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We study the effects of a static and uniform magnetic field on the evolution of energy density
fluctuations present in a medium. By numerically solving the relativistic Boltzmann-Vlasov equation
within the relaxation time approximation, we explicitly show that magnetic fields can affect the
characteristics of energy density fluctuations at the timescale the system achieves local thermodynamic
equilibrium. A detailed momentum mode analysis of fluctuations reveals that a magnetic field increases the
damping of mode oscillations, especially for the low momentum modes. This leads to a reduction in the
ultraviolet (high momentum) cutoff of fluctuations and also slows down the dissipation of relatively low
momentum fluctuation modes. We discuss the phenomenological implications of our study on various
sources of fluctuations in relativistic heavy-ion collisions.
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I. INTRODUCTION

The effects of magnetic fields on the bulk evolution of
dynamical systems have been extensively studied and
found to be crucial for a proper understanding of the
physical properties of the system. For example, the evo-
lution of cosmic fluid in the early Universe has been found
to be affected by a primordial magnetic field that can
nontrivially modify the power spectrum of cosmic micro-
wave background radiation [1]. The fluid evolution in the
postmerger (ringdown) phase of a binary neutron star
merger and the gravitational collapse of a homogeneous
dust [2] can be influenced by the magnetic field [3–7]
modifying the strain amplitude and frequency spectrum of
the gravitational waves [8–11]. A strong magnetic field can
also be generated in the participant zone in relativistic
heavy-ion collisions [12,13] which can qualitatively
modify the azimuthal anisotropic flow and power spectrum
of the flow fluctuations of the hadrons [14–20].
These systems were investigated within the relativistic

magnetohydrodynamic (RMHD) framework where the
medium is assumed to be in the local thermodynamic
equilibrium. The observable consequences of magnetic
fields basically stem from the stiffening of the equation
of state, which causes an increase in the sound speed in the
plane perpendicular to the magnetic field and generates an
additional momentum anisotropy in the fluid evolution
[16–18,21].
However, expanding systems are naturally not in thermal

equilibrium, but may gradually approach equilibrium from

out-of-equilibrium initial conditions. Such scenarios have
been perceived in the reheating of early Universe in the
presence of a magnetic field [22,23], and in noncentral
relativistic heavy-ion collisions where a deconfined state of
quark-gluon plasma (QGP) [24–26] is formed in presence of
a large magnetic field [12,13,27–29]. In these situations,
the RMHD framework is not applicable and an out-of-
equilibriumdescription is required to explore the evolutionof
the physical quantities as they approach local equilibrium.
In general, fluctuations in physical quantities can exist

at various length scales and may largely influence the
dynamics of the system. In fact, fluctuations can be
exploited to infer the information of a system at various
time/length scales. For cosmic fluid and astrophysical
systems, compared to long wavelength fluctuations, the
short wavelength fluctuations (comparable to the coarse-
grained length scale for hydrodynamic description) may
not have any significant effect on the bulk evolution. In
contrast, in heavy-ion collisions, fluctuations of short
wavelengths comparable to the length scale, l ∼ 1 fm,
are particularly important in the description of the evolution
dynamics of QGP droplet of transverse length L ∼ 10 fm.
These fluctuations are dominantly present at the initial
stages of the collision [30,31], and also during the space-
time evolution (collisional and thermal/hydrodynamic
fluctuations), and play an important role in the bulk
hydrodynamic description of the QGP medium [32–34].1
While these model studies of fluctuations were carried

out in the absence of magnetic field, the short-lived strong
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1Additionally, at the moderate collision energies, large critical
fluctuations can inevitably arise near the QCD critical point and
can potentially be used to probe the critical point [34,35].
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magnetic field produced in nuclear collisions [12] can
affect mainly the “fast-evolving” short wavelength fluctu-
ations and thereby the observables that are sensitive to
fluctuations. Thus, it is important to study the impact of
magnetic field on these fluctuations that can provide
reliable insight on the medium properties in a model-to-
data comparison [18,36–39].2
In this work, we investigate within kinetic transport

[40–42], the effects of an external magnetic field on the
evolution of energy density fluctuations present in a
slightly out-of-equilibrium medium of electrically charged
particles. The magnetic field B is considered to be static,
uniform, and marginally weaker than the thermal energy
or the temperature T of the medium, i.e.,

ffiffiffiffiffiffiffiffiffijqBjp
< T. In

particular, we solve numerically the relativistic Boltzmann-
Vlasov equation within the relaxation time approximation
(RTA) [43–45], and show that the magnetic field can affect
the evolution of energy density fluctuations in the trans-
verse direction to B, leading to fluctuations of completely
different characteristics at the timescale at which the
medium achieves local equilibrium. We perform momen-
tum mode analysis of the fluctuations and demonstrate that
the magnetic field enhances the damping of mode oscil-
lations. We extend the analysis to the high momentum scale
of fluctuations where the nonhydrodynamic modes of RTA
kinetic theory dominate [39,45–50] and determine the
ultraviolet cutoff of fluctuations above which all the higher
momentum modes get suppressed while approaching local
equilibrium. We show that this cutoff decreases (i.e., the
short-wavelength cutoff increases) with increasing mag-
netic fields.
We emphasize that the analysis presented here is quite

general and can be applied to any system whose constitu-
ents are electrically charged. For inclusiveness, we consider
a system of charged pions and discuss the phenomeno-
logical implications on relativistic heavy-ion collisions.
This paper is organized as follows. Section II deals with a

detailed description of the Boltzmann-Vlasov equation,
where the underlying assumptions for solving this equation
are discussed. The simulation details are given in Sec. III,
and the simulation results are presented in Sec. IV. In
Sec. IVA, the effects of magnetic fields on the evolution of
energy density fluctuations are studied with an extensive
analysis of the momentum modes of fluctuations. The
effects of magnetic fields on the other components of
energy-momentum tensor are shown in Sec. IV B. In
Sec. IV C, the effects of magnetic fields on a generic initial
energy density profile are presented, which readily eluci-
date the implications of the preceding sections. The
phenomenological implications of the results, especially
in the context of QGP formation in relativistic heavy ion

collisions are discussed in Sec. V. Finally, we conclude with
a summary of the work in Sec. VI.
Throughout the study, we consider the Minkowski

space-time metric as ημν ¼ diagð1;−1;−1;−1Þ, and work
in the units kB ¼ ℏ ¼ c ¼ 1. The four-position and four-
momentum of particle (and antiparticle) are represented by
xμ ¼ ðt;xÞ and kμ ¼ ðk0;kÞ, respectively, where kμ is
normalized to the particle’s rest mass square as kμkμ ¼
m2

0 giving k0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

0

p ¼ Ek—the energy of particle
with three-momentum k.

II. BOLTZMANN-VLASOV EQUATION

To study the effects of magnetic fields on the equilibra-
tion of a system, we solve the relativistic Boltzmann-
Vlasov (BV) equation [41,51]:

kμ∂μf þ qFμνkν
∂

∂kμ
f ¼ C½f; f̄�: ð1Þ

This provides the time evolution of the single-particle
phase-space distribution function f ≡ fðt;x;kÞ of particles
with electric charge q. Here Fμν is the electromagnetic
field tensor whose components are treated as external
fields.3 The collision integral C½f; f̄�makes the BVequation
nonlinear which cannot be solved analytically [29,52,53].
We consider the linear approximation—also known as the
RTA [43–45]—where the system is assumed to be slightly
away from the equilibrium state such that the distribution
function can be written as f ¼ feq þ δf, where feq is the
local equilibrium distribution function of the system and
δf ≪ feq gives the deviation from feq.
In RTA, the collision integral can be written in the linear

form as C½f; f̄� ¼ − kμuμ
τc

δf [42,44], where τc is the relax-
ation time which sets a timescale for local equilibration
[44,45], uμ ¼ γð1; vÞ the four-velocity of the fluid, and
γ ¼ ð1 − v2Þ−1=2 the Lorentz factor. For antiparticles, the
Boltzmann-Vlasov equation has a form similar to Eq. (1)
with ðf; qÞ ↔ ðf̄;−qÞ and the collision term under the
RTA as C̄½f; f̄� ¼ − kμuμ

τc
δf̄.4 The collision term within

RTA is constrained by the Landau matching conditions
required to satisfy the net-particle four-current and energy-
momentum conservations [44,55,56]. These conditions are
given by

uμTμν ¼ uμT
μν
eq ;

uμNμ ¼ uμN
μ
eq; ð2Þ

which should be satisfied throughout the evolution of
distribution functions [44,55]. Here Tμν and Tμν

eq are the

2Interestingly, the ideal RMHD simulations of QGP in
relativistic heavy-ion collisions mostly show the effect of a
magnetic field on the higher flow harmonics [17].

3Thus, unlike a RMHD fluid [17], there is no feedback of the
medium on the electromagnetic fields.

4Note that a magnetic field can modify the relaxation time τc
[54]. However, we have rescaled the space-time coordinates by τc
and hence it will not enter in the BV equation explicitly.

SHREYANSH S. DAVE and SUBRATA PAL PHYS. REV. D 107, 096022 (2023)

096022-2



energy-momentum tensors of the medium corresponding to
distribution functions (f; f̄) and local equilibrium distri-
bution functions (feq; f̄eq), respectively. Likewise, Nμ and
Nμ

eq are the net-particle four-currents corresponding to
(f; f̄) and (feq; f̄eq), respectively. These variables can be
calculated by using the relations [51,55]

Tμν ¼
Z

dKkμkνðf þ f̄Þ;

Nμ ¼
Z

dKkμðf − f̄Þ; ð3Þ

where dK ¼ d3k=½ð2πÞ3Ek� is the Lorentz invariant
momentum space integration measure. The Landau match-
ing conditions are satisfied by the Landau-Lifshitz’s def-
inition of four-velocity uμ [51,55]:

uμ ¼ Tμνuν
uρTρσuσ

: ð4Þ

In this definition, the momentum density and energy flux
are zero in the local rest frame of the medium.5

We consider a static and uniform magnetic field along
the y direction, i.e.,B ¼ B0ŷ, which yields the BVequation
of the form

Ek
∂f
∂t

þ kx
∂f
∂x

þ ky
∂f
∂y

þ kz
∂f
∂z

þ qB0

�
kx

∂f
∂kz

− kz
∂f
∂kx

�

¼ kμuμ
τc

ðfeq − fÞ: ð5Þ

The magnetic field thus affects the distribution function in
the ðkx; kzÞ plane, but has no effect in the ky direction. This
suggest that during evolution, the magnetic field can by
itself generate three-dimensional spatial anisotropies of
any fluctuation present in the system. Further, in the RTA
(without nonlinearity), direct coupling between the fluc-
tuation modes in the transverse (xz) plane and the parallel
(y) direction is not expected. Consequently, such anisot-
ropies can grow in the linear regime until the fluctuations
decay to vanishingly small values.
Solving the integro-differential Boltzmann-Vlasov equa-

tion in (6þ 1)-dimensional phase-space becomes computa-
tionally quite intensive as we are interested in studying the
short-wavelength fluctuations that require small lattice
spacing and hence large number of lattice points. We take
recourse to a tractable (3þ 1)-dimension equation, where
we consider the evolution of distribution function f ≡
fðt; x; kx; kzÞ for the magnetic field pointing along the
y direction. This implies a variation of f in phase space

along the x direction and homogeneity along the y direction
with ky ¼ 0.6 Further, f is taken homogeneous along
spatial z direction, but its variation is accounted along
kz. This allows us to study the effect of a magnetic field that
generates finite values of T0z and Txz.7 For numerical
simulations we rewrite the BV equations for particles and
antiparticles in the dimensionless form

Ek0
∂f
∂t0

þ k0x
∂f
∂x0

þ β0

�
k0x

∂f
∂k0z

− k0z
∂f
∂k0x

�
¼ k0μuμðfeq − fÞ;

Ek0
∂f̄
∂t0

þ k0x
∂f̄
∂x0

− β0

�
k0x

∂f̄
∂k0z

− k0z
∂f̄
∂k0x

�
¼ k0μuμðf̄eq − f̄Þ;

ð6Þ

where we have introduced the dimensionless variables
t0 ¼ t=τc, x0 ¼ x=τc, k0 ¼ k=m0 (hence Ek0 ¼ Ek=m0),
with jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
. The term β0 ¼ jqBjτc=m0, is dubbed

as the “magnetic field parameter” which is varied to study
the impact of magnetic field B on the medium evolution.
The two coupled differential equations in Eq. (6) are
simultaneously solved numerically for complete dynamical
evolution. To ensure energy-momentum and net-particle
four-current conservations by the RTA collision kernel, the
Landau matching conditions given in Eq. (2) are imposed,
i.e., ε ¼ εeqðT; μÞ and n ¼ neqðT; μÞ [44,55,57,58]. The
energy density ε ¼ uμuνTμν and the net-particle density
n ¼ uμNμ can be obtained from Eq. (3). Similarly, the
equilibrium energy density εeq ¼ uμuνT

μν
eq and the net-

particle density n ¼ uμN
μ
eq can be obtained from Eq. (3)

by using the local-equilibrium distributions

feq ¼
1

exp ðβEk − αÞ � 1
; f̄eq ¼

1

exp ðβEk þ αÞ � 1
;

ð7Þ

where � refer to fermions and bosons, respectively. The
associated equilibrium temperature T ¼ 1=β, chemical
potential μ ¼ α=β are solved by using the matching
conditions. It may be noted that alternative collision
kernels are also available, such as the Bhatnagar-
Gross-Krook collision kernel [43] and its relativistic

5The Eckart’s definition of fluid velocity [51] becomes
ambiguous at zero chemical potential and therefore not used
here.

6This assumption will not alter our final conclusions as the
evolution of the distribution functions (f; f̄) is unaffected by
the magnetic field along the y direction.

7We have checked the reliability of our results presented in
Sec. IV by performing a ð4þ 1ÞD phase-space simulation,
namely with fðt; x; z; kx; kzÞ but using larger lattice spacing,
which then simulates long-wavelength fluctuations. We find that
the qualitative aspects of the results remain unchanged with
the inclusion of inhomogeneity along the spatial z direction. The
aspects of long-wavelength (hydrodynamic) fluctuations in the
ð4þ 1ÞD code will be presented in a separate communication.
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extensions [59–63] that conserves net-particle four-
current, and the recently proposed novel RTA [64].
To generate the initial configuration of f (and f̄), the

following procedure is adopted. We start with a local
equilibrium state defined by a temperature Tðx0Þ that gives
a local equilibrium distribution function feq. Specifically,
we consider sine-Gaussian function for temperature fluc-
tuations which gives

Tðx0Þ ¼ T0 þ δT sin

�
2πrx0

L

�
expð−x02=2χ2Þ; ð8Þ

where T0 resembles the global equilibrium temperature
with a corresponding distribution function f0. δT is the
temperature fluctuation scale factor which is taken suffi-
ciently small δT ¼ 0.01T0. This ensures that long time-
scales are required to smooth out the inhomogeneities in
Tðx0Þ and achieve global equilibrium in the system of total
size L. The Gaussian width is taken to be χ ¼ L=10 and the
“fluctuation parameter” r is varied to simulate the effects of
a magnetic field on different wavelength fluctuations. This
procedure also ensures that the spatial variations in feq are
sufficiently localized compared to the total system size L.
We perturb further the local equilibrium state in the

(x0; k0x; k0z) space such that the system achieves an out-of-
equilibrium state. For this purpose, we consider random
fluctuations, δf, on top of feq, which gives the initial
distribution function as f ¼ feq þ δf. The choice of δf is
dictated by the Landau matching conditions [44,56] such
that the initial out-of-equilibrium distribution function, f,
gives the same net-particle number density and energy
density as that given by feq. The random fluctuation δf is
then taken as

δf ¼ Rx0k0xk0zfeq; ð9Þ

where Rx0k0xk0z is a small random number in the (x0; k0x; k0z)
space which varies from negative to positive values. The
maximum value of jRx0k0xk0z j is set by the RTA condition
δf ≪ feq, which gives jRx0k0xk0z j ≪ 1. We set the maximum
value of jRx0k0xk0z j ¼ 0.01. Likewise, an initial configuration
for f̄ is also generated. Note that our final conclusions of
the study are completely independent of the choices of
initial fluctuations.
The fluctuations given in Eqs. (8) and (9) may be

considered as an individual component out of all possible
sources of nonequilibrium fluctuations present in the
system, such as the initial-state or hydrodynamic fluctua-
tions present in relativistic energy nuclear collisions
[30,31].8 It is therefore important to analyze the effects
of magnetic fields on the evolution of these fluctuations.

III. SIMULATION DETAILS

The Boltzmann-Vlasov equations (6) are solved by
performing numerical simulations on a lattice of dimen-
sion 1500 × 500 × 500 with 1500 lattice points along the
x0 direction. The spatial and momentum step sizes are
chosen to be Δx0 ¼ Δk0x ¼ Δk0z ¼ 0.01, yielding a total
system size of L ¼ 15 in spatial direction and 2Lk0 ¼ 5 in
the momentum direction. The time step for evolution of
distribution functions is taken to be Δt0 ¼ Δx0=2. At the
initial time, the medium velocity is considered to be
zero. The simulations are performed using the second-
order Leapfrog method [66] with periodic boundary
conditions along all the three directions (one space and
two momentum).
With the given choice of simulation parameters, it is

convenient to consider a medium of charged pions π� (of
mass m0 ¼ mπ ¼ 140 MeV) which is slightly away from
the equilibrium state with an ambient (global equilibrium)
temperature of T0 ¼ 50 MeV. The charge chemical poten-
tial μQ is varied between 0–100 MeV, though most of our
results are presented at μQ ¼ 100 MeV.9 In the equilib-
rium, this pionic medium follows the Bose-Einstein dis-
tribution function.
In the study, the strength of magnetic fields is con-

strained by the thermal energy (∼T) of the medium [40] and
taken in the marginally weak field limit

ffiffiffiffiffiffiffiffiffijqBjp
< T [53].

(A large B would cause Landau quantization of the energy
levels in the transverse plane, which is not the interest of
the present study.) In terms of the magnetic field parameter
β0 of Eq. (6), this condition becomes equivalent to
β0 < τcT2=m0. For the pionic medium considered at T ≃
50 MeV with μQ ¼ 0–100 MeV and for typical values of
relaxation time τc ≳ 15 fm [67,68], the above condition
gives β0 ≲ 1. Accordingly, we have taken values of β0 ¼
0–0.7 in this analysis.
It may be noted that the strength of the magnetic field

generated in the medium in relativistic heavy-ion collision
can be estimated from the difference in the polarizations of
Λ and Λ̄ hyperons (ΔP ¼ PΛ − PΛ̄) via B ∝ TfjΔPj [13].
For STAR measurements of PΛ and PΛ̄ in Auþ Au
collisions at c.m. energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV [69], a
conservative upper bound of jqBj < 2.7 × 10−3m2

π was
estimated at the level of one standard deviation at a
freeze-out temperature of Tf ¼ 150 MeV. Since the
observed value of jΔPj is found to increase rapidly with
decreasing collision energy up to

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 GeV
[69–71], the magnetic field jqBj and thereby β0 could also
increase (see also Ref. [62], where the magnetic field was
shown to increase at lower collision energy mainly due to
early freeze-out time). Moreover, for three standard devia-
tions, the upper bound on the magnetic field strength

8For various modes of energy density fluctuations in the
transverse plane of the colliding system, see also Ref. [65].

9At a nonzero μQ, the effects of magnetic fields on the
evolution of fluctuations become explicit.
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becomes about six times larger than the bound given
above [13].

IV. SIMULATION RESULTS AND DISCUSSIONS

A. Energy density fluctuations

In the Boltzmann-Vlasov simulation, we solve the
distribution functions of particles and antiparticles at each
space-time point and calculate the “dimensionless” energy
density of the system by using the relation

ε̂ðx0; t0Þ ¼
Z

Lk0

−Lk0

Z
Lk0

−Lk0
dk0xdk0zEk0 ðf þ f̄Þ: ð10Þ

The energy density fluctuations can be obtained from

δε̂ ¼ 1

ε̂0
fε̂ðx0; t0Þ − hε̂ðx0; t0Þig; ð11Þ

where ε̂0 is the global equilibrium energy density [calcu-
lated from Eq. (10) by using (f0; f̄0)], and hε̂ðx0; t0Þi is the
average of ε̂ðx0; t0Þ over all lattice points at time t0. For
our choice of T0 ¼ 50 MeV and μQ ¼ 100 MeV, one
obtains ε̂0 ≈ 2.4.
Figure 1 shows the energy density fluctuations, δε̂, at the

initial time t=τc ¼ 0 (dash-dotted line), and at time t=τc ¼
3.0 in the absence (solid line) and presence (dashed line)
of the magnetic field, for the magnetic field parameter
β0 ¼ 0.5 and the fluctuation parameter r ¼ 2.0. Compared
to the initial state, at later times the fluctuation spreads out
spatially and the peak amplitudes are dominantly sup-
pressed. The inclusion of magnetic fields dampens the
evolution/expansion of the underlying medium, which in
turn slows down the propagation of the fluctuations in the
transverse direction. As a result, the fluctuations persist
with somewhat larger magnitudes and for longer duration
and should influence the final observables compared to the
magnetic-field-free situation.

1. Fourier modes of energy density fluctuations

In this subsection, we analyze the effects of magnetic
fields on energy density fluctuations in terms of momentum
modes. We note that in a nonequilibrium state various
momentum modes can be present, including very high
momentum modes whose decay timescales are lesser than
or equal to the local-equilibration timescale. Momentum of
the critical mode (the mode whose decay timescale is
comparable to the local-equilibration timescale) naturally
sets an ultraviolet cutoff of fluctuations, above which all
higher momentum modes of fluctuations are suppressed in
local equilibrium. In RTA, this cutoff is set by the local
equilibrium relaxation time τc, where the modes with
momenta κ ≳ τ−1c are suppressed at the timescale of τc,
while modes with momenta κ ≲ τ−1c can survive to further
participate in the (hydrodynamic or RMHD) evolution.

In the following analysis, we use this fact to set the
momentum range (wavelength) of initial fluctuations by
accordingly varying the fluctuation parameter r of Eq. (8)
in the range r ∈ ½0.5; 4.8�.
To quantify the evolution of energy density fluctuations

with and without magnetic fields, we perform Fourier
transform from configuration x0 space to the momentum
κ0 space as

Πðκ0; t0Þ ¼ 1

L

Z
L=2

−L=2
dx0δε̂ðx0; t0Þeiκ0x0 ; ð12Þ

where κ0 ¼ κτc is the dimensionless momentum of the
mode Πðκ0; t0Þ, and κ is the dimensionful momentum.
Figure 2 shows the momentum spectrum (Im½Πðκ0; t0Þ�
versus κ0) of energy density fluctuations at the initial time
(dash-dotted line), and at t=τc ¼ 3.0 in the absence (solid
line) and in the presence (dashed line) of magnetic fields,
for the same simulation parameters as used in Fig. 1. At the
initial time t ¼ 0, the peak momentum of the spectrum at
κpτc ¼ 0.88 corresponds to the most dominant mode; the
magnitude and position of the peak depends on the
fluctuation parameter r of Eq. (8). In the inset of Fig. 2,
the modulus of modes, jΠðκ0; t0Þj, versus κτc is plotted for
β0 ¼ 0 and 0.5 at t=τc ¼ 3.0.
The modulus of modes, jΠðκ0; t0Þj, quantify the strength

of fluctuations present in the system, thus as the fluctua-
tions evolve and damp, each mode Im½Πðκ0; t0Þ� would
decrease with increasing time. Since the high momentum
modes decay faster compared to the low ones, the peak of
the spectrum shifts towards lower momenta at later times as
can be seen at t=τc ¼ 3.0. Moreover, certain higher
momentum modes in the spectrum become negative, which
indicates that these modes are not just decaying but also
performing oscillations over time; see Fig. 3 for such

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

-7.5 -5 -2.5  0  2.5  5  7.5

δε̂

x/τc

t/τc =0.0
t/τc =3.0, β0 =0.0
t/τc =3.0, β0 =0.5

FIG. 1. Energy density fluctuations at the initial time t=τc ¼ 0
(dash-dotted line), and at time t=τc ¼ 3.0 in the absence (solid
line) and presence (dashed line) of magnetic fields for the
magnetic field parameter β0 ¼ 0.5 and the fluctuation parameter
r ¼ 2.0.
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damped harmonic oscillations of various modes present in
the spectrum.
In Fig. 2 we also present the momentum spectrum in

presence of magnetic fields at time t=τc ¼ 3.0 (dashed
line). The magnetic field clearly affects the entire spectrum
of fluctuations, retaining to some extent the strength of
the initial fluctuations in the low momentum regime
(κτc ≲ 1.2), while suppressing the modulus of higher
momentum modes relative to B ¼ 0 situation; see the inset
of Fig. 2. This leads to characteristic change in the energy
density fluctuations during the evolution towards equilib-
rium. Later, we have shown that magnetic fields increase
damping coefficient of mode oscillations causing such
characteristic changes in the fluctuations.

To determine in which momentum regime the fluctuation
modes are strongly affected by the magnetic field at a given
time, we display in Fig. 4 the momentum spectrum for the
difference of modes with and without magnetic fields at
time t=τc ¼ 3.0. At the starting time of t ¼ 0, the momen-
tum spectrum, with and without B, are identical.
Subsequently, at later times, the magnetic field is found
to influence various modes differently leading to such a
structure. The maximum difference, corresponding to the
peak position, occurs at a momentum κτc ≃ 1.0 which is
larger than the peak-position momentum (κτc ≃ 0.5) in
Fig. 2. This implies that at any instant, the magnetic field
affects quantitatively more the evolution of higher momen-
tum modes of fluctuations as these fast modes experience
stronger Lorentz force (along the z0 direction).
For further analysis we focus on the time evolution of the

most dominant mode of energy density fluctuations.
Figure 5(a) shows the time evolution of Im½Πðκ0p; t0Þ� for
the dominant mode for κ0p ¼ κpτc ¼ 0.88 (corresponding
to fluctuation parameter r ¼ 2.0) in the absence (solid line)
and presence (dashed line) of a magnetic field. It is clear
that the effect of magnetic fields becomes noticeable at
times t=τc ≳ 1 that enforces a higher magnitude in the
fluctuation strength at early times followed by a gradual
increase in the damping of the oscillating modes (as shown
in the inset). In Fig. 5(b), we also show the evolution of a
high momentum mode κpτc ¼ 2.0 (for r ¼ 4.8). This high
momentum (short wavelength) mode is strongly suppressed
and quickly damped in presence of magnetic fields.
The above results demonstrate that magnetic fields can

affect the evolution of energy density fluctuations in the
transverse plane at the timescale t=τc ∼ 1. Consequently,
the characteristics of fluctuations in three-dimensional
physical space can get modified, which may generate
additional spatial anisotropies. For precise quantification
of the growth of these anisotropies due to magnetic fields,

FIG. 2. Momentum spectrum of energy density fluctuations at
initial time (dash-dotted line), and at time t=τc ¼ 3.0 in the
absence (solid line) and in the presence (dashed line) of magnetic
fields, for the same simulation parameters as used in Fig. 1. The
dotted vertical line indicates the mode at momentum κτc ¼ 1. In
the inset, the modulus of modes versus κτc is plotted for β0 ¼ 0
and 0.5 at t=τc ¼ 3.0.

FIG. 3. Damped harmonic oscillations of various nonzero
modes present in the spectrum of Fig. 2 (without magnetic
fields). Each mode is normalized with its initial value α0 (at
t=τc ¼ 0) and marked with corresponding momentum κτc.

FIG. 4. Momentum spectrum of difference of modes with and
without magnetic fields, ΔΠðβ0Þ ¼ Im½Πðβ0Þ� − Im½Πð0Þ�, at
time t=τc ¼ 3.0 for the same simulation parameter as used in
Fig. 2.

SHREYANSH S. DAVE and SUBRATA PAL PHYS. REV. D 107, 096022 (2023)

096022-6



it is necessary to perform a full (6þ 1)-dimensional phase-
space simulation. Nevertheless, in the present ð3þ 1ÞD
evolution, the relation between the dominant modes of
fluctuations with and without magnetic fields can provide
some crucial insight about this growth.
As mentioned above and evident from Figs. 3 and 5, the

time evolution of Im½Πðκ0p; t0Þ� can be best fitted with the
damped harmonic oscillator function:

Im½Πðκ0p; t0Þ� ¼ α0 cosðωt0 − ϕÞ expð−γmt0Þ: ð13Þ

Here α0 ≡ α0ðκ0pÞ is the amplitude scale factor of the
oscillator, ω≡ ωðκ0pÞ the dimensionless angular frequency,
ϕ≡ ϕðκ0pÞ the phase, and γm ≡ γmðκ0pÞ the dimensionless
damping coefficient. We found that the magnetic field
has an insignificant effect on the oscillatory factor
α0 cosðωt0 − ϕÞ, but it increases the damping coefficient
γm, and further, ω is always greater than γm—representing
an underdamped oscillator. This yields a relation between
the fluctuation modes with and without B as

Im½Πðβ0Þ� ≈ Im½Πð0Þ� exp½−δγmγmð0Þt0�; ð14Þ

where δγm ¼ ½γmðβ0Þ − γmð0Þ�=γmð0Þ is the fractional
change in the damping coefficient by the magnetic field,
which is completely independent of the initial magnitude of
energy density fluctuations. The decay of the modes in the
presence of B can be then conveniently determined by δγm.
Note that γ−1m τc sets a decay timescale of the mode,

which can also be identified as the “relaxation time” of the
particular mode. Figure 6 shows the variation of the
“dimensionless decay timescale” γ−1m of mode with peak
momentum κpτc for different values of magnetic field
parameter β0. The values of momentum in the range κpτc ∈
½0.64; 2.0� are obtained by varying the fluctuation param-
eter between r ∈ ½0.5; 4.8�. In general, for any value of β0,
the decay timescale γ−1m exhibits a decreasing trend with
increasing κpτc as the higher momentum modes decay fast.
Stronger magnetic fields in the medium, i.e., with increas-
ing β0, reduce the decay timescale of especially the slow
modes that actually experience magnetic force for a longer
duration—in spite of higher momentum modes are largely
influenced (quantitatively) by the magnetic field at any
instant of time (see Fig. 4).
Each curve in Fig. 6, corresponding to a β0 value, can be

best fitted with a power law scaling γ−1m ¼ s0ðκpτcÞ−s1 þ s2.
Themode that has a decay timescale comparable to the local-
equilibration timescale of the system can be identified with a
momentum cutoff κcτc above which all the higher momen-
tum modes are suppressed. In other words, it resembles a
“dimensionless”wavelength cutoff λ�c ¼ λc=τc below which
any inhomogeneity in the energy density is suppressed. This
cutoff can be determined by putting γ−1m ¼ 1 in the above
power law scaling. Figure 7 illustrates the qualitative growth
of the wavelength cutoff, λ�cðβ0Þ, with the magnetic field
parameter β0; the value of λcðβ0 ¼ 0Þ turns out to be about
2.5τc. Note that λcðβ0Þ is equivalent to the coarse-grained
length scale inherent in the hydrodynamic description for
medium evolution. The above analysis indicates that the

(a)

(b)

FIG. 5. Time evolution of the most dominant mode of energy
density fluctuations (a) for κpτc ¼ 0.88 (corresponding to fluc-
tuation parameter r ¼ 2.0) and (b) for κpτc ¼ 2.0 (for r ¼ 4.8).
The results are in the absence (solid line) and presence (dashed
line) of magnetic fields. Insets show the mode evolution for a
longer time.

FIG. 6. Variation of “dimensionless decay timescale” γ−1m of
mode with peak-momentum κpτc for different values of magnetic
parameter β0.
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magnetic field suppresses the short wavelength fluctuations
up to a larger wavelength (as compared toB ¼ 0) resulting in
a smoother coarse-grained structure of the hydrodynamic
variables.
Given that δγm is enhanced more towards the lower

momentum modes (see Fig. 6), we can also obtain a power
law scaling behavior of δγm with κpτc and β0 (as found for
γ−1m ), namely

δγm ≈ β20½2ðκpτcÞ−ð0.03=β0þ2Þ − 0.5�: ð15Þ

This relation is completely independent of the choice of
initial energy density fluctuations, and perfectly valid in the
above-mentioned range of κpτc. From the above relation
one can determine the fractional change in the modes,
generated by the magnetic field, by using the expression
δΠ ¼ ðIm½Πðβ0Þ� − Im½Πð0Þ�Þ=Im½Πð0Þ�. Although the
damping coefficient of modes and effects of magnetic
fields would be quite different in three dimensional
physical space, δΠ may be valid in that case as well.
Hence, using Eqs. (14) and (15), δΠ provides a measure of
spatial anisotropies in the energy density solely generated
by the magnetic field.

B. Evolution of T̂μν and dependence on μQ
In the previous subsection, the effects of magnetic fields

on the evolution of energy density fluctuations (δε̂ ¼ δT̂00)
have been studied and found to increase the damping
coefficient of mode oscillations. In this subsection, we shall
explore magnetic effects on the other components of
energy-momentum tensor T̂μν which is calculated by using
Eq. (3) and performing the momentum integrals as done in
Eq. (10). The spatial variation of the energy-momentum
tensor components, T̂0x, T̂0z, T̂xz, and (T̂xx − T̂zz), is shown

in Fig. 8 at time t=τc ¼ 3.0 in the absence (solid line) and in
the presence (dashed line) of a magnetic field, for the same
simulation parameters as used in Fig. 1. The variation of
T̂0x arises due to the spatial gradients present in the energy
density fluctuations as shown in Fig. 1. It is clear from
Fig. 8 that the magnetic field suppresses T̂0x, which
essentially leads to the increase in the damping coefficient
of the mode oscillations (as shown previously). The most
appreciable effects of magnetic fields involve the z com-
ponents, namely T̂0z and T̂xz, which become rather large
compared to vanishingly small values for B ¼ 0. Such a
behavior can be traced to the Lorentz force exerted by the
magnetic field that acts along the z0 direction on the
medium evolving along x0. The magnetic field is seen to
also suppress substantially the magnitude of (T̂xx − T̂zz).
It is important to comment on the effects of charge

chemical potential μQ on the characteristic change seen
for the components of T̂μν and, in particular, on the energy
density fluctuations in the presence of B. At μQ ¼ 0 (when
the net-electric charge density n̂ ¼ n̂þ − n̂− ¼ 0 due to
identical particle and antiparticle number densities), the
equal and opposite Lorentz force exerted by the magnetic
field along the z0 direction on the positive and negatively
charged particles causes T̂0z and T̂xz to vanish throughout
their evolution. Only at finite μQ, the magnitude of T̂0z and
T̂xz become nonzero in presence of magnetic fields due to
net-electric charge density imbalance (as seen in Fig. 8). This
also suggests, that, irrespective of the value of μQ, a finite B
will affect solely the magnitude of the momentum density
T̂0x and its accompanied energy density fluctuations δε̂.
Consequently, the earlier discussed scaling of δγm for a given
β0 will remain unaltered which we have verified for a range
of μQ=T0 ¼ 0–2.0 at a fixed equilibrium temperature T0.

FIG. 7. Magnetic field parameter β0 dependence of the frac-
tional change of wavelength cutoff δλ�cðβ0Þ ¼ ½λ�cðβ0Þ − λ�cð0Þ�=
λ�cð0Þ. The bending in the curve at β0 > 0.3 is due to the
simulations and fitting procedures performed in a limited range
of κpτc.

(a) (b)

(c) (d)

FIG. 8. Spatial variation of the components of energy-
momentum tensor (a) T̂0x, (b) T̂0z, (c) T̂xz, and (d) (T̂xx − T̂zz) at
a time t=τc ¼ 3.0 in the absence (solid line) and presence (dashed
line) of the magnetic field for the same simulation parameters as
used in Fig. 1.
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C. Fluctuations with multiple modes

To illustrate the effects of magnetic fields on the energy
density fluctuations having more than one initial dominant
mode, we consider fluctuations of the form

Tðx0Þ ¼ T0 þ
�
δT cos

�
2πr1x0

L

�
þ δT1 sin

�
2πr2x0

L

��

× expð−x02=2χ2Þ; ð16Þ

where the mode mixing parameter δT1 is varied between
zero and δT to generate different energy density fluctua-
tions of different amplitudes. For the present study, we have
taken r1 ¼ 0.5 and r2 ¼ 8.0, which allows the generation
of a low and a very high momentum mode, respectively.
The choice of sine and cosine functions invokes some
arbitrariness (such as an asymmetry about x0 ¼ 0) resem-
bling to some extent a general form for energy density
fluctuations present in a physical system, for example, the
initial-state fluctuations in the Glauber model [72] or in the
gluon saturation model [73] as commonly employed for

initial conditions in the modeling of relativistic heavy-ion
collisions. The other simulation parameters are the same as
taken previously. Figure 9 shows spatial dependence for the
evolution of the energy density fluctuations, ðε̂ − ε̂0Þ. The
results are for a relatively small mode mixing δT1 ¼ 0.2δT
as shown in Fig. 9(a) and for maximal mixing δT1 ¼ δT as
shown in Fig. 9(b). The initial energy density profile (dash-
dotted lines) becomes rather smooth at a later time of t=τ ¼
3.0 (solid and dashed lines). This arises as the fluctuations
of wavelengths shorter than the cutoff λ�c are dominantly
suppressed at times t=τc ≳ 1. In presence of magnetic
fields, at t=τ ¼ 3.0 (dashed lines), the energy density
profile becomes slightly smoother and has a larger peak
value as compared to B ¼ 0 (solid lines); see the inset of
Fig. 9(b). This smoothening is essentially caused by the
enhanced suppression of the short wavelength (high
momentum) modes, whereas the larger peak is due to slow
dissipation of long wavelength (low momentum) fluctua-
tions at early times (as discussed in Fig. 5).
We present in Fig. 10 the momentum spectrum [the

modulus of Fourier modes, jΠmðκ0; t0Þj, versus κτc] of the
energy density fluctuations of Fig. 9(b). In presence of
magnetic fields (dashed line), the high momentum dom-
inant modes (at κτc ≈ 3.0 and 4.0) are more suppressed,
while the low momentum modes (κτc < 1.2) are somewhat
less dissipated [as compared to B ¼ 0 (solid line)] at later
time t=τc ¼ 3.0. All these lead to qualitatively different
characteristics of the fluctuations in the presence ofmagnetic
fields.

V. PHENOMENOLOGICAL IMPLICATIONS

We shall discuss the phenomenological implications of
the present study on certain important features and its
related observables pertaining to relativistic heavy and light
ion collisions, although it is potentially applicable to any
small system whose constituents are electrically charged.

(a)

(b)

FIG. 9. The energy density fluctuations, ðε̂ − ε̂0Þ, at the initial
time (dash-dotted lines) and at time t=τc ¼ 3.0 in the absence
(solid lines) and presence (dashed lines) of the magnetic field
with β0 ¼ 0.5. The result are for mode mixing parameter
(a) δT1 ¼ 0.2δT and (b) δT1 ¼ δT, where δT ¼ 0.01T0. It is
clear from (a) and the inset of (b) that, in the presence of B, the
energy density profile is smoother and has a larger peak value as
compared to B ¼ 0.

FIG. 10. Momentum spectrum of energy density fluctuations at
initial time (dash-dotted line) and at time t=τc ¼ 3.0 in the
absence (solid line) and in the presence (dashed line) of magnetic
fields for δT1 ¼ δT.
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For Auþ Au collisions at c.m. energy
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
and impact parameter b ¼ 8.0 fm, the magnetic field can be
as large as jqBj ≃ 0.1m2

π [29] at a proper time τ ∼ 0.2 fm=c
which is the timescale for saturated gluonic configuration
to decay into (anti)quarks and gluons [29,74]. In the gluon
saturation model, thermalization or hydrodynamization
occurs at τeq ≃ 0.4 fm [30] when the magnetic field can
still survive with appreciable strength; the magnetic field
may persist in the entire partonic and possibly hadronic
phase if the medium has a large electrical conductivity [75].
In the preequilibration dynamics at τ ≲ 0.4 fm, various

short wavelength modes are present in the system with
decay timescales smaller or comparable to this time (see
Fig. 2 in Ref. [31]). Such fluctuation modes have sources
from initial-state fluctuations in nucleon position, parton
production and dynamics, hadron production and evolu-
tion. The magnetic field can increase the damping coef-
ficient of mode oscillations and modify the characteristics
of short wavelength fluctuations in the reaction plane (trans-
verse to B) as demonstrated in this work. Consequently, this
can have measurable effects on the azimuthal anisotropy of
particle production/emission, namely the collective flow
harmonics vnðpTÞ ¼ hcos nðϕ − ΨnÞi (especially the odd
harmonics that are driven by initial-state fluctuations) and the
flow fluctuations [18,36–39,76,77]. In particular, the flow
and flow-fluctuation observables would exhibit a noticeable
suppression, reflecting the enhanced damping of fluctuation
modes over the evolution time as found here (Fig. 6).
Moreover, a smoother energy density profile, induced by
suppression of short wavelength fluctuations in the presence
of a magnetic field, should also show some qualitative
changes in the power spectrum of flow fluctuations
[vnðpTÞ versus n] at higher n.
The hydrodynamic fluctuations [32,33,78] and disturb-

ances in the medium due to energy deposition by a partonic
jet [79–81] can prevail during the entire evolution of the
system. The thermal or hydrodynamic fluctuations are
correlated over short length scales that generate short-range
correlation peak at small rapidity separation Δy ¼ y1 − y2
and nontrivial structure at large Δy in the two-particle
rapidity correlation [32,33,78]. Such long-range rapidity
structures have been observed in multiparticle correlation
measurements involving heavy ion and high-multiplicity
light particle collision experiments at relativistic energies.
Our analysis suggests magnetic damping of the peak
at Δy ≈ 0 and farther spread of the correlations in the
rapidity separation. The disturbance generated by energy-
momentum deposited in the vicinity of traversing hard jets
in QGP and modifications of the jet shape and jet
substructure observables due to (enhanced) rescattering of
the emitted soft gluons in the mediumwill be sensitive to the
magnetic field.
On the other hand, near the critical end point in the

QCD phase diagram, the correlations among fluctuations
diverge resulting in new fluctuation modes [82,83].

The nonmonotonous behavior in the event-by-event fluc-
tuations with varying c.m. energy

ffiffiffiffiffiffiffiffi
sNN

p
signals the

location of the critical point. As the QCD critical point
is expected to be at finite baryon density and at moderate
collision energy [84], the strength of magnetic fields will be
relatively smaller, which, however, decays slowly and can
slow down some of the modes of critical fluctuations via
increasing the damping coefficient. This can essentially
enhance the magnitude of the observable signatures of the
critical point. A detailed numerical simulation involving all
the discussed features can provide quantitative effects of
the magnetic field.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the effects of magnetic
fields on the evolution of energy density fluctuations in the
transverse direction. We find characteristic changes in the
fluctuations at the timescale required by the system to
achieve local thermal equilibrium. The magnetic damping
of the underlying medium slows down the dissipation of
the initial strength of the fluctuation near its peak while
spreading out the fluctuation spatially to larger distances
at early times. Increased Lorentz force at later times
enforces larger damping of the fluctuation compared to
the field-free case. A detailed Fourier mode analysis of the
energy density fluctuations reveals that the low momentum
modes, which survive longer in the entire evolution of the
system, are strongly damped as compared to the fast
evolving high momentum modes. The behavior is found
to progressively increase with the strength of the magnetic
field. However, at any instant of time, the magnetic field
affects quantitatively more the high momentum modes as
compared to the low momentum modes. This leads to a
growth in the cutoff for the shortest wavelength fluctuations
present in the system. If this cutoff is identified with the
coarse-grained length scale in the hydrodynamic descrip-
tion of the medium, which then indicates an enhanced
smoothening of energy density profile in presence of
magnetic fields. Further, the fluctuations in the direction
transverse to the magnetic field are essentially affected, and
moreover, various components of the energy-momentum
tensor in the transverse direction are found to be modified
differently, namely, T̂0x is suppressed, while the z compo-
nents T̂0z and T̂xz are generated for fluid evolving along the
x direction. As a result, additional spatial and momentum
anisotropies can be generated in the three-dimensional
physical space by the magnetic field.
The present study has crucial phenomenological impli-

cations in the context of understanding the properties of
quark-gluon plasma formed in relativistic heavy-ion colli-
sions, and in general for any small systems whose constitu-
ents are electrically charged. In particular, the magnetic field
can have a noticeable impact on the potentially important
observables, such as, for example, the flow harmonics and
flow fluctuations, the hydrodynamic fluctuations, the jet
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substructure and the dynamics of correlations and fluctua-
tions close to the QCD critical point.
In the study, we have worked in the relaxation time

approximation where the nonlinear effects, which can arise
due to proper collision integral, has been ignored. The
nonlinearity can affect the evolution of energy density
fluctuations as well as the effects of magnetic fields studied
in this work. We defer its inclusion for future studies.
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