case;
and (ii)) when /3 <1, it is real only in the interval
0 < @ < arccos B which constrains its contribution. The
maximum values of each function at the origin are

1+

=

H+(9:O): ’ Hclas(ezo): 1’

=t

H_(0=0)= (90)
For a given material (fixed n > 1), the evolution of the
Cherenkov angles 6, ,0_, 64, as a function of the particle
velocity, u = v/c, are described as follows (the classical
case is incorporated for comparison):

(1) Region A: No Cherenkov radiation when

\1+p < 1/(nu),

corresponding to the upper white area above the
u = 0.408 horizontal line in Fig. 4.

(ii) Region B: The region in which only 6, arises is in
the interval

(1)

defined by the orange oblique hatched area in Fig. 4.
This is the vacuum Cherenkov radiation in the LIV
case (b #0,n=1), which is not allowed in the
classical situation [81,82].

(iii) Region C: The region in which both 8, and 6, are
present is in the interval

\V1=p<1/(nu) <1,

shown by the pale magenta vertical hatched area
in Fig. 4.

Region D: The area in which all three angles, 0,
025 and 6_ coexist is in the interval

P(1 =) <1/(nu) < \/1-P.

marked as the pale blue horizontal hatched area
in Fig. 4.

(v) Region E: The lower region in which only 6, and
0,125 arise corresponds to the interval

(93)

@iv)

(94)

1/n < 1/(nu) < p(1 = p?). (95)

1 <1 147 9 (vi) The lower limit for H = 1/(nu) is H = 1/n and is
<1/(nu) <1+, (92) given by the maximum velocity u = 1.
b4 n T T Sm n
0 12 6 4 3 12 2
n=2
= u = 0.408
12f
1.0f ———==—=—"— uw=05
< | T 0.585 0.766 v—06
5:/ 0.8 L
______ NG u = 0.707
........ 9:406_ @,\%41\_0.936 w=075
T RN
~e Q).761 S 0\L043 w=09
~~~~~ 0.981 o\
e - w=0.99
""" Hclas (9) \\\ \\
04r )
— H.(0)
L - H_(0) | ]
0 ki T il T 5x T
12 6 4 3 12 2
0

FIG. 4. Plot of the functions H . (6) (solid line, red), H () (dashed line, magenta) and H_(6) dash-dotted line, blue), for 5 =0.5,
n = 2. The horizontal lines labeled by u = v/ ¢ correspond to H = 1/(nu) in the ordinate. The Cherenkov angles are in radians. Region
A: upper white area, Region B: oblique hatched area (orange), Region C: vertical hatched area (light magenta) and Region D: horizontal

hatched area (light blue).
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TABLE I. The possible Cherenkov angles for g = 0.5 and
n = 2, exhibited in Fig. 4.

u 0. (rad) O1as (rad) 6_(rad)
0.45 0.398 0.0 0.0
0.60 0.766 0.585 0.0
0.75 0.936 0.841 0.406
0.90 1.043 0.981 0.761

The case of vacuum Cherenkov radiation (n = 1) is
illustrated in the Fig. 3 for f# =0.5. A generic case for
n =2 and § = 0.5 is shown in the Fig. 4. Regions A, B, C
and D are indicated in the figure caption. In this case the
lower limit for H is 1/2, as approximately indicated by
the horizontal line labeled by u = 0.99. The values of the
Cherenkov angles for different velocities corresponding to
this case are also shown in Table I. From the left panel of
Fig. 2, we appreciate that the Cherenkov angles obtained in
this case, with our choice for the SPA in Eq. (37), fall in a
region where the classical SPA approximates very well the
exact numerical values shown in the figure.

D. Cherenkov angles 6, , 0_ as a function on g

In this subsection we investigate the dependence of the
Cherenkov angles upon the chiral parameter = bc/w, as

— T T——— 7T

0.6+
R e
(a) B=09382 e
[
04f “__‘ L — o0
"
o w=0.45
> 03 -
‘. ----- 9
02l ",' .
&
.
0.1 :
0.0 ,‘ ‘ | | ‘7
0 . - 3 4
T T T T . ‘ ‘
o ]
el 5 =222
0.8
n=2.0
0.6
< u=0.75
041 _____ 0+
------ 6_
021
0.0
. | ! | |

FIG. 5.

a function of n and u, paying attention to the points where
these angles are cut down, as shown in the Fig. 5. In other
words, we are interested in the functions 6, () for fixed n
and u. Let us recall that #(n) = /n?. It can be shown that
0. (B) [6_(P)] is an increasing (decreasing) function of S.
We distinguish two cases:
(1) nu < 1. From Egs. (92) and (93) we have only 6,.
The angle 6, starts at €, where 6. (€) = 0. By
substituting this in Eq. (89), we obtain

:BC =2~ nZ’ (96)

as we can see from Fig. 5(a).

(2) nu > 1. In this case we can have both 6, and 6_,
which start at # = 0. Since 0_ is a decreasing function
of 3, we determine a cutoff € by setting §_ () = 0.
Replacing 6_(B€) = 0 in Eq. (89) yields

o=nt - 97)

which can be verified in Figs. 5(b)-5(d).
To close this section we present the Figs. 6(a) and 6(b)
showing the SED for n = 2, and the choices f = 1.2 and

1.0 T

[ (b

© £ =1.222

B R |

g n=20 ]
bep, u=060 |

R ]

B A 0+ 1

R EE e e 0_ 1
02 |
OAO: :

0 1 . . ) ) ! 4
120 (d) —
RO SRR EECCIRC
"t n=20

’ u=0.90
> 06
_____ 9+
04l
________ 07

02l
0.0

The Cherenkov angles 6., 0_, for n = 2 and different values of u, as a function of 4. Panel (a): @, vanishes at # = ¢ = 0.938.

Panel (b): 6_ vanishes at # = ¢ = 1.222. Panel (c): 6_ vanishes at f = € = 2.222. Panel (d): _ vanishes at f = ¢ = 2.765.
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12 - 12
2

7 5m

(b) A" %o

N

12 - 12
2

FIG. 6. The angular distribution for the radiated energy per unit frequency (solid blue line) in a chiral dielectric medium with n = 2,
w/c =14 ym™', u =0.75 and & = 100 pm. Panel (a): ﬁ: 0.3, and Panel (b): ﬁ: 0.1. The dashed red line corresponds to the

conventional Cherenkov cone. The charge moves from left to right.

f = 0.4, which yield # = 0.3 and 8 = 0.1, respectively. In
both figures the solid blue line corresponds to £ = 100 pm
with u = 0.75 and @/c = 14 pm~!. We notice that as long
as f takes lesser values, the splitting between 6, and 6_
closes up and the difference in the amplitudes of the lobes
decreases. In Fig. 6(a) the angles of the chiral Cherenkov
cones are &, = 0.908 and #_ = 0.700, and in Fig. 6(b) they
are 8, =0.868 and #_ = 0.807. All plotted SED are
expressed in units of the common factor ¢/ (4x>c?).

VII. TOTAL RADIATED ENERGY
PER UNIT FREQUENCY

In this section, we calculate the total energy per unit
frequency radiated by the charge on its path from —& to +¢.
Also we consider the ratio of the radiated energy per unit
frequency between the 6, and the 6_ cones, as well as
between them and the case of nonchiral materials 9,,,. We
recall the calculation in the conventional Cherenkov case
(nonchiral material), where we have

dPEy,s  noq? | c? \ sin’[éF]
dQdew 73 n’v? CRE
. ® nv
2(0) =—(1-—cosb ), 98
0= (1-"cos0) (98)

given by the limit f =0 in Eq. (88). Axial symmetry,
which is also present in our chiral case, yields

dE.. 2na?q? WA in’[¢=
clas _ nw-q (1 — ¢ > / do SiH@Sln [5 ] . (99)
n 0

do e’ 22 =2

The trick to perform the remaining angular integration in
the limit £ — oo is to use Eq. (75), obtaining

sin?[£2 ~. sin[éE ~
;2 I 78(E) [& I n&s(=), (100)
leaving a final integration over §(Z). The result is
dEq,s q*wL c?
= 1- 101
do c? n*v?)’ (101)

where we have denoted by L = 2& the total distance
traveled by the charged particle in the medium. Let us
emphasize that in general n = n(w), which we do not
consider here. From Eq. (88) we have

d’E 3 d’E,
dQdo £ dQdw’

d’E, no’q® sin?[£5, ]
1= 0) ——= 1
0do ~ a2 0 2
e ,j-l (0,0)
K (0,0)=—1—""" 102

in the chiral case. The angular integration is similar to the
nonchiral case: the functions K, (@, #) are evaluated at the
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FIG. 7. Ratio between the total energy per unit frequency, as a function of f, radiated by each cone (€, , 6_) in the chiral Cherenkov

case, with respect to the conventional case, for n = 2.0. Panel (a): u = 0.6, panel (b): u = 0.75 and panel (¢): u = 0.9. The dashed (red)

line corresponds to R, and the dotted (blue) line is for R _.
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FIG. 8.

u = 0.6, panel (b): u = 0,75 and panel (c): u = 0.9.

respective Cherenkov angles 6,, while the integration over
8(E,) is a bit more involved. The result is

dE, wq’L sin 0K, (o, 0)

do  4c? |sin@C, (0) — cos 9%|

(103)
0=0,

Now, we compare the contribution to the total energy
radiated per unit frequency from each distribution in
Eq. (103), as a function of the chiral parameter 5. We
define the ratios

_ dE,/dw
" dEclas/da)
1 1

sin OKC, (. 0)
41— % |sin6C, (0) — cos @

(104)

aC,(0) ‘ ’
a0 I~ 0=0,

which account for the fraction of the radiated energy per
unit frequency that is produced by each cone in the chiral
case, with respect to the energy per unit frequency emitted
in the conventional case.

Figures 7(a)-7(c) show that when /3 is close to zero the
contribution of the radiation for each #n in Eq. (103) is
approximately 0.5. As f takes larger values we see that the
contribution of the radiation produced by the inner cone,
6_, gets smaller and smaller until it disappears completely.
The value of f at which this occurs is given by the

Ratio between the total energy radiated by the inner Cherenkov cone with respect to the outer one, for n = 2.0. Panel (a):

vanishing of 6_ in Figs. 5(b)-5(d). In the limit when R_
vanishes, we observe that the contribution of the radiation
from the outer cone is just a fraction of the radiation in the
conventional case.

To complete the analysis, we consider the ratio

dE_/dw

RJ/R, =—7F7—
/R dE. /dw

_ sin0_K_(w,0_) |sin oC, - cos9%|9:9+
sin@, K. (w.6,) |sinOC_ — cos 0%=[,_y ’

(105)

which is a measure of how larger the contribution to the
radiation from the inner cone is with respect to the outer
one. Figures 8(a)-8(c) show that the output from the inner
cone is always smaller than that from the outer cone. This
ratio decreases as f takes larger values, until it gets to zero
when the inner cone vanishes.

VIII. SUMMARY AND CONCLUSIONS

In the far field approximation, we study the electromag-
netic response of a nonmagnetic chiral media to arbitrary
time-dependent sources in the framework of the Carroll,
Field and Jackiw (CFJ) electrodynamics, which includes
the additional parameters b, and b giving rise to the
magnetoelectric effect. Examples of materials described
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by this effective electrodynamics are the Weyl semimetals,
where these parameters describe the separation of the Weyl
points in energy (by) and momentum (b), in the reciprocal
space. It is interesting to remark that this model also arises
in the CPT-odd sector of the Standard Model extension
designed to probe Lorentz invariance violations in funda-
mental interactions. We restrict ourselves to the case by = 0
and choose the z axis of our coordinate system in the
direction of b. Most of our calculations are performed in
vacuum (n = 1) and the generalization to arbitrary ponder-
able media required to deal with a real material is
performed following the substitutions indicated in the
Appendix D.

As discussed in Sec. II, the linear dependence 6(x) =
b,x* on the coordinates in the CFJ electrodynamics
preserves the invariance under translations of the
Lagrangian density up to a total derivative. The system
has axial symmetry with respect to the vector b. In Eq. (20)
we obtained the Green’s function (GF) of the system,
G"(x,x'), in terms of a differential matrix operator acting
on the scalar function f(x,x’, ), given in Eq. (28). This
function exhibits two contributions accounting for the
birefringence of the medium, which are inherited by
the remaining observables. The next step was to calculate
the general expression for the GF in the radiation zone. To
this end we considered the stationary phase approximation
in the far zone (R — o0), where the function f(x,x’, ) is
highly oscillating according to exp(iRh,(k, )) in Egs. (31)
and (33). Still, the resulting stationary phase equation (34)
is quartic in the momentum, which called for a further
approximation to keep an analytic calculation. We studied
the numerical solution of Eq. (34) and concluded that,
within specific ranges of the observation angle 6, the choice
in Eq. (37), corresponding to the conventional case with
b = 0, is adequate. A qualitative measure of how good this
approximation is for increasing values of = c|b|/w is
shown in Fig. 2. Yet at the end of the calculation of a
Cherenkov angle one should identify its position in the
corresponding graph in order to asses it validity. Next, for
an arbitrary source we determine the electromagnetic
potentials in the radiation zone and give a general expres-
sion for the electromagnetic fields in Egs. (59) and (60). We
show that the triad 72, E, B is not orthogonal and explain
how the conventional case is obtained. The general
expression for the spectral distribution of the radiation
follows from the Egs. (54), (B15), (B21), and (B22). Some
symmetry properties of the fields under the change @ —
—o are useful to show that this rather complicated
expression is real, as expected. Also at each step in the
calculation we able to recover the well known conventional
results by setting b = 0.

Next we turn to the particular case of Cherenkov
radiation where the source is a charge moving at constant
velocity parallel to b, thus ignoring recoil effects. The
electromagnetic potentials and fields results by the direct

substitution of the charge current in the previous general
expressions. In analogy with the conventional case, sub-
stantial simplifications arise from the form of the outgoing
radiation wave which now acquires additional angular
dependence which modify the conventional Cherenkov
condition. Yet this condition also arises as a deltalike
contribution in the spectral distribution of the radiation
which fixes the allowed angles according to the Eq. (76),
which is conveniently written as H,(6) = c¢/nv as in
Eq. (89). Then, for given values of b, n and u = v/c,
the Cherenkov angles are determined by the intersection of
H, with the straight line 1/nu, as shown in Figs. 3 and 4,
where we also plot the conventional case H,(0) for
comparison. The functions H(6) are decreasing in the
angle. Figure 3 is for n = 1 and depicts what is normally
called vacuum Cherenkov radiation that is forbidden in the
conventional case. Here only the angle 6, is present.
Figure 4 is for n > 1 and shows zero, one or two
Cherenkov angles. The limits of such regions is determined
by the maximum values H(0 = 0) in the following way:
(i) no Cherenkov angle occurs when 1/nu > H,(0), and
(il) when 1/nu < H_(0) the angle 6, is always present and
starts to be accompanied by the conventional angle when
1/nu < 1. The angle O_ occurs only in the interval
a(n)(1=a*(n) < 1/nu < H_(0). To avoid confusion,
let us observe that the horizontal lines labeled by u in
those figures correspond to the value 1/nu in the ordinate.
The relation §_ < ,, < 6, always hold and 0. merge
into 6, as |b| — 0.

We also study the dependence of the angles 6, as a
function of the chiral parameter f for fixed n and u. As
shown in Fig. 5, we find two relevant cases: (1) for nu < 1
we only have 6, which starts at the minimum /3 determined
by the Eq. (96), and (2) for nu > 1 both . start at f = 0.
While 6, is an increasing function, 8_ is a decreasing one
which reaches zero at a value given by the Eq. (97).

Angular plots of the spectral distribution are presented in
the Fig. 6, showing the separation of the cones as /3
increases. Also a qualitative measure of the energy output
of each cone in given by the length of the radial lines,
showing that 6_ radiates less than 6, . A better comparison
is obtained by calculating the ratios of the energy per unit
frequency radiated in the 6, cones with respect to the
conventional case (Fig. 7). We find that the contribution of
the outer cone (. ) gets bigger, while that of the inner cone
(0_) gets smaller as f = cb/w takes larger values, until it
reaches the value zero. This behavior is also evident in
Fig. 8, which depicts the ratio of the energy radiated per
unit frequency between the #_ and the 6, cones.

We successfully compare our result for the vacuum
Cherenkov angle 6, with that obtained in Eq. (40) of
Ref. [90] in the high energy approximation. This requires
0, <1, =bc/w < 1, together with a highly relativistic
velocity for the charge, which we take as v = c¢. Under
these conditions, our Eq. (76) reduces to
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1
cosf, {1 —I—Eﬂcostﬂ} =1, (106)

whose solution yields cos@, = 1 — /2, providing 0, =
VB in the small angle approximation. This result is
precisely that of Ref. [90], restricted to our case when v
is parallel to b and A = +.

We expect that our general description of radiation in
chiral matter provides the basis for the study of further
processes such as Cherenkov radiation with a charge
velocity v in arbitrary direction with respect to b, charged
particle energy losses and synchrotron radiation, for exam-
ple. Regarding the case of Cherenkov radiation and without
entering in any experimental detail, which is far beyond our
theoretical understanding, we envisage that the two
Cherenkov angles predicted in this work could be measured
by sending the charge through a slab of material and using
either a differential Cherenkov counter or a ring imaging
Cherenkov counter [101]. It is interesting to observe that
the measure of 8, would provide an optical experimental
determination of the parameter |b| of the chiral medium,
according to the expression

0] 1 c
|b| = n? <z> cos°0, (% —cosf, + 2cos39+>
c
— —cosfd, ). 107
X <nv cos +> (107)
|

] o dk | k
Gl (x.X0) =~k — / -
0 (X X 60) [/ 167h . kH

+ n

H (k R))

LY (k. R))

167b —o0 kH

- 7’]””62 i /m dk ky

“167b - Ky

These three terms can be integrated using the stationary
phase method in the same way as we have computed the
function

, i mdkikl (1)
X w) = H, (kR
f(x,x"; o) 1671[9/_00 ko (kiRy)

¢ kii+bky Z o /ki=bk|Z
Vi bk i bk

X

1 . (A2)

i /oo dk kK

H" (k,R))

When both 6. are present, |b| can be determined from the
measurement of either one, and consistency yields a rela-
tionship between 8, and 6_, which is not very illuminating
to be presented explicitly. In our restricted formulation (v
parallel to b) at least one should know the direction of b in
the sample to correctly send the incident charge parallel to b.
Due to the far reaching applications of Cherenkov radiation
and since chiral matter constitutes a genuine new state of
matter recently discovered, it could prove valuable to study
its practical applications as a Cherenkov radiator.
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APPENDIX A: THE CALCULATION OF THE GF
IN THE RADIATION ZONE

In this appendix we summarize the calculation of the GF
(20) in the far-field approximation, using the stationary
phase method. We start from the splitting of the GF
introduced in Egs. (42)—(44).

1. Gy (x.x';®) in the far-field approximation
Using k* = k3 — k3 + 0% we further split G* (x, X'; @) into

. 2 . 2_
SVERZ /R ka‘|

VR bk i ok
o /ki+bk|Z ol /kz—th‘|

NCRE
o /K +bk Z e /kz—th‘|

NG
|

in the far-field approximation, previously obtaining

eikoC- (0)(r—n-x")

g0 [
(A3)

ikyC, (0)(r—n-x")
f(xx50) =g [e

8xrkobcosd 9+(0)

in Eq. (38), with ky = w/c. Let us recall that we are
denoting by f(x, x’; w) the function f(x, x’; w) evaluated in
SPA and that according to our additional approximation in
the SPA we set
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(kj)y = ko cos®, (k1) = kosin8, (A4)

in the final result.
The first integral in (A1) is proportional to f yielding the
contribution
—nkif(x.x" @), (A5)

in the SPA. The second one has an extra factor of k7 in the
integrand, which is evaluated in the stationary phase point
(A4), giving the contribution

" k3sin?0f(x, x'; o). (A6)

The third term in (A1) requires the second derivative with
respect Z, which is

. 2 . 2
§ el kH+kaZ el kH kaZ

05 -
2 2
NCR e

_ _|: /kﬁ + bk”gi, /kﬁﬁLkaZ _ /kﬁ _ bk”el’, /k|2_ka:|,

(A7)

and can be rewritten as

i o0 dkj_kj_ (1)
e [P
16zb —0 k”

) o /ki+bk Z ) e /ki—bk|Z
x| (kt + b)) —====— (kf — bk)) ——=—=|,
k2 + bk” k? — bk”

l
= " k3cos?0|(1 + asec O)f, (x, x';w)
— (1 = asecO)f_(x,x";w)],

(A8)

after evaluating the additional factors in the SPA.
Substituting (A6) and (A8) into (A1), we finally obtain

o , w 1 eik0C+(€)(V—h~X/)
O(ny,w)—f’] @ g+(9) +

eikoc_(ﬁ)(r—ﬁ-x’)]

9-(0)
(A9)

2. G’l‘," (x,x’; ) in the far-field approximation

Our starting point is the contribution linear in b in the
second Eq. (20), which we rewrite

Pk k,

_ _ eik~(x—x’)
(27)3 k* + B*k* — (b -k)?

Gf“(x,x’;a)):ibeﬂ””3/ .
(A10)

Here 6 =0,1,2 and k, = (ky,—k). It is convenient to
define the following integral

I,(x,x";0)
- / ([21?:1;3 [ szi{a— e e, (AT
such that
Gy = ibe"1,. (A12)
For 6 = 0 we have the straightforward result
Ih(x,x";0) = kof(x,X'; ). (A13)

Also, the contribution from /3(x, x’; ) yields zero in the
GF due to the Levi-Civita tensor.

Next we consider ¢ =i = 1,2, and we perform the
integration of &, in the complex plane, as we did previously
in the calculation yielding Eq. (28). We are left with

. 1 © 2z o
It(x,x';a)):—B/ ko_kJ_/ depkieikiRicosd
(27)* Jo 0

o oik.Z
dk :
x /_w K2 -0 (K2 —K2) - b2

1 Y] 2 y4
_ !t / dk ki /2 dep [COS¢:| eikiR  cosp
1677,'217 0 k” 0 sinqb

ol /ki+bk 2 o /kz—bkzl
NCRLRYC

where we recall that ¢ is the angle between R | and k | . In
the second equality of (A14) we have chosen a coordinate
system S with the x-axis in the direction of R |, such that
k' = k| cos¢ and k*> = k, sin ¢. The angular integrals are

x (A14)

2n .
/ de cos pe’*iRicosd = 27if (k\ R,),
0

2r .
/ dep sin pe’k1Ricosd — (), (A15)
0
Using the recurrence
SR = -0 kR, (Al6)
WLRL) = =37 5R Toltin),

the integral (A14) can be written as
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1 oo 2 1J (k. R
Is(X,X,;(U):— ko_kL|: 1( € l):|

8ﬂ2b 0 k” 0
ol /ki+bk Z o /k2—hkzl
\/kH + bk \/kH — bk

1 wdk k, [Hy(kR))
aRL T67b -0 K 0

JAVLRT AR /k2—bkz]
Vi ok i - bk

- Ma%ﬂx X' 0)

In the chosen coordinate system we have /> = 0. Then the
vector I(x,x’;@) = (I',0) is parallel to R, and we can
write the general result

(A17)

I(x—x), o

I(x,x;0) = R, Ef(x,x’;w). (A18)

From the recurrence relations of the Hankel functions we
obtain

0 () 4 (1)
—H\"(k\R\) =k ——H (kR
= —k H{(kR)), (A19)
which yields
0 auqkL
— H (kR
ar, e X) e K, LRy)
iKrkz iy /fk-bhZ
- . (A20)
\/kH + bk, \/kH — bk

In the asymptotic limit k; R |, — oo, we can approximate
[102]

2 . o e
H{V (k. R,) = \/ me”&&—%_,i = Hy (k. Ry )e™

0 i © dkLki (1)
—_— H, R
oS X X5 =g /_oo kO (k1R1)
el’, /kﬁ+bk”Z €i1 /kﬁ—kaZ
. - . (A22)
NCELUECEY

which again has the form of the function f(x,x;w) in
Eq. (A2), except for an additional factor k;, in the
integrand. In the SPA this implies

%f(x x;w) =

- I(x,x";0) = kot | f(x, X; @),

ik sin 0f(x, x'; w),
(A23)

where fi; = (sin@cos ¢, sinfsin¢). This completes the
calculation of G} in Eq. (43).

3. GJ;(x.X"; ) in the far-field approximation

This term is the easiest to calculate, because it is
proportional to f(x, x’; @), with

G (x.x ) = DD f(x.X; ). (A24)
The only nonzero contribution in SPA is
GH(x,x;0) = —b*f(x.X; ). (A25)

APPENDIX B: ELECTROMAGNETIC FIELDS
AND THE SPECTRAL DISTRIBUTION OF THE
RADIATION FOR =1

First we write the Cartesian components of A* for an
arbitrary current J#(x’, w) in terms of the Fourier transform
J*(k,. ), defined in Eq. (52), which we denote as .
From Eq. (51) and in the notation of Eq. (56) we have

AV, w) = Ty + intan@sin T} — intan & cos p.J,

A}, w) = intanOsinpJy + T} — insec 0T,

AZ(h, w) = —intan O cos pTy) + insecO.T) + Tr.

A (x,w) = (1 +npsec)T;. (B1)

The transformation to spherical coordinates yields

Ar(fi,w) =sinfcos p.A} + sinfsinp.A? + cosO.A;,

Al (i, w) = cosOcospA} 4 cosOsinf A% —sin A5, (B2)
A?(f, w) = —sin OA) + cos pA;. (B3)

Using Eq. (57) for the expression of the gradient operator in
the radiation zone in the conventional relations

E(x, ) = ikoA(x, ) — VA°(x, w),
B(x,0) = Vx A(x, ),

and splitting the electromagnetic fields as shown in
Egs. (59) and (60) we have

(B4)
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E,(x.0) = iky(A,(x.0) - N,AY(x.®)). (B5)

(B6)

B,(x,w) =N, x E,(x,w),

recalling the definition of N, in Eq. (58). The explicit form
of the radiation electric field in spherical coordinates is

oC
E,(x.0) = ik, [(A,; - C,A))E+ (Az 5 6”A0>0+A¢¢}

(B7)
Now we are in position to calculate the spectral energy
distribution (SED) of the radiation: the energy radiated per

unit solid angle and per unit frequency. We have taken
by = 0 which yield the Poynting vector

S(x. 1) :%E(x,z) x B(x, 1). (BS)

Thus, the total radiated energy crossing the area £dA is

/°° di(F - S(x, 1))dA

% d
47[ 3 2;’ - (E*(x, @) x B(x, w))dA.
:4—62 " dot - Re[E* (x, ) x B(x, )]2dQ,  (BY)
T Jo
where dA = r?dQ and we read the SED
TE _ < o Re[E*(x,w) x B(x, ).  (B10)
= —rf- D) ,w)|.
dQdw  4x°

The last step in Eq. (B9) is a consequence of the relation

E*(x,—0) x B(x,—w) = E(x,w) x B*(x, ®)

= (E*(x,w) x B(x,w))*, (BII)
in the integral —co < @ < 400, which follows because the
electromagnetic fields are real in coordinate space. Now we
calculate the term

E*(x,0) x B(x,0) Z E)(x.0)xB,(x.0). (BI2)
nay=+1
From Eq. (B6) we have
E; xB,=E;(x,0) x [N, xE,(x, 0)]
= (E}-E,N, - (E} -N,)E,. (B13)

Fom Eq. (B7), the electric field can be rewritten in spherical
components as

E, (x.0) = iko[E}F + £)0 + £1].
) (x,0) = —iko[(£1)'F + (£9)0 + (€1)"p]. (B14)
where
oC,
Er=A;—C,AY,  E9=A0- P —1A0, EF=AY.  (BIS)
With these we compute
E* _ E* [N a
n/'Nn— 7,]/' Cﬂr+ 690
aC,
= —iko|(€,)°C, + (€2 (B16)
00
E)-E, = K[(E) &+ (E5)E+ (€)) &), (BIT)

yielding
E; x B, =k3[(£7) &)+ (E9) €0+ (E0) &) (Cnf+ 30 0)
2 ro\* 0 *()CW ra 00 ()
k3| () Crt (E) | [Erf+ED+ E7b).
(B18)

From the above equation we obtain

t-(E; xB,)=kj [((53)*% + (ij,)*gﬁ)cn — (&) 5*

1 09
=T7,,(tw)), (B19)
which produces the final result
i (E*(x, ) X B(x, ) Z Iyt ),  (B20)
ny'==+1
with the explicit expressions
.. o) =€) el e retic -y e 2]

T__ (b)) =3 | (€0)0 1 () eh)C—(€0) er ‘ 9]

(k) =8| (€0 €2 + (€1 et)C—(0)er ).

0
(B21)

T () =85 ((€2)° (€0 ) C.—(€0) 1 5|

Thus, by substituting (B20) into (B10), it provides the final
expression
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d*E c

— 7 —_— R
dQdw 42" e{

Z Loy (., a))] ’ (B22)

for the SED of the radiation in terms of the electromagnetic
fields for arbitrary sources J¥(x, 7) in the case n = 1.

Using the definitions (B15), Eqgs. (41) and (55) allow to
obtain the symmetry relations

Ey(-w) = (€5 (@), &(-o) = (€2,(0))",
&)(-w) = (E4(w))", (B23)
which then yield

I, (k—w)=(T__(fw),

I, (F-o)=(Z_(Fw)". (B24)

To conclude we summarize additional symmetry properties
used along the text, resulting from the transformation
@ — —®, which produces ff — —f, that in turn can be
absorbed in the change n — —7n, together with complex
conjugation in some cases

JH(x, —o0) = (J*(x,0))",

C,(—0.0)=C_,(,0),

Ab(x,—) =
gi’](_w’9> =0-

(AL (x,@))*,
J(@.0).  (B25)

APPENDIX C: THE SPECTRAL DISTRIBUTION
IN THE CHERENKOV RADIATION FOR r=1

We present only the main steps in the calculation of the
SED for the Cherenkov radiation. We start from the sources
in frequency space

p(x, @) = 5(x)5(3/ e,
v

B(x,w) = g8(x)s()ei”,  J'=J2=0, (CI)
describing a charge ¢ moving in the third direction z with
constant speed v. In order to have a well-defined limiting
process in our calculation we follow Refs. [59,95] integrating
the charge trajectory in the interval z € (—¢, £) and taking the
limit £ — oo at the end of the calculation. In terms of the
Fourier transform J# (K, @), defined in Eq. (52), we obtain
the vector potential A/4 from Egs. (B1) and (B3) which yield

the electric field (B7), from where we read the components
& Eg, EZ’, according to Eq. (B15)

q s1n[§u ] [ etkorC,(0)
&= os9+r]ﬁ——C 0) . (C2)
" oer B, 9,(0)
sin[£8, ] c9C,(0)] e*orC(0)
g0 = - L2220 Lin 0 4 tan 0+ =2 :
1 cr B, [sm b L) 9,(0)
(C3)

&) =-

i@{ ¢ ]eikorc"@ (C4)

—tan @
cr B oy 9,(0)

d
The expressions for C, () and g, (6) are given in Egs. (39)
and (40), respectively, and we have

g, == <1 —gc,?(e)cow). (C5)

v

Finally, we substitute these expressions for the components
of the electric field in Eq. (B21) to obtain

k3q? sin?[£E. ] 1
T, (t,0)==" =T ,0) ——,
++(r w) czrz E%— 1,+(w )91(9)
. k3q* sin?[£E_] 1
I__(I‘, ) — Cgrz =2 Tl —(w79) P (9)’
. k2q? sin[£E_ | sin[£E_
I+_(r, w) _ g - L +] L ]
ccrr B, E_
I (00 20O
X o, ,
o 9+(0)9-(0)
R k2q?* sin[£E. | sin[£E_
I_Jr(l‘, 6()) _ (; < L +] L ]
ccrr B, E_
¢~k (C_(0)-C. (0)
x T, _(w,0) (Co)

The functions 7, and 7,, are written in a compact by
introducing the auxiliary quantities

cdC,
py(@,0) = sm9+i1ﬁtan6+——

00
q,(@.0) = cosH—l—nﬁ—;CW, (C7)
and they read
c? oC
T,,= (p% + vztanZe) C,+ p”qna—;,
c? oC_
Tz’n = (p_er - Fta_n29> C_,, + pnq_”# . (Cg)

The symmetry properties of the remaining functions are

én(_w’ 9) - _é—n(w’ 0)’ i)i](_w’ 9) = p—n(a}’ 9)’
Gy(~.,0) = g_,(@,0), T1,(~0,0) =T,_,(0,0),
Ty, (~0.0) =T, _,(w.0). (C9)

The final expression for the SED is obtained by sub-
stituting the relations (C6) in Eq. (B22).
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APPENDIX D: INTRODUCING PONDERABLE
MEDIA WITH PARAMETERS ¢ AND u

In this appendix we relate the physical Maxwell equa-
tions describing chiral matter for a nondispersive, non-
disipative medium with those used in the manuscript given
in Egs. (6) and (7). In unrationalized Gaussian units the
Maxwell equations for an ideal chiral medium with ¢ =
u=1 are

4
V-E’:c—irJlo—b/-B/,
10E 4
VB - S Tn = S0 B b X B
C C
1 0B’
C

It can be readily verified that the changes

B’:LB, c’:—c p’zi

Vi Ve
1
Y=o e \/éb, by = ubo,

produce Maxwell equations for a chiral medium with
arbitrary ¢ and u

E' = eE,

4
eV-E=-2J0_p.B,
C

1 | OE 4
SVxB--eZ = J 1 byB + b xE,
u c ot c
10B
V.B=0, VxE+-2 -0, (D3)
c ot

[1] P. A. Cherenkov, Visible luminescence of pure liquids
under the influence of y-radiation, Dokl. Akad. Nauk
SSSR 2, 451 (1934).

[2] S.1. Vavilov, On the possible causes of blue y-glow of
liquids, Dokl. Akad. Nauk SSSR 2, 457 (1934), https://ufn
.ru/ru/articles/1967/10/m/.

[3] J. V. Jelley, Cherenkov radiation and its applications, Br. J.
Appl. Phys. 6, 227 (1955).

[4] J. V. Jelley, Cherenkov Radiation and its Applications
(Pergamon Press, New York, 1958).

[5] I. M. Frank and I. E. Tamm, Coherent visible radiation of
fast electrons passing through matter, Dokl. Akad. Nauk.
14, 107 (1937) [C. R. (Dokl.) Acad. Sci. URSS 14, 109
(1937)].

[6] T. Ypsilantis and J. Seguinot, Theory of ring imaging
Cherenkov counters, Nucl. Instrum. Methods Phys. Res.,
Sect. A 343, 30 (1994).

[7] See for example the Section 35.5 in C. Patrignani et al.
(Particle Data Group), Review of particle physics, Chin.
Phys. C 40, 100001 (2016) and 2017 update.

[8] O. Chamberlain, E. Segre, C. Wiegand, and T. Ypsilantis,
Observation of antiprotons, Phys. Rev. 100, 947
(1955).

[9] J.J. Aubert et al., Experimental Observation of a Heavy
Particle J, Phys. Rev. Lett. 33, 1404 (1974).

[10] N. Engheta and S. Bassiri, Cerenkov radiation in chiral
media, J. Appl. Phys. 68, 4393 (1990); A. Lakhtakia,
Unified approach for canonical Cerenkov radiation in
isotropic chiral media, Optik (Stuttgart) 87, 133 (1991).

[11] R. Peccei and H. Quinn, Constraints imposed by CP
conservation in the presence of pseudoparticles, Phys. Rev.
D 16, 1791 (1977).

[12] P. Sikivie, Experimental Tests of the “Invisible” axion,
Phys. Rev. Lett. 51, 1415 (1983).

[13] F. Wilczek, Two Applications of Axion Electrodynamics,
Phys. Rev. Lett. 58, 1799 (1987).

[14] A. Sekine and K. Nomura, Axion electrodynamics in
topological materials, J. Appl. Phys. 129, 141101 (2021).

[15] M. E. Tobar, B. T. McAllister, and M. Goryachev, Modi-
fied axion electrodynamics as impressed electromagnetic
sources through oscillating background polarization and
magnetization, Phys. Dark Universe 26, 100339 (2019).

[16] J. M. A. Paixdo, L.P.R. Ospedal, M. J. Neves, and J. A.
Helayél-Neto, The axion-photon mixing in nonlinear
electrodynamic scenarios, J. High Energy Phys. 10 (2022)
160.

[17] T.H. O’Dell, The Electrodynamics of Magneto-Electric
Media (North-Holland, Amsterdam, 1970); L. D. Landau,
E. M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of
Continuous Media Course of Theoretical Physics Vol. 8
(Pergamon Press, Oxford, 1984).

[18] J.A. Kong, Electromagnetic Wave Theory (Wiley,
New York, 1986).

[19] A.H. Sihvola and I. V. Lindell, Bi-isotropic constitutive
relations, Microwave Opt. Technol. Lett. 4, 295 (1991);
A. H. Sihvola and I. V. Lindell, Properties of bi-isotropic
Fresnel reflection coefficients, Opt. Commun. 89, 1
(1992); S. Ougier, 1. Chenerie, A. Sihvola, and A.
Priou, Propagation in bi-isotropic media: Effect of different
formalisms on the propagation analysis, Prog. Electro-
magn. Res. 09, 19 (1994).

[20] P. Hillion, Manifestly covariant formalism for electromag-
netism in chiral media, Phys. Rev. E 47, 1365 (1993); 1.
Yakov, Dispersion relation for electromagnetic waves in
anisotropic media, Phys. Lett. A 374, 1113 (2010); N.J.
Damaskos, A. L. Maffett, and P. L. E. Uslenghi, Dispersion
relation for general anisotropic media, IEEE Trans. Anten-
nas Propagat. 30, 991 (1982).

096024-22


https://doi.org/10.3367/UFNr.0093.196710n.0385
https://doi.org/10.3367/UFNr.0093.196710n.0385
https://ufn.ru/ru/articles/1967/10/m/
https://ufn.ru/ru/articles/1967/10/m/
https://doi.org/10.1088/0508-3443/6/7/301
https://doi.org/10.1088/0508-3443/6/7/301
https://doi.org/10.3367/UFNr.0093.196710o.0388
https://doi.org/10.3367/UFNr.0093.196710o.0388
https://doi.org/10.1007/978-3-642-74626-0_2
https://doi.org/10.1007/978-3-642-74626-0_2
https://doi.org/10.1016/0168-9002(94)90532-0
https://doi.org/10.1016/0168-9002(94)90532-0
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/PhysRev.100.947
https://doi.org/10.1103/PhysRev.100.947
https://doi.org/10.1103/PhysRevLett.33.1404
https://doi.org/10.1063/1.346188
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.58.1799
https://doi.org/10.1063/5.0038804
https://doi.org/10.1016/j.dark.2019.100339
https://doi.org/10.1007/JHEP10(2022)160
https://doi.org/10.1007/JHEP10(2022)160
https://doi.org/10.1002/mop.4650040805
https://doi.org/10.1016/0030-4018(92)90237-L
https://doi.org/10.1016/0030-4018(92)90237-L
https://doi.org/10.2528/PIER93010100
https://doi.org/10.2528/PIER93010100
https://doi.org/10.1103/PhysRevE.47.1365
https://doi.org/10.1016/j.physleta.2009.12.071
https://doi.org/10.1109/TAP.1982.1142905
https://doi.org/10.1109/TAP.1982.1142905

ELECTROMAGNETIC RADIATION IN CHIRAL MATTER: THE ...

PHYS. REV. D 107, 096024 (2023)

[21] Y. T. Aladadi and M. A.S. Alkanhal, Classification and
characterization of electromagnetic materials, Sci. Rep. 10,
11406 (2020).

[22] W. Mahmood and Q. Zhao, The double Jones birefrin-
gence in magneto-electric medium, Sci. Rep. 5, 13963
(2015).

[23] V.A. De Lorenci and G.P. Goulart, Magnetoelectric
birefringence revisited, Phys. Rev. D 78, 045015 (2008).

[24] P.D.S. Silva, R. Casana, and M. M. Ferreira, Jr., Sym-
metric and antisymmetric constitutive tensors for bi-
isotropic and bi-anisotropic media, Phys. Rev. A 106,
042205 (2022).

[25] A. Martin-Ruiz, M. Cambiaso, and L.F. Urrutia, The
magnetoelectric coupling in electrodynamics, Int. J.
Mod. Phys. A 34, 1941002 (2019).

[26] X.L. Qi, T. L. Hughes, and S. Ch. Zhang, Topological field
theory of time-reversal invariant insulators, Phys. Rev. B
78, 195424 (2008); 81, 159901(E) (2010); Y. Tokura, K.
Yasuda, and A. Tsukazaki, Magnetic topological insula-
tors, Nat. Rev. Phys. 1, 126 (2019).

[27] A. Martin-Ruiz, M. Cambiaso, and L. F. Urrutia, Electro-
and magnetostatics of topological insulators as modeled by
planar, spherical, and cylindrical @ boundaries: Green’s
function approach, Phys. Rev. D 93, 045022 (2016).

[28] J. Maciejko, X.-L. Qi, H.D. Drew, and S.-C. Zhang,
Topological Quantization in Units of the Fine Structure
Constant, Phys. Rev. Lett. 105, 166803 (2010).

[29] Ming-Che Chang and Min-Fong Yang, Optical signature
of topological insulators, Phys. Rev. B 80, 113304 (2009).

[30] Zheng-Wei Zuo, Dong-Bo Ling, L. Sheng, and D. Y. Xing,
Optical properties for topological insulators with meta-
materials, Phys. Lett. A 377, 2909 (2013).

[31] A. Lakhtakia and T. G. Mackay, Classical electromagnetic
model of surface states in topological insulators, J. Nano-
photon. 10, 033004 (2016).

[32] T.M. Melo, D.R. Viana, W.A. Moura-Melo, J. M.
Fonseca, and A.R. Pereira, Topological cutoff frequency
in a slab waveguide: Penetration length in topological
insulator walls, Phys. Lett. A 380, 973 (2016).

[33] Z.-X. Li, Yunshan Cao, and Peng Yan, Topological
insulators and semimetals in classical magnetic systems,
Phys. Rep. 915, 1 (2021).

[34] R. Li, J. Wang, Xiao-Liang Qi, and S.-C. Zhang, Dynami-
cal axion field in topological magnetic insulators, Nat.
Phys. 6, 284 (2010).

[35] L. Ohnoutek et al., Strong interband Faraday rotation in 3D
topological insulator Bi,Se3, Sci. Rep. 6, 19087 (2016).

[36] L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P.
Armitage, Quantized Faraday and Kerr rotation and axion
electrodynamics of a 3D topological insulator, Science
354, 6316 (2016).

[37] W.-K. Tse and A. H. MacDonald, Giant Magneto-Optical
Kerr Effect and Universal Faraday Effect in Thin-Film
Topological Insulators, Phys. Rev. Lett. 105, 057401
(2010); Magneto-optical and magnetoelectric effects of
topological insulators in quantizing magnetic fields, Phys.
Rev. B 82, 161104 (2010); Magneto-optical Faraday and
Kerr effects in topological insulator films and in other
layered quantized Hall systems, Phys. Rev. B 84, 205327
(2011).

[38] N.P. Armitage, E.J. Mele, and A. Vishwanath, Weyl and
Dirac semimetals in three-dimensional solids, Rev. Mod.
Phys. 90, 015001 (2018).

[39] K. Landsteiner, Anomalous transport of Weyl fermions in
Weyl semimetals, Phys. Rev. B 89, 075124 (2014).

[40] A. Martin-Ruiz, M. Cambiaso, and L. F. Urrutia, Electro-
magnetic fields induced by an electric charge near a Weyl
semimetal, Phys. Rev. B 99, 155142 (2019).

[41] K. Deng, J. S. Van Dyke, D. Minic, J. J. Heremans, and E.
Barnes, Exploring self-consistency of the equations of
axion electrodynamics in Weyl semimetals, Phys. Rev. B
104, 075202 (2021).

[42] R. E. Throckmorton, J. Hofmann, E. Barnes, and S.D.
Sarma, Many-body effects and ultraviolet renormalization
in three-dimensional Dirac materials, Phys. Rev. B 92,
115101 (2015).

[43] E. Barnes, J.J. Heremans, and Djordje Minic, Electro-
magnetic Signatures of the Chiral Anomaly in Weyl
Semimetals, Phys. Rev. Lett. 117, 217204 (2016).

[44] P. Hosur and X-L. Qi, Tunable circular dichroism due to
the chiral anomaly in Weyl semimetals, Phys. Rev. B 91,
081106(R) (2015).

[45] U. Dey, S. Nandy, and A. Taraphder, Dynamic chiral
magnetic effect and anisotropic natural optical activity of
tilted Weyl semimetals, Sci. Rep. 10, 2699 (2020).

[46] L. Shaposhnikov, M. Mazanov, D. A. Bobylev, F. Wilczek,
and M. A. Gorlach, Emergent axion response in multilay-
ered metamaterials, arXiv:2302.05111.

[47] E.R. Prudéncio and M. G. Silveirinha, Synthetic Axion
Response with Space-Time Crystals, Phys. Rev. Appl. 19,
024031 (2023).

[48] X.-L. Qi, R. Li, J. Zang, and S.-C. Zhang, Inducing a
magnetic monopole with topological surface states, Sci-
ence 323, 1184 (2009).

[49] D. E. Kharzeev, The chiral magnetic effect and anomaly-
induced transport, Prog. Part. Nucl. Phys. 75, 133 (2014);
D.E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang,
Chiral magnetic and vortical effects in high-energy nuclear
collisions—A status report, Prog. Part. Nucl. Phys. 88, 1
(2016);

[50] D. Kharzeev, K. Landsteiner, A. Schmitt, and H. U. Yee,
Strongly Interacting Matter in Magnetic Fields, Lecture
Notes in Physics Vol. 871 (Springer-Verlag, Berlin,
Heidelberg, 2013).

[51] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Chiral
magnetic effect, Phys. Rev. D 78, 074033 (2008); D. E.
Kharzeev and H.J. Warringa, Chiral magnetic conduc-
tivity, Phys. Rev. D 80, 034028 (2009).

[52] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, 1. Pletikosic,
A. V. Fedorov, R.D. Zhong, J. A. Schneeloch, G.D. Gu,
and T. Valla, Chiral magnetic effect in ZrTes, Nat. Phys.
12, 550 (2016).

[53] A. Vilenkin, Equilibrium parity-violating current in a
magnetic field, Phys. Rev. D 22, 3080 (1980); A.
Vilenkin and D. A. Leahy, Parity nonconservation and
the origin of cosmic magnetic fields, Astrophys. J. 254, 77
(1982).

[54] G. Inghirami, M. Mace, Y. Hirono, L. Del Zanna, D.E.
Kharzeev, and M. Bleicher, Magnetic fields in heavy ion

096024-23


https://doi.org/10.1038/s41598-020-68298-3
https://doi.org/10.1038/s41598-020-68298-3
https://doi.org/10.1038/srep13963
https://doi.org/10.1038/srep13963
https://doi.org/10.1103/PhysRevD.78.045015
https://doi.org/10.1103/PhysRevA.106.042205
https://doi.org/10.1103/PhysRevA.106.042205
https://doi.org/10.1142/S0217751X19410021
https://doi.org/10.1142/S0217751X19410021
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.81.159901
https://doi.org/10.1038/s42254-018-0011-5
https://doi.org/10.1103/PhysRevD.93.045022
https://doi.org/10.1103/PhysRevLett.105.166803
https://doi.org/10.1103/PhysRevB.80.113304
https://doi.org/10.1016/j.physleta.2013.09.004
https://doi.org/10.1117/1.JNP.10.033004
https://doi.org/10.1117/1.JNP.10.033004
https://doi.org/10.1016/j.physleta.2015.12.041
https://doi.org/10.1016/j.physrep.2021.02.003
https://doi.org/10.1038/nphys1534
https://doi.org/10.1038/nphys1534
https://doi.org/10.1038/srep19087
https://doi.org/10.1126/science.aaf5541
https://doi.org/10.1126/science.aaf5541
https://doi.org/10.1103/PhysRevLett.105.057401
https://doi.org/10.1103/PhysRevLett.105.057401
https://doi.org/10.1103/PhysRevB.82.161104
https://doi.org/10.1103/PhysRevB.82.161104
https://doi.org/10.1103/PhysRevB.84.205327
https://doi.org/10.1103/PhysRevB.84.205327
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevB.89.075124
https://doi.org/10.1103/PhysRevB.99.155142
https://doi.org/10.1103/PhysRevB.104.075202
https://doi.org/10.1103/PhysRevB.104.075202
https://doi.org/10.1103/PhysRevB.92.115101
https://doi.org/10.1103/PhysRevB.92.115101
https://doi.org/10.1103/PhysRevLett.117.217204
https://doi.org/10.1103/PhysRevB.91.081106
https://doi.org/10.1103/PhysRevB.91.081106
https://doi.org/10.1038/s41598-020-59385-6
https://arXiv.org/abs/2302.05111
https://doi.org/10.1103/PhysRevApplied.19.024031
https://doi.org/10.1103/PhysRevApplied.19.024031
https://doi.org/10.1126/science.1167747
https://doi.org/10.1126/science.1167747
https://doi.org/10.1016/j.ppnp.2014.01.002
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.80.034028
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1086/159706
https://doi.org/10.1086/159706

BARREDO-ALAMILLA, URRUTIA, and FERREIRA

PHYS. REV. D 107, 096024 (2023)

collisions: Flow and charge transport, Eur. Phys. J. C 80,
293 (2020).

[55] E. C.Ivan der Wurff and H. T. C. Stoof, Anisotropic chiral
magnetic effect from tilted Weyl cones, Phys. Rev. B 96,
121116(R) (2017).

[56] M.-C. Chang and M.-F. Yang, Chiral magnetic effect in a
two-band lattice model of Weyl semimetal, Phys. Rev. B
91, 115203 (2015).

[57] P.D.S. Silva, M. M. Ferreira, Jr., M. Schreck, and L. F.
Urrutia, Magnetic-conductivity effects on electromagnetic
propagation in dispersive matter, Phys. Rev. D 102,
076001 (2020).

[58] S. Kaushik, D. E. Kharzeev, and E.J. Philip, Transverse
chiral magnetic photocurrent induced by linearly polarized
light in symmetric Weyl semimetals, Phys. Rev. Res. 2,
042011(R) (2020).

[59] O.]. Franca, L. F. Urrutia, and O. Rodriguez-Tzompantzi,
Reversed electromagnetic Cherenkov radiation in naturally
existing magnetoelectric media, Phys. Rev. D 99, 116020
(2019).

[60] V.G. Veselago, The electrodynamics of substances with
simultaneously negative values of € and y, Sov. Phys. Usp.
10, 509 (1968).

[61] D.R. Smith, W. J. Padilla, D. C. vier, S. C. Nemat-Nasser,
and S. Schultz, Composite Medium with Simultaneously
Negative Permeability and Permittivity, Phys. Rev. Lett.
84, 4184 (2000).

[62] R. A. Shelby, D.R. Smith, and S. Schultz, Experimental
verification of a negative index of refraction, Science 292,
77 (2001).

[63] C.G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah,
and M. Tanielian, Experimental Verification and Simula-
tion of Negative Index of Refraction using Snells’ Law,
Phys. Rev. Lett. 90, 107401 (2003).

[64] A.A. Houck, J. B. Brock, and I. L. Chuang, Experimental
Observations of a Left-Handed Material that Obeys Snell’s
Law, Phys. Rev. Lett. 90, 137401 (2003).

[65] M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener,
3D metamaterials, Nat. Rev. Phys. 1, 198 (2019).

[66] Metamaterials: Physics and Engineering Explorations,
edited by N. Engheta and R.W. Ziolkowski (Wiley-
Interscience, New Jersey, 2006).

[67] J.B. Pendry, A.J. Holden, W.J. Stewart, and 1. Youngs,
Extremely Low Frequency Plasmons in Metallic Meso-
structures, Phys. Rev. Lett. 76, 4773 (1996).

[68] J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J.
Stewart, Magnetism from conductors and enhanced non-
linear phenomena, IEEE Trans. Microwave Theory Tech.
47, 2075 (1999).

[69] J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, Jr., B.-1.
Wu, J. A. Kong, and M. Chen, Cherenkov radiation in
materials with negative permittivity and permeability, Opt.
Express 11, 723 (2003).

[70] C. Luo, M. Ibanescu, S. G. Johnson, and D. Joannopoulos,
Cerenkov radiation in photonic crystals, Science 229, 368
(2003).

[71] Z.Y. Duan, B.-I. Wu, S. Xi, H.S. Chen, and M. Chen,
Research progress in reversed Cherenkov radiations in
double-negative metamaterials, Prog. Electromagn. Res.
90, 75 (2009).

[72] S. Xi, H. Chen, T. Jiang, L. Ran, J. Huangfu, B.-I. Wu,
J. A. Kong, and M. Chen, Experimental Verification of
Reversed Cherenkov Radiation in Left-Handed Metama-
terial, Phys. Rev. Lett. 103, 194801 (2009).

[73] H. Chen and M. Chen, Flipping photons backward: Re-
versed Cherenkov radiation, Mater. Today 14, 34 (2011).

[74] Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen,
and Y. Gong, Observation of the reversed Cherenkov
radiation, Nat. Commun. 8, 14901 (2017).

[75] J. Tao, Q. J. Wang, J. Zhang, and Y. Luo, Reverse surface-
polariton Cherenkov radiation, Sci. Rep. 6, 30704 (2016).

[76] D. Colladay and V. A. Kostelecky, CPT violation and the
standard model, Phys. Rev. D 55, 6760 (1997); Lorentz-
violating extension of the standard model, Phys. Rev. D 58,
116002 (1998).

[77] S.M. Carroll, G.B. Field, and R. Jackiw, Limits on a
Lorentz- and parity-violation modification of electrodyn-
mics, Phys. Rev. D 41, 1231 (1990).

[78] B. Yan and C. Felser, Topological Materials: Weyl Semi-
metals, Annu. Rev. Condens. Matter Phys. 8, 337 (2017);
H. Gao, J. W.E. Venderbos, Y. Kim, and A.M. Rappe,
Topological Semimetals from first-principles, Annu. Rev.
Condens. Matter Phys. 49, 153 (2019).

[79] A. A. Zyuzin and A. A Burkov, Topological response in
Weyl semimetals and the chiral anomaly, Phys. Rev. B 86,
115133 (2012).

[80] M. M. Vazifeh and M. Franz, Electromagnetic Response of
Weyl Semimetals, Phys. Rev. Lett. 111, 027201 (2013).

[81] R. Lehnert and R. Potting, Vacuum Cherenkov Radiation,
Phys. Rev. Lett. 93, 110402 (2004).

[82] R. Lehnert and R. Potting, Cherenkov effcet in Lorentz-
violating vacua, Phys. Rev. D 70, 125010 (2004); 70,
129906(E) (2004).

[83] B. Altschul, Vaccum Cherenkov Radiation in Lorentz-
Violating Theories Without CPT Violation, Phys. Rev.
Lett. 98, 041603 (2007).

[84] B. Altschul, Chrenkov radiation in a Lorentz-violating and
birefringent vacuum, Phys. Rev. D 75, 105003 (2007).

[85] M. Schreck, Vacuum Cherenkov radiation for Lorentz-
violating fermions, Phys. Rev. D 96, 095026 (2017).

[86] J. Schwinger, W-y. Tsai, and T. Erber, Classical and
quantum theory of synergic synchrotron-Cherenkov radi-
ation, Ann. Phys. (N.Y.) 96, 303 (1976).

[87] A.J. Macleod, A. Noble, and D. A. Jaroszynski, Cher-
enkov Radiation from the Quantum Vacuum, Phys. Rev.
Lett. 122, 161601 (2019).

[88] Xu-G. Huang and K. Tuchin, Transition Radiation as a
Probe of the Chiral Anomaly, Phys. Rev. Lett. 121, 182301
(2018).

[89] K. Tuchin, Radiative instability of quantum electrodynam-
ics in chiral matter, Phys. Lett. B 786, 249 (2018).

[90] K. Tuchin, Chiral Cherenkov and chiral transition radiation
in anisotropic matter, Phys. Rev. D 98, 114026 (2018).

[91] K. Tuchin, Anomalous scattering and transport in chiral
matter, Phys. Lett. B 808, 135680 (2020).

[92] J. Hansen and K. Tuchin, Collisional energy loss and the
chiral magnetic effect, Phys. Rev. C 104, 034903 (2021);
Bremsstrahlung in chiral medium: Anomalous magnetic
contribution to the Bethe-Heitler formula, Phys. Rev. D
105, 116008 (2022).

096024-24


https://doi.org/10.1140/epjc/s10052-020-7847-4
https://doi.org/10.1140/epjc/s10052-020-7847-4
https://doi.org/10.1103/PhysRevB.96.121116
https://doi.org/10.1103/PhysRevB.96.121116
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevD.102.076001
https://doi.org/10.1103/PhysRevD.102.076001
https://doi.org/10.1103/PhysRevResearch.2.042011
https://doi.org/10.1103/PhysRevResearch.2.042011
https://doi.org/10.1103/PhysRevD.99.116020
https://doi.org/10.1103/PhysRevD.99.116020
https://doi.org/10.1070/PU1968v010n04ABEH003699
https://doi.org/10.1070/PU1968v010n04ABEH003699
https://doi.org/10.1103/PhysRevLett.84.4184
https://doi.org/10.1103/PhysRevLett.84.4184
https://doi.org/10.1126/science.1058847
https://doi.org/10.1126/science.1058847
https://doi.org/10.1103/PhysRevLett.90.107401
https://doi.org/10.1103/PhysRevLett.90.137401
https://doi.org/10.1038/s42254-018-0018-y
https://doi.org/10.1103/PhysRevLett.76.4773
https://doi.org/10.1109/22.798002
https://doi.org/10.1109/22.798002
https://doi.org/10.1364/OE.11.000723
https://doi.org/10.1364/OE.11.000723
https://doi.org/10.1126/science.1079549
https://doi.org/10.1126/science.1079549
https://doi.org/10.2528/PIER08121604
https://doi.org/10.2528/PIER08121604
https://doi.org/10.1103/PhysRevLett.103.194801
https://doi.org/10.1016/S1369-7021(11)70020-7
https://doi.org/10.1038/ncomms14901
https://doi.org/10.1038/srep30704
https://doi.org/10.1103/PhysRevD.55.6760
https://doi.org/10.1103/PhysRevD.58.116002
https://doi.org/10.1103/PhysRevD.58.116002
https://doi.org/10.1103/PhysRevD.41.1231
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-matsci-070218-010049
https://doi.org/10.1146/annurev-matsci-070218-010049
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.93.110402
https://doi.org/10.1103/PhysRevD.70.125010
https://doi.org/10.1103/PhysRevD.70.129906
https://doi.org/10.1103/PhysRevD.70.129906
https://doi.org/10.1103/PhysRevLett.98.041603
https://doi.org/10.1103/PhysRevLett.98.041603
https://doi.org/10.1103/PhysRevD.75.105003
https://doi.org/10.1103/PhysRevD.96.095026
https://doi.org/10.1016/0003-4916(76)90194-9
https://doi.org/10.1103/PhysRevLett.122.161601
https://doi.org/10.1103/PhysRevLett.122.161601
https://doi.org/10.1103/PhysRevLett.121.182301
https://doi.org/10.1103/PhysRevLett.121.182301
https://doi.org/10.1016/j.physletb.2018.09.055
https://doi.org/10.1103/PhysRevD.98.114026
https://doi.org/10.1016/j.physletb.2020.135680
https://doi.org/10.1103/PhysRevC.104.034903
https://doi.org/10.1103/PhysRevD.105.116008
https://doi.org/10.1103/PhysRevD.105.116008

ELECTROMAGNETIC RADIATION IN CHIRAL MATTER: THE ...

PHYS. REV. D 107, 096024 (2023)

[93] J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-Y. Tsai,
Classical Electrodynamics (Perseus Books, USA, 1998).

[94] J.D. Jackson, Classical Electrodynamics (John Wiley &
Sons, Inc., New York, 1999), 3rd ed.

[95] W.K. H. Panofsky and M. Phillips, Classical Electricity
and Magnetism (Addison-Wesley Publishing, Inc., USA,
1962), 2nd ed..

[96] A.Martin-Ruiz, M. Cambiaso, and L. F. Urrutia, A Green’s
function approach to the Casimir effect on topological
insulators with planar symmetry, Eur. Phys. Lett. 113,
60005 (2016).

[97] A. Martin-Ruiz, M. Cambiaso, and L. E. Urrutia, Green’s
function approach to Chern-Simons extended electrody-
namics: An effective theory describing topological insula-
tors, Phys. Rev. D 92, 125015 (2015).

[98] A. Martin-Ruiz, M. Cambiaso, and L. F. Urrutia, Electro-
magnetic description of three-dimensional time-reversal

invariant ponderable topological insulators, Phys. Rev. D
94, 085019 (2016); A. Martin-Ruiz, Magnetoelectric effect
in cylindrical topological insulators, Phys. Rev. D 98,
056012 (2018).

[99] Z. Qiu, G. Cao, and Xu. Huang, Electrodynamics of chiral
matter, Phys. Rev. D 95, 036002 (2017).

[100] P.D.S. Silva, L. L. Santos, M. M. Ferreira, Jr., and M.
Schreck, Effects of CPT-odd terms of dimensions three
and five on electromagnetic propagation in continuous
matter, Phys. Rev. D 104, 116023 (2021).

[101] B. Ratcliff and J. Schwiening, Cherenkov counters, in
Handbook of Particle Detection and Imaging, edited by C.
Grupen and 1. Buvat (Springer-Verlag, Berlin Heidelberg,
2012).

[102] M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs and Mathematical
Tables (Dover Publications, New York, 1972).

096024-25


https://doi.org/10.1209/0295-5075/113/60005
https://doi.org/10.1209/0295-5075/113/60005
https://doi.org/10.1103/PhysRevD.92.125015
https://doi.org/10.1103/PhysRevD.94.085019
https://doi.org/10.1103/PhysRevD.94.085019
https://doi.org/10.1103/PhysRevD.98.056012
https://doi.org/10.1103/PhysRevD.98.056012
https://doi.org/10.1103/PhysRevD.95.036002
https://doi.org/10.1103/PhysRevD.104.116023

