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The homogeneous Bethe-Salpeter equation (BSE) of a ð1=2Þþ bound system, that has both fermionic
and bosonic degrees of freedom, that we call a mock nucleon, is studied in Minkowski space, in order to
analyze the chiral limit in covariant gauges. After adopting an interaction kernel built with a one-particle
exchange, the χ-BSE is numerically solved by means of the Nakanishi integral representation and light-
front projection. Noteworthy, the chiral limit induces a scale invariance of the model and consequently
generates a wealth of striking features: (i) it reduces the number of nontrivial Nakanishi weight functions to
only one; (ii) the form of the surviving weight function has a factorized dependence on the two relevant
variables, compact and noncompact; and (iii) the coupling constant becomes an explicit function of the real
exponent governing the power-law falloff of the nontrivial Nakanishi weight function. The thorough
investigation at large transverse momentum of light-front Bethe-Salpeter amplitudes, obtained with
massive constituents, provides a confirmation of the expected universal power-law falloff, with exponents
predicted by our nonperturbative framework. Finally, one can shed light on the exponents that govern the
approach to the upper extremum of the longitudinal-momentum fraction distribution function of the mock
nucleon, when the coupling constant varies.
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I. INTRODUCTION

QCD in Euclidean lattice has achieved massive success in
describing hadronic properties, but nonetheless accurately
investigating dynamical quantities, e.g., by a direct calcu-
lations of the parton distributions (see, e.g., Refs. [1–3] and
references therein) or the gluon role in the emergent
hadronic masses (see, e.g. Ref. [4] and references therein),
is still a challenge. Therefore, developing phenomenologi-
cal but rigorous tools in Minkowski space for investigating
hadronic dynamical properties could help to offer comple-
mentary insights, drawn directly from the physical space,
and help to accumulate a critical mass of information on the
nonperturbative regime of the strong dynamics. Plainly,
such insights could be relevant for the analysis of the
unprecedented amount of accurate data on the hadron
structure that will be gathered at the future Electron Ion
Colliders [5,6].
A phenomenological way to treat the nucleon is to

consider a constituent quark point of view, i.e., the dressing
of the light degrees of freedom (d.o.f.) through an effective

mass generated by the gluon nonperturbative interaction,
so that the chiral symmetry is substantially broken. For
instance, following Refs. [7,8], one can see how a quark-
diquark description of the nucleon emerges by introducing a
simple two-step process applied to the relativistic three-body
bound-state equation (Faddeev-Bethe-Salpeter equations),
namely by neglecting the three-body forces and approxi-
mating the quark-quark scattering matrix as a sum over
separable diquark correlations. In particular, the interaction
kernel of the coupled equations, that determine the Faddeev
components of the Bethe-Salpeter (BS) amplitude, high-
lights the quark-exchange mechanism, without an explicit
presence of gluons. Therefore, the emergent picture of the
nucleon as a quark-diquark should be viewed as a useful tool
to deepen the understanding of the effective dynamics
driving the relative motion in each Faddeev amplitude, with
a given spectator quark. Indeed, the diquark correlation has
an important role in the hadron structure, particularly in view
of the recent discoveries of multiquark states (see, e.g.,
Ref. [9] for a review). It is also relevant to mention that
lattice QCD (LQCD) simulations showed that diquark
correlations emerge from the QCD dynamics [10–16].
Recently a ð1=2Þþ bound-state system, composed by a

pair of massive fermion and scalar boson interacting through
a vector-boson exchange, namely a mock nucleon, was
investigated [17] by using the homogeneous Bethe-Salpeter
equation (BSE) in Minkowski space and the Nakanishi
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integral representation (NIR) of the BS amplitude (see
Refs. [18,19]). In this dynamical model, the fields represent
a quark and a structureless scalar diquark, interacting
through an effective massive one-gluon exchange, that
implements the nonperturbative dressing of the gauge-field
quanta as it has been obtained by LQCD calculations in the
Landau gauge [20]. Interestingly, the model has a dimen-
sionless coupling constant, and, therefore, one expects that it
would be scale invariant in the chiral limit. This remarkable
feature has far-reaching consequences for the BS amplitude,
which will be explored in our work by also considering the
dependence on the covariant gauges. In particular, through
the solutions of the BSE, we aim to gain insight into the
stability of the fermion-boson system, that imposes a gauge-
dependent upper bound for the coupling constant, in the
spirit of the Miransky scaling [21–23], that enlights the role
of the conformal symmetry in the description of the non-
perturbative regime of the gauge theories. Also in other
systems, like fermion-fermion or fermion-antifermion bound
states, the transition from stable solutions of the BSE to
unstable ones as the coupling constant approaches a critical
value occurs both in Euclidean [24] and in Minkowski
spaces [25–27]. It should be pointed out that such a sharp
transition, triggered by the loss of scale invariance, can
be found in several areas (see, e.g., Refs. [22,28–30]).
The instability in the solution of the BSE is analogous to
the Landau fall to the center [31] and represents the breaking
of the continuous scale symmetry to a discrete one. This
phenomenon is present in the Thomas collapse of the
nonrelativistic three-boson system in the limit of zero-range
interactions [32] and in the Efimov effect [33,34], unified as
the Thomas-Efimov effect (see, e.g., Ref. [35]).
Our aim is to explore the solutions, in the chiral limit, of

the fermion-scalar ladder BSE, obtained by using the NIR
of the BS amplitude and the so-called Light-front (LF)
projection, that amounts to integrate over the minus
component of the LF momentum k− ¼ k0 − k3 (see the
application of this technique to systems with only fer-
mionic d.o.f. in Refs. [36,37]). The analysis in the chiral
limit of the system of integral equations for the Nakanishi
weight functions (NWFs), formally derived from the
initial homogeneous BSE once the NIR is adopted, allows
one to highlight nontrivial outcomes, like (i) the existence
of a critical value of the coupling constant; (ii) the
explicit relation between coupling constant and the power
governing the universal powerlike falloff of the transverse-
momentum distribution; (iii) the prediction of the exponent
controlling the longitudinal-momentum fraction distribu-
tion, at the largest end point; and (iv) the comparison
with calculations of transverse-momentum distribution
for massive constituents in the UV region, namely where
the constituent masses can be disregarded. It has to be
emphasized that also the dependence of the coupling
constant upon covariant gauges has been quantitatively
investigated.

It should be recalled that the main advantage of dispos-
ing of such a dynamical model, albeit a simple one, is that a
study can be carried out in a formally exact framework.
In this way, the assumptions are clearly stated, and the
properties of the solutions, as well as of the associated
distributions, can be traced back to the features of the
physics content of the interacting kernel and the sym-
metries of the dynamical equations governing the model.
This work is organized as follows. Section II presents the

fermion-scalar homogeneous BSE model in covariant
gauges and the NIR of the scalar amplitudes that allows
one to expand the BS amplitude on the relevant operators
for a 1=2þ system. In Sec. III, the uncoupled integral
equations for the Nakanishi weights functions are obtained
by exploring the scale invariance of the homogeneous BSE
in the chiral limit. In Sec. IV, the results obtained from the
numerical solutions are provided, and the results are
discussed. In Sec. V, our conclusions are drawn.

II. BSE AND THE NAKANISHI INTEGRAL
REPRESENTATION

The bound system under consideration is governed by
the following interacting Lagrangian [17],

L ¼ λFψ̄=Vψ − iλSϕ�
∂

↔

μϕVμ; ð1Þ

where Vμ is the interacting vector-boson field; ϕ and ψ
are the scalar and fermionic fields, respectively; and the
coupling constants are dimensionless. In Ref. [17], this
system was studied in the Feynman gauge. Here, we
extend the analysis for an arbitrary covariant gauge, in
the chiral limit. The homogeneous BSE for a fermion-
boson system, forming a ð1=2Þþ bound state, with ladder
vector interaction is

Φðk; pÞ ¼ G0ðksÞSðkfÞ
Z

d4k0

ð2πÞ4 iKðk; k0; pÞΦðk0; pÞ; ð2Þ

where Φðk; pÞ is the BS amplitude, G0ðksÞ is the scalar
propagator, and SðkfÞ is the fermionic propagator

G0ðksÞ ¼
i

k2s −m2
s þ iϵ

; SðkfÞ ¼ i
=kf þmf

k2f −m2
f þ iϵ

; ð3Þ

with the scalar and fermionmomenta given by ks ¼ p=2 − k
and kf ¼ p=2þ k, respectively. In addition, iKðk; k0; pÞ is
the interaction kernel, that reads in a particular covariant
gauge ζ
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iKðk; k0; pÞ ¼ −iλSλFγμ
ðp− k− k0Þν

ðk− k0Þ2 − μ2 þ iϵ

×

�
gμν − ð1− ζÞ ðk0 − kÞμðk0 − kÞν

ðk− k0Þ2 − ζμ2 þ iϵ

�
; ð4Þ

where μ is the vector-boson mass.
The BS amplitude for a ð1=2Þþ system can be decom-

posed in the following Dirac basis [17],

Φðk; pÞ ¼ ½O1ðkÞϕ1ðk; pÞ þO2ðkÞϕ2ðk; pÞ�Uðp; sÞ; ð5Þ

where ϕiðk; pÞ are scalar functions and Uðp; sÞ is the
spinor of the bound state with squared mass M2 ¼ p2,
normalized as ŪU ¼ 1, satisfying ð=p −MÞUðp; sÞ ¼ 0,
with O1ðkÞ ¼ 1̂ and O2ðkÞ ¼ =k=M being operators. The
mass of the system M is related to the binding energy B as
M ¼ 2m̄ − B, where m̄ ¼ ðmf þmsÞ=2.
An important tool to solve the BSE in Minkowski space

is the NIR. It provides the analytical structure in terms of
the external momenta. With this in mind, we express each
component of the BS amplitude as follows [18,19]:

ϕiðk;pÞ¼
Z þ1

−1
dz0

Z
∞

0

dγ0
giðγ0;z0Þ

½k2þp ·kz0−κ2−γ0 þ iϵ�3 ; ð6Þ

where giðγ0; z0Þ are the NWFs and κ2 ¼ m̄2 −M2=4. Then,
one can analytically perform both relevant four-dimensional
integrations as well as the critical LF projection [38,39].
Remarkably, by combining the NIR and a LF projection,

it is possible to formally obtain a system of coupled integral
equation for the NWFs from the BSE, as given for the
massive case in Ref. [17].

III. CHIRAL LIMIT AND SCALE INVARIANCE

In order to carry out the chiral limit, one simply puts
both the constituent masses, ms and mf; the vector-boson
mass, μ; and the bound-system mass, M, equal to 0. In this
limit, the system is decoupled, and one remains with the
following integral equations:

Z
∞

0

dγ0
g1ðγ0; zÞ
½γ þ γ0�2

¼ −
α

2π

Z þ1

−1
dz0

Z
∞

0

dγ0g1ðγ0; z0Þ

× ðPð1Þ
1 ðγ; z; γ0; z0Þ þ ð1 − ζÞPð2Þ

1 ðγ; z; γ0; z0ÞÞ; ð7Þ
Z

∞

0

dγ0
g2ðγ0; zÞ
½γ þ γ0�2

¼ −
α

2π

Z þ1

−1
dz0

Z
∞

0

dγ0g2ðγ0; z0Þ

× ðPð1Þ
2 ðγ; z; γ0; z0Þ þ ð1 − ζÞPð2Þ

2 ðγ; z; γ0; z0ÞÞ; ð8Þ

where z ¼ −2kþ=M, with kþ ¼ k0 þ k3 the longitudinal-
momentum, and α ¼ ðλSλFÞ=ð8πÞ. In particular, the
longitudinal-momentum fraction for the fermion is
ξ ¼ ð1 − zÞ=2 and for the boson is 1 − ξ ¼ ð1þ zÞ=2.
The functions defining the kernel PðaÞ

i are given in
Appendix A.
The coupling constants, λS and λF, for the fermion-boson

system are dimensionless, as is α. Theories with this
property become scale invariant in the chiral limit. In fact,
one can explicitly verify the scale invariance of Eqs. (7)
and (8) by applying the scale transformation γ → Λγ, withΛ
any constant, and recalling that γ0 is an integration variable,
and one can use γ0 → Λγ0. Therefore, one expects that the
solutions of Eqs. (7) and (8) are homogeneous functions in γ
with a power-law behavior [40–42]. This property naturally
leads to the following factorization ansatz:

giðγ; zÞ ¼ γrfi;rðzÞ: ð9Þ

After substituting our ansatz (9) in Eq. (7), one can show
that the condition for a finite integral is 0 < r < 1. This
solution is not physically acceptable because the LF
projection of the scalar function ϕ1 in the impact-param-
eter space would have a divergence at the origin (see, e.g.,
Refs. [43,44] for a discussion of the BS amplitude in the
impact-parameter space for both two-scalar bound system
and pion, respectively). On the other hand, for Eq. (8),
one realizes that the power r has to fulfill the constraint
−1 < r < 0 for getting a well-defined integration on γ0 and
avoiding the singularity of the kernel at the end points
[cf. Eq. (10) below].
Therefore, from now on, one can retain only Eq. (8). By

performing the integration on γ of both sides of Eq. (8), one
obtains an integral equation for f2;rðzÞ and looks for real
eigenvalues λ2 ¼ 2π=α. Namely, one remains with the
following integral equation:

frðzÞ¼
α

2π

Z þ1

−1
dz0½Gðz;z0Þþð1−ζÞHðz;z0Þ�frðz0Þ; ð10Þ

where the subscript 2 in frðzÞ has been dropped out for
simplicity and the two contributions to the kernel are
given by

Gðz; z0Þ ¼ 1

2jrjð1 − jrjÞ
��

1þ z
1þ z0

�jrj
θðz0 − zÞ

þ
�
1þ 4jrj

ð1 − z0Þ
��

1 − z
1 − z0

�jrj
θðz − z0Þ

�
ð11Þ

and
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Hðz; z0Þ ¼ 1

2jrjð1 − jrjÞð2 − jrjÞ
��

1þ z
1þ z0

�jrj
θðz0 − zÞ

�
−jrj3 þ 7jrj2 − 11jrj þ 3

ð3 − jrjÞ þ jrjð1 − jrjÞ
ð1þ z0Þ

�

þ
�
1 − z
1 − z0

�jrj
θðz − z0Þ

�
−jrj3 þ 7jrj2 − 11jrj þ 3

ð3 − jrjÞ −
jrjð1 − 2jrjÞ
ð1 − z0Þ

��
: ð12Þ

One can explicitly check that the combination of the factor
(1� z) with the corresponding theta-function yields a
vanishing kernel at the end points (z ¼ �1), implying
frð�1Þ ¼ 0. For a finite r, the kernel is not symmetric
under the transformation z ↔ −z (this feature entails
real and complex conjugated eigenvalues), and therefore
we expect that the solutions are nonsymmetric, i.e.,
frðzÞ ≠ frð−zÞ. Due to this property, it is interesting to
observe that in the chiral limit the momentum fraction
distributions of the boson and the fermion are distinct, as
illustrated in what follows.
By integrating on z both sides of Eq. (10), after inserting

the change of variables y� ¼ ð1� zÞ=ð1� z0Þ, one can
obtain the following expression of the coupling constant α
(see details in Appendix B):

αðr; ζÞ ¼ 2π

"
1þ 2jrj

jrjð1− r2Þ

þ ð1− ζÞ −3jrj3 þ 17r2 − 22jrj þ 6

2jrjð1− r2Þð2− jrjÞð3− jrjÞ

#−1

: ð13Þ

The coupling constant αðr; ζÞ as a function of the power r,
for different gauges, is presented in the left panel of Fig. 1.
At fixed gauge, αðr; ζÞ grows for increasing jrj up to a
maximum value, that we call the critical coupling constant,
αc. The corresponding critical value of jrj is reached around

jrcj ∼ 0.5� 0.1 (the uncertainties are given by the variation
of ζ ∈ ½0; 1�). For α > αc, the power r becomes complex,
and Eq. (10) presents a pair of log-periodic solutions (see,
e.g., Ref. [31]), which demands one extra scale to deter-
mine the solution uniquely: a phenomenon known as
Miransky scaling [21–23] in the context of quantum field
theory. The critical value αc depends on the covariant
gauge, as shown in the right panel of Fig. 1, where the
gauge choice has been restricted to the interval [0, 1]. The
value of αc smoothly decreases with respect to ζ from
the Landau to the Feynman gauge, changing by only ∼8%.
The second term in Eq. (13) leads to a decreasing αc for
ζ → 1. The analysis of a more general case with ζ ∉ ½0; 1�,
as well as noncovariant gauges, is left for a future work.
It is worth noticing that from the left panel of Fig. 1 one

is able not only to separate the region where the solutions
Eq. (10) are stable but also where they are unphysical. This
can be understood by recalling that for an increasing value
of α the binding grows, and hence the system becomes
more compact; i.e., the average size of the system shrinks.
The latter feature translates [see Eqs. (14) and (15) below,
for a hint] in a tail of the momentum distribution higher,
from a heuristic application of the uncertainty principle.
This eventually means a smaller value of the power r in
Eq. (9). For the branch where r < rc, one notices from the
left panel of Fig. 1 that the derivative dα=dr is positive, and
therefore this region has to be excluded in the analysis of
physical systems.

0 0.2 0.4 0.6 0.8 1
r   

0

0.5

1

1.5

Feynman

 ζ = 0.50

Landau

0 0.2 0.4 0.6 0.8 1

 ζ

1.2

1.24

1.28

c

FIG. 1. Left panel: coupling constant of the fermion-boson system in the chiral limit, Eq. (13), vs the power r [see Eq. (9)]. Solid line:
Feynman gauge (ζ ¼ 1). Dotted line: ζ ¼ 0.5 gauge. Dashed line: Landau gauge (ζ ¼ 0). Right panel: the critical value αc of the
coupling constant in Eq. (13) for different gauges in the range 0 ≤ ζ ≤ 1.

A. NORONHA et al. PHYS. REV. D 107, 096019 (2023)

096019-4



IV. NUMERICAL SOLUTIONS

The solutions of the integral equation for frðzÞ have been
obtained by expanding frðzÞ onto a spline basis. In this
way, one discretizes the eigenvalue problem, where the
coupling constant α is the inverse of the eigenvalue. We
solve Eq. (10) by looking for the largest real eigenvalue
within a set of r values, in different covariant gauges.
To analyze the eigenfunctions frðzÞ of Eq. (10), it is

convenient to use a new variable, ξ ¼ ð1 − zÞ=2, that
corresponds to the fermion longitudinal-momentum frac-
tion. The function frðξÞ for different values of jrj and α is
shown in Fig. 2. In the left panel, the calculation was
performed in Feynman gauge, while, in the right panel, it
was considered the Landau gauge. For both gauges, frðξÞ
obtained with the pair ðjrcj; αcÞ is represented by a solid
line. From Fig. 2, one can notice that the general form of
frðξÞ is very similar in different gauges, and it is vanishing
at the end points, as anticipated in the discussion of fr at
z ¼ �1. In all cases, there is a peak at ξ ∼ 10−5, which
means that the boson average longitudinal-momentum
fraction, h1 − ξi, is remarkably large. Moreover, the results
for the Feynman gauge, ζ ¼ 1, are closer to each other,
while in the Landau gauge, ζ ¼ 0, where only the trans-
verse d.o.f. of the vector boson are present, the differences
are more pronounced. The sharpest peak can be obtained in
the Landau gauge in correspondence to r ¼ −1, i.e., when
the NWF falloff is more fast.
Let us summarize the salient features of frðξÞ: (i) the

sharp peak for ξ close to 0 leads to a scalar diquark carrying
almost all the mock nucleon longitudinal-momentum
fraction; (ii) the Landau-gauge distributions have peaks
sharper than the ones in the Feynman gauge; and (iii) in the
two gauges, the distributions corresponding to αc are quite
similar, given the small dependence of the critical coupling
on ζ. Interestingly, the property i entails that the massless

fermion carries a spin opposite to the mock nucleon one,
since for ξ ¼ 0 the fermion is moving toward negative z
axis and the massless fermion helicity is positive (see also
details in Ref. [17]). Then, the total spin of the composite
state is obtained by adding one unit of orbital angular
momentum, which is necessarily of relativistic origin, as
expected in the chiral limit.
In the Feynman gauge, where the kernel contribution

given in Eq. (11) is acting, the height of the peak close to
ξ ¼ 0 is triggered by the maximum of the kernel contribu-
tion that appears for z ∼ z0 (heuristically, one can deduce this
feature from the values of the ratios ð1� zÞ=ð1� z0Þ ≤ 1 in
combination with the corresponding theta-functions) and by
the factor 4jrjð1 − z0Þ−1, which enhances the contribution
for z0 → 1 [recall that ξ ¼ ð1 − zÞ=2]. Analogously, the
feature ii in the Landau gauge, i.e., the narrowest peak close
to ξ → 0 for jrj > 0.5, can be explained by analyzing the
kernel contribution given in Eq. (12). The term −jrjð1 −
2jrjÞð1 − z0Þ−1 for z > z0 in Eq. (12) is additive to the term
1þ 4jrjð1 − z0Þ−1 in Eq. (11) when jrj > 0.5, enhancing the
kernel for z0 → 1, and consequently resulting in a sharper
peak of frðξÞ in comparison to the Feynman gauge. In this
case, one has almost a Dirac delta for jrj → 1, and one can
assume a fermion at rest.

A. Transverse degree of freedom

We have quantitatively investigated the relation between
what we have learned in the chiral-limit analysis of the
BSE and the numerical solutions of the ladder BSE for
massive constituents and exchanged vector boson, Eq. (2),
for large transverse momentum (UV region). In this limit,
all the masses can be disregarded with respect to jk⃗⊥j2, and
the scale invariance becomes a very good symmetry. To
proceed, let us define the components of the LF-projected
BS amplitude [17]
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FIG. 2. frðξÞ as a function of the momentum fraction ξ, for a set of the pair ðjrj; αÞ with an arbitrary normalization. Left panel:
solutions of Eq. (10) in the Feynman gauge. Solid line: ðjrcj ¼ 0.455; αc ¼ 1.187Þ. Dashed line: (0.75, 0.8248). Dotted line:
ð0.9999; 10−4Þ. Right panel: the same as in the left panel, but for the Landau gauge. Solid line: ðjrcj ¼ 0.522; αc ¼ 1.276Þ. Dashed line:
(0.75, 0.9811). Dotted line: ð0.9999; 10−4Þ. Note that ξ ¼ ð1 − zÞ=2.
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ψ iðγ; zÞ ¼ iM
Z þ∞

−∞
dk−ϕiðk; pÞ

¼
Z þ∞

0

dγ0
giðγ0; zÞ

½γ0 þ γ þ ð1 − z2Þκ2 þ z2m̄2�2 ; ð14Þ

with γ ¼ jk⃗⊥j2. From Eq. (14), with the ansatz given in
Eq. (9), it is possible to conclude that the UV behavior of
the LF-projected BS amplitude is given by [recall that
r ∈ ð−1; 0Þ]

ψ2ðγ; zÞ ∼
γ→∞

γr−1frðzÞ: ð15Þ

The strategy to extract relevant information is to solve
Eq. (2), for a given set of parameters, and analyze if the
solution behaves as predicted by Eq. (15) for large momen-
tum. In the Feynman gauge, the critical value of αc is 1.187
with the exponent rc ¼ −0.455 (see Fig. 1). Therefore, in
this gauge, it is expected that the LF-projected BS amplitude
corresponding to a coupling constant ≃αc decreases with γ,
for any z, as follows:

ψ2ðγ; zÞ ∝ γ−1.455: ð16Þ

Figure 3 presents the normalized LF-projected BS
amplitude

N2ðγÞ ¼
ψ2ðγ; ξ0 ¼ 0.5Þ
ψ2ð0; ξ0 ¼ 0.5Þ ;

obtained in Ref. [17], by numerically solving the
Minkowski BSE, Eq. (2) for massive constituents, in the
Feynman gauge for a massless vector exchange, and equal-
mass constituents, mf ¼ ms. The binding energy was
chosen B=m̄ ¼ 0.5, getting α ¼ 1.189, that is very close
to its critical value. In Fig. 3, the dashed line is the product
N2ðγÞγ1−r, with r ¼ −0.455, and shows a clear asymptotic
constant behavior.
In Fig. 4, we present two more comparisons in the

Feynman gauge, that correspond to a mock nucleon, with
mS=mF ¼ 2 and M=m̄ ¼ 2 − B=m̄ ¼ 1.9. The massive
ladder-BSE is numerically solved in Minkowski space with
two different vector-boson masses, μ=m̄ ¼ 0.15 and μ=m̄ ¼
0.50 (see Ref. [17] for details), obtaining α ¼ 0.648 and
α ¼ 0.898, respectively. For the first value of α, one gets
r ¼ −0.817 from the physical branch of αðr; ζÞ in the left
panel of Fig. 1, while for the second value, one has
r ¼ −0.718. In the left panel, the calculation of N2ðγÞ,
corresponding to α ¼ 0.648, is shown together with the

0 2 4 6 8 10

/ m
2

10
-2

10
-1

10
0

  
N

2
(

)
N

2

1.455

FIG. 3. The normalized LF amplitude N2ðγÞ ¼ ψ2ðγ; ξ0 ¼
0.5Þ=ψ2ð0; ξ0 ¼ 0.5Þ as a function of the transverse momentum
square γ ¼ jk⃗⊥j2 in the Feynman gauge, for an equal-mass system,
massless vector exchange and binding energy ratio B=m̄ ¼ 0.5.
Solid line: N2ðγÞ. Dashed line: N2ðγÞ × γ1.455, with the power
rc ¼ −0.455 corresponding to the critical value αc ¼ 1.187
(cf. Fig. 1, left panel).
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FIG. 4. The same as in Fig. 3, but with ms=mf ¼ 2 and binding energy ratio B=m̄ ¼ 0.1 (i.e. M=m̄ ¼ 1.9). Left panel: μ=m̄ ¼ 0.15
and α ¼ 0.648. Solid line: N2ðγÞ. Dashed line: N2ðγÞ × γ1.817. Right panel: μ=m̄ ¼ 0.5 and α ¼ 0.898. Solid line: N2ðγÞ. Dashed line:
N2ðγÞ × γ1.718.
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product N2ðγÞγ1−r, and in the right panel, there is the
comparison with the case α ¼ 0.898.
Notably, the constant behavior of the dashed lines in

Figs. 3 and 4 starts from values of γ=m̄2 order-of-magnitude
different, γ=m̄2 > 6 and γ=m̄2 > 600, respectively. This
occurs due to the difference between the coupling constant
and its critical value, as one can realize from Fig. 3, where
α ¼ αc and the scale invariance is established greatly
earlier. Moreover, the striking constant behavior of the
dashed lines shown in Figs. 3 and 4 illustrates the predictive
power of the chiral-limit analysis performed in this work
and suggests the possibility to extract quantitative signa-
tures of the role of the one-particle exchange from the
transverse-momentum distributions of hadrons.

B. Longitudinal degree of freedom

The analysis of the function frðzÞ close to the end point
z ¼ −1, i.e., a longitudinal-momentum fraction ξ ¼ 1, is
interesting for the insight one can gain on the valence
parton distribution function, that should dominate the
behavior close to ξ ¼ 1. Restricting to the Feynman gauge,
for the sake of simplicity, one has the following approxi-
mation of the integral equation in (10) [cf. the kernel in
Eq. (11)] for z → −1,

frðzÞ≃
α

2π

1

2jrjð1− jrjÞ
�
ϵjrj

Z
1

−1þϵ
dz0

�
1

1þ z0

�jrj
frðz0Þ

þ 2jrj
Z

−1þϵ

−1
dz0

�
1

1− z0

�jrj�
1þ 4jrj

ð1− z0Þ
�
frðz0Þ

�
;

ð17Þ

that leads to

frðzÞ → ϵjrj for z → −1þ ϵ: ð18Þ

Notice that the second integral goes to zero more quickly
that the first one, since 1 > jrj and the interval of
integration shrinks with the first power of ϵ.
From the above result, one deduces that the valence

parton distribution function goes to the end point ξ ¼ 1

proportionally to ð1−ξÞ2jrj, i.e., ð1−ξÞ1.634 and ð1−ξÞ1.436
for the two cases shown in Fig. 4. It should be recalled that
we are considering the chiral limit and a pointlike scalar
and that in the limit α → 0 the exponent becomes 2. In
general, our 1=2þ fermion-scalar bound system, in spite of
the simple structure adopted, is able to exhibit a large-ξ
behavior not too far from the exponent 3 suggested by the
counting rule (see, e.g., Refs. [45–48] for arguing an
acceptable exponent as suggested by the analysis of the
proton experimental data).

V. SUMMARY

By using the Nakanishi integral representation of the
Bethe-Salpeter amplitude, we have solved the homo-
geneous BSE in the chiral limit for a 1=2þ bound system,
composed by a fermion and a scalar, in Minkowski space.
The interaction kernel is given by the one-particle
exchange, with the actual dependence upon the different
covariant gauges. In the chiral limit, one gets the decou-
pling of the two-channel integral system that determines
the two Nakanishi weight functions, needed for the full
reconstruction of the BS amplitude. Moreover, by exploit-
ing the scale invariance that establishes in the chiral limit,
one gets the factorization of the Nakanishi weight func-
tions in an homogeneous function in γ and a function that
depends upon the compact variable z. Remarkably, the
developed formal analysis allows us to determine the exact
relation between the coupling constant, that drives the
binding of the system, and the power that governs the
powerlike falloff of the transverse-momentum amplitude,
as well as the end point behavior of the longitudinal
momentum fraction amplitude.
Solutions have been presented for Feynman, Landau, and

covariant gauges in between, where the coupling constant
has to be below a critical value in order to allow stable
solutions, a problem already known for integral equations
having symmetry under scale transformation. Above such
critical coupling, the system breaks the continuous scale-
invariant regime to a discrete-scale one, and the equations
allow log-periodic solutions that demand the introduction of
a boundary condition. This phenomenon is associated with
Efimov effect in nonrelativistic few-body physics and to
the Miransky scaling in the continuum framework of the
quantum field theory (see, e.g., Refs. [21,28]). A striking
qualitative feature in all analyzed covariant gauges is that
the scalar prefers to carry the nucleon momentum in the
spin-antialigned (fermion spin opposite to the system one)
configuration. Therefore, it is necessary to add the fermion-
scalar orbital angular momentum to build the mock nucleon
spin, making clear the relativistic origin of such a configu-
ration, already observed in Ref. [17].
Finally, some relevant cases corresponding to both a

massless vector-boson exchange and a massive one have
been discussed, by comparing in the UV region the
solutions of the massive ladder-BSE and the chiral-limit
prediction. The very good agreement suggests the interest-
ing role of the hadron transverse-momentum distributions in
the search of quantitative signatures of the one-particle
exchange, that could be investigated by also analyzing the
end point behavior of the valence parton distribution
function (as it is well known from the counting-rule
predictions). Plainly, a generalization of the present analysis
to the Faddeev-Bethe-Salpeter equations is highly desirable,
also including the light-front approach (see, e.g., a first
attempt in Refs. [49,50]), that is necessary for addressing the
phenomenology of the hadron momentum distributions.

CHIRAL LIMIT OF A FERMION-SCALAR ð1=2Þþ SYSTEM … PHYS. REV. D 107, 096019 (2023)

096019-7



ACKNOWLEDGMENTS

This study was financed in part by Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) under
Grants No. 313030/2021-9 (W. P.) and No. 308486/2015-3
(T. F.) and INCT-FNA Project No. 464898/2014-5 and by
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES) under Grant No. 88881.309870/2018-01

(W. P.) and Fundação deAmparo à Pesquisa do Estado de São
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APPENDIX A: KERNEL FUNCTIONS

In this appendix, we present the expressions for the
kernel of the integral equations (7) and (8),

Pð1Þ
1 ðVÞ ¼ −

Z
1

0

dv
θðz0 − zÞð1þ zÞ−1ð2 − vÞh

γð1 − vÞð1þz0
1þzÞ þ γ0

i
2

; ðA1Þ

Pð2Þ
1 ðVÞ ¼ −

1

2

Z
1

0

dv

8<
:ð1 − vÞð1þ zÞ−1θðz0 − zÞh

γð1 − vÞð1þz0
1þzÞ þ γ0

i
3

"
ð3 − 5vþ 2v2Þð1þ z0Þγ

ð1þ zÞ þ 3ð1 − 2vÞγ0
#9=
;; ðA2Þ

Pð1Þ
2 ðVÞ ¼ −

Z
1

0

dv

8<
: θðz0 − zÞ
γ
h
γð1 − vÞð1þz0

1þzÞ þ γ0
i
2

�
γ
vð1 − vÞð1þ z0Þ

2ð1þ zÞ þ γ0v
�
þ θðz − z0Þ
γ
h
γð1 − vÞð1−z0

1−zÞ þ γ0
i
2

×

"
γ
ð1 − vÞð4þ vð1 − z0ÞÞ

2ð1 − zÞ þ γ0v

#9=
;; ðA3Þ

Pð2Þ
2 ðVÞ ¼ −

1

2

Z
1

0

ð1 − vÞdv
8<
: θðz0 − zÞ
γ
h
γð1 − vÞð1þz0

1þzÞ þ γ0
i
3

�
γ2

ð1 − vÞð1þ z0Þð1þ v2ð1þ z0Þ − vð3þ 2z0ÞÞ
ð1þ zÞ2

þ γγ0
ð1 − vð2þ z0ÞÞ

ð1þ zÞ þ 3γ02v
�
þ vθðz − z0Þ
γ
h
γð1 − vÞð1−z0

1−zÞ þ γ0
i
3

"
−γγ0

ð4 − z0Þ
ð1 − zÞ þ 3γ02

− γ2
ð1 − vÞð1 − z0Þð1 − v − z0ð2 − vÞÞ

ð1 − zÞ2
#9=
; ðA4Þ

with V ≡ fγ; z; γ0; z0g.

APPENDIX B: COUPLING CONSTANT α AND POWER r

This appendix illustrates the formal steps to obtain the relation between the coupling constant α and the power r. The
basic step is the integration on the variable z of both sides in Eq. (10). In particular, to perform the integration on the two
kernel contribution in Eqs. (11) and (12), respectively, the following result is useful,

Z þ1

−1
dz

�
1� z
1� z0

�jrj
θð�z0 ∓ zÞ ¼ ð1� z0Þ

Z
2=ð1�z0Þ

0

dy�y
jrj
� θð1 − y�Þ ¼ ð1� z0Þ

Z
1

0

dy�y
jrj
� ¼ 1� z0

1þ jrj ; ðB1Þ

with y� ¼ ð1� zÞ=ð1� z0Þ. Then, one gets

Z þ1

−1
Gðz; z0Þdz ¼ 1

2jrjð1 − jrjÞ
�
1þ z0

1þ jrj þ
�
1þ 4jrj

1 − z0

�
1 − z0

1þ jrj
�
¼ 1þ 2jrj

jrjð1 − r2Þ ; ðB2Þ
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and

Z þ1

−1
Hðz; z0Þdz ¼ 1

2jrjð1 − r2Þð2 − jrjÞ
�
2
−jrj3 þ 7jrj2 − 11jrj þ 3

ð3 − jrjÞ þ r2
�
¼ −3jrj3 þ 17jrj2 − 22jrj þ 6

2jrjð1 − r2Þð2 − jrjÞð3 − jrjÞ : ðB3Þ

Collecting the above result, from Eq. (10), one gets

C0 ¼
Z þ1

−1
dzfrðzÞ ¼

α

2π

Z þ1

−1
dz0

Z þ1

−1
dz½Gðz; z0Þ þ ð1 − ζÞHðz; z0Þ�frðz0Þ

¼ α

2π

�
1þ 2jrj

jrjð1 − r2Þ þ ð1 − ζÞ −3jrj3 þ 17jrj2 − 22jrj þ 6

2jrjð1 − r2Þð2 − jrjÞð3 − jrjÞ
� Z þ1

−1
dz0frðz0Þ; ðB4Þ

and therefore

α ¼ 2π

�
1þ 2jrj

jrjð1 − r2Þ þ ð1 − ζÞ −3jrj3 þ 17r2 − 22jrj þ 6

2jrjð1 − r2Þð2 − jrjÞð3 − jrjÞ
�
−1
: ðB5Þ
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