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Manoel M. Ferreira, Jr. ‡

Departamento de Física, Universidade Federal do Maranhão,
Campus Universitário do Bacanga, São Luís (State of Maranhão), 65080-805, Brazil

(Received 13 March 2023; accepted 12 May 2023; published 30 May 2023)

Starting from the modified Maxwell equations in Carroll-Field-Jackiw electrodynamics we study the
electromagnetic radiation in chiral matter characterized by an axion coupling θðxÞ ¼ bμxμ, with bμ ¼ ð0;bÞ,
which gives rise to themagnetoelectric effect. Employing the stationary phase approximationwe construct the
Green’s matrix in the radiation zone which allows the calculation of the corresponding electromagnetic
potentials and fields for arbitrary sources. We obtain a general expression for the angular distribution of the
radiated energy per unit frequency.As an applicationwe consider a chargemoving at constant velocity parallel
to b in the medium and discuss the resulting Cherenkov radiation. We recover the vacuum Cherenkov
radiation. For the case of amaterial with refraction index n > 1we find that zero, one or twoCherenkov cones
can appear. The spectral distribution of the radiation together with the comparison of the radiation output of
each cone are presented, as well as some angular plots showing the appearance of the cones.
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I. INTRODUCTION

Since its experimental discovery in 1934 [1,2],
Cherenkov radiation (CHR) has played a fundamental role
in the study of the high-energy particle physics, high-power
microwave sources and nuclear and cosmic-ray physics
[3,4], both theoretically and phenomenologically. CHR
occurs when charged particles propagate through a dielec-
tric medium with velocity v higher than c=

ffiffiffi
ϵ

p
, where c is

the speed of light in vacuum and ϵ is the permittivity of the
medium, which determines the refractive index n ¼ ffiffiffi

ϵ
p

.
The first theoretical description of such radiation in the
framework of Maxwell’s theory, developed by Frank and
Tamm in Ref. [5], reveals its unique directional properties.
In particular, CHR is produced in a forward cone defined
by the positive angle θ ¼ arccos ½c=ðvnÞ� with respect to
the direction of the incident charge. Since the emergence of
accelerators in nuclear and high-energy physics CHR
has been widely used to design an impressive variety of

detectors, such as e.g. the ring-imaging Cherenkov detec-
tors [6], which can identify charged particles and also
provide a straightforward effective tool to test its physical
properties, like velocity, energy, direction of motion and
charge [7]. As remarkable cases, one mentions that the
antiproton [8] and the J-particle [9] were discovered using
CHR detectors.
In this paperwedealwithCHR in chiralmatter [10],which

belongs to a class of materials characterized by having a
macroscopic electromagnetic response described by non-
dynamical axion electrodynamics [11,12]. This is an exten-
sion of conventional electrodynamics resulting from the
addition of the term Lθ ¼ ðα=4π2ÞθðxÞðE ·BÞ to the
Lagrangian density [13–16], where α denotes the fine
structure constant. Here θðxÞ is a field known as the axion
in particle physics which we take as a given parameter of the
media in the same footing as the permittivity ϵðxÞ and the
permeability μðxÞ. Different materials can be characterized
according to the choice of θðxÞ. For example: (i) magneto-
electric media, that correspond to a nonquantized piecewise
constant θðxÞ, were discussed in Refs. [17–25], (ii) topologi-
cal insulators [26–28], described by a quantized piecewise
constant θðxÞ, have been also examined in several applied
aspects [29–37], (iii) chiral matter, includingWeyl semimet-
als, for instance, which display θðxÞ ¼ bμxμ [38–45], and
(iv) metamaterials that can realize a synthetic axion response
in nonreciprocal artificially designed structures [46,47].
The main property characterizing these materials is the
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magnetoelectric effect (MEE) arising from the additional
contributionLθ [48]. This coupling produces effective field-
dependent charges and current densities which allow the
generation of an electric (magnetic) polarization due to the
presence of a magnetic (electric) field, even in the static case.
Such phenomena were also investigated in the context of the
chiral magnetic effect (CME) [49–56], which brings about
the magnetic current density JB ¼ σBB, with σB playing the
role of the magnetic conductivity. Classical repercussions
arising from the presence of this current in a dielectric
medium were also examined considering symmetric
and antisymmetric tensor conductivities [57], with the
antisymmetric tensor conductivity further investigated in
Ref. [58].
A recently discovered new phenomenon in naturally

existing magnetoelectric materials with piecewise constant
θðxÞ is the emission of CHR in the backward direction with
respect to the incident particle [59]. This remarkable
theoretical prediction is analogue to what occurs in left-
handed media (LHM), non-natural materials having simul-
taneously a negative permittivity and permeability, first
examined by Veselago [60]. As these materials, also called
metamaterials, are not readily available in nature, they have
been artificially constructed and tested in the laboratory
[61–68]. Their production has fostered the investigations in
backward Cherenkov radiation [69–75].
After integration by parts, the contribution Lθ of axion-

ED with θðxÞ ¼ bμxμ reduces to the kμAF ∼ bμ term of the
CTP-odd contribution of the photon sector in the Standard
Model extension (SME) [76], which describes Lorentz
invariance violation (LIV) in high energy physics. In this
form the theory is also known as the Carroll-Field-Jackiw
(CFJ) electrodynamics [77]. Here, the vector bμ is intro-
duced either as an explicit Lorentz violating parameter or as
the result of the spontaneous Lorentz symmetry breaking of
a more fundamental theory. The dynamics induced by the
addition of Lθ on the usual Maxwell Lagrangian density
can be also understood as defining a particular case of
electrodynamics in a medium characterized by the gener-
alized constitutive relations, D ¼ E − ðαθðxÞ=πÞB and
H ¼ Bþ ðαθðxÞ=πÞE, in the case when ϵ ¼ 1 ¼ μ.
It is interesting to remark that the CFJ electrodynamics

provides an effective theory for condensed-matter systems,
accounting for the anomalous Hall effect, the CME, and the
electromagnetic response of Weyl semimetals [78], which
also constitute a typical representative of chiral matter. In
the latter case one finds that the parameters b0 and b denote
the shift in energy and momentum, respectively, of the two
Weyl nodes characterizing the material in the Brillouin
zone [79,80]. Our bμ differs by a factor of two from that in
Ref. [80]. Contrary to the case of LIV in high energy
physics, all LIV parameters in condensed matter physics
arise from the microscopic theory describing the material,
thus being well defined and not necessarily suppressed
from an experimental perspective.

Vacuum Cherenkov radiation (VCHR) with n ¼ 1 was
discovered in CPT-odd Lorentz-violating theories [81,82]
and further extended to the CPT-even sector of the SME
[83,84]. Reference [83] puts forward the idea that, besides
its description as a conventional radiation process in
electrodynamics, CHR can be studied from the matter
point of view as the decay, e− → e− þ γ, for an arbitrary
charge denoted here by e−. The latter approach was used to
study VCHR for all the Lorentz-violating couplings of
fermions that are described by the minimal SME, in the
cases with and without spin flip of the fermion [85]. A
complete list of references summarizing previous works on
this topic is also found in this paper. The matter approach
provides a natural way to find subsequent quantum
corrections to the process [86] and it was used to discuss
Cherenkov radiation in the standard vacuum under the
influence of strong electromagnetic fields [87], like those
produced by strong laser pulses or in the magnetic field
around a pulsar.
Further, a fast charged particle passing from a chiral

matter to the vacuum emits transition radiation. Using the
matter approach, the photon radiation, e− → e− þ γ, and
the pair creation, γ → eþ þ e−, were studied at the boun-
dary between chiral matter and the vacuum [88]. Also the
ultrarelativistic limit for the case of one infinite domain of
chiral matter, together with the case of two semi-infinite
domains separated by a domain wall was considered in
Ref. [89]. The main features of the radiation were shown to
depend on the parameters of the chiral anomaly in these
materials. Also the high energy limit of the frequency
spectrum and the angular distribution for Cherenkov
radiation in chiral matter was obtained [90]. Anomalous
scattering of fermions in matter induced by the chiral
anomaly was also investigated, concluding that the scatter-
ing angles are proportional to the chiral conductivity [91].
Recent studies on collisional energy loss and bremsstrah-
lung in chiral medium have also been reported with great
interest [92].
Our discussion of the CHR in a chiral media parallels the

analysis of radiation by charged particles described in regular
references of electrodynamics [93–95]. We obtain a general
formula for the radiation fields produced by arbitrary
sources, which can be subsequently used to determine all
the relevant observable quantities in the radiation processes.
As an application of these general findings we next concen-
trate in CHR, i.e. we consider a charge qmoving at constant
velocity in themedium, jvj > c=n, and neglect recoil effects.
We do not restrict ourselves to the ultra high energy limit,
thus allowing to address the whole range of (charge)
velocities, jvj=n < jvj < c. Also, we consider a material
with b0 ¼ 0 and choose the charge velocity parallel to b, in
such a way to assure axial symmetry in our model.
The paper is organized as follows. In Sec. II we

summarize the main aspects of CFJ electrodynamics which
we use in the following. Section III is devoted to the
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construction of the Green’s function (GF) of the system in
momentum and coordinate space. To this end we further
extend to the time-dependent case the methods already
developed in Refs. [40,96–98] for the static case. In Sec. IV
we adopt the stationary phase approximation to calculate
the GF in the radiation zone. To make the subsequent
calculations still analytic we have to introduce a further
approximation in the solution of the stationary phase
equation, which determines the range of validity in our
calculations that must be verified after obtaining the
final results. The resulting electromagnetic fields in the
radiation zone are presented in Sec. V for an arbitrary
current Jμ. Our calculations up to Sec. V together with the
Appendices A–C are for n ¼ 1. An arbitrary index of
refraction n is introduced in Secs. VI and VII following the
transformations indicated in the Appendix D. In Sec. VI we
consider the particular case of CHR and we calculate the
electromagnetic fields, the angular distribution of the
radiated energy per unit frequency, the Cherenkov angles
and their behavior as a function of the parameter jbj. The
total radiated power per unit frequency is discussed in
Sec. VII, where the ratio between the radiation output of the
two possible cones in chiral matter is calculated, as well as
the ratio of the production of each of them with respect to
the conventional case. Section VIII contains the summary
and conclusions. Besides the Appendix D already men-
tioned, the details of the calculation of the GF for n ¼ 1 in
the radiation zone are summarized in the Appendix A.
A general expression for the spectral distribution of the
radiation for arbitrary sources and n ¼ 1 is obtained in the
Appendix B, which also summarizes the symmetry proper-
ties of some auxiliary functions introduced in the text. The
main steps in the calculation for the spectral distribution in
the particular case of CHR is presented in the Appendix C
for n ¼ 1. Let us emphasize again that any result obtained
for n ¼ 1 can be generalized to arbitrary n following the
prescriptions indicated in the Appendix D.

II. CFJ ELECTRODYNAMICS

In terms of the electromagnetic potential, Aμ ¼ ðΦ;−AÞ,
the action is

S½AμðxÞ� ¼
Z

d4x
h
−

1

16π
FμνFμν −

1

c
JμAμ

−
α

16π2
θðxÞFμνF̃μν

i
; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ and F̃μν ¼ 1
2
ϵμνρσFρσ are the

electromagnetic field strength and its dual tensor, respec-
tively, Jμ ¼ ðcρ; JÞ is a conserved external current while
θðxÞ ¼ bμxμ is the axion coupling. As usual, the electro-
magnetic fields are

B ¼ ∇ ×A; E ¼ −∇A0 −
1

c
∂A
∂t

: ð2Þ

Our metric is ημν ¼ diagð1;−1;−1;−1Þ, we set ϵ0123 ¼ þ1
and employ the unrationalized Gaussian units, following
the conventions of Ref. [94].
For a general axion field θðxÞ the action (1) violates

translation invariance and Lorentz symmetry [76], but it is
manifestly gauge invariant. Nevertheless, in the particular
case considered where bμ is a constant vector, we still have
translational invariance. In fact, under the translation, xμ →
xμ þ aμ the additional term proportional to ðbμaμÞFμνF̃μν

appears in the action (1). Recalling that FμνF̃μν is a total
derivative, the invariance of the action under translations is
thus recovered. An equivalent way to verify the invariance
under translations is integrating by parts the last term in
Eq. (1), which produces the Carroll-Field-Jackiw electro-
dynamics [77],

SMCFJ ¼
Z

d4x

�
−

1

16π
FμνFμν −

1

c
JμAμ þ

α

16π2
bμAνF̃μν

�
;

ð3Þ

where the translation invariance is manifest and the gauge
invariance is granted only up to a total derivative, however.
As expected, the resulting equations of motion are gauge
invariant, being

∂μFμν ¼ 4π

c
Jν − b̃μF̃μν; b̃μ ¼

α

π
bμ; ð4Þ

which read

½ημν∂2 − ∂
μ
∂
ν − ϵμνρσb̃ρ∂σ�Aν ¼ Jμ; ð5Þ

in terms of the potential. The inhomogeneous Maxwell’s
equations are

∇ ·E ¼ 4πρ − b̃ · B;

∇ ×B −
1

c
∂E
∂t

¼ 4π

c
Jþ b̃0Bþ b̃ ×E: ð6Þ

We still have the homogeneous Maxwell equations arising
from the Bianchi identity, ∂μF̃μν ¼ 0,

∇ ·B ¼ 0; ∇ × Eþ 1

c
∂B
∂t

¼ 0: ð7Þ

In Eq. (6) we have b̃ ¼ ∇θ and b̃0 ¼ ∂tθ, where θ is the
axion field. The terms involving derivatives of θ play
relevant roles in condensed matter systems [99,100].
Indeed, while ∇θ ·B represents an anomalous charge
density, ∇θ ×B appears in the anomalous Hall effect
(AHE) and ð∂tθÞB stands for the chiral magnetic current
[49–58]. In the casewhen the axion field does not depend on
the space coordinates, ∇θ ¼ 0, the Maxwell equations (6)
read
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∇ ·E ¼ 4πρ; ∇ ×B −
1

c
∂E
∂t

¼ 4π

c
Jþ ð∂tθÞB; ð8Þ

with ∂tθ representing the magnetic conductivity, σB, in the
chiral current, JB ¼ σBB. Effects of the CFJ term, together
with those arising from its higher derivative dimension five
counterpart, on the electromagnetic propagation in continu-
ous matter were analyzed from a classical perspective in
Ref. [100].
Since our main interest is in radiation processes, we look

for the energy density ū and the energy flux S̄ satisfying the
conservation equation ∂tūþ ∇ · S̄ ¼ 0 outside the sources.
From the standard manipulations of Maxwell’s equa-
tions (6) and (7) we obtain

−J ·E ¼ ∂u
∂t

þ ∇ · Sþ c
4π

b̃0ðE ·BÞ; ð9Þ

with

u ¼ 1

8π
ðE2 þ B2Þ; S ¼ c

4π
E ×B: ð10Þ

The identity

E ·B ¼ −
1

2c
∂

∂t
ðA ·BÞ þ 1

2
∇ · ðA ×E − A0BÞ; ð11Þ

allows us to define the energy density ū, together with the
corresponding Poynting vector S̄, as

ū ¼ u −
1

8π
b̃0A · B;

S̄ ¼ Sþ 1

8π
b̃0ðA ×E − A0BÞ; ð12Þ

fulfilling the required conservation equation when J ¼ 0.
Similar results are obtained from the covariant version of
the energy-momentum tensor in Refs. [77,81,82], which
confirms ū and S̄, given in Eq. (12), as the energy density
and energy flux that respect the continuity equation.
Let us emphasize that under the gauge transformation,

δΛA0 ¼ 1
c
∂δΛ
∂t , δΛA ¼ −∇δΛ, the terms that depend on the

potential Aμ in Eq. (12) are gauge invariant up to a total
derivative, changing as

δΛðA ·BÞ ¼ Λ∇ ·B;

δΛðA ×E − A0BÞ ¼ λ

�
∇ ×E −

1

c
∂B
∂t

�
; ð13Þ

which yield null results when one takes into account the
homogeneous Maxwell equations. From Eq. (12) we
realize that ū is not positive definite, which prompts us
to set b0 ¼ 0 in the following to avoid instabilities in the
system [99]. Also, we take the z-axis in the direction of the
b vector.

III. THE GREEN’S FUNCTION

A. Green’s function in momentum space

Our next step is to construct the Green’s function (GF)
Gμνðx − x0Þ of CFJ electrodynamics in the time dependent
case. It is defined by

½ημν∂2−∂
μ
∂
ν− b̃ρϵμνρσ∂σ�Gνβðx−x0Þ ¼ δνβδ

4ðx−x0Þ: ð14Þ

Going to momentum space, we write

Gνβðx−x0Þ ¼
Z

d4k
ð2πÞ4 e

−ikμðx−x0ÞμGνβðω;kÞ; xμ ¼ðct;xÞ;

kμ ¼ðω=c;kÞ; ∂μ ¼−ikμ; ð15Þ

obtaining

½−k2ημν þ kμkν þ iϵμνρσb̃ρkσ�GνβðkÞ ¼ δμβ; ð16Þ

which in the Lorenz gauge, ∂μAμ ¼ 0, reduces to

½−k2ημν þ iϵμνρσb̃ρkσ�GνβðkÞ ¼ δμβ; ð17Þ

with k2 ¼ k20 − k2. A long but straightforward calculation
yields

GνλðkÞ ¼ −
k2ηνλ þ b̃νb̃λ þ iϵνλαβb̃

αkβ

k4 þ b̃2k2 − ðb̃ · kÞ2

þ ðb̃ · kÞðb̃λkν þ b̃νkλÞ − b̃2kνkλ
k2ðk4 − b̃2k2 þ ðb̃ · kÞ2Þ : ð18Þ

At this stage we can verify that kνGνλðkÞ ¼ 0. The above
expression can be further simplified recalling the relation
AνðkÞ ¼ GνλðkÞJλðkÞ. Since GνλðkÞ couples to a conserved
current, we can dispose of all factors proportional to kλJλ.
Furthermore, note that any contribution proportional to kν
corresponds to a gauge transformation in the resulting Aν.
Then, a simpler representation of the function (18), without
loss of generality, is

Gνλ ¼ −
k2ηνλ þ b̃νb̃λ þ iϵνλαβb̃

αkβ

k4 þ b̃2k2 − ðb̃ · kÞ2 ; ð19Þ

coinciding with the result of Refs. [81,82,99], but no longer
written in the Lorenz gauge.

B. Green’s function in coordinate space

In order to deal with radiation, we need to express the GF
in the coordinate space. To this end, we keep the depend-
ence on the frequency and perform the Fourier transform
only in coordinate space. We set b̃μ ¼ ð0; 0; 0; bÞ, with
b ¼ jb̃j ¼ αjbj=π. Starting from Eq. (19), we write
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Gμνðx;x0;ωÞ ¼
Z

d3k
ð2πÞ3G

μνðω;kÞeik·ðx−x0Þ;

Gμνðx;x0;ωÞ ¼ −
Z

d3k
ð2πÞ3

k2gμν þ ibϵμν3σkσ þ b̃μb̃ν

ðk2Þ2 þ b̃2k2 − ðb̃ · kÞ2
× eik·ðx−x0Þ;

Gμνðx;x0;ωÞ ¼ −½ðk20 þ ∇2Þgμν þ ik0bϵμν30

− bϵμν3i∂i þ b̃μb̃ν�fðx;x0;ωÞ; ð20Þ

in terms of ∂j ¼ −ikj, and introduce the function,

fðx;x0;ωÞ ¼
Z

d3k
ð2πÞ3

eik·ðx−x0Þ

ðk2Þ2 þ b̃2k2 − ðb̃ · kÞ2 ; ð21Þ

from which we calculate the Green’s function according to
Eq. (20). Under our conventions, the denominator in
Eq. (21) is

D≡ ðk2Þ2 þ b̃2k2 − ðb̃ · kÞ2
¼ ðk20 − k2Þ2 − b2ðk20 − k2Þ − b2k23: ð22Þ

The condition D ¼ 0 yields the dispersion relation

k20 ¼ k2⊥ þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þ b2=4
q

� b=2
�2

; ð23Þ

where

k2 ¼ k2⊥ þ k2z ; k⊥ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
: ð24Þ

Setting b ¼ 0 in the dispersion relation (23), one recovers
the conventional vacuum result.
The evaluation of Eq. (21) is performed in cylindrical

coordinates using the integration over the polar angle to
introduce the Bessel function J0 and, subsequently, calcu-
lating the integral over kz in the complex plane. To this end,
we rewrite the denominator D as

D ¼ ðk2z − ðk−z Þ2Þðk2z − ðkþz Þ2Þ; ð25Þ

which allows the identification of the poles in kz,

k�z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k � bkk

q
; ð26Þ

with the redefinition,

kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2⊥

q
: ð27Þ

The integration over kz is long but straightforward, yielding
the final result

fðx;x0;ωÞ ¼ i
8π

Z
∞

0

k⊥dk⊥
kk

J0ðR⊥k⊥Þ

×
1

b

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#
; ð28Þ

where we stick to our independent variable k⊥ > 0 and
define Z ¼ jz − z0j. Setting k0 ¼ 0, we recover the static
approximation considered in Ref. [99].

IV. THE GREEN’S FUNCTION IN THE
RADIATION ZONE

The relations, J0ðxÞ ¼ ðHð1Þ
0 ðxÞ þ ðHð2Þ

0 ðxÞÞ=2 and

Hð1Þ
0 ðeiπxÞ ¼ −Hð2Þ

0 ðxÞ, allow us to extend the integration
limit of k⊥ from −∞ to þ∞, yielding the convenient
expression

fðx;x0;ωÞ¼
X
η¼�1

fηðx;x0;ωÞ;

fηðx;x0;ωÞ¼ i
16π

Z
∞

−∞

k⊥dk⊥
kk

Hð1Þ
0 ðk⊥R⊥Þ

1

ηb
e
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2kþηbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þηbkk
q ;

ð29Þ

with b > 0 everywhere, and the sum on η ¼ �1 contem-
plates the two square roots present in Eq. (28). The
extension to the complex plane of the integral on the
variable k⊥ is made by introducing the Sommerfeld path,
shown schematically in Fig. 1.
In the following we concentrate upon the calculation of

fηðx;x0;ωÞ in the far-zone regime, r ¼ jxj ≫ jx0j ¼ r0,
where we have highly oscillating functions in the integrand
of Eq. (29). This property suggests the use of the stationary
phase approximation (SPA) to evaluate the integral. We
consider the approximation R⊥ ¼ jðx − x0Þ⊥j ¼ Rj sin θj,
together with Z¼jx3−x03j¼Rjcosθj, where R ¼ jðx − x0Þj
and θ is the polar angle of the observation point determined

FIG. 1. The Sommerfeld integration path. The path is above the
logarithmic branch point singularity of Hð1Þ

0 ðK⊥R⊥Þ at k⊥ ¼ 0.
Furthermore kk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2⊥

p
has singularities at k⊥ ¼ �k0.
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by x. To assess the validity of the approximation we have to
compare the directions of the vectors x and R ¼ ðx − x0Þ,
with respect to the z-axis. In the most unfavorable situation,
when x0 is orthogonal to x, we can show that the angle Θ
that the vector (x − x0) makes with the z-axis is such that
cosΘ ¼ cos θ − ðr0=rÞ sin θ, to first order in r0=r. That is to
say, it is a very good approximation to take Θ ≈ θ in the
regime r0=r ≪ 1. This, together with the asymptotic
behavior

Hð1Þ
0 ðk⊥R⊥Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πk⊥R⊥

s
eik⊥R⊥−iπ=4; ð30Þ

yields

fηðx;x0;ωÞ ¼ ie−iπ=4

16π

ffiffiffi
2

π

r Z
∞

−∞

k⊥dk⊥
kk

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⊥r sin θ

p 1

ηb

×
e
iRðk⊥j sin θjþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2kþηbkk

p
j cos θjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ ηbkk
q : ð31Þ

As usual, we further replace R by r, except in the phase of
the exponential, where we assume R ¼ ðr − n̂ · x0Þ, with
n̂ ¼ x=r, thus taking into account the phase modifications
induced by the source.
We recall the general expression for the SPA

I ¼
Z þ∞

−∞
dteiRhðtÞfðtÞ ¼ eiRhðt0Þfðt0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πi

rh00ðt0Þ

s
; ð32Þ

where R ≫ 1 and t0 is the solution of h0ðtÞ ¼ 0, which
makes h0ðt0Þ an extremum of hðtÞ. The prime ( 0) denotes
the derivatives with respect to t in the usual fashion. The
functions hðtÞ and fðtÞ are identified by comparing with

those in Eq. (31) after the far field approximation is
imposed. In Eq. (31), we choose to find the stationary
phase by looking at the extreme of the functions,

hηðk⊥Þ ¼ k⊥j sin θj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ ηbkk

q
j cos θj > 0: ð33Þ

To this end, we take the derivative of hη with respect to kk
for simplicity. Since dkk=dk⊥ ≠ 0 and the resulting relation
is set equal to zero, the outcome is independent of the
variable chosen to calculate the derivative. After rearrang-
ing the result of dhηðk⊥Þ=dkk, we find it convenient to
present the condition for the extremum as

κffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p tan θ ¼
�
1þ η

2

β

κ

��
1þ η

β

κ

�
−1=2

; ð34Þ

in terms of the dimensionless variables κ and β, defined as

κ ¼ kk
k0

> 0; β ¼ b
k0

> 0: ð35Þ

The Eq. (34) is a quartic equation for κ which is difficult to
solve analytically. For a given β, the exact numerical
solution κðθÞ of Eq. (34) is indicated with the dashed
(red) line for η ¼ þ1 and with de dotted (blue) line for
η ¼ −1, in the panels of Fig. 2. To proceed further we resort
to an approximation in the solution of Eq. (34) considering
the limit b ≪ kk < k0, where β=κ ≪ 1. Then, Eq. (34)
simplifies as

κ2

1 − κ2
tan2 θ ¼ 1þ 1

4

�
β

κ

�
2

þOðβ3Þ: ð36Þ

To first order in β=κ, we obtain κ ¼ cos θ as our approxi-
mate SPA solution, for each value of η. This choice yields

FIG. 2. The exact numerical solution κðθÞ of Eq. (34) is indicated with the dashed (red) line for η ¼ þ1 and with the dotted (blue) line
for η ¼ −1. The solution κðθÞ of the approximation in Eq. (37), called classical SPA, is plotted as a solid (magenta) line. The vertical

solid (green) line indicates the angle θ0 ¼ arccos β, to the right of which
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k − bkk

q
becomes imaginary. Left panel: β ¼ 0.5. Right

panel: β ¼ 0.9.
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kkðθ; ηÞ ¼ k0j cos θj; k⊥ðθ; ηÞ ¼ k0j sin θj: ð37Þ

The solution (37), called the classical SPA, is plotted as the
solid (magenta) line in Fig. 2. Let us emphasize that this
approximation is taken only to have a simpler analytic way
to proceed with the calculation and that b; ðβÞ, is taken
nonzero in all the required remaining functions. The
approximation is valid whenever cos θ ≫ β=ð2 ffiffiffi

2
p Þ, which

should be verified at the end of any determination of a
Cherenkov angle. In any case, Fig. 2 provide a qualitative
idea of the validity of the approximation (37), showing that
it is very good for the contribution η ¼ þ1 in the whole
angular range. Looking back to Eq. (29) we realize that this
is not the case for the contribution η ¼ −1, which is
suppressed to the right of the vertical (green) line shown

in the figures, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k − bkk

q
becomes imaginary. This

line corresponds to θ0 ¼ arccos β.
Recalling Eqs. (31) and (32), and substituting the SPA

(37), we arrive at

fðx;x0;ωÞjSPA≡ fðx;x0;ωÞ;

fðx;x0;ωÞ¼ 1

8πr
1

k0bjcosθj
X
η¼�1

eik0CηðθÞðr−n̂·x0Þ

gηðθÞ
; ð38Þ

with

CηðθÞ ¼ ðsin2 θ þ cos2 θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηβj sec θj

p
Þ; ð39Þ

gηðθÞ ¼
1

ð1þ ηβj sec θjÞ1=4

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηβj sec θjÞ

�
1þ ηβ

2
j sec θj

�
þ β2

4
tan2θ

r
:

ð40Þ

Let us remark the following obvious symmetry properties
in terms of the frequency

Cηð−ωÞ ¼ C−ηðωÞ; gηð−ωÞ ¼ g−ηðωÞ; ð41Þ

which will be useful in the following. Aword of caution is
required here. If we had solved the stationary phase
equation exactly, any change of variables in the subsequent
integration would produce the same result. This is not the
case when using an approximation as we have done. Since
we have chosen k⊥ as our integration variable, we have to
make sure that the second derivative h00η is calculated with
respect to k⊥. Notice that in the limit β ¼ 0 we have
CηðθÞ ¼ 1, and we recover the phase ik0R describing
conventional radiation. Also, gηðθÞ ¼ 1 in that limit.
We choose to split the GF in Eq. (20) as

Gμν
0 ðx;x0;ωÞ ¼ −gμνðk20 þ ∇2Þfðx;x0;ωÞ; ð42Þ

Gμν
b ðx;x0;ωÞ ¼ −b½iωϵμν30 − ϵμν3i∂i�fðx;x0;ωÞ; ð43Þ

Gμν
b2
ðx;x0;ωÞ ¼ −b̃μb̃νfðx;x0;ωÞ; ð44Þ

whose evaluation requires the calculation on the action of
the operators,

ðk20 þ ∇2Þ ¼
�
k20 þ ∇2⊥ þ ∂

2

∂Z2

�
; ð45Þ

and ∂i on the function fðx;x0;ωÞ, which is the far field
approximation of fðx;x0;ωÞ. Instead of applying these
operators directly on fðx;x0;ωÞ, we choose to act upon the
exact expressions (29) for fηðx;x0;ωÞ and subsequently
evaluate the results in terms of the stationary phase
proposed previously. The calculation is sketched in the
Appendix A, yielding the result

Gμνðx;x0;ωÞ ¼ 1

8π

X
η¼�1

eik0CηðθÞr

gηðθÞ
Hη

μνðn̂Þ 1
r
e−ik0n̂·x

0CηðθÞ;

ð46Þ

with

Hη
μνðn̂Þ ¼

0
BBB@

1 −iηj tan θj sinϕ iηj tan θj cosϕ 0

iηj tan θj sinϕ −1 iηj sec θj 0

−iηj tan θj cosϕ −iηj sec θj −1 0

0 0 0 −ð1þ ηβj sec θjÞ:

1
CCCA; ð47Þ

fulfilling the following symmetry property

Hη
μνð−ωÞ ¼ ðH−η

μνðωÞÞ�: ð48Þ

As another check of consistency, let us recover the conventional GF when β ¼ 0. Recalling CηðθÞ ¼ 1 and gηðθÞ ¼ 1 in this
case, the GF turns into
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Gμνðx;x0;ωÞ ¼ 1

8π

eik0ðr−n̂·x0Þ

r

X
η¼�1

Hη
μνðn̂Þ

¼ ημν
1

4π

eik0ðr−n̂·x0Þ

r
; ð49Þ

since the nondiagonal terms in Eq. (47) cancel in the sum,
while those in the diagonal get a factor of two.

V. THE ELECTROMAGNETIC FIELDS IN THE
RADIATION ZONE

In this section we calculate E and B in the far-field
approximation, for an arbitrary localized current Jνðx0;ωÞ.
We start from the vector potential together with the relation

Aμðx;ωÞ ¼ 4π

c

Z
d3x0Gμνðx;x0;ωÞJνðx0;ωÞ; ð50Þ

which, with the GF (46) implemented, yields

Aμðx;ωÞ ¼ 1

2c

X
η¼�1

1

gηðθÞ
Hη

μνðn̂Þ 1
r
eik0CηðθÞr

×
Z

d3x0e−ik0CηðθÞn̂·x0Jνðx0;ωÞ; ð51Þ

where the only dependence of the GF on the source points
x0 is in the exponential expð−ik0n̂ · x0CηðθÞÞ. Thus, the
relevant integral is the space Fourier transform

J νðkη;ωÞ ¼
Z

d3x0e−ik0CηðθÞn̂·x0Jνðx0;ωÞ; ð52Þ

with

kη¼ r̂k0CηðθÞ; r̂¼ðsinθcosϕ;sinθ sinϕ;cosθÞ; ð53Þ

where θ and ϕ are the observation angles in spherical
coordinates. Let us remark that no absolute values in the θ-
dependent angular functions appear in r̂. The electromag-
netic potential is then

Aμðx;ωÞ ¼ 1

2c

X
η¼�1

1

gηðθÞ
Hη

μνðr̂ÞJ νðkη;ωÞ
�
1

r
eik0CηðθÞr

�
:

ð54Þ

Collecting the symmetry properties given in Eqs. (41) and
(48) and using Jμðx;−ωÞ ¼ ðJμðx;ωÞÞ�, we arrive at the
relation

Aμ
ηðx;−ωÞ ¼ ðAμ

−ηðx;ωÞÞ�: ð55Þ

We can verify again the correct limit β ¼ 0, since now
kη ¼ n̂k0 independently of η, because CηðθÞ ¼ 1, so that
the sum in (54) reduces to J ν

P
η¼�1H

μν
η . As mentioned

previously, the off-diagonal terms cancel and those in the
diagonal yield 2ημν. Remember also that gηðθÞ ¼ 1

when β ¼ 0.
To calculate the electromagnetic fields Eðx;ωÞ ¼

ik0Aðx;ωÞ − ∇A0ðx;ωÞ and Bðx;ωÞ ¼ ∇ ×Aðx;ωÞ, it
is convenient to write the vector potential (54) in the form

Aμ ¼
X
η¼�1

Aμ
η ; Aμ

η ¼Aμ
ηðθ;ϕÞ

�
1

gηðθÞ
1

2cr
eik0CηðθÞr

�
;

Aμ
ηðθ;ϕÞ¼Hη

μνðr̂ÞJ νðkη;ωÞ: ð56Þ

As usual, the form of the outgoing wave expðik0CηðθÞrÞ=r
in the radiation zone provides an important simplification
when considering the action of the gradient operator. It is a
direct calculation to show that

∇
�
Uðθ;ϕÞ 1

r
eik0CηðθÞr

�
¼ ik0Nη

�
Uðθ;ϕÞ 1

r
eik0CηðθÞr

�
;

ð57Þ

for an arbitrary angular function Uðθ;ϕÞ in the far-field
approximation, with

Nη ¼
�
CηðθÞr̂þ

∂CηðθÞ
∂θ

θ̂

�
: ð58Þ

In accordance with the expression (57), the equivalence
∇ ¼ ik0Nη holds for the action of ∇ on the function
between parenthesis in (57), to first order in 1=r. This is
the generalization of the familiar property, ∇ → ik0r̂, in the
scenario of conventional radiation. Let us observe that the
dependence on θ̂, which is not present in the standard case,
arises because the θ-dependent phase factor CηðθÞ in the
exponential expðik0CηðθÞrÞ. The electromagnetic fields
can also be decomposed into their η-contributions and
they are

B ¼
X
η¼�1

Bη; Bη ¼ ik0ðNη ×AηÞ; ð59Þ

E ¼
X
η¼�1

Eη; Eη ¼ ik0ðAη −NηA0
ηÞ; ð60Þ

where we recall that the expression of the vector potential
Aμ in terms of the sources is given in Eq. (56).
Equations (59) and (60) yield

Nη ×Eη ¼ ik0ðNη ×AηÞ ¼ Bη: ð61Þ

Then we obtain ik0ðNη ×EηÞ ¼ ∇ × Eη ¼ ik0Bη which
readily implies Faraday law ∇ ×Eðx;ωÞ ¼ ik0Bðx;ωÞ.
The explicit expression for the electric field in spherical

coordinates is
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Eηðx;ωÞ¼ ik0

�
ðAr

η−CηA0
ηÞr̂þ

�
Aθ
η−

∂Cη

∂θ
A0
η

�
θ̂þAϕ

η ϕ̂

�
;

ð62Þ

such that

r̂ · Eη ¼ ik0ðAr
η − CηA0

ηÞ; ð63Þ

which will be nonzero in general. From Eqs. (60) and (61),
we get

E ·B ¼ ik0
2cr

ðE− ×EþÞ · ðN− −NþÞ; ð64Þ

showing that E and B are generally non orthogonal.
Furthermore, from Eqs. (61) and (62), we obtain the
additional projection

r̂ ·Bη ¼ ik0
∂CηðθÞ
∂θ

Aϕ
η : ð65Þ

This, together with Eqs. (63) and (64) indicates that the
triad r̂;E;B is not orthogonal as it is in the conventional
case. The results (59) and (60) completely describe the
properties of the radiation emitted by an arbitrary current
Jμðx0;ωÞ in a chiral material having b̃μ ¼ ð0; 0; 0; bÞ.
The ordinary properties of the radiation field when β ¼ 0

are easily recovered from previous equations. In this case
Nþ ¼ N− ¼ r̂, with CηðθÞ ¼ 1, which yield E ·B ¼ 0 and

r̂ ·B ¼ 0. Also, Aμ
þðx;ωÞ ¼ Aμ

−ðx;ωÞ ¼ eik0r
2cr J

μðr̂k0;ωÞ,
which allows us to write Eq. (63) as

r̂ ·E ¼ ik0ðr̂ ·A − A0Þ ¼ i
eik0r

2cr
ðk0r̂ ·J − k0J 0Þ

¼ −i
eik0r

2cr
KμJ μðr̂k0;ωÞ ¼ 0; ð66Þ

where the last term is zero by current conservation, with
Kμ ¼ ðk0; k0r̂Þ in the radiation regime.
The explicit form of the electromagnetic potential in

terms of an arbitrary current J μðkη;ωÞ, together with the
components of the electromagnetic fields and a general
expression for the spectral distribution of the radiation, are
given in the Appendix B.
Until now we have only considered the electromagnetic

radiation produced in an ideal chiral medium with refrac-
tion index n ¼ 1. This case corresponds to what is called
vacuum Cherenkov radiation in the literature [81,82],
where it is assumed that the standard vacuum is filled
with background fields codifying LIV, whose electromag-
netic effects turn out to be analogous to a material medium.
On the other hand, nonmagnetic (μ ¼ 1) chiral materials
have refraction indices n > 1, which we need to take into
account. The transformations relating both regimes are

presented in the Appendix D and for our immediate
purposes they include the following replacements

q → q=n; c → c=n; b → b=n;

β → β̃ ¼ cb
ω

1

n2
¼ β

1

n2
; ð67Þ

In the following we denote with a tilde the quantities which
now are presented for arbitrary n mainly to distinguish
them from those in previous notation with n ¼ 1. In an
abuse of notation we do not make this distinction in the
resulting electromagnetic potentials and fields.

VI. THE CHERENKOV RADIATION

Now we apply the general method developed in the
previous sections to the case of a charge q moving in chiral
matter with constant velocity, v ¼ vêz, parallel to b, along
the z-axis, in order to maintain axial symmetry. The
developments in this section rely heavily on previous
results together of those in the Appendices B and C, all
of which were obtained for n ¼ 1. Nevertheless, as neces-
sary for the description of nonmagnetic chiral matter with
refraction index n > 1, we need to perform the substitu-
tions indicated in Eq. (67). These are carried over for all the
quantities we use for the remaining calculations and plots,
and are indicated by adding an upper tilde over the
respective seed function previously calculated for n ¼ 1.
In other words, F̃ðnÞ is obtained from Fðn ¼ 1Þ after
making the substitutions indicated in Eq. (67). The remain-
ing symbols q, c, b, ω, β retain their original meaning
indicated in the preceding sections.

A. The electromagnetic fields

The sources in the frequency space are

ρðx0;ωÞ ¼ q
nv

δðx0Þδðy0Þeiωz0
v ;

Jðx0;ωÞ ¼ q
n
δðx0Þδðy0Þeiωz0

v : ð68Þ

In order to have a well-defined limiting process in our
calculation, we follow Refs. [59,95] integrating the charge
trajectory in the interval z ∈ ð−ξ; ξÞ and taking the limit
ξ → ∞, at the end of the calculation. From the charge and
current densities, we obtain

J 0ðk̃η;ωÞ ¼ 2
q
n
c
v

sin½ξΞ̃η�
Ξ̃η

;

J 3ðk̃η;ωÞ ¼ 2
q
n

sin½ξΞ̃η�
Ξ̃η

; ð69Þ

where now we have
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Ξ̃ηðω; θÞ ¼
ω

v

�
1 −

nv
c
C̃ηðθÞ cos θ

�
;

C̃ηðω; θÞ ¼ sin2θ þ cos2θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηβ̃ sec θ

q
; ð70Þ

g̃ηðω; θÞ ¼
1

ð1þ ηβ̃ sec θÞ1=4

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηβ̃ sec θÞ

�
1þ ηβ̃

2
sec θ

�
þ β̃2

4
tan2θ

s
;

ð71Þ

and k̃η ¼ r̂ nω
c C̃ηðθÞ, with r̂ being the unit vector in the

direction of the observation point. Using Eq. (47), the
components of the electromagnetic potential (54) are
conveniently written as

A0
η ¼

1

v
Q̃η; Az

η ¼
1

c
ð1þ ηβ̃j sec θjÞQ̃η; ð72Þ

Ax
η ¼

1

v
ðiη sinϕj tan θjÞQ̃η;

Ay
η ¼ −

1

v
ðiη cosϕj tan θjÞQ̃η; ð73Þ

with

Q̃η ¼
q
n

1

g̃ηðθÞ
sin½ξΞ̃η�

Ξ̃η

1

r
ei

nω
c C̃ηðθÞr: ð74Þ

An important simplifying feature in the calculation is the
deltalike behavior of the function Q̃η in the limit

lim
ξ→∞

sin½ξΞ̃η�
Ξ̃η

¼ πδ

�
ω

v

�
1 −

nv
c
cos θC̃ηðθÞ

��
; ð75Þ

which determines the allowed Cherenkov angles,

cos θC̃ηðθÞ ¼
c
nv

; ð76Þ

in complete analogy with the ordinary case. Since we
discard the imaginary contributions to C̃ηðθÞ in Eq. (70),
the allowed values are positive and we conclude that the
resulting angles θη, determined from Eq. (76), are in the
range ½0; π=2�. In other words, there is radiation only in
the forward direction.
An additional advantage is that now we can replace

j cos θj by cos θ in all previous functions. Making explicit
the axial symmetry in polar coordinates, we introduce
ϕ̂ ¼ ½− sinϕêx þ cosϕêy�, leading to

Aηðx;ωÞ ¼ Az
ηðx;ωÞ cos θr̂ − Az

ηðx;ωÞ sin θθ̂
þ Aϕ

η ðx;ωÞϕ̂; ð77Þ

in spherical coordinates, with

Aϕ
η ðx;ωÞ ¼ −iη

1

v
tan θQ̃η: ð78Þ

The associated electromagnetic fields are

Eðx;ωÞ ¼
X
η¼�1

Eηðx;ωÞ; ð79Þ

Eηðx;ωÞ ¼ i
nω
c

�
ðcos θAz

η − C̃ηðθÞA0
ηÞr̂

−
�
sin θAz

η þ
∂C̃ηðθÞ
∂θ

A0
η

�
θ̂þ Aϕ

η ϕ̂

�
; ð80Þ

Bðx;ωÞ ¼
X
η¼�1

�
C̃ηðθÞr̂þ

∂C̃ηðθÞ
∂θ

θ̂

�
×Eηðx;ωÞ; ð81Þ

Bðx;ωÞ ¼ i
nω
c

X
η¼�1

�
∂C̃ηðθÞ
∂θ

Aϕ
η r̂ − C̃ηðθÞAϕ

η θ̂

−
�
C̃ηðθÞ sin θ þ

∂C̃ηðθÞ
∂θ

cos θ

�
Az
ηϕ̂

�
: ð82Þ

B. The spectral distribution of the radiated energy

FromEq. (12) we recover the standard energy-momentum
conservation law with the usual Poynting vector,
S ¼ c

4πE × B, when we adopt b0 ¼ 0. Taking into account
the fields (79)–(82), the spectral energy distribution (SED)

d2E
dΩdω

¼ c
4π2

r2r̂ · Re½E�ðx;ωÞ ×Bðx;ωÞ�; ð83Þ

reads

d2E
dΩdω

¼ nω2q2

4π2c3

�X
η¼�1

sin2½ξΞ̃η�
Ξ̃2
η

T̃ 1;ηðω; θÞ
1

g̃2ηðθÞ

þ sin½ξΞ̃þ�
Ξ̃þ

sin½ξΞ̃−�
Ξ̃−

½T̃ 2;þðω; θÞ þ T̃ 2;−ðω; θÞ�

×
cos

�
nω
c ðC̃þðθÞ − C̃−ðθÞÞr

�
g̃þðθÞg̃−ðθÞ

�
: ð84Þ

To express T̃ 1;η and T̃ 2;η in a compact way, it is first
convenient to introduce the auxiliary functions
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p̃ηðω; θÞ ¼ sin θ þ ηβ̃ tan θ þ c
nv

∂C̃η

∂θ
;

q̃ηðω; θÞ ¼ cos θ þ ηβ̃ −
c
nv

C̃η; ð85Þ

which yield

T̃ 1;η ¼
�
p̃2
η þ

c2

n2v2
tan2θ

�
C̃η þ p̃ηq̃η

∂C̃η

∂θ
;

T̃ 2;η ¼
�
p̃−p̃þ −

c2

n2v2
tan2θ

�
C̃−η þ p̃ηq̃−η

∂C̃−η

∂θ
: ð86Þ

For simplicity we have not written the dependence upon
ðω; θÞ in Eq. (86). In the Appendix B we list the symmetry
properties of some of the above functions under the change
ω → −ω. From the condition (76), we note that C̃þ ¼ C̃−
only when b ¼ 0, so that the resulting angles θ� will be
different in a chiral media (b ≠ 0), only coinciding
when the material is nonchiral. This, together with the
deltalike limit in Eq. (75), means that the cross term in
Eq. (84),

sin½ξΞ̃þ�
Ξ̃þ

sin½ξΞ̃−�
Ξ̃−

; ð87Þ

becomes zero in the final limit ξ → ∞, leading to the
following simpler expression for the SED

d2E
dΩdω

¼ nω2q2

4π2c3
X
η¼�1

sin2½ξΞ̃η�
Ξ̃2
η

T̃ 1;ηðω; θÞ
1

g̃2ηðθÞ
: ð88Þ

C. Determination of the Cherenkov angles

Now we consider in detail the Cherenkov condition (76),
which can be expressed in terms of the function

HηðθÞ≡ cos θ

�
sin2θ þ cos2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηβ̃ sec θ

q �
; ð89Þ

in such a way the Cherenkov angles, θη (with η ¼ þ;−,
clas), are determined by the intersection of the HηðθÞ
curves with the horizontal lines c=ðnvÞ, in accordance with
the relation (76). See the plot of HηðθÞ intersecting the
horizontal lines in Fig. 3, for n ¼ 1. In the limit of standard
electrodynamics in vacuum (n ¼ 1, b ¼ 0), one has
Hclas ¼ cos θ, implying the known condition cosθ¼c=v,
which forbids the Cherenkov radiation.
In the following we list some important properties of the

functions HηðθÞ. They are decreasing functions of θ that
satisfy H− < Hclas < Hþ, for all values of θ. This justifies
the name of outer (inner) cone that we give to the radiation
emitted at the angles θþ (θ−), respectively.

FIG. 3. Plot of the functions HþðθÞ (solid line, red), HclasðθÞ (dashed line, magenta) and H−ðθÞ (dotted line, blue), for β ¼ bc=ω ¼
0.5 (n ¼ 1). The horizontal lines labeled by u ¼ v=c correspond toH ¼ 1=u in the ordinate. The Cherenkov angles are in radians. Even
though n ¼ 1 the hatched region indicates the presence of CHR in chiral matter.
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The function Hþ is real for any value of β̃, while H− has
the following restrictions: (i) it is imaginary when β̃ > 1,
so that it does not contribute to the radiation in this case;
and (ii) when β̃ < 1, it is real only in the interval
0 < θ < arccos β̃, which constrains its contribution. The
maximum values of each function at the origin are

Hþðθ ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ β̃

q
; Hclasðθ ¼ 0Þ ¼ 1;

H−ðθ ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − β̃

q
: ð90Þ

For a given material (fixed n > 1), the evolution of the
Cherenkov angles θþ; θ−; θclas, as a function of the particle
velocity, u ¼ v=c, are described as follows (the classical
case is incorporated for comparison):

(i) Region A: No Cherenkov radiation whenffiffiffiffiffiffiffiffiffiffiffi
1þ β̃

q
< 1=ðnuÞ; ð91Þ

corresponding to the upper white area above the
u ¼ 0.408 horizontal line in Fig. 4.

(ii) Region B: The region in which only θþ arises is in
the interval

1 < 1=ðnuÞ <
ffiffiffiffiffiffiffiffiffiffiffi
1þ β̃

q
; ð92Þ

defined by the orange oblique hatched area in Fig. 4.
This is the vacuum Cherenkov radiation in the LIV
case ðb ≠ 0; n ¼ 1Þ, which is not allowed in the
classical situation [81,82].

(iii) Region C: The region in which both θþ and θclas are
present is in the interval

ffiffiffiffiffiffiffiffiffiffiffi
1 − β̃

q
< 1=ðnuÞ < 1; ð93Þ

shown by the pale magenta vertical hatched area
in Fig. 4.

(iv) Region D: The area in which all three angles, θþ,
θclas and θ− coexist is in the interval

β̃ð1 − β̃2Þ < 1=ðnuÞ <
ffiffiffiffiffiffiffiffiffiffiffi
1 − β̃

q
; ð94Þ

marked as the pale blue horizontal hatched area
in Fig. 4.

(v) Region E: The lower region in which only θþ and
θclas arise corresponds to the interval

1=n < 1=ðnuÞ < β̃ð1 − β̃2Þ: ð95Þ

(vi) The lower limit for H ¼ 1=ðnuÞ is H ¼ 1=n and is
given by the maximum velocity u ¼ 1.

FIG. 4. Plot of the functions HþðθÞ (solid line, red), HclasðθÞ (dashed line, magenta) and H−ðθÞ dash-dotted line, blue), for β̃ ¼ 0.5,
n ¼ 2. The horizontal lines labeled by u ¼ v=c correspond toH ¼ 1=ðnuÞ in the ordinate. The Cherenkov angles are in radians. Region
A: upper white area, Region B: oblique hatched area (orange), Region C: vertical hatched area (light magenta) and Region D: horizontal
hatched area (light blue).
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The case of vacuum Cherenkov radiation (n ¼ 1) is
illustrated in the Fig. 3 for β ¼ 0.5. A generic case for
n ¼ 2 and β̃ ¼ 0.5 is shown in the Fig. 4. Regions A, B, C
and D are indicated in the figure caption. In this case the
lower limit for H is 1=2, as approximately indicated by
the horizontal line labeled by u ¼ 0.99. The values of the
Cherenkov angles for different velocities corresponding to
this case are also shown in Table I. From the left panel of
Fig. 2, we appreciate that the Cherenkov angles obtained in
this case, with our choice for the SPA in Eq. (37), fall in a
region where the classical SPA approximates very well the
exact numerical values shown in the figure.

D. Cherenkov angles θ+ , θ− as a function on β

In this subsection we investigate the dependence of the
Cherenkov angles upon the chiral parameter β ¼ bc=ω, as

a function of n and u, paying attention to the points where
these angles are cut down, as shown in the Fig. 5. In other
words, we are interested in the functions θ�ðβÞ for fixed n
and u. Let us recall that βðnÞ ¼ β=n2. It can be shown that
θþðβÞ [θ−ðβÞ] is an increasing (decreasing) function of β.
We distinguish two cases:
(1) nu < 1. From Eqs. (92) and (93) we have only θþ.

The angle θþ starts at βC, where θþðβCÞ ¼ 0. By
substituting this in Eq. (89), we obtain

βC ¼ 1

u2
− n2; ð96Þ

as we can see from Fig. 5(a).
(2) nu > 1. In this case we can have both θþ and θ−,

which start at β ¼ 0. Since θ− is a decreasing function
of β, we determine a cutoff βC by setting θ−ðβCÞ ¼ 0.
Replacing θ−ðβCÞ ¼ 0 in Eq. (89) yields

βC ¼ n2 −
1

u2
; ð97Þ

which can be verified in Figs. 5(b)–5(d).
To close this section we present the Figs. 6(a) and 6(b)

showing the SED for n ¼ 2, and the choices β ¼ 1.2 and

a( ) ( )b

(c) ( )d

FIG. 5. The Cherenkov angles θþ; θ−, for n ¼ 2 and different values of u, as a function of β. Panel (a): θþ vanishes at β ¼ βC ¼ 0.938.
Panel (b): θ− vanishes at β ¼ βC ¼ 1.222. Panel (c): θ− vanishes at β ¼ βC ¼ 2.222. Panel (d): θ− vanishes at β ¼ βC ¼ 2.765.

TABLE I. The possible Cherenkov angles for β̃ ¼ 0.5 and
n ¼ 2, exhibited in Fig. 4.

u θþðradÞ θclasðradÞ θ−ðradÞ
0.45 0.398 0.0 0.0
0.60 0.766 0.585 0.0
0.75 0.936 0.841 0.406
0.90 1.043 0.981 0.761
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β ¼ 0.4, which yield β̃ ¼ 0.3 and β̃ ¼ 0.1, respectively. In
both figures the solid blue line corresponds to ξ ¼ 100 μm
with u ¼ 0.75 and ω=c ¼ 14 μm−1. We notice that as long
as β takes lesser values, the splitting between θþ and θ−
closes up and the difference in the amplitudes of the lobes
decreases. In Fig. 6(a) the angles of the chiral Cherenkov
cones are θþ ¼ 0.908 and θ− ¼ 0.700, and in Fig. 6(b) they
are θþ ¼ 0.868 and θ− ¼ 0.807. All plotted SED are
expressed in units of the common factor q2=ð4π2c3Þ.

VII. TOTAL RADIATED ENERGY
PER UNIT FREQUENCY

In this section, we calculate the total energy per unit
frequency radiated by the charge on its path from −ξ toþξ.
Also we consider the ratio of the radiated energy per unit
frequency between the θþ and the θ− cones, as well as
between them and the case of nonchiral materials θclas. We
recall the calculation in the conventional Cherenkov case
(nonchiral material), where we have

d2Eclas

dΩdω
¼ nω2q2

π2c3

�
1 −

c2

n2v2

�
sin2½ξΞ̃�

Ξ̃2
;

Ξ̃ðθÞ ¼ ω

v

�
1 −

nv
c
cos θ

�
; ð98Þ

given by the limit β ¼ 0 in Eq. (88). Axial symmetry,
which is also present in our chiral case, yields

dEclas

dω
¼ 2nω2q2

πc3

�
1 −

c2

n2v2

�Z
π

0

dθ sin θ
sin2½ξΞ̃�

Ξ̃2
: ð99Þ

The trick to perform the remaining angular integration in
the limit ξ → ∞ is to use Eq. (75), obtaining

sin2½ξΞ̃�
Ξ̃2

¼ πδðΞ̃Þ sin½ξΞ̃�
Ξ̃

¼ πξδðΞ̃Þ; ð100Þ

leaving a final integration over δðΞ̃Þ. The result is

dEclas

dω
¼ q2ωL

c2

�
1 −

c2

n2v2

�
; ð101Þ

where we have denoted by L ¼ 2ξ the total distance
traveled by the charged particle in the medium. Let us
emphasize that in general n ¼ nðωÞ, which we do not
consider here. From Eq. (88) we have

d2E
dΩdω

¼
X
η¼�1

d2Eη

dΩdω
;

d2Eη

dΩdω
¼ nω2q2

4π2c3
K̃ηðω; θÞ

sin2½ξΞ̃η�
Ξ̃2
η

;

K̃ηðω; θÞ ¼
T̃ 1;ηðω; θÞ
g̃2ηðθÞ

; ð102Þ

in the chiral case. The angular integration is similar to the
nonchiral case: the functions K̃ηðω; θÞ are evaluated at the

(a) (b)

FIG. 6. The angular distribution for the radiated energy per unit frequency (solid blue line) in a chiral dielectric medium with n ¼ 2,
ω=c ¼ 14 μm−1, u ¼ 0.75 and ξ ¼ 100 μm. Panel (a): β̃ ¼ 0.3, and Panel (b): β̃ ¼ 0.1. The dashed red line corresponds to the
conventional Cherenkov cone. The charge moves from left to right.
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respective Cherenkov angles θη, while the integration over
δðΞ̃ηÞ is a bit more involved. The result is

dEη

dω
¼ ωq2L

4c2

�
sin θK̃ηðω; θÞ

jsin θC̃ηðθÞ − cos θ ∂C̃ηðθÞ
∂θ j

�
θ¼θη

: ð103Þ

Now, we compare the contribution to the total energy
radiated per unit frequency from each distribution in
Eq. (103), as a function of the chiral parameter β. We
define the ratios

Rη ¼
dEη=dω

dEclas=dω

¼ 1

4

1

1 − c2

v2n2

�
sin θK̃ηðω; θÞ

jsin θC̃ηðθÞ − cos θ ∂C̃ηðθÞ
∂θ j

�
θ¼θη

; ð104Þ

which account for the fraction of the radiated energy per
unit frequency that is produced by each cone in the chiral
case, with respect to the energy per unit frequency emitted
in the conventional case.
Figures 7(a)–7(c) show that when β is close to zero the

contribution of the radiation for each η in Eq. (103) is
approximately 0.5. As β takes larger values we see that the
contribution of the radiation produced by the inner cone,
θ−, gets smaller and smaller until it disappears completely.
The value of β at which this occurs is given by the

vanishing of θ− in Figs. 5(b)–5(d). In the limit when R−
vanishes, we observe that the contribution of the radiation
from the outer cone is just a fraction of the radiation in the
conventional case.
To complete the analysis, we consider the ratio

R−=Rþ ¼ dE−=dω
dEþ=dω

¼ sin θ−K̃−ðω; θ−Þ
sin θþK̃þðω; θþÞ

jsin θC̃þ − cos θ ∂C̃þ
∂θ jθ¼θþ

jsin θC̃− − cos θ ∂C̃−
∂θ jθ¼θ−

;

ð105Þ

which is a measure of how larger the contribution to the
radiation from the inner cone is with respect to the outer
one. Figures 8(a)–8(c) show that the output from the inner
cone is always smaller than that from the outer cone. This
ratio decreases as β takes larger values, until it gets to zero
when the inner cone vanishes.

VIII. SUMMARY AND CONCLUSIONS

In the far field approximation, we study the electromag-
netic response of a nonmagnetic chiral media to arbitrary
time-dependent sources in the framework of the Carroll,
Field and Jackiw (CFJ) electrodynamics, which includes
the additional parameters b0 and b giving rise to the
magnetoelectric effect. Examples of materials described

(a) (b) (c)

FIG. 7. Ratio between the total energy per unit frequency, as a function of β, radiated by each cone (θþ; θ−) in the chiral Cherenkov
case, with respect to the conventional case, for n ¼ 2.0. Panel (a): u ¼ 0.6, panel (b): u ¼ 0.75 and panel (c): u ¼ 0.9. The dashed (red)
line corresponds to Rþ and the dotted (blue) line is for R−.

(a) (b) (c)

FIG. 8. Ratio between the total energy radiated by the inner Cherenkov cone with respect to the outer one, for n ¼ 2.0. Panel (a):
u ¼ 0.6, panel (b): u ¼ 0; 75 and panel (c): u ¼ 0.9.
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by this effective electrodynamics are the Weyl semimetals,
where these parameters describe the separation of the Weyl
points in energy (b0) and momentum (b), in the reciprocal
space. It is interesting to remark that this model also arises
in the CPT-odd sector of the Standard Model extension
designed to probe Lorentz invariance violations in funda-
mental interactions. We restrict ourselves to the case b0 ¼ 0
and choose the z axis of our coordinate system in the
direction of b. Most of our calculations are performed in
vacuum (n ¼ 1) and the generalization to arbitrary ponder-
able media required to deal with a real material is
performed following the substitutions indicated in the
Appendix D.
As discussed in Sec. II, the linear dependence θðxÞ ¼

bμxμ on the coordinates in the CFJ electrodynamics
preserves the invariance under translations of the
Lagrangian density up to a total derivative. The system
has axial symmetry with respect to the vector b. In Eq. (20)
we obtained the Green’s function (GF) of the system,
Gμνðx; x0Þ, in terms of a differential matrix operator acting
on the scalar function fðx;x0;ωÞ, given in Eq. (28). This
function exhibits two contributions accounting for the
birefringence of the medium, which are inherited by
the remaining observables. The next step was to calculate
the general expression for the GF in the radiation zone. To
this end we considered the stationary phase approximation
in the far zone (R → ∞), where the function fðx;x0;ωÞ is
highly oscillating according to expðiRhηðk⊥ÞÞ in Eqs. (31)
and (33). Still, the resulting stationary phase equation (34)
is quartic in the momentum, which called for a further
approximation to keep an analytic calculation. We studied
the numerical solution of Eq. (34) and concluded that,
within specific ranges of the observation angle θ, the choice
in Eq. (37), corresponding to the conventional case with
b ¼ 0, is adequate. A qualitative measure of how good this
approximation is for increasing values of β ¼ cjbj=ω is
shown in Fig. 2. Yet at the end of the calculation of a
Cherenkov angle one should identify its position in the
corresponding graph in order to asses it validity. Next, for
an arbitrary source we determine the electromagnetic
potentials in the radiation zone and give a general expres-
sion for the electromagnetic fields in Eqs. (59) and (60). We
show that the triad n̂;E;B is not orthogonal and explain
how the conventional case is obtained. The general
expression for the spectral distribution of the radiation
follows from the Eqs. (54), (B15), (B21), and (B22). Some
symmetry properties of the fields under the change ω →
−ω are useful to show that this rather complicated
expression is real, as expected. Also at each step in the
calculation we able to recover the well known conventional
results by setting b ¼ 0.
Next we turn to the particular case of Cherenkov

radiation where the source is a charge moving at constant
velocity parallel to b, thus ignoring recoil effects. The
electromagnetic potentials and fields results by the direct

substitution of the charge current in the previous general
expressions. In analogy with the conventional case, sub-
stantial simplifications arise from the form of the outgoing
radiation wave which now acquires additional angular
dependence which modify the conventional Cherenkov
condition. Yet this condition also arises as a deltalike
contribution in the spectral distribution of the radiation
which fixes the allowed angles according to the Eq. (76),
which is conveniently written as HηðθÞ ¼ c=nv as in
Eq. (89). Then, for given values of b, n and u ¼ v=c,
the Cherenkov angles are determined by the intersection of
Hη with the straight line 1=nu, as shown in Figs. 3 and 4,
where we also plot the conventional case HclasðθÞ for
comparison. The functions HðθÞ are decreasing in the
angle. Figure 3 is for n ¼ 1 and depicts what is normally
called vacuum Cherenkov radiation that is forbidden in the
conventional case. Here only the angle θþ is present.
Figure 4 is for n > 1 and shows zero, one or two
Cherenkov angles. The limits of such regions is determined
by the maximum values Hðθ ¼ 0Þ in the following way:
(i) no Cherenkov angle occurs when 1=nu > Hþð0Þ, and
(ii) when 1=nu < Hþð0Þ the angle θþ is always present and
starts to be accompanied by the conventional angle when
1=nu < 1. The angle θ− occurs only in the interval
αðnÞð1 − α2ðnÞ < 1=nu < H−ð0Þ. To avoid confusion,
let us observe that the horizontal lines labeled by u in
those figures correspond to the value 1=nu in the ordinate.
The relation θ− < θclas < θþ always hold and θ� merge
into θclas as jbj → 0.
We also study the dependence of the angles θ� as a

function of the chiral parameter β for fixed n and u. As
shown in Fig. 5, we find two relevant cases: (1) for nu < 1
we only have θþ which starts at the minimum β determined
by the Eq. (96), and (2) for nu > 1 both θ� start at β ¼ 0.
While θþ is an increasing function, θ− is a decreasing one
which reaches zero at a value given by the Eq. (97).
Angular plots of the spectral distribution are presented in

the Fig. 6, showing the separation of the cones as β̃
increases. Also a qualitative measure of the energy output
of each cone in given by the length of the radial lines,
showing that θ− radiates less than θþ. A better comparison
is obtained by calculating the ratios of the energy per unit
frequency radiated in the θ� cones with respect to the
conventional case (Fig. 7). We find that the contribution of
the outer cone (θþ) gets bigger, while that of the inner cone
(θ−) gets smaller as β ¼ cb=ω takes larger values, until it
reaches the value zero. This behavior is also evident in
Fig. 8, which depicts the ratio of the energy radiated per
unit frequency between the θ− and the θþ cones.
We successfully compare our result for the vacuum

Cherenkov angle θþ with that obtained in Eq. (40) of
Ref. [90] in the high energy approximation. This requires
θþ ≪ 1, β ¼ bc=ω ≪ 1, together with a highly relativistic
velocity for the charge, which we take as v ¼ c. Under
these conditions, our Eq. (76) reduces to

BARREDO-ALAMILLA, URRUTIA, and FERREIRA PHYS. REV. D 107, 096024 (2023)

096024-16



cos θþ

�
1þ 1

2
β cos θþ

�
¼ 1; ð106Þ

whose solution yields cos θþ ¼ 1 − β=2, providing θþ ¼ffiffiffi
β

p
in the small angle approximation. This result is

precisely that of Ref. [90], restricted to our case when v
is parallel to b and λ ¼ þ.
We expect that our general description of radiation in

chiral matter provides the basis for the study of further
processes such as Cherenkov radiation with a charge
velocity v in arbitrary direction with respect to b, charged
particle energy losses and synchrotron radiation, for exam-
ple. Regarding the case of Cherenkov radiation and without
entering in any experimental detail, which is far beyond our
theoretical understanding, we envisage that the two
Cherenkov angles predicted in this work could be measured
by sending the charge through a slab of material and using
either a differential Cherenkov counter or a ring imaging
Cherenkov counter [101]. It is interesting to observe that
the measure of θþ would provide an optical experimental
determination of the parameter jbj of the chiral medium,
according to the expression

jbj ¼ n2
�
ω

c

�
1

cos5θþ

�
c
nv

− cos θþ þ 2cos3θþ

�

×

�
c
nv

− cos θþ

�
: ð107Þ

When both θ� are present, jbj can be determined from the
measurement of either one, and consistency yields a rela-
tionship between θþ and θ−, which is not very illuminating
to be presented explicitly. In our restricted formulation (v
parallel to b) at least one should know the direction of b in
the sample to correctly send the incident charge parallel tob.
Due to the far reaching applications of Cherenkov radiation
and since chiral matter constitutes a genuine new state of
matter recently discovered, it could prove valuable to study
its practical applications as a Cherenkov radiator.
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APPENDIX A: THE CALCULATION OF THE GF
IN THE RADIATION ZONE

In this appendix we summarize the calculation of the GF
(20) in the far-field approximation, using the stationary
phase method. We start from the splitting of the GF
introduced in Eqs. (42)–(44).

1. Gμν
0 ðx;x0;ωÞ in the far-field approximation

Using k2¼k20−k2⊥þ∂
2
Z we further splitG

μν
0 ðx;x0;ωÞ into

Gμν
0 ðx;x0;ωÞ ¼ −ημνk20

i
16πb

Z
∞

−∞

dk⊥k⊥
kk

Hð1Þ
0 ðk⊥R⊥Þ

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#

þ ημν
i

16πb

Z
∞

−∞

dk⊥k⊥k2⊥
kk

Hð1Þ
0 ðk⊥R⊥Þ

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#

− ημν∂2Z
i

16πb

Z
∞

−∞

dk⊥k⊥
kk

Hð1Þ
0 ðk⊥R⊥Þ

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#
: ðA1Þ

These three terms can be integrated using the stationary
phase method in the same way as we have computed the
function

fðx;x0;ωÞ ¼ i
16πb

Z
∞

−∞

dk⊥k⊥
kk

Hð1Þ
0 ðk⊥R⊥Þ

×

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#
; ðA2Þ

in the far-field approximation, previously obtaining

fðx;x0;ωÞ¼ 1

8πr
1

k0bcosθ

�
eik0CþðθÞðr−n̂·x0Þ

gþðθÞ
−
eik0C−ðθÞðr−n̂·x0Þ

g−ðθÞ
�
;

ðA3Þ

in Eq. (38), with k0 ¼ ω=c. Let us recall that we are
denoting by fðx;x0;ωÞ the function fðx;x0;ωÞ evaluated in
SPA and that according to our additional approximation in
the SPA we set
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ðkkÞs ¼ k0 cos θ; ðk⊥Þs ¼ k0 sin θ; ðA4Þ

in the final result.
The first integral in (A1) is proportional to f yielding the

contribution

−ημνk20fðx;x0;ωÞ; ðA5Þ

in the SPA. The second one has an extra factor of k2⊥ in the
integrand, which is evaluated in the stationary phase point
(A4), giving the contribution

ημνk20sin
2θfðx;x0;ωÞ: ðA6Þ

The third term in (A1) requires the second derivative with
respect Z, which is

∂
2
Z

2
64ei

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

3
75

¼ −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Z −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k − bkk

q
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Z
�
;

ðA7Þ

and can be rewritten as

ημν
i

16πb

Z
∞

−∞

dk⊥k⊥
kk

Hð1Þ
0 ðk⊥R⊥Þ

×

"
ðk2k þ bkkÞ

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q − ðk2k − bkkÞ

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#
;

¼ ημνk20cos
2θ½ð1þ α sec θÞfþðx;x0;ωÞ

− ð1 − α sec θÞf−ðx;x0;ωÞ�; ðA8Þ
after evaluating the additional factors in the SPA.
Substituting (A6) and (A8) into (A1), we finally obtain

Gμν
0 ðx;x0;ωÞ ¼ ημν

1

8πr

�
eik0CþðθÞðr−n̂·x0Þ

gþðθÞ
þ eik0C−ðθÞðr−n̂·x0Þ

g−ðθÞ
�
:

ðA9Þ

2. Gμν
b ðx;x0;ωÞ in the far-field approximation

Our starting point is the contribution linear in b in the
second Eq. (20), which we rewrite

Gμν
b ðx;x0;ωÞ¼ ibϵμνσ3

Z
d3k
ð2πÞ3

kσ
k4þ b̃2k2−ðb̃ ·kÞ2e

ik·ðx−x0Þ:

ðA10Þ
Here σ ¼ 0; 1; 2 and kσ ¼ ðk0;−kÞ. It is convenient to
define the following integral

Iαðx;x0;ωÞ

¼
Z

d3k
ð2πÞ3

kα
k4 þ b̃2k2 − ðb̃ · kÞ2 e

ik·ðx−x0Þ; ðA11Þ

such that

Gμν
b ¼ ibϵμνσ3Iσ: ðA12Þ

For σ ¼ 0 we have the straightforward result

I0ðx;x0;ωÞ ¼ k0fðx;x0;ωÞ: ðA13Þ

Also, the contribution from I3ðx;x0;ωÞ yields zero in the
GF due to the Levi-Civita tensor.
Next we consider σ ¼ i ¼ 1; 2, and we perform the

integration of kz in the complex plane, as we did previously
in the calculation yielding Eq. (28). We are left with

Iiðx;x0;ωÞ ¼ 1

ð2πÞ3
Z

∞

0

dk⊥k⊥
Z

2π

0

dϕkieik⊥R⊥ cosϕ

×
Z

∞

−∞
dkz

eikzZ

ðk20−k2Þ2−b2ðk20−k2Þ−b2k2z
;

¼ i
16π2b

Z
∞

0

dk⊥k2⊥
kk

Z
2π

0

dϕ

�
cosϕ

sinϕ

�
eik⊥R⊥ cosϕ

×

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þbkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k−bkk
q

#
; ðA14Þ

where we recall that ϕ is the angle between R⊥ and k⊥. In
the second equality of (A14) we have chosen a coordinate
system S with the x-axis in the direction of R⊥, such that
k1 ¼ k⊥ cosϕ and k2 ¼ k⊥ sinϕ. The angular integrals are

Z
2π

0

dϕ cosϕeik⊥R⊥ cosϕ ¼ 2πiJ1ðk⊥R⊥Þ;Z
2π

0

dϕ sinϕeik⊥R⊥ cosϕ ¼ 0: ðA15Þ

Using the recurrence

J1ðk⊥R⊥Þ ¼ −
1

k⊥
∂

∂R⊥
J0ðk⊥R⊥Þ; ðA16Þ

the integral (A14) can be written as

BARREDO-ALAMILLA, URRUTIA, and FERREIRA PHYS. REV. D 107, 096024 (2023)

096024-18



ISðx;x0;ωÞ ¼ −
1

8π2b

Z
∞

0

dk⊥k2⊥
kk

�
J1ðk⊥R⊥Þ

0

�

×

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#
;

¼ ∂

∂R⊥
1

16πb

Z
∞

−∞

dk⊥k⊥
kk

�
H0ðk⊥R⊥Þ

0

�

×

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#
;

¼ 1

i

�
1

0

�
∂

∂R⊥
fðx;x0;ωÞ: ðA17Þ

In the chosen coordinate system we have I2 ¼ 0. Then the
vector Iðx;x0;ωÞ ¼ ðI1; 0Þ is parallel to R⊥ and we can
write the general result

Iðx;x0;ωÞ ¼ 1

i
ðx − x0Þ⊥

R⊥
∂

∂R⊥
fðx;x0;ωÞ: ðA18Þ

From the recurrence relations of the Hankel functions we
obtain

∂

∂R⊥
Hð1Þ

0 ðk⊥R⊥Þ ¼ k⊥
∂

∂ðk⊥R⊥Þ
Hð1Þ

0 ðk⊥R⊥Þ

¼ −k⊥H
ð1Þ
1 ðk⊥R⊥Þ; ðA19Þ

which yields

∂

∂R⊥
fðx;x0;ωÞ ¼ −

i
16πb

Z
∞

−∞

dk⊥k2⊥
kk

Hð1Þ
1 ðk⊥R⊥Þ

×

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#
: ðA20Þ

In the asymptotic limit k⊥R⊥ → ∞, we can approximate
[102]

Hð1Þ
1 ðk⊥R⊥Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πk⊥R⊥

s
eik⊥R⊥−iπ4e−i

π
2 ¼ Hð1Þ

0 ðk⊥R⊥Þe−iπ2

¼ −iHð1Þ
0 ðk⊥R⊥Þ; ðA21Þ

∂

∂R⊥
fðx;x0;ωÞ ¼ i

i
16πb

Z
∞

−∞

dk⊥k2⊥
kk

Hð1Þ
0 ðk⊥R⊥Þ

×

"
e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2kþbkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k þ bkk
q −

e
i

ffiffiffiffiffiffiffiffiffiffiffi
k2k−bkk

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k − bkk
q

#
; ðA22Þ

which again has the form of the function fðx;x0;ωÞ in
Eq. (A2), except for an additional factor k⊥ in the
integrand. In the SPA this implies

∂

∂R⊥
fðx;x0;ωÞ ¼ ik0 sin θfðx;x0;ωÞ;

→ Iðx;x0;ωÞ ¼ k0n̂⊥fðx;x0;ωÞ; ðA23Þ

where n̂⊥ ¼ ðsin θ cosϕ; sin θ sinϕÞ. This completes the
calculation of Gμν

b in Eq. (43).

3. Gμν
b2
ðx;x0;ωÞ in the far-field approximation

This term is the easiest to calculate, because it is
proportional to fðx;x0;ωÞ, with

Gμν
b2
ðx;x0;ωÞ ¼ −b̃μb̃νfðx;x0;ωÞ: ðA24Þ

The only nonzero contribution in SPA is

G33
b2
ðx;x0;ωÞ ¼ −b2fðx;x0;ωÞ: ðA25Þ

APPENDIX B: ELECTROMAGNETIC FIELDS
AND THE SPECTRAL DISTRIBUTION OF THE

RADIATION FOR n= 1

First we write the Cartesian components of Aμ for an
arbitrary current Jμðx0;ωÞ in terms of the Fourier transform
J μðkη;ωÞ, defined in Eq. (52), which we denote as J μ

η .
From Eq. (51) and in the notation of Eq. (56) we have

A0
ηðn̂;ωÞ ¼ J 0

η þ iη tan θ sinϕJ 1
η − iη tan θ cosϕJ 2

η;

A1
ηðn̂;ωÞ ¼ iη tan θ sinϕJ 0

η þ J 1
η − iη sec θJ 2

η;

A2
ηðn̂;ωÞ ¼ −iη tan θ cosϕJ 0

η þ iη sec θJ 1
η þ J 2

η;

A3
ηðx;ωÞ ¼ ð1þ ηβ sec θÞJ 3

η: ðB1Þ

The transformation to spherical coordinates yields

Ar
ηðn̂;ωÞ¼ sinθcosϕA1

ηþ sinθ sinϕA2
ηþ cosθA3

η;

Aθ
ηðn̂;ωÞ¼ cosθcosϕA1

ηþ cosθsinθA2
η − sinθA3

η; ðB2Þ

Aϕ
η ðn̂;ωÞ ¼ − sin θA1

η þ cosϕA2
η: ðB3Þ

Using Eq. (57) for the expression of the gradient operator in
the radiation zone in the conventional relations

Eðx;ωÞ ¼ ik0Aðx;ωÞ − ∇A0ðx;ωÞ;
Bðx;ωÞ ¼ ∇ ×Aðx;ωÞ; ðB4Þ

and splitting the electromagnetic fields as shown in
Eqs. (59) and (60) we have
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Eηðx;ωÞ ¼ ik0ðAηðx;ωÞ −NηA0
ηðx;ωÞÞ; ðB5Þ

Bηðx;ωÞ ¼ Nη ×Eηðx;ωÞ; ðB6Þ

recalling the definition of Nη in Eq. (58). The explicit form
of the radiation electric field in spherical coordinates is

Eηðx;ωÞ ¼ ik0

�
ðAr

η−CηA0
ηÞr̂þ

�
Aθ
η −

∂Cη

∂θ
A0
η

�
θ̂þAϕ

η ϕ̂

�
;

ðB7Þ

Now we are in position to calculate the spectral energy
distribution (SED) of the radiation: the energy radiated per
unit solid angle and per unit frequency. We have taken
b0 ¼ 0 which yield the Poynting vector

Sðx; tÞ ¼ c
4π

Eðx; tÞ ×Bðx; tÞ: ðB8Þ

Thus, the total radiated energy crossing the area r̂dA is

Z
∞

−∞
dtðr̂ · Sðx; tÞÞdA

¼ c
4π

Z
∞

−∞

dω
2π

r̂ · ðE�ðx;ωÞ ×Bðx;ωÞÞdA;

¼ c
4π2

Z
∞

0

dωr̂ · Re½E�ðx;ωÞ × Bðx;ωÞ�r2dΩ; ðB9Þ

where dA ¼ r2dΩ and we read the SED

d2E
dΩdω

¼ c
4π2

r2r̂ · Re½E�ðx;ωÞ × Bðx;ωÞ�: ðB10Þ

The last step in Eq. (B9) is a consequence of the relation

E�ðx;−ωÞ ×Bðx;−ωÞ ¼ Eðx;ωÞ ×B�ðx;ωÞ
¼ ðE�ðx;ωÞ ×Bðx;ωÞÞ�; ðB11Þ

in the integral −∞ < ω < þ∞, which follows because the
electromagnetic fields are real in coordinate space. Now we
calculate the term

E�ðx;ωÞ×Bðx;ωÞ¼
X

η;η0¼�1

E�
η0 ðx;ωÞ×Bηðx;ωÞ: ðB12Þ

From Eq. (B6) we have

E�
η0 ×Bη ¼ E�

η0 ðx;ωÞ × ½Nη ×Eηðx;ωÞ�
¼ ðE�

η0 ·EηÞNη − ðE�
η0 ·NηÞEη: ðB13Þ

Fom Eq. (B7), the electric field can be rewritten in spherical
components as

Eηðx;ωÞ ¼ ik0½Er
ηr̂þ Eθ

ηθ̂þ Eϕ
η ϕ̂�;

E�
η0 ðx;ωÞ ¼ −ik0½ðEr

η0 Þ�r̂þ ðEθ
η0 Þ�θ̂þ ðEϕ

η0 Þ�ϕ̂�; ðB14Þ

where

Er
η¼Ar

η−CηA0
η; Eθ

η ¼Aθ
η−

∂Cη

∂θ
A0
η; Eϕ

η ¼Aϕ
η : ðB15Þ

With these we compute

E�
η0 ·Nη ¼ E�

η0 ·

�
Cηr̂þ

∂Cη

∂θ
θ̂

�

¼ −ik0
�
ðEr

η0 Þ�Cη þ ðEθ
η0 Þ�

∂Cη

∂θ

�
; ðB16Þ

E�
η0 ·Eη ¼ k20½ðEr

η0 Þ�Er
η þ ðEθ

η0 Þ�Eθ
η þ ðEϕ

η0 Þ�Eϕ
η �; ðB17Þ

yielding

E�
η0×Bη¼k20½ðEr

η0 Þ�Er
ηþðEθ

η0 Þ�Eθ
ηþðEϕ

η0 Þ�Eϕ
η �
�
Cηr̂þ

∂Cη

∂θ
θ̂

�

−k20

�
ðEr

η0 Þ�CηþðEθ
η0 Þ�

∂Cη

∂θ

�
½Er

ηr̂þEθ
ηθ̂þEϕ

η ϕ̂�:

ðB18Þ

From the above equation we obtain

r̂ · ðE�
η0 ×BmÞ¼ k20

�
ððEθ

η0 Þ�Eθ
ηþðEϕ

η0 Þ�Eϕ
η ÞCη− ðEθ

η0 Þ�Er
η
∂Cη

∂θ

�
≡Iη0ηðr̂;ωÞÞ; ðB19Þ

which produces the final result

r̂ · ðE�ðx;ωÞ × Bðx;ωÞÞ ¼
X

η;η0¼�1

Iη0ηðr̂;ωÞÞ; ðB20Þ

with the explicit expressions

Iþþðr̂;ωÞÞ¼k20

�
ððEθþÞ�EθþþðEϕ

þÞ�Eϕ
þÞCþ−ðEθþÞ�Erþ

∂Cþ
∂θ

�
;

I−−ðr̂;ωÞÞ¼k20

�
ððEθ

−Þ�Eθ
−þðEϕ

−Þ�Eϕ
−ÞC−−ðEθ

−Þ�Er
−
∂C−

∂θ

�
;

Iþ−ðr̂;ωÞÞ¼k20

�
ððEθþÞ�Eθ

−þðEϕ
þÞ�Eϕ

−ÞC−−ðEθþÞ�Er
−
∂C−

∂θ

�
;

I−þðr̂;ωÞÞ¼k20

�
ððEθ

−Þ�EθþþðEϕ
−Þ�Eϕ

þÞCþ−ðEθ
−Þ�Erþ

∂Cþ
∂θ

�
:

ðB21Þ

Thus, by substituting (B20) into (B10), it provides the final
expression
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d2E
dΩdω

¼ c
4π2

r2Re

� X
η;η0¼�1

Iη0ηðr̂;ωÞ
�
; ðB22Þ

for the SED of the radiation in terms of the electromagnetic
fields for arbitrary sources Jμðx; tÞ in the case n ¼ 1.
Using the definitions (B15), Eqs. (41) and (55) allow to

obtain the symmetry relations

Er
ηð−ωÞ ¼ ðEr

−ηðωÞÞ�; Eθ
ηð−ωÞ ¼ ðEθ

−ηðωÞÞ�;
Eϕ
η ð−ωÞ ¼ ðEϕ

−ηðωÞÞ�; ðB23Þ

which then yield

Iþþðr̂;−ωÞ ¼ ðI−−ðr̂;ωÞÞ�;
Iþ−ðr̂;−ωÞ ¼ ðI−þðr̂;ωÞÞ�: ðB24Þ

To conclude we summarize additional symmetry properties
used along the text, resulting from the transformation
ω → −ω, which produces β → −β, that in turn can be
absorbed in the change η → −η; together with complex
conjugation in some cases

Jμðx;−ωÞ¼ ðJμðx;ωÞÞ�; Aμ
ηðx;−ωÞ¼ ðAμ

−ηðx;ωÞÞ�;
C̃ηð−ω;θÞ¼ C̃−ηðω;θÞ; g̃ηð−ω;θÞ¼ g̃−ηðω;θÞ: ðB25Þ

APPENDIX C: THE SPECTRAL DISTRIBUTION
IN THE CHERENKOV RADIATION FOR n= 1

We present only the main steps in the calculation of the
SED for the Cherenkov radiation. We start from the sources
in frequency space

ρðx0;ωÞ ¼ q
v
δðx0Þδðy0Þeiωz0

v ;

J3ðx0;ωÞ ¼ qδðx0Þδðy0Þeiωz0
v ; J1 ¼ J2 ¼ 0; ðC1Þ

describing a charge q moving in the third direction z with
constant speed v. In order to have a well-defined limiting
process in our calculationwe followRefs. [59,95] integrating
the charge trajectory in the interval z ∈ ð−ξ; ξÞ and taking the
limit ξ → ∞ at the end of the calculation. In terms of the
Fourier transform J μðkη;ωÞ, defined in Eq. (52), we obtain
the vector potentialAμ from Eqs. (B1) and (B3) which yield
the electric field (B7), from where we read the components
Er
η; Eθ

η; E
ϕ
η , according to Eq. (B15)

Er
η ¼

q
cr

sin½ξΞη�
Ξη

�
cos θ þ ηβ −

c
v
CηðθÞ

�
eik0rCηðθÞ

gηðθÞ
; ðC2Þ

Eθ
η ¼ −

q
cr

sin½ξΞη�
Ξη

�
sin θ þ ηβ tan θ þ c

v

∂CηðθÞ
∂θ

�
eik0rCηðθÞ

gηðθÞ
;

ðC3Þ

Eϕ
η ¼ −

q
cr

sin½ξΞη�
Ξη

�
iη
c
v
tan θ

�
eik0rCηðθÞ

gηðθÞ
: ðC4Þ

The expressions for CηðθÞ and gηðθÞ are given in Eqs. (39)
and (40), respectively, and we have

Ξη ¼
ω

v

�
1 −

v
c
CηðθÞ cos θ

�
: ðC5Þ

Finally, we substitute these expressions for the components
of the electric field in Eq. (B21) to obtain

Iþþðr̂;ωÞ ¼
k20q

2

c2r2
sin2½ξΞþ�

Ξ2þ
T 1;þðω; θÞ

1

g2þðθÞ
;

I−−ðr̂;ωÞ ¼
k20q

2

c2r2
sin2½ξΞ−�

Ξ2
−

T 1;−ðω; θÞ
1

g2−
ðθÞ;

Iþ−ðr̂;ωÞ ¼
k20q

2

c2r2
sin½ξΞþ�

Ξþ

sin½ξΞ−�
Ξ−

× T 2;þðω; θÞ
eik0rðC−ðθÞ−CþðθÞÞ

gþðθÞg−ðθÞ
;

I−þðr̂;ωÞ ¼
k20q

2

c2r2
sin½ξΞþ�

Ξþ

sin½ξΞ−�
Ξ−

× T 2;−ðω; θÞ
e−ik0rðC−ðθÞ−CþðθÞÞ

gþðθÞg−ðθÞ
; ðC6Þ

The functions T 1;η and T 2;η are written in a compact by
introducing the auxiliary quantities

pηðω; θÞ ¼ sin θ þ ηβ tan θ þ c
v

∂Cη

∂θ
;

qηðω; θÞ ¼ cos θ þ ηβ −
c
v
Cη; ðC7Þ

and they read

T 1;η ¼
�
p2
η þ

c2

v2
tan2θ

�
Cη þ pηqη

∂Cη

∂θ
;

T 2;η ¼
�
p−pþ −

c2

v2
tan2θ

�
C−η þ pηq−η

∂C−η

∂θ
: ðC8Þ

The symmetry properties of the remaining functions are

Ξ̃ηð−ω; θÞ ¼ −Ξ̃−ηðω; θÞ; p̃ηð−ω; θÞ ¼ p̃−ηðω; θÞ;
q̃ηð−ω; θÞ ¼ q̃−ηðω; θÞ; T̃ 1;ηð−ω; θÞ ¼ T̃ 1;−ηðω; θÞ;

T̃ 2;ηð−ω; θÞ ¼ T̃ 2;−ηðω; θÞ: ðC9Þ

The final expression for the SED is obtained by sub-
stituting the relations (C6) in Eq. (B22).
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APPENDIX D: INTRODUCING PONDERABLE
MEDIA WITH PARAMETERS ϵ AND μ

In this appendix we relate the physical Maxwell equa-
tions describing chiral matter for a nondispersive, non-
disipative medium with those used in the manuscript given
in Eqs. (6) and (7). In unrationalized Gaussian units the
Maxwell equations for an ideal chiral medium with ϵ ¼
μ ¼ 1 are

∇ ·E0 ¼ 4π

c0
J00 − b0 ·B0;

∇ ×B0 −
1

c0
∂E0

∂t
¼ 4π

c0
J0 þ b00B

0 þ b0 ×E0;

∇ ·B0 ¼ 0; ∇ ×E0 þ 1

c0
∂B0

∂t
¼ 0: ðD1Þ

It can be readily verified that the changes

E0 ¼ ffiffiffi
ϵ

p
E; B0 ¼ 1ffiffiffi

μ
p B; c0 ¼ cffiffiffiffiffi

μϵ
p ρ0 ¼ ρffiffiffi

ϵ
p ;

J0 ¼ 1ffiffiffi
ϵ

p J; b0 ¼
ffiffiffi
μ

ϵ

r
b; b00 ¼ μb0; ðD2Þ

produce Maxwell equations for a chiral medium with
arbitrary ϵ and μ

ϵ∇ ·E ¼ 4π

c
J0 − b · B;

1

μ
∇ ×B −

1

c
ϵ
∂E
∂t

¼ 4π

c
Jþ b0Bþ b ×E;

∇ ·B ¼ 0; ∇ ×Eþ 1

c
∂B
∂t

¼ 0: ðD3Þ
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