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In [1], we developed a first-quantized worldline formalism for all-order computations of amplitudes
in QED. In particular, we demonstrated in this framework an all-order proof of the infrared safety of the
Faddeev-Kulish (FK) S-matrix for virtual exchanges in the scattering of charged fermions. In this work,
we extend the worldline formalism for both the Dyson and FK S-matrix to consider further the emission
and absorption of arbitrary numbers of photons. We show how Low’s theorem follows in this framework
and derive Weinberg’s theorem for the exponentiation of IR divergences. In particular, we extend our all-
order proof of the IR safety of the FK S-matrix to both virtual exchanges and real photon emissions.
We argue that the worldline approach leads to a modern Wilsonian interpretation of the IR safety of the
FK S-matrix and provides a novel template for the treatment of IR divergences in real-time problems.
Using Grassmannian integration methods, we derive a simple and powerful result for N-th rank vacuum
polarization tensors. Applications of these methods will be discussed in follow-up work.
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I. INTRODUCTION

In our previous paper [1] (henceforth Paper I), we
employed a powerful worldline formalism [2–4] to
reformulate QED as a first quantized many-body Lorentz
covariant theory of 0þ 1-dimension superpairs of spinning
charged worldlines with pairwise worldline interactions
described by Lorentz forces. As we noted, the quest for
such a first-quantized many-body framework can be traced
back to the foundational papers of QED [5–7] and inspired
attempts to extend such approaches to QCD [8]. The
semiclassical description of this worldline formalism
including internal degrees of freedom also motivated what
is sometimes called “old-fashioned” string theory [9–15].
Other early attempts in this direction include replacing
conventional Wilson loop operators by exact, gauge-
invariant and renormalizable worldline path integrals in a
supersymmetric loop-space formulation of QED [16] and a
systematic strong-coupling ℏ-expansions of QED and QCD
with point-like particle worldline variables [17,18].

In Paper I, we demonstrated several novel features of
this reformulation of QED that are valuable for a deeper
understanding of the structure of the infrared (IR) of the
theory, and its extensions to other gauge theories and
gravity. They also hold the promise of more efficient
computations with phenomenological consequences.
Examples of these novel results include recent work by
us on the role of the chiral anomaly in the proton’s spin
[19,20] and in a covariant wordline formulation of chiral
kinetic theory [21,22] relevant for heavy-ion collisions and
in astrophysical contexts.
A significant result in Paper I suggestive of the power of

this formalism was the reformulation of perturbation theory
in QED to all-loop order. In particular, we showed that
multiloop vacuum-vacuum amplitudes, to all orders in
perturbation theory, can be expressed compactly as nth-rank
polarization tensors of worldline currents. As a limiting case
of these results [3], one recovers the Bern-Kosower expres-
sion for the one-loop polarization tensor with arbitrary
numbers of external photon legs [23]. An explicit mapping
of the polarization tensor to the language of Feynman
diagrams is given in [24]. For the one-loop case, these
techniques can be extended to QCD to compute multileg
one-loop amplitudes [23,25,26]; a recent review of the state-
of-the art going beyond one-loop can be found in [27].
Another key result of Paper I was a demonstration

of a formal proof of the infrared finiteness of the
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Faddeev-Kulish (FK) S-matrix [28] to all orders in pertur-
bation theory. The original argument of Faddeev and Kulish
was that the IR divergences of QED present in the
convential Dyson S-matrix formalism can be accounted
for by dressing the in and out scattering states of the latter,
to take into account the asymptotic interactions that are the
underlying reason of these divergences. The FK S-matrix of
these modified in and out states is then IR finite. In the
worldline framework, the corresponding IR divergences
can be removed by modifying the worldline currents to
include their asymptotic interactions at very early and late
times. We showed in Paper I that accounting for these
asymptotic worldline currents provided a remarkably sim-
ple proof of the IR safety of the FK S-matrix for the
scattering of charged fermion currents including virtual
photon exchanges (dressed by virtual fermion loops) to all
orders in perturbation theory. We discussed as a specific
example the case of Möller scattering and demonstrated the
equivalence of our results to those of Hannesdottir and
Schwartz [29], who showed that the IR finiteness of the FK
S-matrix can be obtained by absorbing the IR divergences
of the Dyson S-matrix into asymptotic soft Wilson line
factors that dress the latter.
In this paper, we will extend the discussion of Paper I

to the general case, where in addition to virtual photon
exchanges one also includes the emission and absorption
of arbitrary numbers of photons. A classic theorem in this
regard is Low’s theorem [30], which states that the
bremsstrahlung amplitude of low energy photons in any
transition can be extracted, to all-loop orders in perturba-
tion theory, into a soft factor multiplying the amplitude of
the transition without the emission or absorption of the
low energy photon.1 More generally, radiative amplitudes
admit an expansion in powers of the emitted soft photon
energy ωk where the leading power Oðω−1

k Þ soft theorem
reproduces classical long-distance radiation [31,32], and
depends only on the momenta of the in and out charged
particles of the transition at infinity.
A problem of active interest is that of the systematic

computation of the next-to-leading power corrections,
known as next-to-soft theorems. Using Ward’s identity,
Low showed [33] that for particles of spin-0 the leading
Oðω−1

k Þ and Oðω0
kÞ terms in this multipole expansion are

exactly determined by the non-radiative amplitude. This
result was subsequently extended to spin-1=2 particles by
Burnett and Kroll in [34], and generalized subsequently
by Bell and Van Royen [35] to particles of arbitrary spin.
Discussions of the structure of this multipole expansion
have been extended to high-energy hadronic interactions
[36,37]; recent reviews of various aspects of subleading
soft theorems can be found in [38–40]. A particularly

interesting aspect of these investigations is the interpreta-
tion of the leading and subleading soft theorems in terms of
the conformal dynamics of Goldstone modes of sponta-
neously broken BMS-like symmetries on the celestial
sphere [38,41–44]. The connections of this work to the
language of worldlines is under investigation and will be
reported separately.
A related fundamental result is the generalization of

Low’s theorem by Weinberg who demonstrated the
Abelian exponentiation and cancellation of IR divergences
in both QED and in gravity to all loop orders in the Dyson
S-matrix [30]. In the modern language of gauge theories,
the surviving infrared safe exponentiated soft factors can be
expressed in terms of so-called cusp anomalous dimensions
we discussed previously in Paper I. In this paper, we will
first show how both Low’s theorem and the Abelian
exponentiation theorem are recovered in the worldline
version of the Dyson S-matrix formalism. We will then
construct the corresponding FK S-matrix for soft photon
absorptions and emissions and demonstrate explicitly
that it is infrared safe to all orders. Just as for the case
of virtual exchanges, the proof follows fundamentally
from the simple asymptotic classical structure of the first-
quantized worldline currents. In particular, we will show
how both the asymptotic real and virtual contributions of
the FK S-matrix are expressed naturally in the first-
quantized language of cusps in worldline currents. The
results of this paper complete the proof initiated in Paper I
of the IR safety of the FK S-matrix in QED to all orders
in perturbation theory.
In addition, we will demonstrate explicitly how one

recovers Weinberg’s result for the emission rate for arbitrary
numbers of soft photons in the n → m scattering of charged
fermions. This computation is illustrative because it dem-
onstrates that the IR safety of the Faddeev-Kulish S-matrix is
due to its dependence on the finite initial and final times at
which the in and out states of this S-matrix are defined;
modes with energies below the characteristic scale therefore
do not contribute. This FK strategy can be understood
fundamentally as the Minkowski spacetime analog of the
Wilsonian approach to the lattice regularization of ultraviolet
(UV) and IR divergences in the Euclidean formulation
of gauge theories. In the latter, computations of physical
quantities are performed at fixed volume and lattice spacing,
with the results then extrapolated to infinite volume and
zero lattice spacing. The existence of the former guarantees
infrared safety, while the latter limit corresponds to the UV
renormalization of bare quantities into physical ones.
Likewise, for real-time scattering computations, the FK
S-matrix can be employed at all intermediate steps in the
computation of physical observables with the initial and
final times taken to infinity in the final step of the
computation. As we will demonstrate, worldlines provide
the natural framework for a concrete implementation of this
Wilsonian philosophy to real-time problems. In forthcoming

1The latter is usually called the non-radiative amplitude, albeit
it can include the radiation of an arbitrary numbers of hard
bosons.
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work, we will demonstrate the power of this strategy in high
order computations of cusp anomalous dimensions in QED.
The paper is organized as follows. In Sec. II, we will

revisit the derivation of the Dyson S-matrix in the worldline
formalism and generalize it to include the emission
and absorption of arbitrary numbers of photons. This is
obtained straightforwardly by including the coupling of
gauge fields to external currents and then performing the
functional integral over the gauge fields; the final expres-
sions are derived simply by taking functional derivatives of
the generalized Wilson lines obtained in Paper I and then
setting the external currents to zero. The low energy limit of
worldline currents is examined in Sec. III; these classical
currents can be factorized from the worldline path integrals
in the Dyson S-matrix to all loop orders. This provides a
straightforward proof of Low’s theorem. We next demon-
strate Abelian exponentiation of infrared divergences,
and recover Weinberg’s result for the cancellation of the
exponentiated real and virtual divergences. Further, we
clarify that these infrared divergences are unrelated to the
infrared divergences in the field-strength renormalization
factors that appear in the Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula that relates the
S-matrix to the residues of the poles of time ordered
Green functions. We show, following Weinberg, that these
divergences are cancelled at the level of the S-matrix itself.
Section IV spells out the proof the infrared safety of the

FK S-matrix. This follows from the inclusion of asymptotic
worldline currents which play the role of an infrared
regulator of infrared divergences. Both real and virtual
exponentiated soft contributions are shown to be infrared
finite and combine to give Weinberg’s result for the cross
section. We discuss in detail the implications of our results
in the context of the Wilsonian interpretation of the FK
S-matrix we outlined above.
The paper contains two Appendices. The first of these

discusses the explicit computation of N-th rank polarization
tensors discussed previously in Paper I. We show for
the first time that the Grassmannian integrals for these
can be performed explicitly resulting in elementary

expressions for vacuum polarization tensors of arbitrary
rank. A straightforward consequence is the worldline proof
of Furry’s theorem [45]. More nontrivially (as we will
demonstrate in Paper III) our expressions can be used to
efficiently compute light-by-light scattering and cusp
anomalous dimensions to high orders. The second
Appendix illustrates the cancellation between virtual and
real divergences for the Dyson S-matrix and its comparison
to the Faddeev and Kulish S-matrix result for concrete
example of the cross section for single photon emission in
Möller scattering.

II. THE DYSON S-MATRIX: RADIATION
AND ABSORPTION OF REAL PHOTONS

TO ALL-LOOP ORDERS

In Paper I [1], we derived a general expression for
the Dyson S-matrix involving the exchange of virtual
photons to all loop orders. We will here extend this
result to include the absorption and emission of real
photons to all orders.
Our notations are similar to those defined previously. We

will denote as Nc
i , N̄

c
i , and Nγ

i the number of in charged
particles, antiparticles and real photons, respectively, and
Nc

o, N̄c
o, and Nγ

o the number of out charged particles,
antiparticles and real photons. The total number of in
and out charges are given by Nc

i;T ¼ Nc
i þ N̄c

i and
Nc

o;T ¼ Nc
o þ N̄c

o, respectively. Incoming and outgoing
external charges are identified with indices n;m ¼ 1;…; r,
with the required number of real worldlines to describe
the process, given then by r ¼ ðNc

o;T þ Nc
i;TÞ=2 ¼

ðN̄c
o;T þ N̄c

i;TÞ=2. A pair of virtual charges will be denoted
with indices i; j ¼ 1;…;l, with l the required number of
virtual worldlines to a given loop order within the loop
expansion of the S-matrix.
The Dyson S-matrix element for emitting Nγ

o photons
and absorbing Nγ

i photons in the initial to final (i → f)
transition amplitude of r real charges of spin-1=2 is
given by

SðrÞfi ðNγ
o; N

γ
i Þ ¼ lim

tf→þ∞
ti→−∞

�
pNc

o
f ; sN

c
o

f ;…; p1
f; s

1
f|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

out charges

; p̄N̄c
o

f ; s̄N̄
c
o

f ;…; p̄1
f; s̄

1
f|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

out anticharges

; kN
γ
o

f ; λN
γ
o

f ;…; k1f; λ
1
f|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

out photons

;

× tfjpNc
i

i ; s
Nc

i
i ;…; p1

i ; s
1
i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

in charges

; p̄
N̄c

i
i ; s̄

N̄c
i

i ;…; p̄1
i ; s̄

1
i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

in anticharges

; k
Nγ

i
i ; λ

Nγ
i

i ;…; k1i ; λ
1
i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

in photons

; ti

�
; ð1Þ

where jp; si denotes the single fermion state of momentum p and spin s, and jk; λi a photon state of momentum k and
polarization λ.
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Our starting point in constructing this Dyson S-matrix element will be the QED Euclidean path integral2

Z½J ; η̄; η� ¼
Z

DADΨ̄DΨ exp

�
−
1

4

Z
d4xF2

μν −
1

2ζ

Z
d4xð∂μAμÞ2 þ

Z
d4xJ μAμ

−
Z

d4xΨ̄ð=DþmÞΨþ
Z

d4xη̄Ψþ
Z

d4xΨ̄η
�
; ð2Þ

where g ¼ �e, ζ is the gauge-fixing parameter, m represents the lepton mass and =D ¼ Dμγμ and Dμ ¼ ∂μ − igAμ. In
addition to the two anticommuting sources ηðxÞ and η̄ðxÞ required to describe real external fermions, we introduced here an
auxiliary photon source J ðxÞ to describe real external photons. We will follow here the strategy in Paper I and work in
Euclidean spacetime, where the path integral in Eq. (2) is well defined nonperturbatively and the gauge and matter fields can
be completely integrated out to express the resulting amplitudes as a theory of worldlines. The corresponding on-shell
Dyson S-matrix elements can be always obtained later, to any given order in perturbation theory, by Wick rotation of the
Euclidean amplitude to Minkowski spacetime and performing successive LSZ reductions as discussed in Paper I.
Integrating out the fermion field first in Eq. (2) gives

Z½J ; η̄; η� ¼
Z

DA exp

�
−
1

4

Z
d4xF2

μν −
1

2ζ

Z
d4xð∂μAμÞ2 þ

Z
d4xJ μAμ

þ ln detð=DþmÞ þ
Z

d4x
Z

d4yη̄ðxÞDA
Fðx; yÞηðyÞ

�
; ð3Þ

where the dressed Euclidean fermion Green function satisfies

ð=DþmÞDA
Fðx; yÞ ¼ δ4ðx − yÞ: ð4Þ

To obtain the radiative amplitudes in Eq. (1), we will require, as the main building blocks, the evaluation of gauge field
expectation values of the propagation of r spin-1=2 fields from fxni g to fxnfg. Let us consider here the emission and
absorption of real photons for the scattering problem of r positive energy charges, so that Nc

i ¼ Nc
o ¼ r. From Eq. (3),

we then obtain

1

Z½J ; η̄; η�
δN

γ
oþNγ

iþNc
iþNc

oZ½J ; η̄; η�
δJ ðyNγ

o
f Þ � � � δJ ðy1fÞδJ ðyN

γ
i

i Þ � � � δJ ðy1i ÞδηðxN
c
i

i Þ � � � δηðx1i Þδη̄ðx1fÞ � � � δη̄ðxN
c
o

f Þ

������
J¼0
η¼η̄¼0

¼ δ

δJ ðyNγ
o

f Þ � � � δJ ðy1fÞδJ ðyN
γ
i

i Þ � � � δJ ðy1i Þ
X
perm

ϵnf…1

�Yr
n¼1

DA
Fðxnf; xni Þ

�
A
½J �

������
J¼0

; ð5Þ

where ϵNc
o…1 denotes the totally antisymmetric symbol, and the sum runs over the r! permutations of their r spacetime

points given by the dressed Green functions. The generalization of the present procedure to negative energy plane wave
solutions is straightforward. The expectation value h� � �iA contains the Aμ-path integral and is given by

�Yr
n¼1

DA
Fðxnf; xni Þ

�
A
½J � ¼ 1

Z½0; 0; 0�
Z

DA exp

�
−
1

4

Z
d4xF2

μν −
1

2ζ

Z
d4xð∂μAμÞ2

þ
Z

d4xJ μAμ þ log detð=DþmÞ
�Yr

n¼1

DA
Fðxnf; xni Þ; ð6Þ

2We will not consider here the limit of masslesss QED where, as is well known, the emergence of additional collinear divergences
makes the treatment of IR divergences more problematic [30,46,47] relative to the discussion in this work.
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expressed as a functional of J . It describes the many-body
Green’s function of r spinning charges propagating from xni
to xnf, coupled to a fully dynamical gauge field Aμ, that
further interacts with J , and polarizes from the vacuum an
arbitrary number of virtual fermions within the fermion
loop determinant.

To perform the Aμ-integral above, we will express the
fermion loop determinant and the r fermion dressed
Green’s functions in Eq. (6) as closed and open worldline
propagators of virtual and real pointlike spinning charges,
respectively. As discussed in detail in [1], the fermion loop
determinant can be rewritten exactly as

detð=DþmÞ ¼
X∞
l¼0

ð−1Þl
l!

exp

�
1

2
Tr

Z
∞

0

dε0
ε0

e−ε0
�

×
Yl
i¼1

Z
∞

0

dε0i
2ε0i

Z
Dεi

Dπi
2π

Z
P
D4xi

Z
AP

D4ψ i exp

�
−SiV;0 þ i

Z
d4xJiV;μAμ

�
; ð7Þ

where the lth term in the sum includes l closed worldline propagators of l virtual fermions in interaction with Aμ, with the
ith virtual fermion free worldline action given by

SiV;0 ¼ m2

Z
1

0

dτεiðτÞ þ
1

4

Z
1

0

dτ
_x2i ðτÞ
εiðτÞ

þ 1

4

Z
1

0

dτψ i
μðτÞ _ψ i

μðτÞ; ð8Þ

and its charged current by

JiV;μðxÞ ¼ g
Z

1

0

dτ _xiμðτÞδ4ðx − xiðτÞÞ − g
Z

1

0

dτεiðτÞψ i
μðτÞψ i

νðτÞ
∂

∂xν
δ4ðx − xðτÞÞ: ð9Þ

The various elements entering the worldline representa-
tion of the fermion determinant in Eq. (7) deserve a brief
explanation, with the reader referred to [1] for details. The
lth loop term in the infinite sum in Eq. (7) can be thought
as the amplitude of finding l virtual fermions polarized
from the vacuum coupled to Aμ, which, in light of Eq. (6), is
dynamical and couples to J μ. Each of the i ¼ 1;…;l
virtual fermion paths are described by a commuting 0þ 1-
dimensional closed bosonic wordline, xiμðτÞ, and an anti-
commuting Grassmanian worldline ψ i

μðτÞ, with τ ∈ ½0; 1�.
The former encodes the local 4-position of the virtual
pointlike spinning charge i in spacetime during its inter-
action with Aμ. The later, its spin precession, with local spin
tensor σiμνðτÞ ¼ i½ψ i

μðτÞ;ψ i
νðτÞ�=2 couples to the magnetic

and boosted electric components of the gauge field in Fμν.
Besides the worldline superpair fxiμðτÞ;ψ i

μðτÞg, a com-
muting einbein worldline εiðτÞ and its conjugate partner
πiðτÞ are introduced to account for the diffeomorphism
invariance of the worldline parameter τ. The einbeins
have trivial dynamics and can be replaced by their zero
modes ε0i ≡ εið0Þ, that correspond to the proper times of
each virtual particle within the loop; alternately, they

correspond to a Schwinger parameter in the corresponding
Feynman diagram.
The lth loop contribution includes l path integrals

for each loop fermion present, taken over all possible
closed path configurations are given by periodic (P) and
antiperiodic (AP) boundary conditions for xμðτÞ and ψμðτÞ,
respectively,

xiμð1Þ ¼ xiμð0Þ; ψ i
μð1Þ ¼ −ψ i

μð0Þ: ð10Þ

It includes also the required integrals over all possible
proper times ε0i , in which each individual fermion can
complete the closed loop. The common UV divergent
factor in the loop expansion in Eq. (7) removes the UV
poles of the free loop contributions, subtracting thus the
zero-point energy of the vacuum.
The r dressed Green’s functions in Eq. (6) can be

expressed as open worldline path integrals as well, describ-
ing in a first-quantized fashion the amplitude of the r real
spinning charges to go from xni to xnf while interacting
with the gauge field Aμ. Using the Fradkin and Gitman
result [48] (see Paper I for a pedagogical derivation and
further details) one obtains,

D̄A
Fðxnf;xni Þ ¼

1

N5

exp

�
γ̄λ

∂

∂θnλ

�Z
∞

0

dε0n

Z
dχ0n

Z
Dεn

Dπn
2π

Z
DχnDνn

Z
D4xn

Z
D5ψn exp

�
−SnR;0þ i

Z
d4xJnR;μA

n
μ

�����
θ¼0

;

ð11Þ
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with D̄A
Fðxnf; xni Þ ¼ DA

Fðxnf; xni Þγ5, γ̄μ ¼ −iγμγ5 and N5 is
the free anticommuting path integral normalization.
The various terms in the above expression also require

a detailed discussion. Analogously to virtual fermions,
a real fermion is fully described by a superpair of open
0þ 1-dimensional worldlines xnμðτÞ and ψn

λðτÞ, but with the
dimension of the fermionic degrees of freedom now labeled
by λ ¼ 1;…; 5, the fifth element being necessary to imple-
ment the helicity-momentum constraint on their trajecto-
ries. Further, in distinction to virtual fermions traversing
closed loops, the superpair fxnμðτÞ;ψn

μðτÞg of a real external
spinning charge in the scattering satisfies the open boun-
dary conditions,

xnμð1Þ ¼ xf;nμ ; xnμð0Þ ¼ xi;nμ ; ψn
λð1Þ ¼ −ψn

λð0Þ þ 2θnλ :

ð12Þ

We have left explicit here as well the time reparametrization
invariance of the real spinning charge worldline action
by introducing a super-pair of einbeins, the commuting
worldine εnðτÞ and the anticommuting worldline χnðτÞ,
with trivial dynamics, as well as their momentum conjugate
partners πnðτÞ and νnðτÞ. The commuting einbein εnðτÞ
implements, as in the case of virtual fermions, the energy-
momentum constraint of the real spinning charge, while
χnðτÞ implements the required helicity-momentum con-
straint. The einbein zero modes are denoted εnð0Þ ¼ εn0 and
χnð0Þ ¼ χn0 and correspond to a commuting and an anti-
commuting Schwinger parameter, respectively, in the

corresponding Feynman diagrams, to any given order in
perturbation theory.
The Aμ-independent terms in Eq. (11) are collected in

the super-gauge unfixed worldline action of the free real
spinning charge

SnR;0 ¼
1

4
ψn
λð1Þψn

λð0Þ þ
Z

1

0

dτ

�
iπnðτÞ_εnðτÞ þ νnðτÞ_χnðτÞ þ εnðτÞm2 þ _xn;2μ ðτÞ

4εnðτÞ

þ 1

4
ψn
λðτÞ _ψn

λðτÞ − χnðτÞ
�
mψn

5ðτÞ þ
i

2εnðτÞ _x
n
μðτÞψn

μðτÞ
	�

: ð13Þ

The interaction-dependent terms in Eq. (11) are expressed entirely in terms of the coupling to Aμ of the real spinning
charge’s worldline current

Jnμ;RðxÞ ¼ g
Z

1

0

dτ _xnμðτÞδ4ðx − xnðτÞÞ − g
Z

1

0

dτϵðτÞψn
μðτÞψn

νðτÞ
∂

∂xnν
δ4ðx − xnðτÞÞ; ð14Þ

which is then of identical form as the currents created by virtual spinning charges in Eq. (9).
Substituting Eqs. (7) and (11) into Eq. (6), and performing the quadratic Aμ-integral yields,�Yr

n¼1

D̄A
Fðxnf; xni Þ

�
A
½J � ¼ ZMW

Z½0; 0; 0�
Yr
n¼1

�
exp

�
γ̄λ

∂

∂θnλ

��X∞
l¼0

ð−1Þl
l!

Wðr;lÞðxrf; xri ; θr;…; x1f; x
1
i ; θ

1Þ
����
θn¼0

½J �; ð15Þ

where the r and l generalized Wilson lines and loops are encoded in the many-body propagator Wðr;lÞ for r real charge
trajectories from xni to xrf and for l virtual fermions to describe a closed loop, while interacting nonlocally, to all orders in
perturbation theory, among themselves, and with the external current J :

FIG. 1. A one-fermion loop contribution Sð2;1Þ
fi ð2; 1Þ to the

amplitude for the emission of two real photons with on-shell
4-momenta k1;2f and the absorption of a real photon with four-
momentum k1i , in the scattering of two real fermions. Each fermion,
real or virtual, is described by a 0þ 1-dimensional superpair
fxμðτÞ;ψμðτÞg, of open or closed worldlines, respectively,
exchanging arbitrary numbers of virtual photons. The worldline
amplitude implements the possibility that the three real photons are
emitted or absorbed at any proper time τ ∈ ½0; 1�, from any real or
virtual worldline. The solid lines depict real and virtual fermion
worldlines, the solid wavy line the real photons, and the fadedwavy
lines the virtual photon exchanges between the fermions.
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Wðr;lÞðxrf; xri ; θr;…; x1f; x
1
i ; θ

1Þ½J � ¼
�
exp

�
þ 1

2

Z
d4x

Z
d4yðiJðr;lÞμ ðxÞ þ J νðxÞÞDB

μνðx − yÞðiJðr;lÞν ðyÞ þ J νðyÞÞ
��

;

ð16Þ
where

DB
μνðxÞ ¼

1

4πd=2
Γ
�
d − 2

2

	
1

ðx2Þd2−1
�
1þ ζ

2
ημν þ ðd − 2Þ 1 − ζ

2

xμxν
x2

�
; ð17Þ

is the Euclidean free photon propagator in d dimensions and the charged worldline currents of the r real and l virtual
fermions in Eqs. (9) and (14) are combined into the net worldline current

Jðr;lÞμ ðxÞ ¼
Xr

n¼1

Jnμ;RðxÞ þ
Xrþl

i¼rþ1

Jiμ;VðxÞ: ð18Þ

Equation (16) has the structure of a normalized worldline expectation value h� � �i of a functional O of the rþ l real and
virtual worldline currents Jðr;lÞ in Eq. (18) and the external photon source J , with the later remaining fixed. It is a many-
body path integral over all possible closed path configurations of the l virtual loop particles, with the periodic boundary
conditions specified in Eq. (10), and over all possible open paths of the r real particles, with the open boundary conditions
given in Eq. (12), with a final integration over each particle’s proper time:

hO½Jðr;lÞμ ;J μ�i ¼ exp

�
1

2
Tr

Z
∞

0

dε0
εi0

e−ε
i
0

� Yrþl

i¼rþ1

�Z
∞

0

dεi0
2εi0

Z
Dεi

Dπi
2π

Z
P
D4xi

Z
AP

D4ψ i

�

×
Yr
n¼1

�
1

N5

Z
∞

0

dεn0

Z
dχn0

Z
Dεn

Dπn
2π

Z
DχnDνn

Z
D4xn

Z
D5ψn

�
expð−Sðr;lÞ0 ÞO

h
Jðr;lÞμ ;J μ

i
: ð19Þ

The free worldline action of the system of rþ l charges
in the many-body path integral is simply the sum of the
individual free actions in Eqs. (8) and (13),

Sðr;lÞ0 ¼
Xrþl

i¼rþ1

SiV;0 þ
Xr
n¼1

SnR;0: ð20Þ

Note that Eq. (16) contains the full exponentiation, with
spin precession and backreaction, of all photon lines, hard
or soft, connecting any of the r real and l virtual particles.
It contains as well as all the photon lines connecting these
with the external auxiliary current J , and the external

auxiliary current with itself. It is a straightforward exten-
sion of Wðr;lÞ in Paper I to the general case of real photon
absorption and emission. Finally, we note that the con-
tribution of disconnected graphs in Eq. (15) will be
adequately removed by the normalization ZMW=Z½0; 0; 0�.
Having integrated the matter and gauge fields out of

Z½J ; η̄; η�, we will now proceed to construct on-shell ampli-
tudes in physical time, as in the amplitude depicted in Fig. 1.
In general, the radiative Dyson S-matrix element for the
amplitude for the absorption of Nγ

i and emission of Nγ
o real

photons during the scattering of Nc
i to Nc

o ¼ Nc
i positive

energy charges (N̄c
i ¼ N̄c

o ¼ 0) in Eq. (1) can be written as

SðrÞ
fi ðNγ

o; N
γ
i Þ ¼

YNγ
o

p¼1

8<
:
−iϵ�μpf ðk

p
f ; λ

p
f Þffiffiffiffiffiffiffiffi

2ωp
f

q
ð2πÞ3=2

Z
d4ypfe

−ikpf ·y
p
f ∂

2
ypf

9=
;

YNγ
i

p¼1

(
−iϵμpi ðk

p
i ; λ

p
i Þffiffiffiffiffiffiffiffi

2ωp
i

p ð2πÞ3=2
Z

d4ypi e
þikpi ·y

p
i ∂

2
ypi

)

×
Yr
n¼1

8<
: lim

tn
f
→þ∞

tn
i
→−∞

Z
d3xni

Z
d3xnfΨ

ðþÞ;†
fn;βn

ðxnfÞγ0βnαnΨ
ðþÞ
in;αn

ðxni Þ
9=
; 1

Z½J ; η̄; η�
�
1

i

	
Nγ

oþNγ
iþNc

oþNc
i

×
YNγ

o

p¼1

�
δ

δJ μpf
ðypf Þ

�YNγ
i

p¼1

�
δ

δJ μpi
ðypi Þ

�
δN

c
iþNc

oZ½J ; η̄; η�
δηγNc

i
ðxNc

i
i Þ…δηγ1ðx1i Þδη̄β1ðx1fÞ � � � δη̄βNc

0

ðxNc
o

f Þ

������
J¼0
η̄¼η¼0

; ð21Þ
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where Z½J ; η̄; η� is the QED generating functional in Minkowski spacetime, and

ΨðþÞ
fn

ðxnfÞ ¼ uðpnf; snfÞe−ip
n
f ·x

n
f ;

ΨðþÞ
in

ðxni Þ ¼ uðpni ; sni Þe−ipn
i ·x

n
i ; ð22Þ

are free plane wave solutions of positive energy of momentum pn
f;i and spin s

n
f;i, and αn, βn and γn are spin indices. The LSZ

reduction formula requires that one introduce the corresponding wave-function renormalization factors for each real
fermion and photon field present. We have left these factors implicit because, as we will discuss at length in section 3.3,
they do not play any role in the proof of the IR safety of cross sections.
Consider first the case of a single outgoing photon (Nγ

o ¼ 1 and Nγ
i ¼ 0). In Euclidean time, the gauge field expectation

value at point x within the propagation of the r charges gives, using Eqs. (5) and (15) (and noting γ25 ¼ þ1),

1

Z½η̄; η;J �
δ1þNc

oþNc
iZ½η̄; η;J �

δJ μðyÞδηγrðx
Nc

i
i Þ � � � δηγ1ðx1i Þδη̄β1ðx1fÞ � � � δη̄βrðxN

c
o

f Þ

�����
J¼0
η¼η̄¼0

¼
X
perm

ϵNc
o…1

Yr
n¼1

�
exp

�
γ̄λ

∂

∂θnλ

�
γ5

�
βnγn

ZMW

Z½0; 0; 0�
X∞
l¼0

ð−1Þl
l!

δWðr;lÞðxrf; xri ; θr;…; x1f; x
1
i ; θ

1Þ½J �
δJ μðyÞ

����
θn¼0
J¼0

: ð23Þ

Using further Eq. (16), the functional derivative of the many-body generalized Wilson lines and loops for the r real and l
virtual charges can be expressed as

δWðr;lÞðxrf; xri ; θr;…; x1f; x
1
i ; θ

1Þ½J �
δJ μðyÞ

����
J¼0

¼
�Z

d4q
ð2πÞ4 e

−iq·yD̃B
μνðqÞiJ̃ðr;lÞν ðqÞ exp

�
1

2

Z
d4q
ð2πÞ4 iJ̃

ðr;lÞ
μ ð−qÞD̃B

μνðqÞiJ̃ðr;lÞν ðþqÞ
��

: ð24Þ

where D̃B
μνðqÞ and J̃ðr;lÞμ ðqÞ are, respectively, the Fourier transforms of the free Euclidean photon propagator in Eq. (17) and

the Euclidean charged worldline currents in Eq. (18).
The evaluation3 of the on-shell amplitude requires the Wick rotation of this quantity before plugging it into Eq. (23).

This involves replacing each free photon propagator by its Minkowski counterpart,

D̃B
μνðqÞ ¼ −

gμν
q2 þ iϵ

þ ð1 − ζÞ qμqν
ðq2 þ iϵÞ2 ; ð25Þ

multiplied by a factor of i, replacing the real and virtual Euclidean worldline currents in Eq. (18) by currents in Minkowski
spacetime,

J̃ðr;lÞμ ðqÞ ¼
Xr
n¼1

g
Z

1

0

dτð_xnμðτÞ þ ϵ0nqνψn
μðτÞψn

νðτÞÞeþiq·xnðτÞ þ
Xrþl

i¼rþ1

g
Z

1

0

dτð_xiμðτÞ þ ϵ0i q
νψ i

μðτÞψ i
νðτÞÞeþiq·xiðτÞ; ð26Þ

and likewise, for each dressed fermion Green’s function in the 2r-point correlator. Finally, one replaces the Euclidean Dirac
matrix γ5 by −iγ5. One then obtains4

3See Appendix A of [1] for the notations and conventions employed as well as full details of this procedure.
4It is to be understood henceforth that the currents and propagators are in Minkowski spacetime unless specified otherwise.
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1

Z½η̄; η;J �
δ1þNc

iþNc
oZ½η̄; η;J �

δJ μðyÞδηðxN
c
i

i Þ � � � δηðx1i Þδη̄ðx1fÞ � � � δη̄ðxN
c
o

f Þ

������
J¼0
η¼η̄¼0

¼
X
perm

ϵNc
o…1

Yr
n¼1

�
exp

�
γ̄λ

∂

∂θnλ

�
γ5

�
βnγn

ZMW

Z½0; 0; 0�
X∞
l¼0

ð−1Þl
l!

×

�Z
d4q
ð2πÞ4 e

−iq·yiD̃B
μνðqÞiJ̃ðr;lÞν ðqÞ exp

�
1

2

Z
d4q
ð2πÞ4 iJ̃

ðr;lÞ
μ ð−qÞiD̃μν

B ðqÞiJ̃ðr;lÞν ðþqÞ
��

: ð27Þ

Note that the normalized expectation value h� � �i defined in Eq. (19) has to be replaced at this point by its rotation to
Minkowski time following the rules given in Appendix A of Ref. [1]. Plugging Eq. (27) into Eq. (21) and defining γ̄0 ¼ γ5γ0
one finally gets a loop expansion for the Dyson S-matrix element for the radiation of a single real photon off the scattering of
r positive energy charges of the form

SðrÞ
fi ð1; 0Þ ¼

X∞
l¼0

Sðr;lÞ
fi ð1; 0Þ; ð28Þ

with the lth loop contribution given by

Sðr;lÞ
fi ð1; 0Þ ¼ ZMW

Z½0; 0; 0�
ð−1Þl
l!

Yr
n¼1

8<
: lim

tn
f
→þ∞

tn
i
→−∞

Z
d3xni

Z
d3xnfΨ

ðþÞ;†
fn

ðxnfÞ exp
�
γ̄λ

∂

∂θn

�
γ̄0Ψ

ðþÞ
in

ðxni Þ
9=
;

·
iϵ�μðk; λÞffiffiffiffiffiffi
2ω

p
kð2πÞ3=2

k2iD̃μν
B ðkÞ

�
iJ̃ðr;lÞν ð−kÞ exp

�
1

2

Z
d4q
ð2πÞ4 iJ̃

ðr;lÞ
μ ð−qÞiD̃μν

B ðqÞiJ̃ðr;lÞν ðþqÞ
��

þ perm: ð29Þ

We can further simplify Eq. (29) and simultaneously confirm that it is gauge invariant to all-loop orders in perturbation
theory. Using Eq. (25), the real photon vertex in Eq. (29) can be rewritten as

k2Dμν
B ðkÞJðr;lÞν ðkÞ ¼ k2

�
−
gμν

k2
þ ð1 − ζÞ k

μkν

k4

�
Jðr;lÞν ðkÞ ¼ −Jμðr;lÞðkÞ þ kμ

1 − ζ

k2
ðk · J̃ðr;lÞðkÞÞ; ð30Þ

Next, using Eq. (26) the factor in front of the gauge dependent term gives

k · J̃ðr;lÞðkÞ ¼
Xrþl

i¼rþ1

g
Z

1

0

dτfk · _xiðτÞ þ ε0i ðk · ψ iðτÞÞ2geik·xiðτÞ þ
Xr
n¼1

g
Z

1

0

dτfk · _xnðτÞ þ ε0nðk · ψnðτÞÞ2geik·xnðτÞ

¼ g
i

Xrþl

i¼rþ1

feik·xið1Þ − eik·xið0Þg þ g
i

Xr

n¼1

feik·xnð1Þ − eik·xnð0Þg: ð31Þ

To obtain the final equality in the above equation, we
used the fact that for either virtual or real fermions the
quantity kμkνψμψν vanishes. This is because kμkν is a
symmetric tensor whereas the Grassmanian tensor ψ i

μψ
i
ν is

antisymmetric.
The first term in brackets of the final expression on the

r.h.s. of Eq. (31) corresponds to a Ward identity for the
scalar QED vertex, and has been rewritten as a total
derivative of a pure phase. It vanishes since the periodic
boundary conditions in Eq. (10) hold for the i ¼
rþ 1;…; rþ l virtual fermion worldlines; this simply

reflects the fact that the charge flux that goes out from
xið0Þ in the loop comes back in at xið1Þ and is therefore a
conserved quantity.
For the second term in brackets, the r real charges

worldlines have open boundary conditions, xnð1Þ ¼ xnf and
xnð0Þ ¼ xni ; as noted in Eq. (12),

xnf ¼ ðtnf; xnfÞ; tnf → þ∞;

xni ¼ ðtni ; xni Þ; tni → −∞: ð32Þ
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These two remaining boundary terms eik·xnð1Þ and eik·xnð0Þ
can be neglected as well5; in this case however it is on
account of the rapid oscillatory behavior of their phases as
tnf;i → �∞. With this understanding, the second term in
brackets in the r.h.s. of Eq. (31) also vanishes.
The net result is that k · Jðr;lÞðkÞ ¼ 0 for any real or virtual

worldline fermion current, and independently of its particular

configuration inside the path integral. Since the previous
statements are valid for off-shell photon momenta q as well,
the same identity holds for the gauge-dependent terms in the
virtual exchange vertices in the exponential within the
normalized expectation value of Eq. (29). Therefore the only
surviving terms in Eq. (29) are the gauge-independent terms
that acquire the simple gauge-invariant worldline expression:

Sðr;lÞ
fi ð1; 0Þ ¼ ZMW

Z½0; 0; 0�
ð−1Þl
l!

Yr
n¼1

8<
: lim

tn
f
→þ∞

tn
i
→−∞

Z
d3xni

Z
d3xnfΨ

ðþÞ;†
fn

ðxnfÞ exp
�
γ̄λ

∂

∂θn

�
γ̄0Ψ

ðþÞ
in

ðxni Þ
9=
;

×
iϵ�μðk; λÞffiffiffiffiffiffi
2ω

p
kð2πÞ3=2

�
J̃μðr;lÞð−kÞ exp

�
i
2

Z
d4q
ð2πÞ4

1

q2 þ iϵ
J̃ðr;lÞμ ð−qÞJ̃μðr;lÞðþqÞ

��
þ perm: ð33Þ

The procedure outlined for the emission of a single real photon can be straightforwardly extended to the emission and
absorption of an arbitrary number of quanta in the scattering,

SðrÞ
fi ðNγ

o; N
γ
i Þ ¼

X∞
l¼0

Sðr;lÞ
fi ðNγ

o; N
γ
i Þ; ð34Þ

with the lth loop contribution given by

Sðr;lÞ
fi ðNγ

o; N
γ
i Þ ¼

ZMW

Z½0; 0; 0�
ð−1Þl
l!

YNγ
o

p¼1

8<
:

iϵ�μpf
ðkpf ; λpf Þffiffiffiffiffiffiffiffiffiffi

2ωkpf

q
ð2πÞ3=2

9=
;

YNγ
i

p¼1

8<
: iϵμpi ðk

p
i ; λ

p
i Þffiffiffiffiffiffiffiffiffiffi

2ωkpi

q
ð2πÞ3=2

9=
;

×
Yr
n¼1

8<
: lim

tn
f
→þ∞

tn
i
→−∞

Z
d3xni

Z
d3xnfΨ

ðþÞ;†
fn

ðxnfÞ exp
�
γ̄λ

∂

∂θn

�
γ̄0Ψ

ðþÞ
in

ðxni Þ
9=
;

×
�YNγ

o

p¼1

fJ̃μ
p
f

ðr;lÞð−kpf Þg
YNγ

i

p¼1

fJ̃μ
p
i

ðr;lÞðþkpi Þg exp
�
i
2

Z
d4q
ð2πÞ4

1

q2 þ iϵ
J̃ðr;lÞμ ð−qÞJ̃μðr;lÞðþqÞ

��
þ perm: ð35Þ

Equations (34) and (35) are the central result of the
present work. They provide compact expressions that
capture in full generality the i → f scattering of a system
of r real fermions accompanied by the radiation or
absorption of any number of hard or soft real photons
and an arbitrary number of virtual soft or hard photons
exchanged between real and virtual fermions during the
scattering. The normalized expectation value is finally
taken, averaging over all possible worldline paths of the
r real and l virtual charges within each term in the loop
expansion. An example of one of these radiative amplitudes
is illustrated in Fig. 1. In the next section we will show how
this all-order compact form of the radiative amplitudes

provides an intuitive infrared safe formulation of these
amplitudes in QED.

III. ABELIAN EXPONENTIATION OF REAL
AND VIRTUAL IR DIVERGENCES

IN THE DYSON S-MATRIX

Now that we have derived the general worldline form of
the Dyson S-matrix in QED with any number of real and
virtual photons attached, we will turn to addressing the
problem of its IR structure. We will first show how virtual
and real divergences in the S-matrix can be easily isolated
in this worldline formulation from an analysis of the low
energy limit of the currents, and how this behavior naturally
leads to the well-known Abelian soft theorems and their
exponentiation. We will then review in this context the
Dyson S-matrix approach to IR regularization; specifically,
we will show how real and virtual IR divergences cancel

5The requirement that the Ward identity be valid for external
charges, and its relation to IR divergences, will be addressed at
length in the next section.
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among themselves in the cross section to all-loop orders
in perturbation theory when any number of real photons
of arbitrarily low energies accompany the scattering of
charged particles. In Section IV, we will confront this
conventional solution to the IR problem in QED with the
alternative formulation in terms of infrared safe Faddeev-
Kulish (FK) S-matrix elements. We will further employ the
worldline formalism to demonstrate how this FK S-matrix
can be constructed to be manifestly free of real and virtual
IR singularities to all orders in perturbation theory.

A. IR structure of worldline currents
in the Dyson S-matrix and Low’s theorem

We wrote the Dyson S-matrix in Eq. (35) as a quantum
theory of worldline currents, as was also the case in Paper I,
with the novel feature being the absorption and emission of
real photons attached to the charged currents. Our strategy
to analyze its IR structure will follow the same logic as in
our earlier work. We will inspect the low energy k → 0
limit6 of the net current given in Eq. (26):

J̃IRμ ðkÞ ¼ lim
k→0

J̃ðr;lÞμ ðkÞ ¼ lim
k→0

Xrþl

i¼rþ1

J̃iμ;VðkÞ þ lim
k→0

Xr

n¼1

J̃nμ;RðkÞ:

ð36Þ

Virtual IR divergences will be introduced in the Dyson
S-matrix element when any current in Eq. (36) contains a
∼1=q contribution that survives in the q → 0 limit, corre-
sponding to the divergence of the loop integral for a virtual
photon 4-momenta q. Real IR divergences appear when a
worldline current in Eq. (36) contains a ∼1=k factor. For
each real photon present, there is a corresponding ∼1=k
factor multiplying the amplitude without real photons.
When the modulus squared is taken of this amplitude,
and integrated over the phase space of the emitted photons,
the contribution of the 1=k terms results in the well-known
IR divergence of soft photon amplitudes. As we empha-
sized in Paper I, it is therefore vital to better understand the
nature of the 1=k terms in the worldine currents.
First, in Eq. (26), the fermion piece of the currents can be

neglected in the k → 0 limit; this is because they are
subleading relative to the bosonic contribution. For the
latter, it is instructive to sample any virtual or real bosonic
worldline xμðτÞ in the path integral at points xκμ ¼ xμðτκÞ,
κ ¼ 1;…; N, and connect pairs of points with straight line
propagation in infinitesimal proper time δτκ ¼ τκþ1 − τκ,
with their path described by

xμðτÞ ¼ xμκ þ δxμκ
δτκ

ðτ − τκÞ; τ ∈ ðτκþ1; τκÞ: ð37Þ

Here δxμκ ≡ xμκþ1 − xμκ , τ1 ¼ 0 and τN ¼ 1. Path integration
in this piecewise representation of the worldlines corre-
sponds to the sum over all possible intermediate posi-
tions xμκ .
For a virtual particle current, the discretization in

Eq. (37) produces an incoherent sum of 2N − 2 real or
virtual photon graphs, representing the 2N − 2 possible
ways of attaching a photon line of 4-momentum k, real or
virtual, to each of the two sides of the N − 1 cusps in the
virtual fermion worldline,

lim
k→0

J̃iμ;VðkÞ ¼ lim
k→0

Z
1

0

dτ g_xiμðτÞeik·xiðτÞ

¼ lim
k→0

XN−1

κ¼1

Z
τκþ1

τκ

dτ g_xiμðτÞeik·xiðτÞ

¼ lim
k→0

g
i

XN−1

κ¼1

δxiκ;μ
k · δxiκ

ðeik·xiκþ1 − eik·x
i
κÞ: ð38Þ

The soft photon diagrams appearing in Eq. (38) are
illustrated in Fig. 2 for a given closed trajectory of the
ith virtual fermion contributing to the path integral.
The phase structure of the sum of diagrams in Eq. (38)

determines the IR finite behavior of the virtual particle
currents within the Dyson S-matrix. For finite xμκ and xμκþ1,
the two ∼1=k IR divergent photon diagrams in the
parenthesis in Eq. (38) coherently cancel when k → 0

since their relative phases vanish. Therefore for all xμκ finite
(κ ¼ 1;…; N), in other words, for virtual charges confined
to a finite 4-volume, the sum in Eq. (38) contains no ∼1=k
contributions.
A possibility one must consider is that a virtual charge

can explore a given point xμκ located at spacelike and/or
timelike infinity in the worldline path integral. The sum in
Eq. (38) can then be organized to isolate xμκ from finite
spacetime points as follows:

lim
k→0

J̃iμ;VðkÞ ¼ lim
k→0

(
g
i

XN−1

η¼κþ1

δxiη;μ
k · δxiη

ðeik·xiηþ1 − eik·x
i
ηÞ

þ g
i

δxiκ;μ
k · δxiκ

ðeik·xiκþ1 − eik·x
i
κÞ

þ g
i

δxiκ−1;μ
k · δxiκ−1

ðeik·xiκ − eik·x
i
κ−1Þ

þ g
i

Xκ−1
η¼1

δxiη;μ
k · δxiη

ðeik·xiηþ1 − eik·x
i
ηÞ
)
: ð39Þ

For any finite k, the phases with xμκ are highly oscillatory
and can therefore be dropped. Further noticing that δxiκ=k ·

6In what follows, by the limit k → 0 we mean asymptotic
equivalence. That is, there is always an implicit IR scale Λ
below which the currents can be safely replaced by their IR
equivalents J̃IRμ ðkÞ, where the photon momenta k < Λ. We will
have an extensive discussion of this infrared scale later on in the
manuscript.
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δxiκ ¼ δxiκ−1=k · δx
i
κ−1 as x

i
κ → �∞, the two∼1=k divergent diagrams left unpaired, as shown above, can be paired together,

with the sum then reorganized as

lim
k→0

J̃iμ;VðkÞ ¼ lim
k→0

8<
:g
i

XN−1

η¼κþ1

δxiη;μ
k · δxiη

ðeik·xiηþ1 − eik·x
i
ηÞ þ g

i

δxiκ;μ
k · δxiκ

ðeik·xiκþ1 − eik·x
i
κ−1Þ þ g

i

Xκ−1
η¼1

δxiη;μ
k · δxiη

ðeik·xiηþ1 − eik·x
i
ηÞ
9=
;: ð40Þ

Since each of the parentheses contain only finite spacetime points by construction, the relative phases within each,
as previously, cancel in the limit k → 0. Hence the l virtual fermions present in the lth loop contribution to the Dyson
S-matrix can never introduce ∼1=k IR divergences of photons, virtual or real, since

lim
k→0

J̃iμ;VðkÞ ¼ const i ¼ rþ 1;…; rþ l ð41Þ

For real fermion currents (labeled i ¼ 1;…; r), the situation is quite different. These have open worldlines with end
points in Eq. (32) at timelike infinity. The discretization in Eq. (37) then reads

lim
k→0

J̃nμ;RðkÞ ¼ lim
k→0

g
Z

tnf

tni

dt _xnμðtÞeik·xnðtÞ−εjtj ¼ lim
k→0

XN−1

κ¼1

g
Z

tnκþ1

tnκ

dt _xnμðtÞeik·xnðtÞ−εjtj

¼ lim
k→0

g
i

XN−1

κ¼1

�
δxnκ;μ

k · δxnκ þ isignðtnκþ1Þε
eik·x

n
κþ1

−εjtnκþ1
j −

δxnκ;μ
k · δxnκ þ isignðtnκ Þε

eik·x
n
κ−εjtnκ j

�
; ð42Þ

where we introduced an ε-regularization and performed the integral in the physical time of the charged currents. The soft
photon diagrams introduced by the nth real fermion current in the Dyson S-matrix in Eq. (42) are shown in Fig. 3 for a given
4-trajectory of the nth virtual fermion contributing to the path integral.
Taking the xnN;0 ≡ tnf → ∞ and xn1;0 ≡ tni → −∞ limits in Eq. (42), the two soft photon graphs pinched to plus and minus

timelike infinity drop out due to the wildly oscillatory phases, giving

lim
k→0

J̃nμ;RðkÞ ¼ lim
k→0

�
−
g
i

δxnN−1;μ

k · δxnN−1 þ iε
eik·x

n
N−1−εjtnN−1j þ g

i

δxn1;μ
k · δxn1 − iε

eik·x
n
2
−εjtn

2
j

þ g
i

XN−2

κ¼2

�
δxnκ;μ

k · δxnκ þ isignðtnκþ1Þε
eik·x

n
κþ1

−εjtnκþ1
j −

δxnκ;μ
k · δxnκ þ isignðtnκÞε

eik·x
n
κ−εjtnκ j

��
: ð43Þ

As shown above, this leaves the two graphs with the real or virtual soft photon attached to the two in and out external legs of
the nth real fermion unpaired, each introducing a different ∼1=k contribution. Taking then the k → 0 limit, the ∼1=k
divergences of the photon graphs attached to the internal lines cancel, resulting in the expression

FIG. 2. Diagrams generated by the ith particle current J̃iμ;VðkÞ contribution to the Dyson S-matrix, including all possible ways of
attaching a real (solid wavy line) or virtual photon (dashed wavy line) of 4-momentum k to any point τ of the ith particle trajectory. In the
k → 0 limit, the ∼1=k divergence of the soft photon graph pinched to κ cancels the 1=k divergence of the graph with the soft photon
pinched to κ þ 1, κ ¼ 1;…; N.
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lim
k→0

J̃nμ;RðkÞ ¼ −
g
i
lim
k→0

�
δxnN−1;μ

k · δxnN−1 þ iε
−

δxn1;μ
k · δxn1 − iε

�

¼ −lim
k→0

g
i

�
pn
f;μ

k · pn
f þ iε

−
pn
i;μ

k · pn
i − iε

�
: ð44Þ

In the second equality we multiplied and divided numer-
ators and denominators by the nth real fermion massm and
proper time s, respectively, which gives

lim
tnN→∞

m
δxnN−1
δsnN−1

¼ pn
f; lim

tnN→∞
m
k · δxnN−1
δsnN−1

¼ k · pn
f; ð45Þ

and

lim
tn
1
→−∞

m
δxn1
δsn1

¼ pn
i ; lim

tn
1
→−∞

m
k · δxn1
δsn1

¼ k · pn
i : ð46Þ

In summary, using Eqs. (41) and (44), the soft photon
limit of the total worldline current of the many-body system
comprising the r real and l virtual particles in the lth loop

contribution to the Dyson S-matrix element in Eq. (36) is
given by the bosonic pieces of the currents created by the
external legs of the r real fermions,

lim
k→0

J̃ðr;lÞμ ðkÞ ¼ lim
k→0

J̃IRμ ðkÞ;

with J̃IRμ ðkÞ ¼ −
g
i

XNc
iþNc

o

n0¼1

ηn
0
pn0
μ

k · pn0 þ iηn
0
ε
; ð47Þ

where the sum in n0 is taken over all in and out legs of
the real worldlines, with initial or final 4-momenta pn0 , and
η0 ¼ þ1 or η0 ¼ −1 if the charge is outgoing or incoming,
respectively. Equation (47) then states that real or virtual
soft photons attached to internal legs—namely, virtual
charged fermion worldlines or the internal parts of real
worldlines—do not introduce real or virtual IR divergences
in the Dyson S-matrix. These arise solely from the
(asymptotic) external legs of the real charges. The graphs
accounted for in the IR limit of the total current of the
system of rþ l charges are illustrated in Fig. 4.

FIG. 3. Diagrams generated by the nth real charged fermion current J̃nμ;RðkÞ contribution to the Dyson S-matrix, including all possible
ways of attaching a photon line of 4-momentum k to any point τ of the nth real particle trajectory. In the k → 0 limit the ∼1=k
divergences of the soft photon graphs from the internal lines cancel with each other, but the two soft photon graphs of the external lines
survive, leaving two terms ∼1=k when k → 0 in J̃nμ;RðkÞ. The dots at the ends of the photon lines indicate that the photon can be either
real or virtual.

FIG. 4. Graphs with soft photon lines of 4-momentum k attached to the two external legs of each n of the r external charges that

survive in the k → 0 limit J̃IRμ ðkÞ of the total current J̃ðr;lÞμ ðkÞ from r real and l virtual charges within the lth term of the Dyson S-matrix.
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To factor out the this IR structure of the soft photon
currents in the Dyson S-matrix, we follow the strategy
articulated in Paper I and separate out soft and hard, real
and virtual photons in the general expression in Eq. (35).
The term with the virtual photon interactions in the
normalized worldline expectation value in Eq. (35) can
be rewritten as

i
2

Z
∞

0

d4q
ð2πÞ4

1

q2 þ iϵ
J̃ðr;lÞμ ð−qÞJ̃μðr;lÞðþqÞ

¼ i
2

Z
Λ

λ

d4q
ð2πÞ4

1

q2 þ iϵ
J̃ðr;lÞμ ð−qÞJ̃μðr;lÞðþqÞ

þ i
2

Z
∞

Λ

d4q
ð2πÞ4

1

q2 þ iϵ
J̃ðr;lÞμ ð−qÞJ̃μðr;lÞðþqÞ; ð48Þ

where the parameter λ → 0 is the IR cutoff and the scale Λ
delimits the upper limit of the IR region of low momentum
virtual photons for whom the exact form of the worldline

currents J̃ðr;lÞμ can be replaced by their q → 0 limits in
Eq. (47), giving

i
2

Z
Λ

λ

d4q
ð2πÞ4

1

q2 þ iϵ
J̃ðr;lÞμ ð−qÞJ̃μðr;lÞðþqÞ

≃
i
2

Z
Λ

λ

d4q
ð2πÞ4

1

q2 þ iϵ
J̃IRμ ð−qÞJ̃μIRðþqÞ

¼ ig2

2

XNc
iþNc

o

n0;m0¼1

Z
Λ

λ

d4q
ð2πÞ4

1

q2 þ iϵ
ηm

0
pm0

q · pm0 − iηm
0
ϵ

·
ηn

0
pn0

q · pn0 þ iηn
0
ϵ
: ð49Þ

This term is IR divergent when λ → 0 and encodes very
early and late soft interactions among all the real charges.

Since it depends only on their asymptotic 4-momenta at
infinity, the term can be factored out of the normalized
worldline expectation value in Eq. (35) because it is
unaffected by the worldline path integrals. The second
term in Eq. (48) is IR finite by construction, and should be
retained as part of the normalized worldline expectation
value encoding the hard virtual exchanges among all real
and/or virtual worldlines.
The real photon attachments to the real and virtual

charged currents that multiply the exponential factor in
the normalized expectation value in Eq. (35) can likewise
be separated into soft and hard contributions. We will now
discuss how this is achieved in practice.
Let Nγ

o;s and Nγ
i;s denote the number of in and out soft

real photons of energy less than Λ, Nγ
o;h and Nγ

i;h the
number of hard photons of energy greater than Λ, for a
given total number of hard and soft outgoing and incoming
photons, Nγ

o ¼ Nγ
o;s þ Nγ

o;h and Nγ
i ¼ Nγ

i;s þ Nγ
i;h, respec-

tively. For each of the Nγ
o;s þ Nγ

i;s soft real photons, the

corresponding worldline current J̃ðr;lÞμ can be replaced by
Eq. (47), and subsequently factored out of the normalized
worldline expectation value in Eq. (35). In contrast, the
Nγ

o;h þ Nγ
i;h hard real photons are kept as part of the

normalized worldline expectation value, with the exact

form for J̃ðr;lÞμ ðkÞ; they have to be evaluated as part of the
path integral.
In light of Eqs. (36), (48), and (49), the i → f amplitude

in Eq. (35) can then be expressed as the product

SðrÞ
fi ðNγ

o; N
γ
i Þ ¼ SðrÞ

fi;sðNγ
o;s; N

γ
i;sÞ × SðrÞ

fi;hðNγ
o;h; N

γ
i;hÞ; ð50Þ

where the interactions of the charged particles with soft
real and virtual photons is absorbed into the IR Dyson
S-matrix

SðrÞ
fi;sðNγ

o;s; N
γ
i;sÞ ¼

YNγ
o;s

p¼1

8<
:

iϵ�μpf
ðkpf ; λpf Þffiffiffiffiffiffiffiffiffiffi

2ωkpf

q
ð2πÞ3=2

J̃
μpf
IRð−kpf Þ

9=
;

YNγ
i;s

p¼1

8<
: iϵμpi ðk

p
i ; λ

p
i Þffiffiffiffiffiffiffiffiffiffi

2ωkpi

q
ð2πÞ3=2

J̃
μpi
IRðþkpi Þ

9=
;

× exp

�
i
2

Z
Λ

λ

d4q
ð2πÞ4

1

q2 þ iϵ
J̃IRμ ð−qÞJ̃μIRðþqÞ

�
: ð51Þ

In obtaining Eq. (50), we used the fact that the low energy limit of the currents in Eq. (47) does not depend on the l loop
fermions; hence the loop expansion in l affects only the hard part of the Dyson S-matrix,

SðrÞ
fi;hðNγ

o;h; N
γ
i;hÞ ¼

X∞
l¼0

Sðr;lÞ
fi;h ðNγ

o;h; N
γ
i;hÞ; ð52Þ
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with the lth loop contribution

SðrÞ
fi;hðNγ

o;h; N
γ
i;hÞ ¼

ð−1Þl
l!

ZMW

Z½0; 0; 0�
YNγ

o;h

p¼1

8<
:

iϵ�μpf
ðkpf ; λpf Þffiffiffiffiffiffiffiffiffiffi

2ωkpf

q
ð2πÞ3=2

9=
;

YNγ
i;h

p¼1

8<
: iϵμpi ðk

p
i ; λ

p
i Þffiffiffiffiffiffiffiffiffiffi

2ωkpi

q
ð2πÞ3=2

9=
;

×
Yr
n¼1

8<
: lim

tn
f
→þ∞

tn
i
→−∞

Z
d3xni

Z
d3xnfΨ

ðþÞ;†
fn

ðxnfÞ exp
�
γ̄λ

∂

∂θn

�
γ̄0Ψ

ðþÞ
in

ðxni Þ
9=
;
�YNγ

o;h

p¼1

fJ̃μ
p
f

ðr;lÞð−kpf Þg

×
YNγ

i;h

p¼1

fJ̃μ
p
i

ðr;lÞðþkpi Þg exp
�
i
2

Z
∞

Λ

d4q
ð2πÞ4

1

q2 þ iϵ
J̃ðr;lÞμ ð−qÞJ̃μðr;lÞðþqÞ

��
þ perm: ð53Þ

Equation (50) is a statement of the Abelian factorization
of the Dyson S-matrix, and can be understood as the
generalization by Weinberg [30] of the well-known Low
theorem in QED [33]. It demonstrates to all-loop orders in
perturbation theory the factorization of real and virtual IR
divergences due to soft photons from an all-loop IR finite
Dyson S-matrix element containing arbitrary numbers of
real and virtual hard photons. In the worldline formalism,
it manifestly represents the factorization of very early and
late time interactions of real spinning charges among
themselves, and of the real photons radiated off or absorbed
by these charges at very early or late times. These IR
divergences are encoded in universal soft factors dressing
the infrared finite hard Dyson S-matrix element. We will
turn now to a discussion of the cancellation of these real
and virtual IR divergences in Eq. (51) in QED cross
sections.

B. Weinberg’s proof of the cancellation of real
and virtual IR divergences

In the conventional understanding of the IR problem,
the amplitude of the radiative i → f transition in Eq. (50)

for the Dyson S-matrix element is zero in QED on account
of the IR singularities in the exponentiated virtual IR
divergences. In this Bloch-Nordsieck picture [31], real
and virtual IR divergences only cancel among themselves
in the total cross section, when one considers within
the transition the emission of an arbitrary number
of low energy photons escaping undetected due to a finite
detector resolution.
To observe this cancellation between real and virtual IR

divergences in our worldline framework, we will show in
detail how one recovers the classic result of Weinberg [30]

for the photon emission rate ΓðrÞ
fi for the emission of hard

photons accompanied by an arbitrary number of real soft
photons whose energies add up to a total emitted energy
ωT < Λ, in the i → f scattering the r charged particles.
From Eq. (50), it is clear that this rate can be factorized as

ΓðrÞ
fi ¼ ΓðrÞ

fi;s × ΓðrÞ
fi;h: ð54Þ

The differential soft emission rate is given by the infinite
sum over final states7

dΓðrÞ
fi;s

dωT
¼ δðωTÞjSðrÞ

fi;sð0; 0Þj2 þ
1

1!

X
λ1f

Z
Λ

λ
d3k1fδðωT − ωk1f

Þ
���SðrÞ

fi;sð1; 0Þ
���2

þ 1

2!

X
λ1f

Z
Λ

λ
d3k1f

X
λ2f

Z
Λ

λ
d3k2fδðωT − ωk1f

− ωk2f
ÞjSðrÞ

fi;sð2; 0Þj2 þ � � � ; ð55Þ

with d3k ¼ ω2
kdωkdΩk, where ωk and Ωk are a real photon’s energy and solid angle, respectively, and the 1=N

γ
o;f! factor in

each term accounts for the Bose statistics of photons. The differential rate for the hard i → f transition only includes hard
photons (with momenta > Λ), and is given by

7As noted by Kinoshita [47], and by Lee and Nauenberg [46] (KLN), in general the problem of infrared singularities requires a
summation over both initial and final final states that are degenerate in energy. As noted in [49], from the KLN perspective, the Bloch-
Nordsieck summation over final states discussed in this section is only valid because the emission and absorption of soft photons cannot
be distinguished in the limit of vanishing photon energies. It is further observed in [49] that the link between summations of initial and
final states is provided by Low’s theorem. In our worldline approach, as will be discussed further in section IV, both initial and final state
emission and absorption are treated on the same footing in deriving the Faddeev-Kulish S-matrix.
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dΓðrÞ
fi;h ≡ jSðrÞ

fi;hðNγ
o;h; N

γ
i;hÞj2

8<
:

YNγ
o;sþNγ

o;h

p¼Nγ
o;sþ1

d3kpf

9=
;
�YNc

o

n¼1

d3pnf

�
;

ð56Þ

where the hard S-matrix element on the r.h.s is given by
Eqs. (52) and (53). We will not discuss the hard emission
rate any further except to note that it can be computed

order-by-order in perturbation theory employing the tech-
niques outlined in Paper I and in the previous section.
Our focus in the rest of this section will be on the soft
differential emission rate, in particular the explicit cancel-
lation of real and virtual infrared divergences.
Using the well-known integral representation of the

Dirac delta function, the sum in Eq. (55) can be compactly
and conveniently rewritten as

dΓðrÞ
fi;s

dωT
¼ 1

2π

Z þ∞

−∞
dσe−iσωT

X∞
Nγ

o;s¼0

1

Nγ
o;s!

YNγ
o;s

p¼1

�X
λpf

Z
Λ

λ
d3kpfe

þiσωkp
f

�
jSðrÞfi;sðNγ

o;s; 0Þj2: ð57Þ

Substituting Eq. (51) into the r.h.s above, and summing in Nγ
o;s, Eq. (57) can be expressed as

dΓðrÞ
fi;s

dωT
¼ 1

2π
exp

�
2Re

Z
Λ

λ

d4q
ð2πÞ4 A

IR
V ðqÞ

�Z þ∞

−∞
dσe−iσωT exp

�Z
Λ

λ

d3k
ð2πÞ3

eþiωkσ

2ωk
AIR
R ðkÞ

�
: ð58Þ

Here the contribution to the absolute square of the
amplitude from the exponentiation of virtual IR photon
exchanges in Eq. (51) is expressed in terms of the function

AIR
V ðqÞ≡ 1

2

igμν

q2 þ iε
J̃IRμ ð−qÞJ̃IRν ðþqÞ

¼ g2

2

XNc
iþNc

o

n0;m0¼1

i
q2 þ iε

ηm
0
pm0

q · pm0 − iηm
0
ε
·

ηn
0
pn0

q · pn0 þ iηn
0
ε
:

ð59Þ

The contribution coming from the real IR photons in
Eq. (51) can also be exponentiated in the cross section as8

AIR
R ðkÞ≡ gμνðJ̃IRμ ð−kÞÞ�J̃IRν ð−kÞ

¼ −g2
XNc
oþNc

i

n0;m0¼1

ηn
0
pn0

k · pn0 þ iηn
0
ε
·

ηm
0
pm0

k · pm0 − iηm
0
ε
; ð61Þ

with k0 ¼ ωk.

We can now use Eq. (58) to extract the emission rate
for any number of real soft photons adding up to a total
emitted energy less than E, with E < Λ. To achieve this, we
integrate the differential rate above between ωT ¼ 0 and
ωT ¼ þE; we further replace the upper limit of soft photon
energies Λ by E. Since from Eq. (55) we see that the rate
vanishes for ωT < 0, in order to symmetrize the expression,
we can formally integrate it between ωT ¼ −E and
ωT ¼ þE, to obtain

ΓðrÞ
fi;s¼

Z þE

−E
dωT

dΓðrÞ
fi;s

dωT
¼ 1

π
exp

�
2Re

Z
Λ

λ

d4q
ð2πÞ4A

IR
V ðqÞ

�

×
Z þ∞

−∞
dσ

sinσE
σ

exp

�Z
E

λ

d3k
ð2πÞ3

1

2ωk
eþiωkσAIR

R ðkÞ
�
:

ð62Þ

As discussed at length in section 5.2 of [1], the real part
of the integral over AIR

V ðqÞ comes wholly from the on-shell
modes of the virtual IR photon exchanges, q0 ¼ �ωq.
It contains the interaction of the in and out charges at
asymptotic times with their own radiative Lienard-Wiechert
or “acceleration” fields, created due to the overall shift in
momenta in the scattering. The imaginary part comes
wholly instead from the off-shell Coulomb modes, and
encodes the interaction of the same charges at asymptotic
times with the Lienard-Wiechert “velocity” fields created
when the charges come in from minus infinity and go
out to plus infinity with constant momenta. As our result
indicates, the imaginary part does not contribute to the
cross section.

8In obtaining AIR
R ðkÞ, we used the completeness relation

X
λ¼�1

ϵμðk; λÞϵ�νðk; λÞ ¼ −gμν −
kμkν

ðn · kÞ2 þ
kμnν þ kνnμ

ðn · kÞ ; ð60Þ

where n is the normalized time-like 4-vector; we used further the
fact that the dependence on n drops out of the amplitude. This is
because the kμ and kν terms, once contracted with the currents
vanish, giving k · Jðr;lÞ ¼ 0, as we discussed previously.
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We can reexpress our expression for the virtual part as

2Re
Z

Λ

λ

d4q
ð2πÞ4 A

IR
V ðqÞ ¼ g2

XNc
oþNc

i

n0;m0¼1

ηm
0
ηn

0
Z

Λ

λ

d3q
ð2πÞ3

1

2ωq

pm0

q · pm0 ·
pn0

q · pn0 ¼ −
Z

Λ

λ

d3q
ð2πÞ3

1

2ωq
AIR
R ðqÞ: ð63Þ

We observe thus that the radiative virtual gauge fields created by the charges and exponentiated in Eq. (63) are of precisely
the same form—but opposite in sign—as the real photon fields radiated in the scattering, and exponentiated later in the cross
section in AIR

R ðkÞ. Hence

ΓðrÞ
fi;s ¼

1

π

Z þ∞

−∞
dσ

sin σE
σ

exp

�Z
E

λ

d3k
ð2πÞ3

1

2ωk
eþiωkσAIR

R ðkÞ −
Z

Λ

λ

d3q
ð2πÞ3

1

2ωq
AIR
R ðqÞ

�
; ð64Þ

which is IR finite as ωk → 0. The expression above can be rewritten as

ΓðrÞ
fi;s ¼ exp

�
−
Z

Λ

E

d3k
ð2πÞ3

1

2ωk
AIR
R ðkÞ

�
1

π

Z þ∞

−∞
dσ

sin σE
σ

exp

�Z
E

λ

d3k
ð2πÞ3

1

2ωk
ðeþiωkσ − 1ÞAIR

R ðkÞ
�
: ð65Þ

It is clear that this expression is independent of the IR
cutoff λ. The integral over the soft photon angle can be
performed and yields

Z
d3k
ð2πÞ3

1

2ωk
AIR
R ðkÞ ¼ ΓðrÞ

cusp

Z
dωk

ωk
;

ΓðrÞ
cusp ¼ −

g2

4π2
XNc
oþNc

i

n0;m0¼1

ηn0ηm0γn0m0 coth γn0m0 :

ð66Þ

The many-body cusp anomalous dimension ΓðrÞ
cusp, encodes

the IR behavior of the scattering of the r charges, in terms
of the asymptotic 4-angles γn

0m0
between in and out charges

defined as

cosh γn0m0 ¼ pn0 · pm0ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n0p

2
m0

q : ð67Þ

With this, and reintroducing in Eq. (65) the differential rate
of the hard scattering Eq. (56), the total differential rate of
the i → f hard transition (including the undetected emis-
sion of low energy photons adding up to a total emitted
energy less than E) acquires the simple compact form
obtained by Weinberg:

dΓðrÞ
fi ¼ dΓðrÞ

fi;h exp

�
−ΓðrÞ

cusp

Z
Λ

E

dωk

ωk

�
FðΓðrÞ

cuspÞ

≡ dΓðrÞ
fi;h

�
E
Λ

	
ΓðrÞ
cusp

FðΓðrÞ
cuspÞ; ð68Þ

where F is the function [50]

FðxÞ ¼ 1

π

Z þ∞

−∞
dσ

sin σ
σ

exp

�
x
Z

1

0

dωk

ωk
ðeþiωkσ − 1Þ

�

¼ 1 −
1

12
π2x2 þ � � � : ð69Þ

Eq. (68) crystalizes Weinberg’s insight that the well-known
cancellation between real and virtual IR divergences can be
expressed in terms of the RG scaling of IR sensitive cross
sections determined solely in terms of the relative angles,
encoded in universal cusp anomalous dimensions, among
all the in and out real charges at infinity.
In Sec. IV, we will adopt a different perspective on the

IR problem and consider the renormalization of the IR
divergences—with arbitrary numbers of real and virtual
photons—within the amplitude itself, by introducing the
infrared safe Faddeev-Kulish S-matrix in worldline form.

C. IR divergences in field-strength
renormalization factors

The previous discussion showed that IR divergences
exactly cancel to all-loop orders in perturbation theory in
the conventional construction of physical observables
through the Dyson S-matrix. However there is an important
technical point that must be resolved before this proof
of the IR safety of cross sections is considered complete. As
noted earlier, virtual soft photons produce IR divergences
not only directly in the Dyson S-matrix but in the charged
particle field-strength renormalization factors Z2 as well.
This constant Z2 can be read off from the fermion wave
function normalization condition which, in the worldline
framework, is the Dyson S-matrix matrix element for the
evolution of a single fermion (r ¼ 1) [1]:
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Sð1Þ
fi ¼ 1

Z2

lim
x0
f
→þ∞

x0
i
→−∞

hpf; sf; x0fjpi; si; x0i i

¼ 1

Z2

Z
ZMW

X∞
l¼0

ð−1Þl
l!

lim
x0
f
→þ∞

x0
i
→−∞

Z
d3xfd3xiΨ̄fðxfÞ exp

�
γ̄λ

∂

∂θλ

�
γ̄0ΨiðxiÞWð1;lÞðxf; xi; θÞ

����
θ¼0

; ð70Þ

where Ψf;iðxÞ represent free plane waves of an on-shell
fermion of momentum pf;i and spin sf;i. Equation (70)
describes the creation of a free fermion at past infinity and
its subsequent evolution up to plus infinity while interact-
ing with the dynamical gauge field created by it. As we
have shown, these self-interactions (encoded in the world-
line path integral Wð1;lÞðxf; xi; θÞ in Eq. (70) produce an IR
singularity when x0f → ∞ and x0i → −∞. Hence Z2 con-
tains an IR divergent contribution that can eventually show
up in the renormalization of the unrenormalized amplitudes
we computed previously. Our focus here is to assess the
sensitivity of the renormalization of the Dyson S-matrix in
Eq. (1) to the IR divergent contributions in Z2 as outlined
by Weinberg [51] using standard power counting in
perturbation theory. (See also the related discussion in
Bjorken and Drell [52].)
In the worldline framework, UV renormalization can be

performed by introducing a UV cut-off in the discretization
of the worldline paths. This method makes direct contact
with the framework for the UV renormalization of Wilson
loops discussed at length by several authors [8,53–55].
We should emphasize that the IR and UV divergences in the
worldline framework can be identified as the usual ones
extracted from equivalent Feynman diagram calculations,
and hence the renormalization of these can be mapped to
the standard methods of quantum field theory where the
field-strength, electron mass and charge multiplicative
renormalization factors are defined by

Ψ ¼ Z1=2
2 ΨR; Aμ ¼ Z1=2

3 AR
μ ;

m ¼ ZmmR; g ¼ ZggR: ð71Þ

The re-scaled QED Lagrangian then becomes

L ¼ −
1

4
Z3ðFR

μνÞ2 þ Z2Ψ̄R=∂ΨR − Z2ZmmRΨ̄RΨR

− gRZ1Ψ̄R=AR
μΨR; ð72Þ

where Z1 ≡ ZgZ2Z
1=2
3 . It follows from the Ward identity

that Z1 ¼ Z2 and hence Zg ¼ Z−1=2
3 . Unrenormalized

and renormalized propagators and vertex functions are
related by

D̃FðpÞ ¼ Z2D̃F;RðpÞ; D̃μν
B ðqÞ ¼ Z3D̃

μν
B;RðqÞ;

Γ̃μðp0; pÞ ¼ Z−1
1 Γ̃μ

Rðp0; pÞ: ð73Þ

Let us now consider the UV renormalization of the
Dyson S-matrix element for the scattering of r positive
charged fermions,9 depicted schematically in Fig. 5, and
given by setting Nγ

o ¼ 0 and Nγ
i ¼ 0 in Eq. (1). Following

Eq. (71), the LSZ reduction of the Dyson S-matrix in
Eq. (1) with renormalized fields requires introducing a
Z−1=2

2 factor for each truncated in and out external fermion
line. The key point here, as noted by Weinberg but
frequently misunderstood in the literature, is that these
Z2 factors will be exactly cancelled by the Z2 factors
appearing within the internal lines and vertices. To see this,
following Eq. (73), one first observes that each vertex
gets renormalized by a factor Z−1

1 . Besides this factor,
each photon propagator line flowing into this vertex
contributes with a factor Z1=2

3 . Similarly, the two fermion

lines joining the vertex each contribute with a factor Z1=2
2 .

(The other Z1=2
2 and Z1=2

3 factors flow either to a different
vertex or to an external fermion line—or a photon line for
the case where external photons are considered in the
scattering process.)
At each vertex, one finds an overall factor

gZ−1
1 Z2Z

1=2
3 ≡ gR: ð74Þ

Therefore each fermion external line is left with a Z1=2
2

factor. In the final LSZ truncation, these factors are
exactly canceled by the correspondingZ−1=2

2 wave function
renormalization constants appearing within the LSZ
formula—as shown in Fig. 5. This cancellation happens
at the level of the S-matrix itself.
In contrast, as emphasized by Weinberg, the infrared

divergences that appear in the soft factor in Eq. (51) are
unrelated to those associated with the aforementioned
renormalization constants of the field strengths, the cou-
pling and the mass. Indeed, the divergences in the soft
factor would set the Dyson S-matrix to zero if the infrared
cutoff λ → 0 in section III B. Further, as we discussed there,

9Since photons are neutral, Z3 does not contain IR divergent
contributions and we can restrict our analysis to the power
counting of Z2 factors in the above nonradiative process.
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this infrared divergence is cancelled by the infrared
divergence in the emission of soft photons at the level
of the cross section. We will discuss in the next section the
origins of the divergences in the soft factor in the worldline
formalism and how they can be regulated to construct
infrared safe S-matrices along the lines first proposed by
Faddeev and Kulish.

IV. WORLDLINE IR RENORMALIZATION
OF AMPLITUDES TO ALL-LOOP ORDERS

IN PERTURBATION THEORY:
THE FADDEEV-KULISH S-MATRIX

In Paper I, we derived in the worldline formalism for
QED the infrared safe Faddeev-Kulish (KF) S-matrix for
virtual photon exchanges to all orders in perturbation
theory. We will extend this program here to the case of
real photon absorptions and emissions thereby completing
our proof of infrared safety of this S-matrix.
As was already understood in the original Faddeev-

Kulish paper [28], the difference between the infrared
divergent Dyson S-matrix and the infrared safe FK
S-matrix is primarily one of the ordering of limits. In
the former, one first takes the limits of infinite past and
infinite future tf;i → �∞, and then takes the infrared

momentum cutoff λ → 0, revealing a logarithmic infrared
divergence in the ratio of this scale to a hard scale Λ. In
the FK S-matrix, one instead keeps tf;i ¼ 1=Λ0 finite. The
contribution of asymptotic currents at earlier/later times
than those characterized by the scale Λ0 cancels the
dependence of the result on λ, resulting in an infrared safe
result for the FK S-matrix when λ → 0.
We will discuss below in detail how this works and

demonstrate that one recovers Weinberg’s result for the
photon emission rate. We will then discuss how our results
can be understood straightforwardly in the modern lan-
guage of the lattice regularization of UVand IR divergences
in gauge theories. The takeaway message remains the
same as in Weinberg’s paper: in QED, as in QCD, there
is ultimately one fundamental scale and all results can, in
principle, be expressed in terms of this scale.
The FK S-matrix is defined analogously to the Dyson

S-matrix in Eqs. (34) and (35) as

S̄ðrÞ
fi ðNγ

o; N
γ
i Þ ¼

X∞
l¼0

S̄ðr;lÞ
fi ðNγ

o; N
γ
i Þ; ð75Þ

where the l-th loop contribution is given by

S̄ðr;lÞ
fi ðNγ

o; N
γ
i Þ ¼

ZMW

Z½0; 0; 0�
ð−1Þl
l!

YNγ
o

p¼1

8<
:

iϵ�μpf
ðkpf ; λpf Þffiffiffiffiffiffiffiffiffiffi

2ωkpf

q
ð2πÞ3=2

9=
;

YNγ
i

p¼1

8<
: iϵμpi ðk

p
i ; λ

p
i Þffiffiffiffiffiffiffiffiffiffi

2ωkpi

q
ð2πÞ3=2

9=
;

×
Yr
n¼1

�Z
d3xni

Z
d3xnfΨ

ðþÞ;†
fn

ðxnfÞ exp
�
γ̄λ

∂

∂θn

�
γ̄0Ψ

ðþÞ
in

ðxni Þ
��YNγ

o

p¼1

n
J̄
μpf
ðr;lÞð−kpf Þ

o

×
YNγ

i

p¼1

n
J̄
μpi
ðr;lÞðþkpi Þ

o
exp

�
i
2

Z
d4q
ð2πÞ4

1

q2 þ iϵ
J̄ðr;lÞμ ð−qÞJ̄μðr;lÞðþqÞ

��
þ permutations: ð76Þ

FIG. 5. Schematic representation of a general QED transition with Nc
i initial and N

c
o final charges. The bubble represents the skeleton

of all the internal lines and vertices in the Feynman diagram. Unrenormalized quantities have been expressed in terms of their
renormalized counterparts.
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As stated earlier, it is important to note that the limits tnf;i → �∞ specified in Eq. (35) must be taken only after all virtual
and real IR divergences are cancelled in the diagrams generated by the FK S-matrix, to any particular order in
perturbation theory.
Specifically, this means that the low momentum limits of the currents in Eq. (36), as per the FK S-matrix prescription,

now contain in addition boundary terms (for ti < −1=Λ0 and tf > 1=Λ0) coming wholly from the r real charged particle
asymptotic currents that were neglected when computing the current in the conventional Dyson S-matrix in Eq. (42):

lim
k→0

J̃nμ;RðkÞ → lim
k→0

J̄nμ;RðkÞ ¼ lim
k→0

�
g
i

pn
f;μ

k · pn
f þ iε

eik·x
n
f−εt

n
f

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Final asymptotic current

−
g
i

�
pn
f;μ

k · pn
f þ iε

−
pn
i;μ

k · pn
i − iε

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IR Current in the DysonS-matrix

−
g
i

pn
i;μ

k · pn
i − iε

eik·x
n
i þεtni|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�
Initial asymptotic current

: ð77Þ

In the IR limit, the charged current in Eq. (36) should be
replaced by the corresponding current for the FK S-matrix,
with

lim
k→0

J̄ðr;lÞμ ðkÞ ¼ lim
k→0

ðJ̃IRμ ðkÞ þ J̃ASμ ðkÞÞ;

where J̃ASμ ðkÞ ¼ þ g
i

XNc
oþNc

i

n0¼1

ηn
0
pn0
μ

k · pn0 þ iηn
0
ε
eik·x

n0
; ð78Þ

and J̃IRμ is given, as per the Dyson S-matrix prescription, in
Eq. (47).
A pair of asymptotic photon graphs at negative and

positive asymptotic times generated by JASμ ðkÞ for each real
charge n of r participating charges in the scattering is

shown in Fig. 6. Clearly, the current above now has no 1=k
contributions since those in J̃IRμ exactly cancel with the
ones in J̃ASμ for real or virtual photons of sufficiently low
4-momentum. The cancellation of 1=k contributions in the
currents occurs for momentum k below the asymptotic
scale Λ0 that we introduced that correspond to the boun-
daries tnf;i in the problem under consideration. This scale,
by construction, is smaller than the scale Λ we defined for
the separation of the long-distance soft interactions from
the hard interactions in the conventional Dyson S-matrix.
We will show that physics does not depend on Λ0 and shall
discuss further the interpretation of this scale.
The virtual photon exchanges within the normalized

worldline expectation value in the FK S-matrix in Eq. (76)
can then be expressed as

Z
ΛQED

λ

d4q
ð2πÞ4

gμν

q2 þ iε
J̄ðr;lÞμ ð−qÞJ̄ðr;lÞν ðqÞ ¼

�Z
Λ0

λ

d4q
ð2πÞ4 þ

Z
Λ

Λ0

d4q
ð2πÞ4 þ

Z
ΛQED

Λ

d4q
ð2πÞ4

�
gμν

q2 þ iε
J̄ðr;lÞμ ð−qÞJ̄ðr;lÞν ðqÞ: ð79Þ

where we replaced the upper limit of phase space of virtual photons by ΛQED, the fundamental UV scale of the theory.
The first integral on the r.h.s. contains the contribution to the virtual exchanges coming from the exchanges of photons of

energy less than Λ0. Using Eqs. (78) and (47) it produces

FIG. 6. Asymptotic worldline (AS) graphs of a soft (real or virtual) photon line pinched at infinity for each n of the r real charges in the
scattering amplitude corresponding to the FK S-matrix prescription.
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Z
Λ0

λ

d4q
ð2πÞ4

gμν

q2 þ iε
J̄ðr;lÞμ ð−qÞJ̄ðr;lÞν ðqÞ ¼ g2

XNc
iþNc

o

n0;m0¼1

Z
Λ0

λ

d4q
ð2πÞ4

gμν

q2 þ iε

ηn
0
pn0
μ

q ·pn0 − iηn
0
ε
ðe−iq·xn0 − 1Þ ηm

0
pm0
ν

q ·pm0 þ iηm
0
ε
ðeþiq·xm

0
− 1Þ:

ð80Þ

The integrand above clearly vanishes when q → 0 and is
therefore manifestly independent of λ. As long as tf;i are
finite, one can choose the correspondingΛ0 to be small. The
above integral appearing in the exponent of Eq. (76)
therefore gives a vanishingly small contribution to the
FK S-matrix.
The second integral on the r.h.s. of Eq. (79) contains the

contribution of long-distance virtual exchanges (excluding
those in the asymptotic region) among all the charged
particles: Z

Λ

Λ0

d4q
ð2πÞ4

gμν

q2 þ iε
J̄ðr;lÞμ ð−qÞJ̄ðr;lÞν ðqÞ

¼
Z

Λ

Λ0

d4q
ð2πÞ4

gμν

q2 þ iε
J̃IRμ ð−qÞJ̃IRν ðqÞ: ð81Þ

Since this expression only depends on soft exchanges, the
worldline currents satisfy classical trajectories and can be
factored out of the normalized worldline expectation value
in Eq. (76), just as in the Dyson S-matrix.
A further key point is that as long as the IR regulator Λ0 is

kept finite (which is the case for the finite initial and final
times for which the FK S-matrix is defined), the above
expression is infrared finite. This can be understood in an
analogous way to procedure by which the infinite volume
limit is taken in the Euclidean formulation of gauge theories.
In the latter, modes of order λ < Λ0 (where the latter is the
scale of the finite lattice) are automatically excluded.
Computations are performed for this fixed volume, and
only then is the infinite volume limit taken. The statement of
infrared safety is then understood as the fact that all physical
quantities are robust in the infinite volume limit.

The worldline asymptotic currents in this language
therefore represent a particular choice of an infrared
regulator in Minkowski spacetime which ensures that
modes λ < Λ0 do not contribute. Further, the corresponding
statement of infrared safety is that all physical quantities
must be independent of Λ0 when tf;i → �∞ (or Λ0 → 0)
taken as the final step in the computation. While this might
seem suspiciously close to the usual Dyson result of the
λ-dependence of the S-matrix canceling in cross sections,
there is nevertheless an important difference in the two
approaches which we will return to.
The final integral in Eq. (79) is IR finite by construction

and identical to the hard virtual exchanges as per the
Dyson S-matrix prescription in Eq. (48). It should therefore
be kept as part of the normalized worldline expectation
value in Eq. (76). It too contains divergences; these are
the UV divergences of the theory, which are treated in the
usual way by renormalization of bare charges and masses
in the theory.
The factorization of asymptotic and soft Nγ

i;s and Nγ
o;s in

and out real photons of energies ω < Λ follows similarly,

with the corresponding worldline current J̄ðr;lÞμ can be
replaced by Eq. (78) and factored out of the normalized
worldline expectation value. The Nγ

i;h and Nγ
o;h hard in and

out real photons are likewise kept as part of the normalized
worldline expectation value, with the full current given
by Eq. (26).
From Eq. (76) and Eq. (79), one then gets

S̄ðrÞ
fi ðNγ

o; N
γ
i Þ ¼ S̄ðrÞ

fi;sðNγ
o;s; N

γ
i;sÞ × SðrÞ

fi;hðNγ
o;h; N

γ
i;hÞ; ð82Þ

where the soft factor in the FK S-matrix reads

S̄ðrÞ
fi;sðNγ

o;s; N
γ
i;sÞ ¼

YNγ
o;s

p¼1

8>><
>>:
iϵ�μpf

ðkpf ; λpf Þ


J̃
μpf
IRð−kpf Þ þ J̃

μpf
ASð−kpf Þ

�
ffiffiffiffiffiffiffiffiffiffi
2ωkpf

q
ð2πÞ3=2

9>>=
>>;

×
YNγ

i;s

p¼1

8>><
>>:
iϵμpi ðk

p
i ; λ

p
i Þ


J̃
μpi
IRðþkpi Þ þ J̃

μpi
ASðþkpi Þ

�
ffiffiffiffiffiffiffiffiffiffi
2ωkpi

q
ð2πÞ3=2

9>>=
>>; exp

�Z
Λ

Λ0

d4q
ð2πÞ4 A

IR
V ðqÞ

�
; ð83Þ

with AIR
V ðqÞ corresponding to the integrand of Eq. (81),

defined previously in Eq. (59). Since this virtual soft
photon factor is IR finite as noted previously, and further,
as also noted, the real soft photon factors in Eq. (82) do not

possess ∼1=k contributions, the entire soft factor is
manifestly infrared finite.

The hard Dyson S-matrix element SðrÞ
fi;hðNγ

o;h; N
γ
i;hÞ

defined in Eqs. (52) and (53) (where Nγ
i;h and Nγ

o;h in
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and out are real hard photons) is likewise infrared finite by

construction. Thus the FK S-matrix S̄ðrÞ
fi , with arbitrary

numbers of real and virtual photons, is infrared finite to all
orders in perturbation theory.10

The final step in the proof of infrared safety is to
show that the emission rate corresponding to the IR safe
FK S-matrix is IR safe as well, and agrees with Weinberg’s
result discussed in Sec. III B. Towards this end, we observe
that the photon emission rate for the FK S-matrix can be
factorized as

Γ̄ðrÞ
fi ¼ Γ̄ðrÞ

fi;s × ΓðrÞ
fi;h: ð84Þ

The hard emission rate ΓðrÞ
fi;h is the squared modulus of the

hard Dyson S-matrix element in Eqs. (52) and (53). From our
previous discussion, since the role of J̃μAS terms in Eq. (83) to
to eliminatemodes λ < Λ0, it is sufficient to keep theJμIR terms
for modes Λ0 < ω < Λ. Then following the same procedure
as in the previous section for the Dyson S-matrix, the
differential FK soft emission rate is given by

dΓ̄ðrÞ
fi;s

dωT
¼ δðωTÞjS̄ðrÞ

fi;sð0; 0Þj2 þ
1

1!

X
λ1f

Z
Λ

Λ0
d3k1fδðωT − ωk1f

Þ
���S̄ðrÞ

fi;sð1; 0Þ
���2

þ 1

2!

X
λ1f

Z
Λ

Λ0
d3k1f

X
λ2f

Z
Λ

Λ0
d3k2fδðωT − ωk1f

− ωk2f
Þ
���S̄ðrÞ

fi;sð2; 0Þ
���2 þ � � � ; ð85Þ

where we replaced the lower limits of integration by
λ → Λ0, with the latter denoting that the FK matrix element
is computed for tf;i ¼ finite.
Using Eq. (83), the infinite sum over final states in

Eq. (85) can be reexponentiated to obtain

dΓ̄ðrÞ
fi;s

dωT
¼ 1

2π
exp

�
2Re

Z
Λ

Λ0

d4q
ð2πÞ4 A

IR
V ðqÞ

�

×
Z þ∞

−∞
dσe−iσωT exp

�Z
Λ

Λ0

d3k
ð2πÞ3

eþiωkσ

2ωk
AIR
R ðkÞ

�
:

ð86Þ

The emission rate of any number of real soft photons
adding up to a total emitted energy less than E, with

Λ0 < E < Λ, is given by replacing the upper limit Λ of the
real photon phase space integrals above by E, and by
integrating the resulting differential rate from ωT ¼ 0
to ωT ¼ þE, or alternatively between ωT ¼ −E and
ωT ¼ þE (as pointed out in Sec. III B), giving

Γ̄ðrÞ
fi;s ¼

Z þE

−E
dωT

dΓ̄ðrÞ
fi;s

dωT
¼ 1

π
exp

�
2Re

Z
Λ

Λ0

d4q
ð2πÞ4A

IR
V ðqÞ

�

×
Z þ∞

−∞
dσ

sinσE
σ

exp

�Z
E

Λ0

d3k
ð2πÞ3

1

2ωk
eþiωkσAIR

R ðkÞ
�
:

ð87Þ

Using the identity in Eq. (63) the expression above can be
rewritten as

Γ̄ðrÞ
fi;s ¼ exp

�
−
Z

Λ

E

d3k
ð2πÞ3

1

2ωk
AIR
R ðkÞ

�
1

π

Z þ∞

−∞
dσ

sin σE
σ

exp

�Z
E

Λ0

d3k
ð2πÞ3

1

2ωk
ðeþiωkσ − 1ÞAIR

R ðkÞ
�
; ð88Þ

and after performing the required angular integrals, gives the result

Γ̄ðrÞ
fi;s ¼

1

π
exp

�
−ΓðrÞ

cusp

Z
Λ

E

dωk

ωk

�Z þ∞

−∞
dσ

sin σE
σ

exp

�
ΓðrÞ
cusp

Z
E

Λ0

dωk

ωk
ðeþiωkσ − 1Þ

�
; ð89Þ

where the cusp anomalous dimension ΓðrÞ
cusp was defined earlier in Eq. (66). Finally, rescaling σE → σ in Eq. (89), gives the

total differential emission rate

10Note that the previous analysis of IR divergences in the FK S-matrix did not include the field-strength renormalization factors that
appear in LSZ reduction formulae. This is because the infrared divergences in fermion wave-function normalization factors Z̄2, which
are unrelated to those in the soft factors, are exactly cancelled by the Z̄2 factors introduced by the internal lines and vertices, in a
completely analogous way to the discussion we had in Sec. III C for the Dyson S-matrix case. In this regard, there is no difference
between the Dyson and F-K S-matrices; our conclusions mirror those of Weinberg and differ from those of Zwanziger [56] who modifies
the field-strength renormalization factors in the LSZ reduction formula to accommodate the FK asymptotic currents.
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dΓ̄ðrÞ
fi ¼

�
E
Λ

�
ΓðrÞ
cusp

F̄

�
ΓðrÞ
cusp;

Λ0

E

	
× dΓðrÞ

fi;h: ð90Þ

The differential hard emission rate was defined in Eq. (54)
and the function F̄ is

F̄ðx;Λ0=EÞ

≡ 1

π

Z þ∞

−∞
dσ

sin σ
σ

exp

�
ΓðrÞ
cusp

Z
1

Λ0=E

dωk

ωk
ðeþiωkσ − 1Þ

�
:

ð91Þ

Equation (90) approaches Weinberg’s result in Eq. (68),
when at this final stage one takes the infinite time
limit tf;i → �∞; this corresponds to Λ0 → 0, resulting in

F̄ðΓðrÞ
cusp; 0Þ ¼ FðΓðrÞ

cuspÞ. As noted earlier, this is analogous
to taking the infinite volume limit in the Euclidean “lattice”
formulation of gauge theories.
As emphasized11 by Weinberg, the scale Λ which was

introduced as the “factorization” scale, can equivalently be
thought of as a UV scale, since such a replacement of the
former merely renormalizes the hard cross section. To
minimize the amount of this renormalization it is however
advisable to choose a scale appropriate for the relevant
energy of the process of interest.
A skeptical reader may question the value of the FK

S-matrix; one can argue that the IR divergence of the Dyson
S-matrix is now “hidden” in the dependence of the result on
tf;i with the divergence reappearing when these times are
taken to infinity.12 Further, if the asymptotic current is seen
primarily as a regulator, its exact form does not matter as
long as it cancels the 1=k terms that cause IR divergences.
What then is the value of the interpretation in terms of
asymptotic BMS-like symmetries [38] of the FK S-matrix?
This hypothetical critic can be answered as follows. First,

by changing the order of limits, and by introducing the early
and late time cutoffs, one is adapting the modern Wilsonian
approach to UVand IR divergences in quantum field theory
to the real-time problem of the S-matrix. The elaborate
cancellations between real and virtual IR divergences con-
tributions to cross sections in the Dyson S-matrix approach,
which becomes increasingly cumbersome at high orders, can
be avoided. Further, the worldline formalism is ideally suited
to an implementation of this strategy13 since closed and open
worldlines can be treated on the same footing. With regard to
the second point concerning the IR regulator, while it is
indeed true that physical observables do not depend on its
details (the form of the asymptotic currents), such a regulator
is natural in the worldline formulation of QED. In high order
computations, the choice of appropriate regulators of spu-
rious divergences can greatly simplify computations,

especially if one can appeal to the symmetries satisfied
by such a regulator.14 Ultimately, the proof of this pudding
will be in explicit demonstrations of the efficacy of the
approach to real-time problems in gauge theories.

V. SUMMARY AND OUTLOOK

In Paper I, we developed the worldline formulation
of QED to express vacuum-to-vacuum amplitudes to all
orders in perturbation theory as a first quantized theory of
superpairs of pointlike bosonic and fermionic worldlines
interacting via pair-wise exchange of Lorentz forces.
We further considered the general formulation of the
Dyson S-matrix for scattering in this framework and
demonstrated that the underlying origin of infrared diver-
gences arises from the asymptotic structure of worldline
currents at very early and very late times (tf;i → �∞) in
the scattering. We further showed that keeping asymptotic
currents that are discarded in the Dyson S-matrix due to
their rapid oscillations when tf;i → �∞ is equivalent to the
Faddeev-Kulish prescription for deriving an infrared safe
S-matrix. Specifically, this corresponds to reversing the
usual order of limits in the Dyson S-matrix by keeping
tf;i ¼ finite, taking infrared cutoff λ → 0, and only sub-
sequently taking tf;i → �∞ in the computation of physical
observables. In Paper I, we provided a proof of the infrared
safety of the Faddeev-Kulish S-matrix for virtual photon
exchanges, to all orders in perturbation theory, for the
scattering of arbitrary numbers of charged fermions.
In this work, we first developed the worldline formalism

to obtain general expressions for the usual Dyson S-matrix,
to all loop orders, for both virtual exchanges and real
radiation. For the latter, we demonstrated an explicit proof
of Low’s theorem; we further demonstrated Weinberg’s
soft photon theorem for the Abelian exponentiation of
infrared divergences. In particular, we derived Weinberg’s
result demonstrating that the emission rate for charged lepton
scattering with the emission of arbitrary numbers of photons
with a fixed net energy satisfies renormalization group
evolution of the energy with respect to the hard characteristic
scale of the theory; the corresponding anomalous dimension
is nothing but the cusp anomalous dimension, which has a
simple interpretation in terms of the relative 4-angles
between incoming and outgoing classical currents into the
hard vertex for the scattering.

11See the discussion after Eqs. 2.52 in [30].
12For an interesting discussion along these lines, see Ref. [29].
13This remark may only be made in full confidence for QED.

14An interesting counterpoint is provided by the observation
by Faddeev and Kulish that their IR safe S-matrix has asymptotic
states that are coherent states. This inspired an interesting
program towards a coherent state description of the QCD analog
of the FK S-matrix. However our discussion clarifies that the
coherent state description of FK is not its fundamental feature;
another choice of a finite time infrared regulator would in
principle do as well. Thus the search for infrared safe descriptions
of amplitudes in QCD [57,58] should be distinguished from their
possible description as coherent states.
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We next extended the proof of the infrared safety of the
FK S-matrix to the general case of both virtual exchanges
and real radiation. The proof follows similarly to that of
virtual exchanges considered previously. A key point is the
introduction of an infrared scale Λ0 corresponding to the
finite asymptotic times at which the FK S-matrix is defined.
With the introduction of this scale, the FK S-matrix is
shown to be independent of the soft photon momentum
cutoff as λ → 0. We then employed this setup to recover
Weinberg’s result for the emission rate of soft photons;
this result is recovered exactly in the final step when
tf;i → �∞, or equivalently, Λ0 → 0.
This derivation, and the manner in which Weinberg’s

result is recovered, provides a modern understanding of the
FK S-matrix as a realization of the Wilsonian program for
addressing the IR and UV divergences of gauge theories
for real-time observables. The Wilsonian approach is of
course standard in the Euclidean lattice formulation of
gauge theories where physical quantities are defined with
UV and IR lattice regulators, with continuum and infinite
volume extrapolations of these performed subsequently.
This Wilsonian program is harder to realize in the Feynman
diagram approach to real-time problems which deals with
asymptotic in and out states at the very outset.
The virtue of the worldline formulation of the S-matrix we

have developed here is that it provides a concrete path
towards implementing theWilsonian approach to regulate IR
divergences in real-time problems. (UV divergences can be
handled in the usual manner.) One sees explicitly that the FK
S-matrix must be understood as a finite time regularization of
IR divergences. Within this logic, the detailed nature of the
asymptotic currents, and any symmetries that they may
satisfy, appear to be irrelevant as long as they fulfill the task
of smoothly cancelling the 1=k divergences. Though one
should therefore hesitate in ascribing physical meaning to
the asymptotic symmetries of the currents, they are however
not irrelevant in practice. Such symmetries may help
facilitate high order computations just as the proper choice
of IR regulators in Feynman diagram computations can
transform a cumbersome computation to a simple one.
We note finally that in Appendix Awe derive, employing

Grassmannian integration of worldline currents, a novel
simple expression for N-th rank vacuum polarization
tensors. An immediate outcome is an all-order proof of
Furry’s theorem. However the power of this result will be
manifest in high order computations, a specific example of
which is the high order computation of cusp anomalous
dimensions in QED. This computation is in progress and
will be reported on in follow-up work.
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APPENDIX A: EXPLICIT COMPUTATION
OF N-th RANK POLARIZATION TENSORS

AND FURRY’S THEOREM

In Paper I, we showed that multi-loop vacuum-to-

vacuum amplitudes in QED (see for instance ZðlÞ
ðnÞ in

Eq. (95) of [1]), encoding the contributions of all
Feynman diagrams with l fermion and n photon loops,
can be systematically simplified in the worldline frame-
work to the evaluation of a product of l one-loop Nth rank
vacuum polarization tensors, with N ¼ P

jðnij þ njiÞ the
corresponding number of photons attached to the particular
ith fermion subgraph in the amplitude. We also showed
on general grounds that the relevant N-th rank vacuum
polarization tensor in the worldline formalism in d dimen-
sions can be expressed as the normalized worldline expect-
ation value of a product of N charged particle currents:

Πμ1…μN ðk1;…; kNÞ ¼ −hiJ̃μ1ðk1Þ � � � iJ̃μN ðkNÞi: ðA1Þ

Further, we showed that in order to perform the path
integrals of the normalized worldline expectation value, the
ith current insertion at the time τi can be rewritten, with
the aid of two independent dummy Grassmann variables θi
and θ̄i, as

iJ̃μiðkiÞ ¼ i
Z

1

0

dτieiki·xðτiÞð_xμiðτiÞ þ iε0ψμiðτiÞψνðτiÞkiνÞ

¼
Z

1

0

dτi

Z
dθ̄idθi exp

�
i
Z

1

0

dτkJ
B;i
μiρðτkÞxρðτkÞ −

Z
1

0

dτkJ
F;i
μiρðτkÞψρðτkÞ

�
; ðA2Þ
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where the auxiliary bosonic and fermionic virtual worldline
currents are given by

JB;iμiρðτkÞ ¼
�
ημiρθiθ̄i

d
dτi

þ kiρ

	
δðτk − τiÞ;

JF;iμiρðτkÞ ¼ ðημiρθi þ ε0kiρθ̄iÞδðτk − τiÞ: ðA3Þ

Note that a summation is implicit in the repeated index ρ in
Eq. (A2), while the index μi is kept fixed, corresponding to
the particular μi component of the polarization tensor. Since

the above discussion refers to vacuum-vacuum amplitudes
in Euclidean spacetime, ημν is the Euclidean metric tensor.
The final expressions for the amplitudes can be straight-
forwardly rotated to Minkowski times using the rules
specified in Appendix A of [1].
After replacing each current appearing in Eq. (A1) by

Eq. (A2), we shown that the path integrals over all possible
xμðτÞ and ψμðτÞ virtual worldlines of the normalized
worldline expectation value can be performed leading to
the following compact form valid for arbitrary N:

hiJ̃μ1ðk1Þ � � � iJ̃μN ðkNÞi ¼ 2
gn

n!
ð2πÞdδdðk1 þ � � � þ kNÞ

Z
ddp
ð2πÞd

Z
∞

0

dε0
ε0

e−ε0ðp2þm2Þ
Z

1

0

dτ1 � � �
Z

1

0

dτN

Z
dθ̄1dθ1 � � �

×
Z

dθ̄NdθN exp

�
ε0
2

XN
i;j¼1

Z
1

0

dτk

Z
1

0

dτlJ
B;i
μiρðτkÞGBðτk − τlÞJB;jμjρðτlÞ

−
1

2

XN
i;j¼1

Z
1

0

dτk

Z
1

0

dτlJ
F;i
μiρðτkÞGFðτk − τlÞJF;jμjρðτlÞ

�
; ðA4Þ

where θi and θ̄i for i ¼ 1;…; N are independent
Grassmann variables, and

GBðτk − τlÞ ¼ jτk − τlj − ðτk − τlÞ2;
GFðτk − τlÞ ¼ sgnðτk − τlÞ; ðA5Þ

are the bosonic (B) and fermionic (F) worldline Green’s
functions.
The primary purpose of this appendix is to demonstrate

that the Grassmann integrals in Eq. (A4) can be performed
exactly for arbitrary N, see also [59] for a recent discussion.

This results in a novel universal expression for the Nth
rank vacuum polarization tensor in QED that can be
evaluated employing only elementary integrals of poly-
nomial functions of the τ1;…; τN proper time points at
which each photon is attached within the loop accounting
for all possible N! permutations in conventional perturba-
tion theory. As an illustration, we will show that this
expression can be employed to obtain the proof of Furry’s
theorem [45] in the worldline formalism for general N.
We start by plugging Eqs. (A3) into the exponential

factor of Eq. (A4), which gives

ε0
2

XN
i;j¼1

Z
1

0

dτk

Z
1

0

dτlJ
B;i
μiρðτkÞGBðτk − τlÞJB;jμjρðτlÞ −

1

2

XN
i;j¼1

Z
1

0

dτk

Z
1

0

dτlJ
F;i
μiρðτkÞGFðτk − τlÞJF;jμjρðτlÞ

¼ ε0
2

XN
i;j¼1

�
ημiμjθiθ̄iθjθ̄j

d2Gij
B

dτidτj
þ kiμjθjθ̄j

dGij
B

dτj
þ kjμiθiθ̄i

dGij
B

dτi
þ ki · kjGij

B

�

−
1

2

XN
i;j¼1

fημiμjθiθj þ ε0kiμj θ̄iθj þ ε0k
j
μiθiθ̄j þ ε20k

i · kjθ̄iθ̄jgGij
F ; ðA6Þ

where we used the shorthand notation Gij
B ¼ GBðτi − τjÞ and Gij

F ¼ GFðτi − τjÞ. Here as previously, the indices μi and μj
correspond to the particular μi and μj components of the polarization tensor and should not be summed over. Equation (A4)
then becomes

hiJ̃μ1ðk1Þ � � � iJ̃μN ðkNÞi ¼ 2
gN

N!
ð2πÞdδdðk1 þ � � � þ kNÞ

Z
ddp
ð2πÞd

Z
∞

0

dε0
ε0

e−ε0ðp2þm2Þ

×
Z

1

0

dτ1 � � �
Z

1

0

dτN exp

(
ε0
2

XN
i;j¼1

ki · kjG
τiτj
B

)
I; ðA7Þ
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where the integral I is always of the general form

I ≡
Z

dθ̄1dθ1 � � � dθ̄NdθN expfAijθiθ̄iθjθ̄j þ Bijθiθ̄j − Cijθiθj −Dijθ̄iθ̄jg;

with i; j ¼ 1;…; N, we adopt the repeated index summation convention, and the matrices have elements

Aij ¼
ε0
2
ημiμj

d2Gij
B

dτidτj
; Bij ¼ ε0

XN
α¼1

kαμi

�
δij

dGiα
B

dτi
þ δαjGαi

F

	
; Cij ¼

1

2
ημiμjG

ij
F ; Dij ¼

ε20
2
ki · kjGij

F : ðA8Þ

We used here the symmetries of the worldline Green’s functions Gij
B ¼ Gji

B and Gij
F ¼ −Gji

F .
The integral I is not of standard form, since it contains terms quartic and quadratic, and in different combinations, of

the Grassmann variables. However it can still be evaluated for general N by standard Grassmannian integration. We refer
the reader to Appendix A of [24] for further details of the Grassmann integration procedure. We expand first the
exponential to get

I ¼
X∞
n¼0

1

n!

Z
dθ̄1dθ1 � � � dθ̄NdθNfAijθiθ̄iθjθ̄j þ Bijθiθ̄j − Cijθiθj −Dijθ̄iθ̄jgn: ðA9Þ

It is clear that one should make a distinction at this point between even or odd N. This observation will be crucial later on
with implications impinging directly on the proof of Furry’s theorem. If N is even, only terms ranging from n ¼ N=2 to
n ¼ N in the sum in Eq. (A9) do not vanish within the integral. Hence,

I ¼
XN=2

n¼0

1

ðN=2þ nÞ!
Z

dθ̄1dθ1 � � � dθ̄NdθNfAijθiθ̄iθjθ̄j þ Bijθiθ̄j − Cijθiθj −Dijθ̄iθ̄jgN
2
þn: ðA10Þ

Expanding in powers the terms in within brackets in Eq. (A10), one gets

I¼
XN=2

n¼0

1

ðN=2þnÞ!
XN=2þn

NA¼0

ðN=2þnÞ!
NA!ðN=2þn−NAÞ!

Z
dθ̄1dθ1 � � �dθ̄NdθNðAijθiθ̄iθjθ̄jÞNAðBklθkθ̄l−Cklθkθl−Dklθ̄kθ̄lÞN=2þn−NA:

ðA11Þ

For each n, the only non-vanishing contributions are those with NA ¼ N=2 − n. This is because they carry ðN − 2nÞ
different θ and θ̄ variables, coming from the Aijθiθ̄iθjθ̄j factors, plus N=2þ n − NA ¼ 2n other different θ and θ̄

coming from the required combination of the Bklθkθ̄l, Cklθkθl and Dklθ̄kθ̄l factors. Hence picking in Eq. (A11) only the
NA ¼ N=2 − n terms, and redefining later on the dummy variable n to n ¼ N=2 − NA gives

I ¼
XN=2

NA¼0

1

NA!ðN − 2NAÞ!
Z

dθ̄1dθ1 � � � dθ̄NdθNðAijθiθ̄iθjθ̄jÞNAðBklθkθ̄l − Cklθkθl −Dklθ̄kθ̄lÞN−2NA: ðA12Þ

Next, expanding the second term in the parenthesis on the r.h.s. of Eq. (A12) gives

I¼
XN=2

NA¼0

XN−2NA

NB¼0

1

NA!

1

NB!ðN−2NA−NBÞ!
Z

dθ̄1dθ1 � � �dθ̄NdθNðAijθiθ̄iθjθ̄jÞNAðBklθkθ̄lÞNBð−Cpqθpθq−Dpqθ̄pθ̄qÞN−2NA−NB:

ðA13Þ

Observe that if N − 2NA − NB is odd, there will be always an odd number of either θpθq or θ̄pθ̄q in the integral causing I to
vanish. Hence only even N − 2NA − NB contributions should be kept. Setting then N − 2NA − NB ≡ 2NCD, Eq. (A13) can
be rewritten as
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I ¼
XN=2

NA¼0

X
NBþ2NCD¼N−2NA

1

NA!

1

NB!ð2NCDÞ!
Z

dθ̄1dθ1 � � � dθ̄NdθNðAijθiθ̄iθjθ̄jÞNAðBklθkθ̄lÞNBð−Cpqθpθq −Dpqθ̄pθ̄qÞ2NCD:

ðA14Þ

Finally expanding the third and last term in parenthesis on the r.h.s. of Eq. (A14) in powers gives

I ¼
XN=2

NA¼0

X
NBþ2NCD¼N−2NA

1

NA!

1

NB!ð2NCDÞ!
X2NCD

NC¼0

ð2NCDÞ!
NC!ð2NCD − NCÞ!

ð−1Þ2NCD

×
Z

dθ̄1dθ1 � � � dθ̄NdθNðAijθiθ̄iθjθ̄jÞNAðBklθkθ̄lÞNBðCpqθpθqÞNCðDrsθ̄rθ̄sÞ2NCD−NC: ðA15Þ

Note finally that only the terms in Eq. (A15) with exactly the same number of Cpqθpθq and Drsθ̄rθ̄s factors survive in I.
Namely, NC ¼ 2NCD − NC, whereby NC ¼ NCD. One then gets

I ¼
X

2NAþNBþ2NC¼N

1

NA!

1

NB!

1

NC!

1

NC!

Z
dθ̄1dθ1 � � � dθ̄NdθNðAijθiθ̄iθjθ̄jÞNAðBklθkθ̄lÞNBðCpqθpθqÞNCðDrsθ̄rθ̄sÞNC: ðA16Þ

To perform now the θ and θ̄ integrals, we conveniently rewrite Eq. (A16) as

I ¼
X

2NAþNBþ2NC¼N

1

NA!NB!NC!NC!

�YNA

α¼1

Aiαjα

��YNB

α¼1

Bkαlα

��YNC

α¼1

Cpαqα

��YNC

α¼1

Drαsα

�

×

�YN
α¼1

Z
dθ̄αdθα

��YNA

α¼1

θiα θ̄iαθjα θ̄jα

��YNB

α¼1

θkα θ̄lα

��YNC

α¼1

θpα
θqα

��YNC

α¼1

θ̄rα θ̄sα

�
: ðA17Þ

In Eq. (A17) we will now move all θ̄0s to the left and all θ0s to the right. To do this systematically, note that from the
anticommutation properties of any two independent Grassmann variables, one can obtain the following identities:

Yn
α¼1

χαψα ¼ ð−1Þnðn−1Þ=2
�Yn

α¼1

χα

��Yn
α¼1

ψα

�
;

�Yn
α¼1

χα

��Ym
α¼1

ψα

�
¼ ð−1Þn·m

�Ym
α¼1

ψα

��Yn
α¼1

χα

�
; ðA18Þ

valid for any set fχαg and fψαg of n and/or m independent Grassmann variables. Applying Eqs. (A18) to Eq. (A17), one
easily obtains

I ¼
X

2NAþNBþ2NC¼N

ð−1ÞNC

NA!NB!NC!NC!

�YNA

α¼1

Aiαjα

��YNB

α¼1

Bkαlα

��YNC

α¼1

Cpαqα

��YNC

α¼1

Drαsα

��YN
α¼1

Z
dθ̄α

��YNA

α¼1

θ̄iα θ̄jα

�

×

�YNB

α¼1

θ̄lα

��YNC

α¼1

θ̄rα θ̄sα

��YN
α¼1

Z
dθα

��YNA

α¼1

θiαθjα

��YNB

α¼1

θkα

��YNC

α¼1

θpα
θsα

�
; ðA19Þ

where we used the fact that N ¼ 2NA þ NB þ 2NC is even (and hence in this case NB is even as well) to obtain the overall
parity factor ð−1ÞNC of the permutations. Permuting finally as

�YNA

α¼1

θ̄iα θ̄jα

��YNB

α¼1

θ̄lα

��YNC

α¼1

θ̄rα θ̄sα

�
¼ ϵi1j1…iNA

jNA
l1…lNB

r1s1…rNC
sNC

θ̄1θ̄2 � � � θ̄N; ðA20Þ
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and

�YNA

α¼1

θiαθjα

��YNB

α¼1

θkα

��YNC

α¼1

θpα
θsα

�
¼ ϵi1j1…iNA

jNA
k1…kNB

p1q1…pNC
qNC

θ1θ2 � � � θN; ðA21Þ

where ϵi1���iN is the Levy-Civita symbol, and using Eq. (A18) to reshuffle the dθ and θ variables, and the dθ̄ and θ̄ variables,
respectively, one finally finds

I ¼
X

2NAþNBþ2NC¼N

ð−1ÞNC

NA!NB!NC!NC!
ϵi1j1…iNA

kNA
k1…kNB

p1q1…pNC
qNC

ϵi1j1…iNA
jNA

l1…lNB
r1s1…rNC

sNC

×

�YNA

α¼1

Aiαjα

��YNB

α¼1

Bkαlα

��YNC

α¼1

Cpαqα

��YNC

α¼1

Drαsα

�
: ðA22Þ

Let us now consider the case of an odd number N
of photons attached to the fermion loop. In that case,
one can show that the only nonvanishing contributions
to the I integral in Eq. (A10) are those ranging from
n ¼ ðN þ 1Þ=2 to n ¼ N. The strategy to extract the
different powers of Aij, Bij, Cij and Dij factors follows
the same procedure, and one can in fact show that

Eq. (A22) is the final result. The only difference is that
N is odd and hence NB is also odd. Therefore Eq. (A22) is
valid for general N.
Plugging this result for I in Eq. (A7), one gets for the

normalized worldline expectation value of the product of N
currents a very general result valid for any N:

hiJ̃μ1ðk1Þ � � � iJ̃μN ðkNÞi ¼ 2
gN

N!
ð2πÞdδdðk1 þ � � � þ kNÞ

Z
ddp
ð2πÞd

Z
∞

0

dε0
ε0

e−ε0ðp2þm2Þ

×
X

2NAþNBþ2NC¼N

ð−1ÞNC

NA!NB!NC!NC!
ϵi1j1…iNA

jNA
k1…kNB

p1q1…pNC
qNC

ϵi1j1…iNA
jNA

l1…lNB
r1s1…rNC

sNC

×
Z

1

0

dτ1 � � �
Z

1

0

dτN exp

�
ε0
2

XN
i;j¼1

ki · kjGij
B

��YNA

α¼1

Aiαjα

��YNB

α¼1

Bkαlα

��YNC

α¼1

Cpαqα

��YNC

α¼1

Drαsα

�
:

ðA23Þ

We have obtained thus a compact form of expression for the calculation of the Nth rank vacuum polarization tensor in
QED involving only elementary and unordered integrations of polynomials of proper time in Eq. (A5) and accounting
for at once all N! Feynman diagrams in conventional perturbation theory, corresponding to a particular ordering of
the τ1;…; τN variables.
To illustrate the versatility, power and usage of the present procedure, let us consider the simpler case of N ¼ 2. Since the

possible combinations ðNA;NB; NCÞ such that 2NA þ NB þ 2NC ¼ N with N ¼ 2 are (1, 0, 0), (0, 2, 0) and (0, 0, 1),
Eq. (A22) gives simply

I ¼ ðA12 þ A21Þ þ ðB11B22 − B12B21Þ − ðC12 − C21ÞðD12 −D21Þ: ðA24Þ

Using now Eqs. (A8), this can be rewritten as

I ¼ ε0ημ1μ2
d2G12

B

dτ1dτ2
þ ε20k

2
μ1k

1
μ2

dG12
B

dτ1

dG21
B

dτ2
− ε20ðημ1μ2k1 · k2 − k2μ1k

1
μ2ÞðG12

F Þ2; ðA25Þ

which as shown in Paper I [cf. Eqs. (C22) and (C23) therein], after substitution in Eq. (A7) and integration in τ1 and τ2, leads
immediately to the conventional form of the 2nd rank vacuum-polarization tensor obtained from conventional perturbation
theory,
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hiJ̃μðkÞiJ̃νðqÞi ¼ ð2πÞdδdðkþ qÞ 8g
2ðημνk2 − kμkνÞ

ð4πÞd=2 Γ
�
4 − d
2

	Z
1

0

dτ
τð1 − τÞ

½m2 þ k2τð1 − τÞ�2−d=2 : ðA26Þ

An important property of the general result we obtained
in Eq. (A23) for any N is its behavior, as noted in [4,60,61],
under the worldline time reparametrizations τ0i ¼ 1 − τi for
i ¼ 1;…; N. The worldline Green’s functions GB and GF
in Eq. (A5) are symmetric and antisymmetric, respectively,
under the previous transformations, since Gij

B ¼ Gji
B and

Gij
F ¼ −Gji

F . The first and second order time derivatives of
the bosonic contributions

dGij
B

dτi
¼ sgnðτi − τjÞ − 2ðτi − τjÞ;

dGij
B

dτidτj
¼ 2 − 2δðτi − τjÞ ¼

dGji
B

dτidτj
ðA27Þ

are hence antisymmetric and symmetric, respectively.
Accordingly, under the transformations τ0i ¼ 1 − τi for
i ¼ 1;…; N, the term ki · kjGij

B in the exponential factor
in the third line of Eq. (A23) remains invariant, each Aij

factor remains invariant, the NB factors Bij introduce an
overall parity factor of ð−1ÞNB in Eq. (A22), and the factors
Cij and Dij while antisymmetric, introduce an overall
parity of ð−1Þ2Nc ¼ þ1 since these always appear in pairs.
Correspondingly, noticing that the integration measures
remain invariant, one finds

hiJ̃μ1ðk1Þ � � � iJ̃μN ðkNÞi ¼ ð−1ÞNBhiJ̃μ1ðk1Þ � � � iJ̃μN ðkNÞi:
ðA28Þ

Hence in light of Eq. (A23), if N is odd, then NB is also
odd, and hence due to reparametrization invariance of the
amplitude, the only consistent result is that it must vanish.
This result is nothing but Furry’s theorem [45] in the
worldline formalism!
To illustrate the previous point and demonstrate further

the usage of Eq. (A23), let us next consider the case of
N ¼ 3. The triads ðNA;NB;NcÞ such that 2NA þ NB þ
2NC ¼ 3 are (1, 1, 0), (0, 3, 0) and (0, 1, 1), and hence
Eq. (A22) becomes

I ¼ ϵijkϵijlAijBkl þ
1

3!
ϵk1k2k3ϵl1l2l3Bk1l1Bk2l2Bk3l3

− ϵmpqϵnrsBmnCpqDrs; ðA29Þ

whose contributions involve always an odd number of Bkl
terms making the amplitude in Eq. (A22) vanish after the
corresponding time integration. One can in fact continue
exploring higher powers N. If N ¼ 5, for instance, the
integral I would involve terms of the form

∼ A2B; ∼AB3; ∼ABCD; ∼B5;

∼ B3CD; and ∼ BC2D2: ðA30Þ
All of them vanish as well for the same reason of reparamet-
rization invariance of the amplitude in Eq. (A23), satisfying
Furry’s theorem as anticipated. In follow-up work, we will
apply the powerful technique demonstrated here to high
order computations.

APPENDIX B: PHOTON RADIATION IN
MÖLLER SCATTERING

Just as in Paper I, it is useful to consider the concrete
example of photon emission in the final state in Möller
scattering (e−e− → e−e−, illustrated in Fig. 7) in the
worldline framework. We will first discuss the conventional
approach using the Dyson S-matrix and then the infrared
safe Faddeev-Kulish S-matrix.
For simplicity, we shall only consider the amplitude for

the emission of one single IR photon. In the standard
approach, the soft factor of the Dyson S-matrix in Eq. (50)
then reads (with Nγ

o;s ¼ 1 and Nγ
i;s ¼ 0)

Sð2Þ
fi;sð1; 0Þ ¼

iϵ�μðk; λÞffiffiffiffiffiffiffiffi
2ωk

p ð2πÞ3=2 J̃
μ
IRð−kÞ

× exp

�
1

2

Z
Λ

λ

d4q
ð2πÞ4

igμν

q2 þ iε
JIRμ ð−qÞJIRν ðþqÞ

�
:

ðB1Þ

The net current at low energies, J̃μIR, comes wholly from the
k; q → 0 limits of the charged currents of the two external
electrons. In these limits, the currents are only sensitive to

FIG. 7. Worldlines for a pair of electrons with initial and final
4-velocities β1;2i;f (gray), and pair of cusped worldlines with a
single cusp matching the same initial and final velocities (black).
In the (real or virtual) soft photon momentum limit (out of the
hard region H denoted with blob) they both are described by the
same charged currents.
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the tf;i → �∞ regions of the electron worldlines; their
worldlines can be replaced by the cusped 4-trajectories of
Fig. 7 (with initial and final velocities βnf;i ¼ pn

f;i=E
n
f;i):

xnμðtÞ ¼ xni;μ þ βni;μðt − tni Þ; t ∈ ðtni ; tncÞ;
xnμðtÞ ¼ xnc;μ þ βnf;μðt − tncÞ; t ∈ ðtnc; tnfÞ: ðB2Þ

The particular form of the worldlines at short distances,
replaced here by the cusps xnc within the blob in Fig. 7, are
accounted for in the path integral as part of the normalized
worldline expectation value in the hard S-matrix element.
Using Eq. (B2), one obtains

J̃IRμ ðkÞ ¼ lim
k→0

X2
n¼1

g
Z þ∞

−∞
dt_xnμðtÞeik·xnðtÞ−εjtj

¼ −
g
i

X2
n¼1

�
βnf;μ

k · βnf þ iε
−

βni;μ
k · βni − iε

�

¼ −
g
i

X4
n0;m0¼1

ηn0βn0

k · βn0 þ iηn0ε
; ðB3Þ

where the sum in n0 in the r.h.s. of Eq. (B3), as defined
previously, runs over the 4 possible in and out legs of the
two external electron worldlines. Plugging Eq. (B3) into
Eq. (B1) gives

Sð2Þ
fi;sð1; 0Þ ¼

gϵ�μðk; λÞffiffiffiffiffiffiffiffi
2ωk

p ð2πÞ3=2
X4
n0¼1

ηn0β
μ
n0

k · βn0 − iηn0ε
exp

( X4
n0;m0¼1

g2

2

Z
Λ

λ

d4q
ð2πÞ4

igμν
q2 þ iε

ηn0β
μ
n0

q · βn0 − iηn0ε

ηm0βνm0

q · βm0 þ iηm0ε

)
: ðB4Þ

The soft factor above contains the emitted soft photon and arbitrary numbers of virtual soft photons. The real soft photon
will introduce an IR divergence in the cross section, when integrating the modulus squared amplitude over the full phase
space, including that of the soft photon. The virtual soft photons introduce IR divergences as well due to the q → 0
singularity of the integral in the loop momentum q in Eq. (B4). As shown previously in [1], one obtains the result

exp

8<
:

X4
n0;m0¼1

g2

2

Z
Λ

λ

d4q
ð2πÞ4

igμν
q2 þ iε

ηn0β
μ
n0

q · βn0 − iηn0ε

ηm0βνm0

q · βm0 þ iηm0ε

9=
;

¼ exp

8<
: g2

8π2
X4

n0;m0¼1

ηn0ηm0γn0m0 coth γn0m0 log
Λ
λ
− i

g2

8π

X40
n0;m0¼1

ηn0ηm0 coth γn0m0 log
Λ
λ

9=
;: ðB5Þ

The sum in n0 and m0 in the real part of the exponential
factor in the r.h.s. of Eq. (B5) runs over all pairs of in and
out legs of the two electron worldlines, with the pairs
(n0; m0) and (m0; n0) counted separately. The sum in the
imaginary part runs only over in-in or out-out pairings of
the legs. The relative cusp 4-angle between worldline legs
n0 and m0 was previously defined in Eq. (67).
The real part of the exponent in the r.h.s. of Eq. (B5) is

always negative for on-shell electrons [30]. Hence the soft
factor in Eq. (B4), and therefore the amplitude of the

transition, vanishes with λ → 0 due to the exchange of
arbitrary numbers of very soft photons during the scatter-
ing. The emission rate is still well defined in the IR limit;
as discussed thoroughly in Section III B, this is the case if
with the scattering one also considers the emission of any
number of very soft real photons. Indeed, the rate of
emission of for a photon with energy less than E, with
E < Λ, is given by Eq. (B4). Since the imaginary part drops
out of the squared modulus, one has

���Sð2Þ
fi;sð0;0Þ

���2 þ X
λ¼�1

Z
E

λ
d3k

���Sð2Þ
fi;sð1;0Þ

���2 þ � � �

¼ exp

(
g2

4π2
X4

n0;m0¼1

ηn0ηm0γn0m0 coth γn0m0 log
Λ
λ

)�
1þ g2

Z
E

λ

d3k
ð2πÞ3

1

2ωk

�X
λ¼�1

ϵ�μðk; λÞϵνðk; λÞ
� X4
n0;m0¼1

βμn0
k · βn0

βνm0

k · βm0
þ � � �

�
;

ðB6Þ
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The first term on the l.h.s. corresponds to the probability
of not emitting a photon. The second term corresponds to
the probability that a single photon is emitted and integrates
over its phase space up to a maximal energy E of the photon.

The ellipses represent higher order terms containing the
emissions of two or more soft photons. Summing over
polarizations using Eq. (60), and performing the remainingk
integral, the expression above can be expressed as

���Sð2Þ
fi;sð0; 0Þ

���2 þ X
λ¼�1

Z
E

λ
d3k

���Sð2Þ
fi;sð1; 0Þ

���2 þ � � �

¼ exp
�

g2

4π2
X4

n0;m0¼1

ηn0ηm0γn0m0 coth γn0m0 log
Λ
λ

��
1 −

g2

4π2
X4

n0;m0¼1

ηn0ηm0γn0m0 coth γn0m0 log
E
λ
þ � � �

�
: ðB7Þ

Expanding the exponential in the r.h.s. of Eq. (B7), the
leading Oðg2Þ term accounts for all the diagrams wherein a
single virtual soft photon is exchanged in the scattering and
contains the logarithmic IR divergence logΛ=λ as λ → 0.
As anticipated, this virtual IR divergence is canceled
exactly by the logarithmic IR divergence logE=λ resulting
from the phase space integral of the real emitted photon.
This well-known cancellation between virtual and real IR
divergences in the scattering cross section is schematically
shown in Fig. 8 to OðαÞ in perturbation theory.
At higher orders, virtual IR divergences from the

exchange of many virtual IR photons will likewise be

cancelled exactly by the real IR divergences from the
integrated phase space of the many emitted IR photons,
reproducing our general result in Eq. (68), valid to all-loop
orders in perturbation theory.
We will now consider exactly the same process from

the perspective of the FK S-matrix S̄ðrÞ
fi in Eq. (76). The

electron worldlines at large distances are again well
approximated by the cusped 4-trajectories of Fig. 7.
Using Eq. (B2), and keeping finite t1;2f;i , the net current
of the system in the low momentum limit k → 0 is
given by

lim
k→0

J̃ð2;lÞμ ðkÞ ≃ lim
k→0

X2
n¼1

g
Z

tnf

tni

dt_xnμðtÞeik·xnðtÞ−εjtj

¼ lim
k→0

X2
n¼1

�
g
i

βnf;μ
k · βnf þ iε

eik·x
n
f −

g
i

�
βnf;μ

k · βnf þ iε
−

βni;μ
k · βni − iε

�
eik·x

n
c −

g
i

βni;μ
k · βni − iε

eik·x
n
i

�
: ðB8Þ

As emphasized previously, in Weinberg’s derivation [30],
the first and last terms in the r.h.s. of Eq. (B8) are dropped
due to the rapid oscillations of their phases at asymptotic
times, giving back the charged currents in Eq. (B3)
corresponding to the Dyson S-matrix prescription. How-
ever for finite xnf;i the phases accompanying the in and out
asymptotic currents go to unity when k → 0, thus canceling
the currents at the cusps.

As discussed previously, one can split the net current in
the IR limit into the two contributions,

lim
k→0

J̃ð2;lÞμ ðkÞ ¼ lim
k→0

ðJ̃ASμ ðkÞ þ J̃IRμ ðkÞÞ;

J̃ASμ ðkÞ ¼ þ g
i

X4
n0¼1

ηn
0
βn

0
μ

k · βn
0 þ iηn

0
ε
eik·x

n0
: ðB9Þ

FIG. 8. OðαÞ diagrams with the exchange of a single virtual IR photon (left) and the emission of real IR photon (right) in Möller
scattering, in the Dyson S-matrix computation of the emission rate. The ellipses represent diagrams with additional virtual or real IR
photons attached in all possible ways to the in and out legs.
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Using now Eqs. (B3) and (B9), the soft factor in the FK S-matrix element in Eq. (83) corresponding to the amplitude of
emission of the single real soft photon (No;s ¼ 1 and Ni;s ¼ 0) can be cast as

S̄ð2Þ
fi;sð1;0Þ ¼ g

ϵ�μðk; λÞffiffiffiffiffiffiffiffi
2ωk

p ð2πÞ3=2
X4
n0¼1

ηn0β
μ
n0

k · βn0 − iηn0ε
ð1− e−ik·xn0 Þ× exp

� X4
n0;m0¼1

1

2

Z
Λ

Λ0

d4q
ð2πÞ4

igμν
q2 þ iε

ηn0βn0

q · βn0 − iηn0ε
ηm0βm0

q · βm0 þ iηm0ε

�
;

ðB10Þ

independently of the λ cutoff, and is regular when k → 0.
Hence the effect of the asymptotic phases carried by the in
and out electron currents in the scattering is to cancel both
the IR divergences of the virtual soft photon exchanges, and
the ∼1=k behavior of the amplitude created by the emission
of the real photon. We refer the reader to Paper I for the
details of the cancellations within the IR virtual exchanges
in Eq. (B10). Both the real soft photon diagrams from
Low’s theorem for the Dyson S-matrix and the novel
Faddeev-Kulish real asymptotic photon diagrams are
shown here in Fig. 9.
This amplitude level cancellation of the real and virtual

IR divergences independently, should be contrasted with
the conventional cross section cancellation of Eq. (B7)
shown schematically in Fig. 8, involving the low energy
phase space of the real photon emitted and the IR
divergence created by the corresponding virtual photon
loop. It is important to note, as emphasized in Paper I, that

in the Faddeev-Kulish S-matrix S̄ðrÞfi the full cancellation of
the virtual IR divergences requires one to consider fully the
off-shell modes of the virtual exchanges. These are imagi-
nary contributions and do not play any role in the conven-
tional cross section cancellation.
Equation (B10) shows transparently that the worldline

formulation of any amplitude in QED as a first-quantized
theory of charged currents with non-local interactions can be
expressed in the low energy limit as a classical theory of
worldline currents. With this understanding, the interpreta-
tion of the IR aspects of the interactions like the Faddeev and
Kulish phases becomes straightforward. In the case of the
cross section for photon radiation in Möller scattering as per
the FK S-matrix element prescription of the amplitude in
Eq. (B10), the procedure follows exactly as that for the
derivation for arbitrary number of charged particles r in the
transition detailed in Sec. IV by setting therein r ¼ 2.
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