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We examine effective field theories (EFTs) with a continuum sector in the presence of gravity. We first
explain, via arguments based on central charge and species scale, that an EFTwith a free continuum cannot
consistently couple to standard (i.e., 4D Einstein) gravity. It follows that EFTs with a free or nearly free
continuum must have either a finite number of degrees of freedom or nonstandard gravity. The latter claim
is realized for holographically defined continuum models. We demonstrate this by computing the
deviations from standard gravity in a specific 5D scalar-gravity system that gives rise to a gapped
continuum (i.e., the linear dilaton background). We find an R−2 deviation from the Newtonian potential. At
finite temperature, we find an energy density with matterlike behavior in the brane Friedmann equation,
holographically induced from the bulk geometry. Thus, remarkably, a braneworld living in the linear
dilaton background automatically contains dark matter. We also present a slightly more evolved
asymptotically AdS linear dilaton model, for which the deviations exhibit a transition between AdS
and linear dilaton behaviors.
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I. INTRODUCTION

Among the multitude of effective field theories (EFTs)
extending the Standard Model (SM) of particles physics,
models involving a continuum sector stand out as an
intriguing possibility. Of course, any weakly coupled
Poincaré-invariant quantum field theory (QFT) features a
continuum in its spectral distributions. But beyond this
standard case, a nearly free continuum can also emerge in
theories with some nontrivial underlying dynamics. Such a
continuum can, for example, appear from gauge sectors
with a large number of colors or from EFTs involving a
brane (i.e., domain wall or defect) living in a higher-
dimensional spacetime. Such nontrivial continuum sectors
are the subject of this work.

From a more phenomenological viewpoint, we may also
write, from a bottom-up approach, a continuum model
with arbitrary spectral functions describing the phenomena
that are potentially observables in a given set of experi-
ments, as allowed by the rules of the EFT paradigm.
Phenomenologically, the underlying dynamics of the con-
tinuummay, or may not, matter, depending on the situation.
In certain cases, it may be sufficient to use an effectivemodel
in which the continuum has properties analogous to an
ordinary free field. This is called a generalized free field [1].
This approach applies, for example, to processes observable
at colliders, such as “SM → continuum → SM” and
“SM → continuum” for which only the two-point function
of the continuum is needed. Regarding the latter class of
processes, we emphasize that, even though a continuum
does not havewell-defined asymptotic states, such processes
make sense as inclusive ones, for which no measurement of
the continuum final state is required.
The EFT of a free continuum works fine for scattering

processes observable at a collider. But are there other
physical observables for which the description of a con-
tinuum as a generalized free field does not apply? The
answer is positive: Whenever interactions with gravity are
considered, the underlying dynamics of the continuum does
matter. Clarifying the interplay of continuum models with
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gravity is the first aim of this work. This investigation will
then naturally lead us to explore aspects of gravity in
holographic models of continuum, which is its second aim.1

Our analysis is structured as follows.
The first part of the paper contains a broad analysis of

continuum EFTs. In Sec. II, we lay out the formalism and
introduce the notion of a generalized free field. In Sec. III,
we review the arguments (both old and new) that prevent a
generalized free field to consistently couple to standard
gravity. As an interesting aside, we give an argument for the
species scale that is valid for conformal field theories
(CFTs) with any central charge and coupling. We then
discuss the classes of models that give rise to a gravity-
compatible continuum. It turns out that, apart from the
conformal case, continuum models are best studied via
five-dimensional holographic models.
The second part of the paper is focused on gravity and

cosmology of holographically defined continuum models.
In Sec. IV, we lay out the basic holographic framework,
review necessary QFT aspects, and show how to compute
the deviations from the standard Friedmann equation and
Newtonian potential. In Sec. V, we solve two versions of a
specific scalar-gravity background (both analytically and
numerically) that features a gapped continuum and inves-
tigate gravity aspects. Section VI contains a summary.
Finally, Appendix A contains further discussions on the
transition between discretum and continuum, Appendix B
includes technical details on the solutions of the 5D scalar-
gravity system, and Appendix C explicitly computes the
conservation law in the linear dilaton and asymptotically
AdS linear dilaton backgrounds.

A. Previous literature

The phenomenological possibility of continuum mod-
els was first highlighted in Refs. [3,4]. We here mention
only a few of the subsequent developments as an intro-
duction into the literature, Refs. [5–9]. Aspects of cosmol-
ogy with a conformal sector have been investigated in, e.g.,
Refs. [10–14] and in Refs. [15–17] in the case of a large-N
weakly coupled CFT. A continuum as a mediator in the
dark sector has been investigated in Refs. [18,19]. Finally, a
proposal of “continuum dark matter” was recently made in
Refs. [20,21], that can be put in perspective with the
arguments and results of the present work.

B. Conventions

Throughout this work, we use the conventions of
Misner-Thorne-Wheeler [22], which include the mostly
plus metric signature sgnðgμνÞ ¼ ð−;þ; � � � ;þÞ. Likewise,
we define

ffiffiffi
g

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gμνj
p

for an arbitrary metric gμν in

any number of spacetime dimensions. In momentum
space, a particle with mass m on the mass shell satisfies
−p2 ¼ m2, where p2 ¼ pμpνgμν. When discussing quan-
tum fields, we will sometimes introduce the opposite
quantity q2 ≡ −p2, such that the correlators expressed in
terms of q2 match the formulas that would be obtained with
the mostly minus metric, which is a more common
convention for particle physics.

II. CONTINUUM MODELS

In this section, we discuss some basic aspects of
continuum models and introduce the notion of a free
continuum limit.

A. Continuum EFT

We consider an EFT described by the following four-
dimensional Lagrangian:

L ¼ Lparticles½φ� þ Lcontinuum½Φ� þ bÕ½φ�O½Φ�: ð2:1Þ
This Lagrangian contains, in general, irrelevant operators.2

The fundamental fields φ and Φ can, in principle, have any
spin.O and Õ are, in general, composite operators made of
the corresponding fundamental fields. For simplicity, the
latter are assumed to be scalars.
The Φ sector is assumed to feature a nontrivial

continuum—in a sense defined further below and in
Sec. II B. In the φ sector, the spectral functions are assumed
to describe stable or narrow particles as occurs in weakly
coupled QFT. The two sectors interact with each other only
via the Õ½φ�O½Φ� operator. From the viewpoint of an
observer able to probe the particle sector Lparticle½φ�, the
continuum sector is probed by the φ fields through the ÕO
operator. Thus, in the correlators of the φ fields, the
continuum sector manifests itself via subdiagrams made
out of the correlators of O½Φ�, i.e., hOðx1ÞOðx2Þi,
hOðx1ÞOðx2ÞOðx3Þi;….3 Our interest precisely lies in
these correlators of the continuum sector.
For any two-point (2pt) correlator, one can always

introduce a spectral representation of the form4

hOðxÞOð0Þi ¼
Z

d4p
ð2πÞ4 e

ip·x

Z
C
ds

iρðsÞ
−p2 − sþ iϵ

; ð2:2Þ

where ρðsÞ is the spectral distribution and the contour C
encloses nonanalycities of the correlator in momentum

1Along this line, the companion paper [2] focuses on the
emergence of cosmological dark matter in the linear dilaton
background.

2The ÕO operator is often taken as an irrelevant operator, i.e.,
dim½b� < 0. A detailed parametrization is unnecessary for our
purposes.

3Time ordering is left implicit; we use the usual shortcut
notation hOðxÞOð0Þi ¼ hΩjTfOðxÞOð0ÞgjΩi.

4This follows from Cauchy’s integral formula fðaÞ ¼
1
2πi

H
dz fðzÞ

z−a.
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space. In our conventions, the momentum is timelike for
p2 < 0. The nonanalycities can be either poles or branch
cuts along R−. On the domain corresponding to a branch
cut, the spectral density ρðsÞ is a smooth function. In this
most generic case, we refer to the Φ sector as a continuum.
As a more particular case, it may happen that the support of
ρðsÞ be a discrete set of points. Similarly, it is also possible
that the function be made of a series of narrow resonances
such that the branch cut can be approximated by a set of
points. In such cases, the spectral distribution describes a
countable set of standard 4D particles, and we refer to theΦ
sector more specifically as a discretum.

1. Interactions

It is useful to classify the interactions encoded in the
continuum sector.

(i) There are fundamental interactions between the Φ
fields, encoded inside the Lagrangian Lcontinuum. We
denote collectively these interactions by the cou-
pling g. These fundamental interactions may be
either weak or strong.

(ii) The continuum interacts with the particle sector via
the Õ½φ�O½Φ� operator. This implies that local
operators of the form

Lcontinuum ⊃ gO;nðO½Φ�ðxÞÞn ð2:3Þ

are generically present in the continuum sector.
Analogous ones with an arbitrary number of deriv-
atives also exist. All these operators are, in general,
present due to the quantum dynamics in the φ sector.
In general, even if these operators are set to zero at a
given scale, they are generated at a different scale
due to renormalization group (RG) running. We
refer collectively to these local operators as On with
corresponding coupling gO;n.

2. Realizations

In principle, any interacting QFT can realize the setup in
Eq. (2.1). For example, for a weakly coupled interacting
QFT, the continuous part of the spectral distribution ρ
encodes a multiparticle continuum and possibly a reso-
nance. However, our interest lies in theories that can give
rise to a free continuum when some parametric limit is
taken in the model (see Sec. II B). A nontrivial dynamics is
needed for such a limit to occur. It is realized in at least the
two following classes of theories.

(i) Gauge theories with a large number of colors N.—
For simplicity, we assume that the Φ fields are in the
adjoint representation, so that the standard large-N
scaling applies [23]. The theory may, in principle,
have either weak or strong ’t Hooft coupling
λ≡ g2N. As a particular case, the gauge theory
may be at a conformal fixed point in which case it is

a CFT. For λ ≪ 1, this occurs at a Banks-Zaks fixed
point if the theory has a number of flavors within
the conformal window. At λ ≪ 1 stringy effects
are expected to emerge for large N (see, e.g.,
Refs. [24–30]), while at λ ≫ 1 the stringy effects
are expected to decouple [31,32].

(ii) Holographic theories.—These arise from EFTs liv-
ing in a 5D background (with arbitrary metric)
featuring a flat 3-brane. In such a setup, an effective
Lagrangian of the form of Eq. (2.1) appears from the
viewpoint of an observer placed on the brane. The φ
field is identified as a brane-localized mode with
standard 4D spectral distribution, which mixes with
a continuum controlled by the 5D dynamics (see
Sec. V for more details). In such models, there are
both bulk and brane-localized local interactions, that
we denote by gbulk and gbrane, respectively. We also
refer to this setup as a “braneworld” in the context of
cosmological models.

B. The free continuum (GFT) limit

We are interested in taking a parametric limit for which
a free continuum arises in the general Lagrangian in
Eq. (2.1). Our notion of free continuum is equivalent to
the one described by a generalized free theory (GFT);
hence, we are using either name depending on context.
GFTs have been studied in the context of QFT and CFT

(see, e.g., Refs. [1,33,34]). In a GFT, the connected part of
the correlators ofO vanishes. As a result, the odd correlators
are zero, while the even correlators are given by the
disconnected contributions which are just a product of
2pt correlators. For example, for the 4pt correlator, we have

hOðx1ÞOðx2ÞOðx3ÞOðx4Þi ¼ hOðx1ÞOðx2ÞihOðx3ÞOðx4Þi
þ permutations: ð2:4Þ

We define the free continuum (i.e., GFT) limit as the
limit for which the fundamental interactions of the con-
tinuum sector vanish:

Lcontinuum

����
g→0

→ LGFT ð2:5Þ

while the spectral density does not become discrete (i.e.,
remains supported on R and not only on a discrete set of
points when g → 0). This definition of the free continuum
limit automatically excludes the trivial case of an interact-
ing QFT with finite degrees of freedom, since in that case
for g → 0 the multiparticle continuum vanishes and the
spectral density of O½Φ� becomes discrete. Thus, some
nontrivial dynamics in Lcontinuum is required for a free
continuum to emerge at g → 0.
Our definition of GFT allows for the existence of the

local interactions On. Thus, in our definition, the GFT
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correlators can have OðgO;nÞ contributions. This is, how-
ever, a minor point in the rest of our analysis, as we will
obtain the same conclusions as if gO;n ¼ 0.
How is the free continuum or GFT limit realized in the

classes of models listed in the previous Sec. II A 2?
(i) A GFT emerges from a gauge theory by taking the

limit of infinite number of colors N → ∞ at constant
’t Hooft coupling—notice that g → 0 in this limit.
Indeed, by normalizing the 2pt function coefficient
such that it does not scale with N, standard large-N
scaling arguments imply that the connected correla-
tors scale as powers of 1=N. In the N → ∞ limit, the
odd correlators areOð1NÞ, and the even correlators are
given by the free disconnected result plus Oð1NÞ
terms. This matches the properties of a GFT; hence,

Lgauge

����
N→∞
λ fixed

→ LGFT: ð2:6Þ

We could similarly write this limit for the full
Lagrangian including the On interactions.

(ii) AGFTemerges from a holographic setup by sending
the bulk couplings to zero. Indeed, in this limit the
bulk propagators are free; hence, the higher point
correlators factorize into 2pt propagators. The holo-
graphic theory inherits this property, and, therefore,
the holographic theory is a GFT. The brane cou-
plings contribute solely to the On interactions—
which are allowed in our definition of GFT. In
summary, for the full holographic Lagrangian, we
schematically have

Lholjgbulk→0 → Lparticles½φ� þ LGFT½Φ�
þ cÕ½φ�O½Φ�: ð2:7Þ

1. Continuous mass representation

In the GFT, the correlators of O can be described with a
diagrammatic expansion using perturbation theory in the
gO;n couplings. The resulting diagrams are built from the
On vertices, connected by lines which are the propagators
of O, i.e., the 2pt free correlator hOOigO;n→0. This is just
the usual structure of Feynman diagrams, here with GFT
propagators instead of ordinary propagators.
We can, thus, view the continuum sector as a set of fields

Φ≡ fφsg whose only interactions are those encoded in the
On operators. The domain for the s label is determined
below. These φs fields must reproduce the propagator ofO.
Using the spectral representation introduced in Eq. (2.2),
this is possible if the O½φs� operator is

O½φs� ¼
Z

∞

0

ds
ffiffiffiffiffiffiffiffiffi
ρðsÞ

p
φs ð2:8Þ

with

L½φs�continuum ⊃
Z

∞

0

dsL½φsðxÞ�free;

L½φsðxÞ�free ¼ −
1

2
ð∂μφsÞ2 −

s
2
ðφsÞ2: ð2:9Þ

The φsðxÞ are ordinary free fields with squared mass s and
propagator5

hφsðxÞφs0 ð0Þi ¼ δðs − s0Þ
Z

d4p
ð2πÞ4

ieipx

−p2 − sþ iϵ
: ð2:10Þ

Equation (2.10) together with the definition (2.8) repro-
duces the spectral representation Eq. (2.2) of the
hOðxÞOð0Þi correlator. Similar developments can be found
in Refs. [35,36].
The higher point correlators of O follow trivially, since

they inherit the properties of the free fields φsðxÞ. Namely,
the odd correlators ofO vanish, up toOðgO;nÞ, and the even
correlators tend to the free disconnected result, up to
OðgO;nÞ, as required for a GFT. For example, in the 4pt
case, one obtains Eq. (2.4).

III. CONSISTENCY WITH STANDARD GRAVITY

In the previous section, we have introduced the notion of
a free continuum, i.e., of a GFT. Here, we expand the
explanation of why a GFT is not compatible with 4D
Einstein gravity. Throughout the paper, we refer to 4D
Einstein as standard gravity. In the present section, we
further often shorten “standard gravity” to “gravity.” Some
of the arguments already existed and are hereby reviewed,
while others are new to the best of our knowledge. We then
discuss gravity-compatible realizations and sketch some
basic cosmological consequences.

A. Arguments from OPE

In this section, we provide arguments based on the
operator product expansion (OPE).

1. From CFT (review)

We start with a gauge theory with arbitrary ’t Hooft
coupling, focusing on the conformal case. In conformal
theories, there is a rigorous claim that the simultaneous
existence of a generalized free field and the stress-energy
tensor are incompatible, unless the generalized free field is
an ordinary free field (see, e.g., Refs. [33,34]).
A version of the proof of this well-known result goes as

follows. Let us assume that a conformal theory contains a
generalized free field O and a stress tensor T μν. The stress
tensor has dimension d and spin 2. The 4pt function of O,
given in Eq. (2.4), contains information about the spectrum

5In terms of quantization rules, one introduces creation
and annihilation operators of fields φs such that ½ap;s; a†p0;s0 � ¼ð2πÞ32p0θðp0Þδð3Þðp − p0Þδðs − s0Þ.
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and OPE coefficients of O. It can be shown [34] that
Eq. (2.4) implies that the OPE of OðxÞOð0Þ contains
only bilinear operators built from derivatives of O, e.g.,
O□

nO.6 Such operators have dimension 2Δþ 2n. These
facts put together imply that there can be a stress tensor in
the OPE of OðxÞOð0Þ only if 2Δþ 2 ¼ d, hence requiring
Δ ¼ ðd − 2Þ=2 (e.g., Δ ¼ 1 for d ¼ 4), which corresponds
to the ordinary free field [in which case one has
Φð0ÞΦðxÞ ⊃ 1

2
xμxνT μν]. Otherwise, i.e., if Δ > 1, there

cannot be T μν in the OPE of OðxÞOð0Þ. The latter feature
implies, by symmetry of the OPE coefficients, that O is
absent from the T μνðxÞOð0Þ OPE. This is inconsistent with
translation invariance, which requires that O must appear
in this OPE with a nonzero coefficient. We thus reach a
contradiction. The contradiction is resolved if either the
generalized free field O or T μν are absent from the
conformal theory.

2. From continuous mass representation

The fact that a GFT with a stress tensor is inconsistent
can also be directly seen from the continuum mass
representation defined in Sec. II B 1. The ρðsÞ distribution
is, in general, supported over ½0;∞Þ, but the argument also
applies if the distribution is truncated to an interval such
as ½0;Λ2Þ, as may occur in an EFT. In the presence of the
free continuum described by the set of free fields φs, we
can formally derive a stress tensor from the Lagrangian
equation (2.9), which gives T μν ¼

R
dsTμν½φs�. We can

then compute the correlator of this generalized free stress
tensor with itself and focus on the traceless part. The result
is proportional to

R
ds δð0Þ

x2d
. Since

R
dsδð0Þ ¼ ∞, the central

charge is infinite.7 The infinite central charge effectively
sends to zero the coefficient involving T μν in the OPE of
OðxÞOð0Þ. This leads to a contradiction with translation
invariance, as in the CFT proof above. The argument given
here extends beyond the CFT case and holds whether or not
there are On local operators.

B. Arguments from species scale

Let us consider the GFT in the presence of dynamical
gravity via the action S ¼ Sgrav þ

R
d4x

ffiffiffi
g

p
Lcontinuum. This

is, in general, a low-energy EFT describing sub-Planckian
gravity interacting with matter, together with classical black
holes. What is the UV cutoff scale of this EFT?
Even though the strength of gravity is set by the reduced

Planck mass MPl, the actual validity scale of the EFT
may be lower. Using an argument based on the classical
black hole lifetime, Ref. [37] established the bound

Λ ∼MPl=
ffiffiffiffiffiffiffi
Nsp

p
, where Nsp is the number of species of

matter in the theory. This argument relies on Hawking
radiation and, thus, assumes that the species are stable or
narrow particles.
Here, we will verify that the species bound can be

extended, beyond weak coupling, to a CFT with arbitrary
central charge c and arbitrary ’t Hooft coupling λ. This is an
aside result that we use to strengthen our analysis and
which is also interesting in itself.

1. Species scale for CFT with arbitrary central charge

Let us consider S ¼ Sgrav þ
R
d4x

ffiffiffi
g

p
LCFT. We want to

determine the UV cutoff scale Λ of the theory. Let us
assume there is no cosmological constant, and let us put the
CFT at finite temperature T. The energy density is given by
ρCFT ¼ cπ2ζT4, with ζ ¼ 2 and ζ ¼ 3

2
at weak and strong

coupling, respectively. For simplicity, we drop the π2ζ
factor in the following. As a result of this energy density,
spacetime expands with a Hubble rate

H ∼
ffiffiffi
c

p T2

MPl
: ð3:1Þ

The associated volume for a Hubble patch is 1=H3. But this
volume is bounded from below by the cutoff of the theory,
as it cannot be smaller than the volume ðΔxÞ3 ¼ 1=Λ3,
which amounts to a Hubble rateH ¼ Λ. The corresponding
momentum scale is of the order of Λ, and, since the
temperature is proportional to the average momentum
scale, we can say that this Hubble rate is attained for
T ∼ Λ. Therefore, the UV cutoff is determined by the
condition HjT¼Λ ∼ Λ, which gives

Λ ∼
MPlffiffiffi
c

p : ð3:2Þ

In the case of weakly coupled stable species, we have
c → Nsp, which recovers the usual formula from Ref. [37].

2. Application to GFT

Having ensured that the species scale applies to any CFT,
we turn to the GFT. Viewing the GFT as the limit of a CFT
with c ∼ N2 → ∞, we can see that the number of species in
the GFT goes to infinity. Therefore, Λ → 0, and so there is
no energy regime where gravity is weakly coupled. This
means that a GFT coupled to gravity simply does not exist.
The same conclusion is obtained when considering the

continuous mass representation. For any Δ > 1, there is an
infinite number of degrees of freedom Nsp ¼ ∞; hence,
c ¼ ∞, which implies Λ → 0.
From all of the above arguments, we conclude that

gravity cannot couple to the GFT, because the latter has
infinitely too many degrees of freedom. Notice that, in
contrast, a CFT has a finite number of species c ∼ N2, and,

6The same feature is true in an ordinary free field theory, and,
thus, the same conclusion can be obtained using the continuum
mass representation.

7This is consistent with the viewpoint of the GFTas a CFTwith
N → ∞, which also gives an infinite central charge.
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thus, in that case the UV cutoff Λ is nonzero. Notice also
that all the arguments would be avoided in the case of an
ordinary free field [Δ ¼ d−2

2
, ρðsÞ ∝ δðs −m2Þ]; however,

this is excluded in our definition of GFT (see Sec. II B). In a
sense, the coupling to (4D Einstein) gravity forces the
generalized free field to be an ordinary free field.

C. Holographic theory vs GFT

We have shown that a GFT (as defined in Sec. II B) is
obtained from a holographic setup by setting all the bulk
interactions to zero. This definition implies that 5D gravity
(with 5D Planck scale M5) is removed when taking the
GFT limit, M5 → ∞. In such a limit, we have a gravityless
bulk which can be trivially integrated out.8 Conversely, a
holographic setup with gravity automatically provides a
continuum compatible with gravity. However, the price to
pay is that gravity in the holographic theory is intrinsically
5D, implying that the graviton itself has a continuum
component such that gravity deviates from 4D Einstein
gravity.
Let us briefly comment about the case of AdS back-

ground [e.g., the Randall-Sundrum 2 (RS2) setup [39]]. In
this case, the AdS=CFT correspondence applies. From that
correspondence, the gbulk coupling goes as some power of
1=N, and, hence, the GFT limit is consistent, from either the
AdS or the CFT viewpoints, since ½gbulk → 0� ⇔ ½N → ∞�.
We may note that the AdS theory always has a 5D stress
tensor, even without gravity. What really changes when
taking gbulk → 0 is that the graviton field is removed. The
CFToperator dual to this bulk field is the CFT stress tensor,
which is, thus, removed upon taking gbulk → 0. This is in
agreement with the arguments in Sec. III A 1.

D. Gravity-compatible continuum models

Along with the arguments in Secs. III A and III B, we
have established that a free continuum, i.e., a GFT, is
incompatible with 4D Einstein gravity. We now consider
theories lying in the neighborhood of this limiting case in
theory space (see Fig. 1). Such neighboring theories feature
some notion of a free or nearly free continuum and some
ingredients making the continuum EFT compatible with
gravity—associated to loopholes in the no-go arguments in
Secs. III A and III B.
By examining the latter arguments, we can identify the

following logical possibilities for EFT neighbors to the
excluded case of GFTþ 4D Einstein gravity: (a) The EFT
has a large, but finite, number of degrees of freedom; and
(b) gravity differs from 4D Einstein gravity. Following
these lines, we then identify the following three (possibly
overlapping) classes of theories giving rise to free or nearly
free continuum models consistent with gravity.

(i) The continuum is really a discretum.—It is possible
that the free continuum be an approximation of a
free discretum. Indeed, both are indistinguishable
to a finite precision experiment unable to resolve
the discretum spacing. In this case, the underlying
degrees of freedom are countable, and their number
is finite, since they are bounded by a gravity-induced
UV cutoff. Thus, the central charge is finite, and
inconsistencies with gravity are avoided. In the
bottom-up EFT of the free continuum, this can be
simply obtained by making the spectral distribution
discrete in the continuous mass representation in
Sec. II B 1.

(ii) The continuum is a large-N gauge correlator.—For
finite number of colorsN, the central charge is finite;
thus, inconsistencies with gravity are avoided. In
that case, the continuum is nearly free, since it has
nontrivial connected correlators which are 1=N
suppressed but nonzero. At strong coupling, a
discretum may arise at low energy if the theory
enters a confining phase, hence providing a reali-
zation of (i).

(iii) The continuum is holographic.—In this case, the
underlying dynamics is intrinsically 5D even though
it is seen from a brane viewpoint. The matter
continuum arising in the 4D holographic theory
automatically couples consistently to gravity. The
counterpart is that gravity itself has a continuum
component. Thus, gravity in the holographic theory
is not 4D Einstein gravity. The holographic frame-
work can also realize the above ones in specific
cases, as for certain backgrounds a discrete Kaluza-
Klein spectrum arises, hence realizing (i), and for a

FIG. 1. Summary of free continuum limits in the space of EFTs
with gravity. See details in Secs. II and III.

8A situation reproduced by little string theories [38].
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pure AdS background (ii) is realized via the
AdS=CFT correspondence.

For convenience, we refer to the continuum from both (i)
and (ii) as a nearly free continuum. For (i), “nearly” applies
to “continuum,” which really is a discretum, while for (ii),
“nearly” applies to “free,” since the continuum has small
but nonzero nontrivial correlators.
We can now observe that, for any kind of EFTwith a free

or nearly free continuum consistently coupled to gravity,
substantial deviations must appear in the gravity sector.
These are the deviations that would blow up and make the
theory inconsistent when taking the limit of a free con-
tinuum coupled to 4D Einstein gravity.
This fact is evident for holographic models, class (iii), in

which gravity automatically deviates from 4D Einstein
gravity. But it also occurs in the classes of models (i) and
(ii), because, in any event, the graviton propagator is dressed
by insertions of hTTi correlators, which are proportional to
the central charge. This is a physical QFT correction to the
Newton law of gravity. In the limit of large central charge,
the correction to the graviton propagator blows up, inducing
large effects on the gravity sector.
In summary, we can state that, as a general feature,

consistent models of a free, or nearly free, continuum must
feature deviations in the gravity sector. This is pictured in
Fig. 1. We investigate such effects in a concrete framework
in the upcoming sections.

E. Cosmological implications

In this section, we qualitatively discuss the expected
cosmological effects in the classes of gravity-compatible
continuummodels listed in Sec. III D. Along the same lines
as the observations made there, such models must have
a significant impact on standard cosmology, since they
feature either a large number of degrees of freedom or
deviations from gravity that blow up when approaching the
forbidden limit of GFTþ 4D Einstein gravity (see Fig. 1).
Here, we thus discuss basic cosmological aspects of the
classes of models (i)–(iii), i.e., discretum, large-N gauge
theories, and holographic theories, respectively.
A cosmological discretum is a fairly intuitive possibility.

In that case, the continuum is really made out of a set of 4D
particles with standard properties, and, thus, their contribu-
tions to the Friedmann equation are clear. For example, at
temperatures lower than themass gapσ, the tower of particles
is nonrelativistic and can be a candidate for darkmatter. Such
a scenario has been studied at length; see, e.g., Refs. [40,41].
The cosmological implications of a hidden large-N

gauge theory are trickier, because, in general, we do not
know the equation of state p ¼ wρ, except in the following
particular cases. First, the gauge theory may transition to a
confined phase at low temperature, in which case the
confined case is described by a discretum EFT already
discussed above. Second, the gauge theory may be at a
conformal fixed point, in which case it is a CFT whose

properties are very constrained by symmetries. Let us
review this well-known particular case. The hot CFT
behaves as dark radiation, because scale invariance implies
Tμ
CFT;μ ¼ 0 which, in turn, implies p ¼ ρ=3, i.e., w ¼ 1=3.

Since the hidden CFT has many (∼N2) degrees of freedom,
the temperature Th must be much lower than the one of the
visible sector; otherwise, the CFT energy density ρh ¼
ζπ2N2T4

h overwhelms the visible one, which amounts to a
too large amount of dark radiation, excluded by observa-
tions. Hence, one requires ρh ≲ ρ. Since N ≫ 1, such a
requirement on ρh implies that the temperature of the
hidden CFT should be much lower than the visible one,
Th=Tvis ∼ g1=4� N−1=2 ≪ 1. For more general gauge theories,
a similar reasoning applies at a more qualitative level,
yielding the generic prediction that a large-N hidden sector
must be ultracold in order to not spoil cosmology.
However, we cannot say more, because we do not know
the equation of state for such an energy density. A
cosmological continuum model, apart from the CFT case,
is thus best studied via holography.
We now turn to holographic continuum models. When

all Standard Model fields are identified with brane-
localized modes, these are usually called “braneworld”
in the cosmological context. The cosmology of some of
these models has been well studied. The simplest, and best-
studied, cosmological scenario is the one for which the
bulk is exactly AdS everywhere, which furthermore exactly
mirrors the scenario of hot CFT reviewed above (see, e.g.,
Refs. [42–47]). The key point is that at finite temperature a
horizon develops in the bulk, with the AdS-Schwarzschild
(AdSS) metric. The presence of the horizon crucially
modifies the effective Friedmann equation projected on
the brane with a term which, from the standpoint of the
brane observer, behaves as dark radiation. This effective
radiation term arising from the bulk geometry matches the
CFT result ρh for strong ’t Hooft coupling. We summarize
such a remarkable feature as

AdS-Schwarzschild horizon ⇔ weff ¼
1

3
ðdark radiationÞ:

ð3:3Þ

Departing from the pure AdS case, there are plenty of
possible background geometries, in particular, the “soft-
wall” backgrounds appearing from the 5D scalar-gravity
system; see, e.g., Refs. [48–58]. Some of these back-
grounds give rise to a continuum in the 4D holographic
theory. Continuum models from the scalar-gravity frame-
work will be the focus of the rest of the paper.

IV. HOLOGRAPHIC CONTINUUM: GRAVITY
AND FRIEDMANN EQUATION

Our focus here is on holographically defined con-
tinuum models. Such models are particularly attractive,
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as everything is calculable since the 5D QFT is weakly
coupled. In this section, we lay out the overall framework
for holographic models of continuum. The setup is rem-
iniscent of braneworld models (see, e.g., Ref. [59]).
Namely, we consider a five-dimensional spacetime with
a flat 3-brane (i.e., domain wall or defect) living on it and
evaluate the effective theory for an observer living in the
brane world volume (see Fig. 2). In such a setup, the 5D
excitations are integrated out and form a continuum from
the standpoint of the brane observer.
Since the overarching theme of the paper is the con-

sistency of continuum EFT with gravity, we will be
especially interested in the gravity side of the holographic
continuum models. Thus, two concrete objects of study
stand out.

(i) The gravitational potential.—At any scale for which
a continuum is present in the holographic EFT,
something nontrivial has to occur in the gravity
sector to ensure consistency with gravity. Thus,
some deviation from Newtonian gravity can be
expected at such scales. This can also be qualita-
tively understood in terms of the existence of a stress
tensor in the continuum sector. Such a stress tensor,

whose existence is ensured in the holographic setup,
dresses the 4D graviton, yielding a modification of
the Newtonian potential.

(ii) The Friedmann equation.—The equation of state in
the continuum sector is, in general, nontrivial and
unknown (see also the discussion in Sec. III E).
However, in holographic models, this equation of
state is encoded into the geometry of the 5D back-
ground. This appears at the level of the effective 4D
Friedmann equation seen by a brane observer, which
contains nontrivial information about the bulk
geometry—and, thus, about the equation of state.
The 4D holographic theory should also satisfy
consistency conditions imposed by the 5D continu-
ity equation projected onto the brane.

In summary, we expect deviations to both the Newtonian
potential and the Friedmann equation.

A. The five-dimensional background

We consider a five-dimensional spacetime with a flat
3-brane (i.e., domain wall). The 5D coordinates are denoted
by uppercase Roman indices M;N;…, while the 4D
coordinates on the 3-brane M are denoted by Greek
μ; ν;… indices.
We consider the action of the scalar-gravity system

S ¼
Z

d5x
ffiffiffi
g

p �
M3

5

2
ð5ÞR −

1

2
ð∂MϕÞ2 − VðϕÞ

�

−
Z
brane

d4x
ffiffiffī
g

p ðVbðϕÞ þ ΛbÞ þ Smatter þ � � � ; ð4:1Þ

with ϕ the scalar (dilaton) field, ð5ÞR the 5D Ricci scalar,M5

the fundamental 5D Planck scale, Λb the brane tension, ḡμν
the induced metric on the brane, and V and Vb the bulk and
brane-localized potentials for ϕ, respectively. Smatter enc-
odes the action for quantum fields living on this back-
ground. The ellipses encode the Gibbons-Hawking-York
term [60,61]. We assume that the brane potential sets the
scalar field vacuum expectation value (VEV) to a nonzero
value hϕi ¼ vb, with VbðvbÞ ¼ 0. The bulk potential is
model dependent and explicitly given further below.
The general ansatz for the 5D metric is

ds2 ¼ gMNxMxN ¼ ω2ðzÞ
�
−fðzÞdτ2 þ dx2 þ 1

fðzÞ dz
2

�
ð4:2Þ

¼ −n2ðrÞdτ2 þ r2

l2
dx2 þ b2ðrÞdr2: ð4:3Þ

The coordinate frame in the first line shows that thismetric is
conformally related to the flat space Schwarzschild metric.
The functions ωðzÞ and fðzÞ are referred to, respectively, as
thewarp and blackening factors. The coordinate frame in the

FIG. 2. Overview of the holographic continuum framework in
the cosmological frame. The brane and the horizon are located,
respectively, at r ¼ rb and r ¼ rh. The inverse blackening factor
is pictured by the dotted line. The brane effective action features
isolated 4D modes, identified in the analytical part of the self-
energy. These are represented by the simple lines on the brane.
The nonanalytical part of the self-energy corresponds to the bulk
modes, here represented by the double lines. The mixing between
the modes is represented by the blue vertices. In particular, the 4D
graviton mode is dressed by a continuum component, which, in
turn, implies a deviation from the Newtonian potential. The
production of bulk modes from the brane feeds the horizon in the
bulk, which, in turn, holographically induces an effective energy
term in the brane Friedmann equation.
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second line is convenient for brane cosmology. Along any
constant slice of r, the r ¼ lωðzÞ coordinate acts like a
cosmological scale factor.
The 3-brane is a hypersurface located at r ¼ rb. With the

above coordinates, the induced metric ḡμν reads as

ds̄2 ¼ ḡμνdxμdxν ¼ −dt2 þ r2b
l2

dx2; ð4:4Þ

where we have introduced the brane cosmic time
dt ¼ nðrbÞdτ. According to this metric, if the brane moves
along r in the extra dimension, i.e., if rb ¼ rbðtÞ, the brane
observer perceives expansion of the 4D universe with
Hubble factor H ¼ _rb=rb, where _rb ¼ ∂trb.
The 5D equations of motion for metric factors and the

dilaton field are given in the cosmological frame by [62]

n00ðrÞ
nðrÞ −

�
n0ðrÞ
nðrÞ −

1

r

��
b0ðrÞ
bðrÞ −

2

r

�
¼ 0; ð4:5Þ

n0ðrÞ
nðrÞ þ

b0ðrÞ
bðrÞ − rϕ̄0ðrÞ2 ¼ 0; ð4:6Þ

n0ðrÞ
nðrÞ þ

1

r
þ rb2ðrÞV̄ðϕ̄Þ − r

2
ϕ̄0ðrÞ2 ¼ 0; ð4:7Þ

ϕ̄00ðrÞ þ
�
n0ðrÞ
nðrÞ −

b0ðrÞ
bðrÞ þ

3

r

�
ϕ̄0ðrÞ − b2ðrÞ ∂V̄

∂ϕ̄
¼ 0; ð4:8Þ

where for convenience we have defined the dimensionless
scalar field ϕ̄≡ ϕ=ð ffiffiffi

3
p

M3=2
5 Þ and the reduced potential

V̄ ≡ V=ð3M3
5Þ. The general solutions contain five integra-

tion constants. However, it turns out that one of the
equations, e.g., Eq. (4.7), acts as an algebraic constraint
on the integration constants; hence, there are only four
independent constants. Some of the integration constants
have no physical meaning and can be fixed without loss of
generality—i.e., amount to “gauge redundancies”—while
others have a physical meaning. A detailed discussion is
provided for the different models in Appendix B.

B. The effective Friedmann equation

The effective Einstein equation seen by an observer
standing on the brane is computed from the 5D Einstein
equation, projected on the 3-brane via the Gauss equation
together with the Israel junction condition, which relates
the extrinsic curvature to the brane-localized stress tensor.
To perform the projection, one introduces the unit vector
nM normal to the brane and outward pointing that satisfies
nMnM ¼ 1 and ḡMN ¼ gMN − nMnN . The effective Einstein
equation takes the form [43,63]

Rμν −
1

2
gμνR ¼ 1

M2
Pl

ðTb
μν þ Teff

μν Þ þ
1

M6
5

πμν: ð4:9Þ

Here, Rμν is the Ricci tensor projected on the brane. Tb
μν is

the stress-energy tensor of brane-localized matter. The πμν
tensor is a quadratic combination of brane-localized stress
tensors; thus, it comes with aM−6

5 factor. Finally, Teff
μν is the

“holographic” effective stress tensor encoding nontrivial
effects from the bulk:

Teff
μν ¼ τWμν þ τϕμν þ τΛμν: ð4:10Þ

The three terms are (i) the projection of the 5DWeyl tensor
ð5ÞCM

NPQ on the brane,

1

M2
Pl

τWμν ¼ −ð5ÞCM
NPQnMnPḡμNḡνQ; ð4:11Þ

(ii) the projection of the bulk stress tensor,

1

M2
Pl

τϕμν ¼ 2

3M3
5

�
Tϕ
MNḡμ

MḡνNþ
�
Tϕ
MNn

MnN −
1

4
Tϕ;M
M

�
ḡμν

�
;

ð4:12Þ

and (iii) the contribution from the brane tension,

1

M2
Pl

τΛμν ¼ −
Λ2
b

12M6
5

ḡμν: ð4:13Þ

The brane tension is ultimately tuned in order to set the
effective 4D cosmological constant to zero.
The πμν tensor appearing in Eq. (4.9) is a term induced

by the extrinsic curvature terms in the Gauss equation and
contains quadratic combinations of the brane stress tensor
ðTb

μνÞ2. We can see that, if the components of the brane
stress tensor satisfy

jTb
μνj ≪

M6
5

M2
Pl

; ð4:14Þ

the effect of πμν is negligible with respect to the standard
M−2

Pl Tμν term of the Einstein equation. In this low-energy
regime, all of the physics from the bulk is encoded into the
effective stress tensor Teff

μν . We always use this low-energy
restriction throughout our computation. It is our only
simplifying assumption.
We plug the metric of Eq. (4.3) into Eq. (4.9), for a brane

at r ¼ rb. We tune the 4D cosmological constant, focusing
on the (0,0) component of Eq. (4.9) and using τ00 ¼ ρ.
Assuming ρ ≪ M6

5=M
2
Pl, we obtain the effective Friedmann

equation on the brane:

3M2
Pl

�
_rb
rb

�
2

¼ ρb þ ρeffðrbÞ þO

�
ρ2bM

2
Pl

M6
5

�
; ð4:15Þ

where ρb is the energy of brane-localized matter and
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ρeff ¼ ρWðrbÞ þ ρϕðrbÞ þ ρΛ ð4:16Þ

encodes the contributions from the Weyl tensor, bulk scalar
stress tensor, and brane tension, following Eq. (4.10). As
indicated in Eq. (4.16), the bulk contributions depend, in
general, on the brane location rb. Since the dependence in
rb amounts to the dependence in the cosmological scale
factor, it determines the “equation of state” of the various
terms in ρeff . In Sec. V, we compute ρeff for specific
backgrounds.

1. The Weyl energy

While the τϕ term is a fairly intuitive contribution from
the bulk stress tensor, the τW term comes purely from bulk
geometry. We have, thus, a geometric effect from the bulk
that induces an effective energy term on the brane. We refer
to ρW as the Weyl energy. The Weyl energy depends on the
C5050 component of the Weyl tensor:

ρWðrbÞ¼−
M2

Pl

n2ðrbÞb2ðrbÞ
C5050ðrbÞ

¼−
M2

Pl

2bðrbÞ2
�
n00ðrbÞ
nðrbÞ

−
�
b0ðrbÞ
bðrbÞ

þ 1

rb

��
n0ðrbÞ
nðrbÞ

−
1

rb

��
:

ð4:17Þ

The second line is the result obtained in the brane
cosmology coordinates of Eq. (4.3).
In general, the Weyl tensor is a measure of deviation

from conformality. It vanishes if f → 0 identically in the
conformal coordinates of Eq. (4.2). The Weyl tensor is
instead nonzero in the presence of a horizon. In the
conformal frame, if f vanishes at a given point
fðzhÞ ¼ 0, the hypersurface z ¼ zh is a horizon whose
temperature is given by Th ¼ jf0ðzhÞj=ð4πÞ.9 The presence
of the Weyl energy in the brane Friedmann equation is thus
associated with the temperature of the horizon in the bulk.
In Sec. V, we compute the horizon temperature for
completeness and to compare with the literature.10

2. The effective conservation law

Even though the 5D physics is projected onto the brane,
the 5D conservation law leaves a nontrivial imprint on the

resulting 4D physics. Combined with the 4D Bianchi
identity, it produces a nontrivial conservation law for our
effective energy term [47,63]:

_ρeff þ4Hρeff þHTeffμ
μ ¼−2

�
1þ ρb

Λb

�
Tϕ
MNu

MnN: ð4:18Þ

Here, uM is the timelike unit vector for brane observers,
uM ¼ ð_τ; 0; _rbÞ in the cosmological frame. Notice the 4H
factor arising due to 5D spacetime. To obtain this form, we
have used that

2
M2

Pl

M3
5

HTϕ
MNn

MnM þHτΛμμ ¼ HTeffμ
μ : ð4:19Þ

Note that, since τΛμμ ¼ −4ρΛ, the ρΛ terms cancel inside this
conservation equation.
The energy density of brane matter ρb and the brane

tension Λb have been defined earlier in this section. The
ρb=Λb term is negligible in the low-energy regime defined
by Eq. (4.14). For our purposes, the conservation equa-
tion (4.18) serves as a highly nontrivial consistency check
of the cosmological framework.

C. QFT overview

In this section, we consider quantum fields living over
the 5D background encoded in the term Smatter in Eq. (4.1).
We review some essential properties of bulk QFT, as seen
from a brane, that are needed to establish the general picture
of a holographic continuum model.
Our focus is on the fields living in the r ≤ rb, i.e., z ≥ zb,

region of the bulk. We assume that the fields have Neumann
boundary conditions (BCs) on the brane; i.e., the fields are
allowed to fluctuate on the brane.11 The fields are described
by a Lagrangian in the 5D bulk, but additionally there can
always be operators localized on the brane. In fact, those
are always generated by loop effects (see Ref. [64] for
explicit results). Thus, following the EFT paradigm, such
operators should be included in the brane Lagrangian in a
first place.
Let us now consider a generic bulk field Φ with value

Φ0 ≡Φjbrane ¼ ΦðrbÞ on the brane. The field propagates in
the bulk, but the brane-localized operators would influence
its propagation. In fact, on general grounds, a brane-to-
brane propagator takes the form G ¼ ½G−1

0 þ B�−1, where
G0 ≡GjB¼0 and B is the bilinear insertion induced by the
brane-localized operators [64] and dressing G0. In momen-
tum space, both B and possibly G−1

0 contain an analytic
piece ∝p2, which amounts to having an isolated 4D free
mode in the spectrum. This mode is tied to the fluctuation

9The expression of the temperature in the brane cosmology
coordinates of Eq. (4.3) is

Th ¼
1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2ðrÞ
dr

dχ2ðrÞ
dr

r ����
r¼rh

;

where χðrÞ≡ 1=bðrÞ.
10The entropy of the horizon is given by S ¼ V3ω

3ðzhÞ=ð4G5Þ,
where V3 is the volume in 3D space and G5 is the 5D Newton
constant. In the brane cosmology coordinates, we find S ¼
V3ðrhl Þ3=ð4G5Þ for any model.

11A field with the Dirichlet boundary condition would con-
tribute to the brane correlators only via internal lines. This is not
the focus of the present study.
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of the field on the brane, and its wave function is typically
localized near the brane. Singling this 4D localized mode
out, the propagator can be written as

hΦ0ðxμÞΦ0ð0Þi ¼
Z

d4p
ð2πÞ4 e

ip·xGð−p2Þ;

Gðq2Þ ¼ iZ0

q2 −m2
0 þ b0Πðq2Þ

; ð4:20Þ

where Z0 is a wave function renormalization effect and the
Πðq2Þ term is nonanalytical. For a sufficiently smooth
background, as the one we will consider here, Πðq2Þ has a
branch cut along some region of the q2 > 0 axis; i.e., it is a
continuum. This term encodes the contribution of all the
rest of the bulk modes to the brane-to-brane propagator.
We, thus, have split the denominator into a 4D free piece
and a continuum piece.
We can see that the structure of Eq. (4.20) amounts to the

one of a 4D free propagator dressed by insertions due to
mixing with a continuum (see Fig. 2). This is the same
structure as the hφðxÞφð0Þi propagator of the continuum
EFT in Eq. (2.1) dressed by hOOi insertions, upon
identifying Õ½φ� ∝ φ and hOOi ∝ Π.12

In summary, we obtain that the holographic setup leads
to a continuum model that is described by the generic
continuum EFT in Sec. II. The crucial gain with respect to
the generic continuum Lagrangian equation (2.1) is that,
here, the setup dictates exactly how the law of gravity is
modified. Before focusing on gravity, we discuss qualita-
tively some other QFT aspects which are useful for the
overall understanding of the model.

1. Spectrum and continuum final state

The continuumpieceΠðq2Þmay, ormaynot, be supported
at the pole location given by q2 −m2

0 þ b0Πðq2Þ≡ 0. In
analogy with familiar weakly coupled QFT, we can distin-
guish two cases. If the pole lies in a region where Πðq2Þ is
zero, the 4D mode described by the propagator Eq. (4.20) is
stable. It, thus, contributes as a Dirac delta function to the

spectral distribution and is identified as a particle in the
Hilbert space of the 4D theory. In contrast, if the pole lies
in a region where Πðq2Þ is nonzero, the 4D mode acquires a
width Γ given by m0Γ ¼ ImΠðm2

0Þ and, thus, amounts to a
resonance, as first noted in Ref. [66]. This striking feature
means that the 4Dmode has a nonzero probability to convert
into the continuum.
We notice here a key difference between continuum

and discretum. If Π was a discretum, e.g., Πðq2Þ∼P
i aiδðq2 −m2

i Þ, the isolated 4D mode would remain
exactly stable. Such a propagator would simply describe a
mixing between the 4D mode and the discretum. This, in a
sense, is because a free particle cannot just convert into
another one with different mass. In contrast, the mass of the
continuum is a continuous variable, and, thus, it can be
arbitrarily close to m0. As a result, there is a well-defined
probability for the 4Dmode to convert into the continuum.13

The spectral function contains the necessary information
to describe a continuum final state. In practice, in a given
diagram, one can simply take a unitarity cut on the generic
brane-to-brane propagator, Eq. (4.20). In particular, in the
case of a stable particle, the result takes the form

Discs½GðsÞ� ¼ Z0

�
2πδðs −m2

0Þ − i
b0Disc½ΠðsÞ�

js −m2
0 þ b0ΠðsÞj2

�
;

ð4:21Þ

where Discs computes the discontinuity across s > 0, as
defined in Sec. IV D. In Eq. (4.21), Discs½GðsÞ� is real and
Discs½ΠðsÞ� is imaginary. We can see from Eq. (4.21) that
the final state can either be the stable 4D mode or transition
via a 4D propagator into the continuum. In the notation of
the generic Lagrangian in Eq. (2.1), this amounts to a
“φ� → continuum” process; see Fig. 2.

2. Finite temperature

The sector of brane-localized 4D modes can form a
thermal bath. In such a case, we can simply say that there
is finite temperature on the brane. The conversion processes
highlighted in the above section appear in the collision term
of the Boltzmann equation of the 4Dmodes. They describe a
sustained flux of radiation into the continuumof bulkmodes,
dumping energy into the bulk. In a sense, these processes are
responsible for “heating up” the bulk, since, when falling
deep enough in the bulk, they create a horizon which is

12The notion of mixing can be understood more explicitly as
follows. In the set of all degrees of freedom of Φ, we can single
out those which do not fluctuate on the brane, i.e., have a
Dirichlet BC. Writing Φ ¼ Φ0KqðzÞ þ

R
λ Φ

λ
Df

λðzÞ, with Kq ≡
Kðq2Þ the amputated brane-to-bulk propagator and fλD the
continuous basis of Dirichlet modes, the set ðKq; fλDÞ forms a
complete basis which is orthogonal—in the sense that the
quadratic action is diagonal in ðΦ0;Φλ

DÞ [64]. In this basis, Φ0

has a nontrivial propagator, Eq. (4.20), i.e., a nontrivial spectral
distribution. However, one could instead, as introduced in
Ref. [65], trade the KqðzÞ component for Kq¼m0

ðzÞ, in which
case the associated degree of freedom Φ0 ≡ φ simply is a 4D free
field. In that case, the propagator of φ is trivial, but in counterpart
the ðφ;ΦDÞ basis is not orthogonal (see [65]), and, therefore,
there is a mixing between φ and ΦD. The form of Eq. (4.20) is
understood as a manifestation of this mixing.

13At a deeper level, a continuum does not have the properties
required to build the familiar asymptotic multiparticle states of
flat space and may, thus, obey other rules. In the AdS case, for
example, the continuum amounts to the normalizable bulk modes
of AdS, that we know are perfectly stable (see, e.g., Ref. [67]).
Diagrams with AdS modes, such as 1 → 2, for example, induce
only a mixing of the bulk modes and, thus, amount in familiar
terms to a radiation process rather than a decay process that
would remove the initial mode from the spectrum (see, e.g., [68]).
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encoded in the blackening factor fðzÞ in Eq. (4.2) (see, e.g.,
Ref. [45]). Such processes, and the overall coupled dynam-
ics, have been studied in a number of references at various
degrees of refinement using both the 5D and dual 4D
viewpoints; see, e.g., Refs. [13,45–47,69,70]. Similar cal-
culations could be done in the linear dilaton background,
although this is not the main focus of the present work.
In the present work, we use the fact that the brane-to-

bulk conversion processes quickly lose efficiency when
the temperature drops (see [13,45–47,69,70]). We focus
on a low-energy regime in which the initial rh is a free
parameter—which encapsulates the effect of all the energy
previously dumped into the bulk. Wewill see in Sec. V that,
in the considered holographic continuum models, rh either
is constant or evolves as a function of the brane location rb
along the cosmological history.

D. Gravitational potential

The graviton propagator should, following the above
discussions, describe a massless 4D mode with bilinear
mixing to a continuum.We denote the general propagator as

hhαβ0 ðpÞhρσ0 ð−pÞi ¼ G2
−p2θαβρσ; ð4:22Þ

where G2
−p2 ¼ G2ð−p2Þ and the superindex 2 refers to the

spin of the graviton. The polarization structure θαβρσ is
given below. What is the gravitational potential resulting
from the propagator, Eq. (4.22)? To obtain it, we write the
spectral representation of the propagator as [71]

hhαβ0 ðpÞhρσ0 ð−pÞi ¼ 1

2πi

Z
∞

0

ds
Discs½G2

s �
sþ p2 − iϵ

θαβρσs ; ð4:23Þ

where Discs½gðsÞ� is the discontinuity of gðsÞ across the
branch cut along the real line, s ∈ Rþ:

Discs½gðsÞ� ¼ lim
ϵ→0

ðgðsþ iϵÞ−gðs− iϵÞÞ; ϵ> 0: ð4:24Þ

In this representation, the tensor structures are those of the
standard Fierz-Pauli propagator [72]:

θαβρσs¼0 ¼ 1

2
ðηαρηβσ þ ηασηβρ − ηαβηρσÞ; ð4:25Þ

θαβρσs>0 ¼ 1

2
ðPαρPβσ þ PασPβρÞ − 1

3
PαβPρσ; ð4:26Þ

with Pαβ ¼ ηαβ − pαpβ

s .
The potential can be directly obtained using the spectral

representation Eq. (4.23) (see, e.g., [73] and also [19]). We
pick point sources at rest such that Tαβ

1;2 ¼ m1;2δ
α
0δ

β
0.

Performing the d3q integral yields a general representation
of the long-range potential as

VNðRÞ ¼ −
m1m2

πM2
Pl

Z
∞

0

dsDiscs½G ffiffi
s

p � e
−

ffiffi
s

p
R

R
θ0000s ; ð4:27Þ

where θ0000s¼0 ¼ 1
2
and θ0000s>0 ¼ 2

3
.

If G2
−p2 ¼ i

−p2þiϵ, we have Discs½ i
sþiϵ� ¼ 2πδðsÞ, which

reproduces the standard Newtonian potential. The graviton
propagator of our focus features a continuum term, struc-
turally analogous to Eq. (4.20). This term induces a
deviation from the Newtonian potential. In Sec. V, we will
compute explicitly this continuum-induced deviation in
specific 5D backgrounds.

V. THE HOLOGRAPHIC GAPPED CONTINUUM

The scalar-gravity background is fixed by the choice of
the bulk potential VðϕÞ (or, equivalently, by an associated
superpotential; see, e.g., [55,58]). Here, we mainly focus on
a specific version of the scalar-gravity setup called the
linear dilaton (LD) and a deformed version of it. A general
solving of the scalar-gravity system in these cases is
presented in Appendix B.
The linear dilaton background has the fascinating prop-

erty that it naturally realizes the notion of a gapped
continuum that was proposed phenomenologically in
Ref. [3]. Throughout this work, we assume the presence
of a thermal bath on the brane, which induces a horizon in
the bulk via QFT processes as described in Sec. IV C
and Fig. 2.

A. AdS-Schwarzschild (review)

As a warm-up, we briefly revisit the AdS-Schwarzschild
background. The well-known case of pure AdS back-
ground is recovered in the case where VðϕÞ ¼ −6M3

5=l
2

with M3
5 ¼ M2

Pl=l, and the dilaton has no VEV, i.e.,
ϕðzÞ ¼ const. For f ≠ 1, the background is AdS-
Schwarzschild, i.e., hot AdS. In the cosmological context,
this amounts to the RS2 model [39] at finite temperature. In
that case, one has, in conformal coordinates,

fAdSSðzÞ ¼ 1 −
z4

z4h
; ωAdSSðzÞ ¼

l
z
; ð5:1Þ

for any value of z, where zh is the location of the horizon,
and, in brane cosmology coordinates,

nAdSSðrÞ ¼
r
l

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r4h
r4

r
; bAdSSðrÞ ¼

l
r

1ffiffiffiffiffiffiffiffiffiffiffi
1 − r4h

r4

q ; ð5:2Þ

where rh is the corresponding location of the horizon and
we have used the relation l

z ¼ r
l. Finally, the temperature of

the black hole is

TAdSS ¼
rh
πl2

: ð5:3Þ
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1. Deviation from the Friedmann equation

We find the components of the effective energy density

ρWAdSSðrbÞ ¼
3M2

Pl

l2

r4h
r4b

; ρϕAdSS þ ρΛAdSS ¼ 0: ð5:4Þ

In this case, ρϕAdSS is constant and canceled by tuning the

brane tension to Λb ¼ 6
M2

Pl
l2 , setting the 4D cosmological

constant to zero. The Weyl energy is regular at the
Schwarzschild horizon. The total effective energy density
is simply ρeffAdSS ¼ ρWAdSS. The scaling in rb with the universe
scale factor rb ¼ la indicates that the effective energy
behaves as 4D radiation. This is the standard result, in
accordance with the discussion in Sec. III E.

2. Deviation from the Newtonian potential

In AdS, the reduced brane-to-brane graviton propagator
takes the form (see, e.g., Ref. [74])

G2
AdSSð−p2Þ ¼ −

i
p2

þ i

�
2γ − 1þ 2 log

� ffiffiffiffiffi
p2

q
l
2

��
l2

4

þOðp2l2Þ; ð5:5Þ

where we are using that jpjl ≪ 1. The discontinuity is
found to be

Discs½G2
AdSSðsÞ� ¼ 2πδðsÞ þ πl2

2
: ð5:6Þ

After substituting in Eq. (4.27), we obtain the gravitational
potential

VNðRÞ ¼ −
m1m2

M2
PlR

�
1þ 2

3

l2

R2
þO

�
l4

R4

��
: ð5:7Þ

The l2=R3 deviation is the manifestation of the con-
tinuum ΠðpÞ which mixes with the 4D graviton. This is the
well-known behavior found in Ref. [39], with the exact
coefficient obtained in Ref. [73].

B. Linear dilaton

The LD model is defined by the superpotential [75]

Wðϕ̄Þ ¼ 6M3
5

l
eϕ̄; ð5:8Þ

which leads to the following scalar potential:

Vðϕ̄Þ ¼ 1

6M3
5

�
1

4

�
∂W
∂ϕ̄

�
2

−Wðϕ̄Þ2
�

¼ −
9M3

5

2l2
e2ϕ̄: ð5:9Þ

This model has a solution at zero temperature which is
given in conformal coordinates by

ωLDðzÞ ¼ e−η̄z; ϕ̄LDðzÞ ¼ η̄zþ logðη̄lÞ; ð5:10Þ

with fLDðzÞ ¼ 1, while η̄ is a scale related to the mass
gap as

σ ¼ 3

2
η̄: ð5:11Þ

The solution at finite temperature is given by the same
expressions of Eq. (5.10), with the blackening factor

fLDðzÞ ¼ 1 − e3η̄ðz−zhÞ: ð5:12Þ
In the brane cosmology coordinates, the black hole

solution can be written as

nLDðrÞ ¼
r
l

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r3h
r3

s
; ð5:13Þ

bLDðrÞ ¼
l
rb

e−v̄bffiffiffiffiffiffiffiffiffiffiffi
1 − r3h

r3

q ; ð5:14Þ

ϕ̄LDðrÞ ¼ v̄b − log

�
r
rb

�
: ð5:15Þ

We have fixed the integration constants such that the scalar
VEVat the brane is constant, i.e., ϕ̄LDðrbÞ ¼ v̄b. Then, the
mass scale η̄ turns out to be

η̄ ¼ η
rb
l
; where η≡ ev̄b

l
; ð5:16Þ

and the relation between the 5D and 4D Planck scales is

M3
5 ¼ ηM2

Pl: ð5:17Þ
Notice that the domain of the variable r is ½0;∞Þ, where
r ¼ 0 is the metric singularity and rðt0Þ ¼ l is the brane
location today. The black hole temperature in the LD
background is

TLD ¼ 3

4π
η̄: ð5:18Þ

These results are consistent with the borderline solution
between confining and nonconfining geometries reported
in Ref. [76].

1. Deviation from the Friedmann equation

We find the components of the effective energy density

ρWLDðrbÞ ¼
9

4
η2M2

Pl
r3h
r3b

;

ρϕLDðrbÞ þ ρΛLD ¼ 3

4
η2M2

Pl
r3h
r3b

; ð5:19Þ
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where the Weyl energy is computed by using Eq. (4.17). In
this case, ρϕLD contains both a ∝ r−3b term and a constant
term. The latter is canceled by tuning the brane tension to
Λb ¼ 6η2M2

Pl to set the 4D cosmological constant to zero.
The effective energy density of Eq. (4.16) turns out to be

ρeff;LD ¼ 3η2M2
Pl
r3h
r3b

: ð5:20Þ

The 1=r3b scaling amounts to 1=a3 in terms of the usual
scale factor. Thus, the effective energy density scales as
nonrelativistic 4D matter.
We will further discuss this interesting result in Sec. V D

and in Ref. [2]. The result passes nontrivial consistency
checks. We show in Ref. [2] that the pressure terms arising
from the τW and τϕ components of the effective stress
tensor cancel out, such that the total pressure vanishes,
Peff ¼ 0, consistently with the 1=a3 behavior of the total
effective density. This is a consistency check ensuring that
the 4D Bianchi identity is satisfied.
We also show in Appendix C that the conservation law

Eq. (4.18) is verified. This involves the nontrivial fact that

TMNuMnN ≈ 0 ð5:21Þ

at leading order in the low-energy regime. The computation
of Eq. (5.21) is detailed in Appendix C.

2. Deviation from the Newtonian potential

In the linear dilaton background, the reduced brane-to-
brane graviton propagator is [75]

G2
LDð−p2Þ ¼ −

1

2σ2
iffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2

σ2

q
− 1

; ð5:22Þ

where σ ¼ 3η̄=2 is the mass gap. This expression has both a
pole at p2 ¼ 0 and a branch cut along −p2 ≥ σ2. The
denominator can also be put in the form

−p2 þ 2σ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2

σ2

s
− 1 −

p2

2σ2

�
;

which reproduces the form shown in Eq. (4.20). The first
term is the 4D pole with m0 ¼ 0. The second term
corresponds to the pure continuum part which is non-
analytical above −p2 ≥ σ2 and Oðp4Þ near p ∼ 0. We
obtain the discontinuity

Discs½G2
LDðsÞ� ¼ 2πδðsÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffis
σ2
− 1

p
s

θðs ≥ σ2Þ: ð5:23Þ

As expected, the graviton spectral distribution features a
massless pole and a gapped continuum.

Substituting into Eq. (4.27), we obtain the gravitational
potential

VNðRÞ ¼ −
m1m2

M2
PlR

ð1þ ΔðRÞÞ; ð5:24Þ

with

ΔðRÞ ¼ 2

3π

Z
∞

σ2
ds

ffiffiffiffiffiffiffiffiffiffiffiffis
σ2
− 1

p
s

e−
ffiffi
s

p
R

≃
� 4

3πσR if R ≪ 1
σ ;

Oðe−σRÞ if R ≫ 1
σ :

ð5:25Þ

We see that the deviation from the Newtonian potential
appears essentially below the distance scale 1=σ corre-
sponding to the inverse mass gap. The deviation to the
potential goes as ∝1=R2, unlike the AdS case where it goes
as 1=R3.

C. Asymptotically AdS linear dilaton (ALD)

We consider a modification of the linear dilaton back-
ground featuring an AdS asymptotic behavior in the UV.
The model is defined by the superpotential [55,58]

Wðϕ̄Þ ¼ 6M3
5

l
ð1þ eϕ̄Þ; ð5:26Þ

which leads to the following scalar potential:

Vðϕ̄Þ ¼ −
6M3

5

l2

�
1þ 2eϕ̄ þ 3

4
e2ϕ̄

�
: ð5:27Þ

The metric we are considering is, using proper and brane
cosmology coordinates,

ds2 ¼ e−2AðyÞð−hðyÞdτ2 þ dx2Þ þ dy2

hðyÞ ð5:28Þ

¼ −nðrÞ2dτ2 þ r2

l2
dx2 þ bðrÞ2dr2: ð5:29Þ

The solution of the background equation of motion, in
proper coordinates, is

AALDðyÞ ¼
y
l
− log

�
1 −

y
ys

�
; ð5:30Þ

hALDðyÞ ¼ 1 −
R
y
−∞ dȳe4AALDðȳÞR
yh
−∞ dȳe4AALDðȳÞ ; ð5:31Þ

ϕ̄ALDðyÞ ¼ − log

�
ys − y
l

�
; ð5:32Þ
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where ys is the location of the naked singularity, which
would correspond to zs → ∞ in conformal coordinates. In
the brane cosmology coordinates, the solution is given by14

nALDðrÞ ¼
r
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hALDðyðrÞÞ

p
; ð5:34Þ

bALDðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hALDðyðrÞÞ
p l

r

Wðc r
rb
Þ

1þWðc r
rb
Þ ; ð5:35Þ

ϕ̄ALDðrÞ ¼ − log W
�
c
r
rb

�
; ð5:36Þ

with

c ¼ e−v̄bþe−v̄b ; ð5:37Þ

and WðzÞ is the principal branch of the Lambert function.
As in the LD model in Sec. V B, in the ALD model the

graviton spectrum has a mass gap σ ¼ 3η̄=2, with

η̄ ¼ 1

ys
e−ys=l ¼ η

rb
l
; where η≡ 1

cl
: ð5:38Þ

Moreover, the relation between the 5D and 4D Planck
scales is

M3
5 ¼

M2
Pl

l
ð1þ ev̄bÞ: ð5:39Þ

1. Deviation from the Friedmann equation

We find the components of the effective energy density

ρWALDðrbÞ ¼
3M2

Pl

4l2

ð1þ ev̄bÞ
c4Iðcrh=rbÞ

;

ρϕALDðrbÞ þ ρΛALD ¼ 3M2
Pl

4l2
e2v̄b

IðcÞ
Iðcrh=rbÞ

; ð5:40Þ

where the function IðχÞ is defined in Eq. (B44). More
details can be found in Appendix B. The Weyl energy is
computed by using Eq. (4.17). As in the LD model,
ρϕALDðrbÞ contains a constant term which is canceled by

tuning the brane tension to Λb ¼ 6
l2 ð1þ ev̄bÞ2M2

Pl to set the
4D cosmological constant to zero.
In the ALD background, the conservation equation (4.18)

can be solved in the asymptotic limits c → 0 and c → ∞. If
c ≪ 1, i.e., v̄b ≫ 1, since rb > rh, we are always in the
regime rb ≫ crh. Thus, the effective energy density is
Eq. (5.20) just like in the pure linear dilaton background,
and ρeff;ALD behaves as nonrelativistic matter. On the other
hand, if c ≫ 1, i.e., ηl ≪ 1 (i.e., v̄b < 0 and jv̄bj≳ 1), we
find that ρϕALDðrbÞ þ ρΛALD ∼ c−2ρWALDðrbÞ so that the Weyl
energy is dominant in this region. The total effective energy
density of Eq. (4.16) for c ≫ 1 turns out to be

ρeff;ALDðrbÞ ≃ ρWALDðrbÞ ≃
3

l2
M2

Pl
r4h
r4b

ðc ≫ 1Þ: ð5:41Þ

In this limit, ρeff;ALD behaves as radiation just like in pure
AdS background.
For arbitrary values of c, the solution of the conservation

equation [Eq. (4.18)] demands that the black hole horizon
depends on the brane location, i.e., rh ¼ rhðrbÞ. We display
in the left panel in Fig. 3 the dependence rhðrbÞ for various
values of the parameter weff. One gets the analytical
behavior15

rhðrbÞ ≃
(
β�ðlrbÞð3weff−1Þ=4 if rb < r�b

rh;0ðlrbÞweff if r�b < rb
ðc < l=rh;0Þ;

ð5:43Þ

while rhðrbÞ ≃ rh;0ðl=rbÞð3weff−1Þ=4 ≃ rh;0 is obtained at
l=rh;0 < c. In these formulas, weffðcÞ ¼ Peff=ρeff is the
equation-of-state parameter, and rh;0 is the radius of
the black hole horizon at present times t ¼ t0. Finally,
the effective energy density turns out to have the following
behaviors16:

14The relation between the proper “y” and the brane cosmol-
ogy “r” coordinates in the ALD model in Sec. V C is

r
l
¼

�
1 −

y
ys

�
e−y=l ð5:33aÞ

or its inverse

y ¼ ys

�
1 −

Wðcr=rbÞ
Wðcl=rbÞ

�
; ð5:33bÞ

where WðzÞ is the principal branch of the Lambert function.

15In Eq. (5.43), we have used the following definitions:

r�b
l
≡

�
4c
3

rh;0
l

�
1=ð1þweff Þ

and
β�
l
≡

�
3

4c

r3h;0
l3

�1=4

: ð5:42Þ

The expression of β� ensures continuity of rhðrbÞ at rb ¼ r�b.
Notice that the condition c < l=rh;0 is approximately equivalent
to r�b=l < 1. Notice also that in the regime c ≪ 1 one has
r�b ≃ crh;0 ≪ rh;0, and so in this case r�b ≪ rh;0 ≤ rb.

16In writing the expression in Eq. (5.44) for the regime
1 ≪ c < l=rh;0, we have assumed that r�b < rb. The correspond-
ing expression for rb < r�b in that regime is ρeff;ALDðrbÞ≃
3
l2 M

2
Pl

r4hðrbÞ
r4b

, which after using that rhðrbÞ ≃ β� leads to the same

behavior as the one shown in the rhs of Eq. (5.44).

CONTINUUM EFFECTIVE FIELD THEORIES, GRAVITY, AND … PHYS. REV. D 107, 096016 (2023)

096016-15



ρeff;ALDðrbÞ≃

8>>>>><
>>>>>:

3η2M2
Pl

r3hðrbÞ
r3b

≃3η2M2
Pl

r3h;0
r3b

if c≪1;

9
4lηM

2
Pl

r3hðrbÞ
r3b

≃ 9
4
ηM2

Pl
r3h;0
r4b

if 1≪c<l=rh;0;

3
l2M

2
Pl

r4hðrbÞ
r4b

≃ 3
l2M2

Pl
r4h;0
r4b

if 1≪l=rh;0<c:

ð5:44Þ

The equation of state smoothly interpolates between matter
and radiation behavior, ρeff;ALD ∝ a−3ð1þweffðcÞÞ. The
numerical value of weffðcÞ is exhibited in the right panel
in Fig. 3, where a continuous transition appears between
weff ¼ 0 (matter) and weff ¼ 1=3 (radiation). We provide in
Appendix B 5 the explicit exact analytical expressions of
ρeff;ALDðrbÞ and weffðcÞ; cf. Eqs. (B57)–(B60). We confirm
all these results via numerical solving of the 5D conserva-
tion equation (4.18).

2. Deviation from the Newtonian potential

The equations of motion for the graviton propagator on
the ALD background do not have exact analytical sol-
utions. However, an approximation is easily obtained by
considering two regimes. The metric is approximately AdS
for z ≪ 1=σ and LD for z ≫ 1=σ. On the other hand, at the
level of propagation we know that AdS propagators,
expressed in ðpμ; zÞ space with given spacelike momentum
pμ, are exponentially suppressed beyond z ∼ 1=p (see,
e.g., [77,78]). That is, the propagator knows about only the
z≲ 1=σ region of the bulk. This fact implies that ifffiffiffi
s

p
≫ σ, the spectral function should not know about

the LD part of the background and, thus, be approximately
AdS. On the other hand, for

ffiffiffi
s

p
≪ σ, the propagator should

know about the LD background. But, since the LD

background induces a mass gap at σ, the dominance of
the LD background implies that the continuum vanishes.
This is consistent with the spectral function obtained in
our approximation, in which the continuum part starts
at

ffiffiffi
s

p ¼ σ.
In summary, we can approximate the discontinuity of the

graviton propagator as

Discs½G2
ALDðsÞ� ≈ 2πδðsÞ þ πl2

2
θðs ≥ σ2Þ: ð5:45Þ

The Newtonian potential is easily computed by plugging
Eq. (5.45) into Eq. (4.27), giving

VNðRÞ ≈ −
m1m2

M2
PlR

�
1þ 2l2

3R2
e−σRð1þ σRÞ

�
: ð5:46Þ

We can see that for R ≪ 1=σ the expression reduces to the
AdS one, Eq. (5.7). On the other hand, for R > 1=σ the
potential is exponentially suppressed—as a consequence
of the mass gap induced by the LD background. We also
evaluate numerically in Fig. 4 the results of Discs½G2

ALDðsÞ�
and VNðRÞ by considering the piecewise approximation
of the background solution of Eq. (5.32); cf. Ref. [79].
Nontrivial oscillations occur near the threshold that cannot
be captured analytically. Despite this detail, the numerical
evaluation of the potential accurately reproduces the
analytical behavior.

D. Discussion

Overall, we have found that the deviations from the
Newtonian potential and Friedmann equation appearing in
the linear dilaton background completely differ from those
occurring in the AdS background.

FIG. 3. Results within the asymptotically AdS linear dilaton model. Left panel: location of the black hole horizon (rh) as a function of
the brane location (rb) enforced by the conservation equation (4.18). We display as dashed red lines the analytical results of Eq. (5.43)
for r�b < rb. We use rh;0=l ¼ 10−22. Right panel: equation-of-state parameter weff ≡ Peff=ρeff as a function of c. To guide the eye, we
display the asymptotic value weff ¼ 1=3 (dashed blue line).
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First, the deviation from the Newtonian potential
induced in the linear dilaton background goes as
1=ðσR2Þ and is gapped at R ∼ 1=σ. In contrast, the
deviation from gravity in the AdS background goes as
l2=R3 and is ungapped. We can use the landscape of
Yukawa-like fifth force searches to bound the deviation. We
find that the relevant bound is the one from micron-scale
fifth force experiments [80]. The order of magnitude
bound is

1

σ
≲ 10 μm ð5:47Þ

or σ ≳ 0.01 eV.
Second, in the braneworld paradigm, the energy of

standard matter is identified with ρb. Therefore, the ρeff
energy density emerging in the linear dilaton background
can be identified as dark matter. This energy density scales
as a−3 or, equivalently, has vanishing pressure such that its
equation-of-state parameter is

weff;LD ¼ 0: ð5:48Þ

Notice that in AdS-Schwarzschild background one has
instead weff;AdSS ¼ 1

3
, i.e., dark radiation.

The dark matter density predicted from our linear dilaton
braneworld can be translated into the dark matter density
parameter ΩDM ¼ ρeff=ρcrit with the critical energy density
ρcrit ¼ 3H2M2

Pl. The result is

ΩDM;LD ¼
�
η

H

�
2
�
rh
rb

�
3

: ð5:49Þ

At present times t ¼ t0, we have rbðt0Þ ¼ l [i.e.,
aðt0Þ ¼ 1], and we know that ΩDM;0 ¼ 0.267 and
H0 ¼ 1.47 × 10−42 GeV. This imposes a relation between

the parameters of the linear dilaton background. Combined
with the fifth force bound Eq. (5.47), one can also verify
that rh;0 < 2.3 × 10−21l.
In summary, a braneworld living in the linear dilaton

background automatically contains dark matter. We further
expand on this remarkable feature in Ref. [2].
Finally, the ALD background—a blend of the AdS and

linear dilaton backgrounds—is interesting for both con-
ceptual and phenomenological reasons. It is conceptually
instructive because it teaches us more about the properties of
the holographic theory. Namely, since the bulk is asymp-
totically either AdS or linear dilaton, one can wonder which
regime appears from the brane viewpoint. Regarding the
deviation from the Newtonian potential, we found that
the AdS regime emerges in the UV, i.e., for small R, while
the LD regime shows up in the IR, i.e., for large R. Thus,
for this observable, both regimes show up upon variation of
a physical parameter. The situation of the Friedmann
equation is different: The scaling of ρeff depends only on
the value of the scalar VEVon the brane. Thus, the behavior
of ρeff does not vary as a function of a physical parameter
such as time or temperature. From this, we conclude that the
manifestation of the AdS and linear dilaton regimes to a
brane observer is subtle, in the sense that it depends on the
observable considered.
From a phenomenological viewpoint, the fact that the

ALDmodel provides an energy density with 0 ≤ weff ≤ 1
3
is

an interesting feature. It turns out that considering the dark
matter equation of state as a free parameter has been done in
the framework of “generalized dark matter”; see [81–83].
Our ALD model can, therefore, be taken as a UV
completion of this framework. In the c ≪ 1 limit, we have
weff → 0, in which case one can identify ρeff as the dark
matter and use Eq. (5.49). In the c ≫ 1 limit, we have
weff →

1
3
. In this limit, the predicted fraction of dark

radiation reads

FIG. 4. Results within the ALD model in Sec. V C. We display the discontinuity of the graviton propagator (left panel) and the
deviation from the Newtonian potential (right panel). The analytical result displayed in the right panel corresponds to the correction term
inside the bracket in Eq. (5.46). In this plot, we have considered a piecewise approximation of the ALD model.
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ΩDR;ALD

���
c≫1

¼ ΩDR;AdSS ¼
1

ðlHÞ2
�
rh
rb

�
4

: ð5:50Þ

Using that ΩDR ≈ 0.135ΔNeff ≲ 0.07 at big bang nucleo-
synthesis (BBN) times17 and combining with the fifth
force bound l≲ 5 μm [obtained by using the bounds in
Ref. [85] on the potential Eq. (5.7)], we can also verify that
rh;0 ≲ 10−16l. This bound is weaker than for the linear
dilaton model.
The cosmological braneworld scenarios presented here

certainly deserve further investigation.

VI. SUMMARY

Here, we summarize the logical steps and results of
our study.
The first part of the paper is a broad analysis of

continuum EFTs. Our interest lies in theories giving rise
to a free continuum in some parametric limit. A theory
featuring a free continuum is referred to as a GFT. In our
definition of GFT, we allow for local interactions of the
continuum, as this has no impact on the results. A free
continuum sector emerges in the limit of theories with
nontrivial dynamics, such as the N → ∞ limit of gauge
theories or the gbulk → 0 limit of 5D holographic models.
Additionally, a GFT may be seen as an approximation of a
discretum. Standard Poincaré-invariant (i.e., no brane)
weakly coupled QFTs do not give rise to a continuum in
the free limit; thus, these are excluded from our study.
There is a priori no obvious principle to prevent us from

writing an EFT featuring a free continuum. However, we
argue that such an EFT is incompatible with standard
gravity. One line of argument is to show that the continuum
sector has no stress tensor or that the central charge is
infinite. An axiomatic version of this fact is known for CFT
and reviewed here. Using the continuous mass representa-
tion, we obtain a similar conclusion for any nonconformal
free continuum. Another line of reasoning relies on the
species scale of gravity. The species scale is usually given
for stable particles. Here, as a side result, we present a
finite-temperature-based argument that generalizes the
species scale in terms of the central charge of any CFT.
Using the species scale, we argue that the free continuum
sector amounts to an infinite number of species and, thus,
that the cutoff of the EFT is zero.
These arguments imply that a free continuum in the

presence of standard gravity cannot exist. We then consider

the neighborhood of this point in theory space, that evades
the no-go arguments, because either the number of degrees
of freedom is finite or gravity is nonstandard. This is the
case of the classes of theories already listed above: a
discretum, gauge theories with finite N, and holographic
theories. We point out that a common feature of all these
models is that they must feature significant deviations in the
gravity sector—these are the effects blowing up when
approaching the GFTþ 4D Einstein gravity point.
Guided by this general analysis, in the second part of the

paper, we focus on holographic theories giving rise to a
continuum. We consider a class of 5D scalar-gravity
models that gives rise to a gapped continuum. We lay
out—together with a review of QFT aspects needed for an
overall understanding of the holographic framework—the
necessary formalism to compute the Newtonian potential
and the effective Friedmann equation. When brane-
localized fields are at finite temperature, a horizon forms
in the bulk. We solve analytically the pure linear dilaton
background at finite temperature. We also introduce a
simple modification of the bulk potential which makes
the background interpolating between AdS (in the UV) and
linear dilaton (in the IR). We compute this asymptotically
linear dilaton background at finite temperature using both
analytical approximations and exact numerical solving.
In the pure linear dilaton background, we find that the

Newtonian potential features a ∼1=ðσR2Þ deviation and has
a mass gap at R ∼ 1=σ. This is in sharp contrast with the
deviation in the AdS background. At finite temperature,
there is a horizon in the bulk. We find that the effective
Friedmann equation features a holographically induced
energy density with a−3 scaling, due to contributions from
both Weyl tensor and bulk stress tensor. In summary,

linear dilaton horizon ⇔ weff ¼ 0 ð6:1Þ

in terms of the equation-of-state parameter. Interpreting the
setup as a braneworld where standard matter is brane
localized, the effective energy density is identified as dark
matter. In short, a braneworld living in the linear dilaton
background automatically contains dark matter. This is,
again, in contrast with the AdS braneworld for which the
holographically induced energy density scales as dark
radiation, weff ¼ 1

3
.

We also study a somewhat more evolved linear dilaton
background with AdS asymptotics near the boundary. The
Newtonian potential is found to be essentially like the AdS
one but with a gap at R ¼ 1=σ like in the LD case. The
behavior of the effective energy density depends on the
value of the bulk scalar VEVon the brane. The equation of
state smoothly interpolates between cold dark matter and
dark radiation, i.e., 0 ≤ weff ≤ 1

3
, as a function of the scalar

VEV. As a nontrivial check of our results, we verify that the
conservation law of the effective energy density is always

17Assuming standard thermal history, the bound on the
effective number of neutrinos Neff ≈ 3þ ΔNeff translates into
a bound on the fraction of dark radiation as

ΩDR ¼
7
4
ð 4
11
Þ43

2þ 21
4
ð 4
11
Þ43 ΔNeff þOððΔNeffÞ2Þ: ð5:51Þ

A typical bound from BBN is ΔNeff ≲ 0.5 [84].
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satisfied. This happens via cancellations involving the
brane kinematics.
A general lesson from our study of the holographic

models is that the cosmology of continuum models is
highly nontrivial. This is, in a sense, because it necessarily
involves the underlying dynamics giving rise to the
continuum. Here, we have studied a particular case of
the scalar-gravity system. A host of solutions remains to be
explored. The cosmological history of the associated
braneworld models certainly deserves deeper investigation.
These exciting directions are left for future work.
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APPENDIX A: ON THE TRANSITION BETWEEN
DISCRETUM AND CONTINUUM

In this appendix, we expand on the possibility of a
discretum EFT, studying its validity range using general
arguments.
For concreteness, we assume that the discretum arises as

the low-energy limit of a confining large-N Yang-Mills
theory with large ’t Hooft coupling λ ≫ 1. We choose the
spectral distribution of the free propagator to be

ρfreed ðsÞ ¼
X∞
n¼n0

ρnδðs − snÞ; ðA1Þ

where the sn are intervals with some spacing ξ2 set by some
typical scale ξ. The sum starts at n0, with sn0 ¼ σ2. We refer
to ξ as the mode spacing and σ as the mass gap of the
spectrum. The gap σ is either 0 or ≥ ξ. In the following,

we assume σ ≫ ξ. The conclusions are trivially extended to
the cases σ ¼ 0 and σ ¼ OðξÞ by replacing σ by ξ in the
arguments.
The free propagator takes the form

hOðpÞOð−pÞifree ¼ i
X∞
n0

ρn
−p2 − sn þ iϵ

: ðA2Þ

It encodes a series of free 4D particles. Similarly to
Sec. II B 1, the model is equivalently written with a set
of canonically normalized 4D fields fφng with φsn ≡ φn

and the operator O ¼ P∞
n¼n0

ffiffiffiffiffi
ρn

p
φn.

A similar picture is also obtained from holographic
models with a discrete spectrum [86]. In the context of
phenomenological continuum models, some aspects of the
discretum EFT were discussed in Ref. [5].
Assuming that the discretum arises from confinement of

gauge theory, the φn fields can be understood as glueball
fields. The couplings among the φn fields are then con-
trolled by powers of 1=N [23]. The modes encoded into the
full 2pt function are, thus, narrow—in accordance with our
definition of discretum. The discretum EFT has a validity
cutoff scale Λ̃, above which the gauge theory description
takes over and above which OðpÞOð−pÞ is a continuum.
This means that in the spectral distribution of the 2pt
function there should be a transition, between the discrete
and the continuous regimes, as a function of the squared
mass variable s. What can we learn from general consid-
erations about the transition scale Λ̃?
We can reason in terms of degrees of freedom. On very

general grounds, the number of degrees of freedom should
decrease when the RG flow goes toward the IR. The UV
theory (i.e., the deconfined gauge theory) has ∼N2 degrees
of freedom. Hence, the low-energy effective theory can
have at most ∼N2 degrees of freedom. Hence, the heaviest
field of the EFT has at most a squared mass of sn0þN2 .
Moreover, since the φn fields are by assumption regularly
spaced, the cutoff has to be of the order of the heaviest field
of the discretum EFT in order to truncate the heavier ones.
We conclude that the transition scale is constrained to be

Λ̃≲ ffiffiffiffiffiffiffiffiffiffiffiffiffi
sn0þN2

p
: ðA3Þ

We can also reason in terms of interactions. Using large-
N counting rules for glueballs, the 3pt interaction of the φn
fields has 1=N strength, and we can then evaluate the width
of an individual field φn. A very rough estimate is
Γn ∼

ffiffiffiffiffi
sn

p ðn − n0Þ=N2, where n − n0 counts the lighter
states available for decay. Therefore, the φn fields become
broad (i.e., Γn ∼

ffiffiffiffiffi
sn

p
) at n ∼ n0 þ N2, which signals a

breakdown of the EFT. We conclude that the cutoff cannot
be higher than ffiffiffiffiffiffiffiffiffiffiffiffiffisn0þN2

p . This estimate matches the one
from the number of degrees of freedom.
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A more refined estimate can also be obtained using input
from holographic models and, in particular, and for
simplicity, using a pure AdS two-brane model (see
Ref. [86]). In that case, the spacing is sn ¼ n2ξ2, we have
σ ¼ 0, and we know that the width estimate is rather Γn ∼ffiffiffiffiffi
sn

p
=N2 because the selection rules set by the residual

symmetries constrain the decay channels. We also know
that the transition scale is reached when the modes tend to
overlap with each other, in which case not only the diagonal
width Γn, but the full self-energy matrix that mixes all the
φn would become relevant [86,87]. At that scale, the φn’s
merge, giving rise to a continuum. The estimate of the
transition scale in this case is Λ̃ ∼ ffiffiffiffiffiffiffi

sN2

p ¼ N2ξ. This
matches the previous one when using σ ¼ 0.

APPENDIX B: SOLUTIONS OF THE
5D SCALAR-GRAVITY SYSTEM

We present in this appendix the most general solutions
of Eqs. (4.5)–(4.8), both in conformal coordinates and in
brane cosmology coordinates. The relations among inte-
gration constants are also discussed.

1. Coordinate systems

We use three coordinate systems throughout the
calculations.

Proper frame.—

ds2 ¼ e−2AðyÞð−hðyÞdτ2 þ dx2Þ þ dy2

hðyÞ : ðB1Þ

Conformal frame.—

ds2 ¼ ωðzÞ2
�
−fðzÞdτ2 þ dx2 þ dz2

fðzÞ
�
: ðB2Þ

Brane cosmology frame.—

ds2 ¼ −nðrÞ2dτ2 þ r2

l2
dx2 þ bðrÞ2dr2: ðB3Þ

The relations between them depend on the integration
constants; they are specified along the calculations.

2. Superpotential

When solving the scalar-gravity system, it is convenient
to introduce the superpotential function WðϕÞ satisfying
(see, e.g., [55,58])

Vðϕ̄Þ ¼ 1

6M3
5

�
1

4

�
∂W

∂ϕ̄

�
2

−Wðϕ̄Þ2
�
: ðB4Þ

We find that some relations in the various backgrounds
considered (i.e., AdSS, LD, and ALD) can be expressed in

a unified fashion in terms of the superpotential. We
introduce the reduced superpotential evaluated on the

brane: W̄b ≡ Wðv̄bÞ
3M3

5

.

First, we find that the relation between M5 and MPl is
generally given by

M3
5 ¼

1

2
W̄bM2

Pl: ðB5Þ

This is verified for, e.g., Eqs. (5.17) and (5.39). As a result,
the low-energy condition Eq. (4.14) can be expressed as

1

M2
Pl

jTb
μνj ≪ W̄2

b: ðB6Þ

Second, we find that the effective 4D cosmological
constant is expressed as

Λ4 ¼
1

2M3
5

�
−
3

2
M3

5W̄
2
b þ

Λ2
b

6M3
5

�
: ðB7Þ

The tuned value Λ4 ¼ 0 is then obtained for

Λb ¼ 3M3
5W̄b: ðB8Þ

With this tuning we have, for example, ρΛ ¼ 3
2
M3

5W̄b.

3. AdS-Schwarzschild

In the conformal frame, the solution of the equations of
motion is given by

fAdSSðzÞ ¼C2
A

�
1−

ðz− z�Þ4
ðzh − z�Þ4

�
; ωAdSSðzÞ ¼CA

l
z− z�

;

ϕ̄AdSSðzÞ ¼Cϕ; ðB9Þ

where CA, Cϕ, z�, and the horizon position zh are
integration constants. In the brane cosmology frame, one
finds

nAdSSðrÞ ¼ CA
r
l

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r4h
r4

r
; bAdSSðrÞ ¼

l
r

1ffiffiffiffiffiffiffiffiffiffiffi
1 − r4h

r4

q ;

ϕ̄AdSSðrÞ ¼ Cϕ; ðB10Þ

and the relation between both coordinates is given by
ωAdSSðzÞ ¼ r

l. We can already notice that z� is an irrelevant
shift symmetry in the coordinate z, which does not have
counterpart in the brane cosmology frame. We can, thus, set
z� ¼ 0 without loss of generality. The Cϕ constant is also
physically irrelevant because VðϕÞ ¼ constant.
The temperature and Weyl energy turn out to be,

respectively,
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Th ¼ CA
rh
πl2

; ρWAdSSðrbÞ ¼
3M2

Pl

l2

r4h
r4b

: ðB11Þ

The CA constant affects the horizon temperature but not the
Weyl energy. It can be eliminated by a constant rescaling of
the coordinates, so that we can set CA ¼ 1, which gives the
usual AdS-Schwarzschild metric in Sec. VA. The Weyl
energy depends on rh, the horizon position. This is the only
physically meaningful integration constant.

4. Linear dilaton

a. Proper frame

In the LD model, the solution of the equations of motion
in proper coordinates is written as

hLDðyÞ ¼ C2
Að1 − e3ðALDðyÞ−ALDðyhÞÞÞ

¼ C2
A

�
1 −

�
1 − yh=ys
1 − y=ys

�
3
�
; ðB12Þ

ALDðyÞ ¼ − log

�
1 −

y
ys

�
; ðB13Þ

ϕ̄LDðyÞ ¼ − log

�
1 −

y
ys

�
þ logðCACSlÞ; ðB14Þ

where CS ¼ 1=ys, with CA, ys, and yh integration con-
stants. In this solution, we have neglected an irrelevant shift
symmetry in the coordinate y.

b. Conformal frame

In the conformal frame, the solutions are

fLDðzÞ ¼ C2
Að1 − e3ðALDðzÞ−ALDðzhÞÞÞ

¼ C2
Að1 − e3CSðz−zhÞÞ; ðB15Þ

ωLDðzÞ ¼ e−ALDðzÞ ¼ e−CSz; ðB16Þ

ϕ̄LDðzÞ ¼ CSzþ logðCACSlÞ; ðB17Þ

where CA, CS, and zh are integration constants. As in the
AdSS case, we have neglected an irrelevant shift symmetry
in z. The effective Schrödinger potential for the graviton is
given by

V η̄ðzÞ ¼
9

4
A0
LDðzÞ2 −

3

2
A00
LDðzÞ ¼

�
3

2
CS

�
2 ≡ σ2: ðB18Þ

The CS constant has a physical meaning: It is identified
with the η̄ scale (see the main text) which is proportional to
the mass gap in the spectrum (see also, e.g., [75,88,89] for
discussions).

c. Brane cosmology frame

In the brane cosmology frame, we find

nLDðrÞ ¼ CA
r
l

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r3h
r3

s
; bLDðrÞ ¼ CB

1ffiffiffiffiffiffiffiffiffiffiffi
1 − r3h

r3

q ;

ϕ̄LDðrÞ ¼ − log

�
CB

r
l

�
: ðB19Þ

In these coordinates, the solution involves three integration
constants: CA, CB, and rh. The gap is computed as

V η̄ðrÞ ¼
3

2

r2

l4

1

nðrÞ2bðrÞ2
�
5

2
− r

�
n0ðrÞ
nðrÞ þ

b0ðrÞ
bðrÞ

��

¼ σ2 ¼
�
3

2
η̄

�
2

; ðB20Þ

with

η̄ ¼ 1

CACBl
: ðB21Þ

The relation between y and r coordinates in the LD model,
not assuming any particular value for the integration
constants, is

r
l
¼ 1 −

y
ys

; ðB22Þ

and

�
l
r
nLDðrÞ

�
2

¼ hðyÞ; r
l
¼ e−ALDðyÞ;

dy
dr

¼ −CACB:

ðB23Þ

Consistency of Eqs. (B22) and (B23) requires CB ¼
ys=ðCAlÞ. The relation between z and r coordinates
is e−CSz ¼ r

l.

d. General result

Finally, the temperature and Weyl energy turn out to be,
respectively,

Th ¼
CA

CB

3

4π

1

l
; ρWLDðrbÞ ¼

9

4

M2
Pl

C2
B

r3h
r5b

: ðB24Þ

The CA constant affects the horizon temperature but not the
Weyl energy. Unlike the AdSS case, ρWLDðrbÞ depends on
both the horizon position and another integration constant,
CB. This constant corresponds to the boundary value of
bðrÞ, i.e., CB ¼ limr→∞ bðrÞ. Moreover, CB contributes to
the scalar VEV via − logCB.
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e. Fixing the constants

In the present work, we have considered the hypothesis
that the scalar VEV at the brane r ¼ rb is constant; i.e., it
does not evolve with time. As a result, we should set

CB ¼ e−v̄b
l
rb

; ðB25Þ

thus implying

ϕ̄LDðrÞ ¼ v̄b − log

�
r
rb

�
; ðB26Þ

and ϕ̄LDðrbÞ ¼ v̄b. As in the AdSS metric, CA ¼ 1 leads to
the zero temperature solution near the boundary, i.e., far
from the black hole horizon. In summary, we can set

CA ¼ 1; CS ¼ η̄; CB ¼ 1

CACSl
¼ 1

η̄l
; ðB27Þ

which leads to the solution in Sec. V B. Combination of
Eqs. (B25) and (B27) leads to

η̄ ¼ η
rb
l
; where η≡ ev̄b

l
: ðB28Þ

Then, the temperature and Weyl energy can be written as,
respectively,

Th ¼
3

4π
η̄; ρWLDðrbÞ ¼

9

4
η2M2

Pl
r3h
r3b

: ðB29Þ

5. Linear dilaton with AdS asymptotics

a. Proper frame

In the ALD model, the solution in proper coordinates is

AALDðyÞ ¼ Ca
y
l
− log

�
1 −

y
ys

�
; ðB30Þ

hALDðyÞ ¼
1

C2
a

�
1 −

R
y
−∞ dȳe4AALDðȳÞR
yh
−∞ dȳe4AALDðȳÞ

�
; ðB31Þ

ϕ̄ALDðyÞ ¼ − log

�
ys − y
l

�
− logCa; ðB32Þ

with Ca, ys, and yh as integration constants. As in the
previous models, we have neglected an irrelevant shift
symmetry in y.

b. Conformal frame

The relation between y and z coordinates is

dy
dz

¼ −e−AALDðyÞ ¼ −e−Cay=l

�
1 −

y
ys

�
: ðB33Þ

Then, the effective Schrödinger potential for the graviton is
given by

V η̄ ¼
9

4
A0
ALDðzÞ2 −

3

2
A00
ALDðzÞ

¼ 3

4
e−2AðyÞð5A0

ALDðyÞ2 − 2A00
ALDðyÞÞ

¼ 3

4

1

y2s
e−2Cay=l

�
3þ 10Ca

�
1 −

y
ys

�
ys
l

þ 5C2
a

�
1 −

y
ys

�
2 y2s
l2

�
: ðB34Þ

The gap is then

σ2 ¼ lim
z→þ∞

V η̄ðzÞ ¼ lim
y→ys

V η̄ðyÞ

¼
�
3

2
η̄

�
2

with η̄ ¼ 1

ys
e−Cays=l: ðB35Þ

c. Brane cosmology frame

In the brane cosmology frame, we find

nALDðrÞ ¼
1

Ca

r
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h̄ALDðyðrÞÞ

q
; ðB36Þ

bALDðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h̄ALDðyðrÞÞ
p l

r

W
	
CB

r
l



1þW

	
CB

r
l


 ; ðB37Þ

ϕ̄ALDðrÞ ¼ − log W
	
CB

r
l



; ðB38Þ

where we have defined

h̄ALDðyÞ ¼ 1 −
R
y
−∞ dȳe4AALDðȳÞR
yh
−∞ dȳe4AALDðȳÞ : ðB39Þ

The relation between r and y coordinates is

r
l
¼ e−AALDðyÞ ¼

�
1 −

y
ys

�
e−Cay=l: ðB40Þ

The full domain in proper coordinates is y ∈ ð−∞; ys�,
while the domain in the cosmological coordinates is
r ∈ ½0;∞Þ. The brane position at present times is chosen
by convention to be aðt0Þ ¼ 1, i.e., r ¼ l, or y ¼ 0.
The integration constants in the brane cosmology coor-

dinates are Ca, CB, and rh ≡ rðyhÞ, and their relation with η̄
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is CB ¼ Ca=ðη̄lÞ. This relation follows from the gap,
which is computed from the effective Schrödinger potential
for the graviton [cf. Eq. (B20)]

V η̄ðrÞ ¼
3

4
C2
a
r2

l4

3þ 10WðCB
r
lÞ þ 5W2ðCB

r
lÞ

W2ðCB
r
lÞ

; ðB41Þ

as

σ2 ¼ lim
r→0

V η̄ðrÞ ¼
�
3

2
η̄

�
2

with η̄ ¼ Ca

CBl
: ðB42Þ

d. General result

Finally, the temperature and Weyl energy turn out to be,
respectively,

Th ¼
1

C2
a

η̄

4πχ3hIðχhÞ
;

ρWALDðrbÞ ¼
3M2

Pl

4l2

1

χ4bIðχhÞ
�
1þ 1

WðχbÞ
�
; ðB43Þ

where

IðχÞ≡
Z

∞

χ

dx
x5

WðxÞ
1þWðxÞ

¼ 1

3χ4
½WðχÞ−2W2ðχÞþ8W3ðχÞþ32χ4Eið−4WðχÞÞ�

ðB44Þ

and

χb ≡ Ca
rb
η̄l2

; χh ≡ Ca
rh
η̄l2

; ðB45Þ

while EiðzÞ is the exponential integral function.

e. Fixing the constants

As mentioned in Appendix B 4, we fix the integration
constants in the present work in such a way that the VEV
of the scalar field at the brane is constant. According to
Eq. (B38), this implies to assume CB ∝ 1=rb, i.e.,

CB ¼ c
l
rb

; ðB46Þ

where c is a dimensionless constant. Then, the VEV at the
brane is

v̄b ≡ ϕ̄ALDðrbÞ ¼ − logWðcÞ: ðB47Þ

By solving this equation for c, one has that this parameter is
related to the VEV as

c ¼ e−v̄bþe−v̄b : ðB48Þ

The other integration constants turn out to be related to each
other by18

Ca ¼ η̄lCB ¼ c
η̄l2

rb
: ðB50Þ

Then, one finds

ρWALDðrbÞ ¼
3M2

Pl

4l2

ð1þ ev̄bÞ
c4

1

IðχhÞ
; ðB51Þ

where

χb ¼ c; χh ¼ c
rh
rb

: ðB52Þ

Notice that rb small (large) corresponds to χh large (small).

f. Asymptotics

By using the asymptotic behaviors of the Lambert
function,

WðχÞ ≃
�
χ χ ≪ 1;

log χ χ ≫ 1;
ðB53Þ

one finds

IðχÞ ≃
8<
:

1
3χ3

χ ≪ 1;

1
4χ4

χ ≫ 1:
ðB54Þ

From this, one obtains in the regime c ≪ 1 the same results
for the temperature and Weyl energy as in the LD back-
ground [cf. Eqs. (B24) and (B27)–(B29)], while in the
regime c ≫ 1 the following behaviors are obtained:

Th ≃

8<
:

1
C2
a

3η̄
4π if 1 ≪ c < l=rh;0;

1
C2
a

cη̄
π
rhðrbÞ
rb

≃ 1
C2
a

cη̄
π
rh;0
rb

if 1 ≪ l=rh;0 < c;
ðB55Þ

for the temperature and

18An alternative expression for Ca can be obtained from
Eqs. (B35), (B42), and (B46), which yields

Ca ¼
l
ys

Wðcl=rbÞ; ðB49Þ

so that the function rðyÞ and its inverse, i.e., y ¼ yðrÞ, are given
by Eqs. (5.33a) and (5.33b).
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ρWALDðrbÞ≃

8><
>:

9
4l2

1
cM

2
Pl

r3hðrbÞ
r3b

≃ 9
4l

1
cM

2
Pl

r3h;0
r4b

if 1≪ c < l=rh;0;

3
l2M

2
Pl

r4hðrbÞ
r4b

≃ 3
l2M

2
Pl

r4h;0
r4b

if 1≪ l=rh;0 < c;

ðB56Þ

for the Weyl energy. In the second equalities of these
formulas, we have used that the solution of the conservation
equation [Eq. (4.18)] demands that the black hole horizon
depends on the brane position, i.e., rh ¼ rhðrbÞ. This
dependence turns out to be almost constant for c ≪ 1 and
1 ≪ l=rh;0 < c, while it behaves as rhðrbÞ ≃ rh;0ðl=rbÞ1=3
for 1 ≪ c < l=rh;0 and rb;� < rb; see the discussion
around Eq. (5.43).
In summary, we find that, while the behavior of ρWALDðrbÞ

is ∝ r−3b for small values of c, it changes to ∝ r−4b at large
values of c, signaling the change from a 4D cold matter
regime (with w ¼ 0) to a 4D radiation regime (with w ¼ 1

3
).

The same conclusion is obtained for the contributions
ρϕALDðrbÞ þ ρΛALD, although the latter becomes subdominant
with respect to ρWALDðrbÞ in the regime c ≫ 1.
For completeness, we provide the explicit exact expres-

sion of ρeff;ALDðrbÞ ¼ ρWALDðrbÞ þ ρϕALDðrbÞ þ ρΛALD. This
is given by19

ρeff;ALDðrbÞ ¼ ρeff;0

�
l
rb

�
3ð1þweffðcÞÞ

; ðB58Þ

where

ρeff;0 ¼
3

4

M2
Pl

l2

WðcÞ þW2ðcÞ þ c4IðcÞ
c4W2ðcÞIðcrh;0=lÞ

ðB59Þ

is the effective energy density at present times t ¼ t0 and

weffðcÞ≡ Peff;ALD

ρeff;ALD
¼ 1

3

WðcÞ þW2ðcÞ − 3c4IðcÞ
WðcÞ þW2ðcÞ þ c4IðcÞ ðB60Þ

is the equation-of-state parameter.

Although it is not relevant for the result of ρeff;ALDðrbÞ,
it is natural to fix Ca ¼ 1, as this allows one to connect
with the zero temperature solution near the boundary;
cf. Eq. (B36). By using Eq. (B50), this leads to

η̄ ¼ η
rb
l
; where η≡ 1

cl
¼ ev̄b−e

−v̄b

l
; ðB61Þ

which is the counterpart in the ALD model of Eq. (B28).
Notice that η, as defined in Eq. (B61) for the ALD model,
tends to the corresponding value of η in the LD model,
given in Eq. (B28), when considering the limit v̄b ≫ 1.
Moreover, in the opposite limit where c → ∞, i.e., v̄b < 0
and jv̄bj ≫ 1, the parameter η in the ALD model tends to
zero, as expected since the AdSS spectrum is gapless.

APPENDIX C: BRANE KINEMATICS
AND CONSERVATION LAW

The conservation equation of ρeff is given in Eq. (4.18)
and reproduced here:

_ρeff þ 4Hρeff þHTeffμ
μ ¼ −2

�
1þ ρb

Λb

�
Tϕ
MNu

MnN: ðC1Þ

Here, we evaluate Tϕ
MNu

MnN with the metric

ds2 ¼ −n2dτ2 þ r2

l2
dx2 þ b2dr2 ðC2Þ

in the linear dilaton and asymptotically linear dilaton
backgrounds. An AdS version of this analysis can be
found in Refs. [47,63].
The trajectory of the brane can be represented by

functions τðtÞ and rbðtÞ, where t is the brane proper time.
uM is the timelike unit vector for brane observers,
uM ¼ ð_τ; 0; _rbÞ, where the dot represents ∂=∂t. The
Hubble scale is related to rb by _rb ¼ Hrb. The normali-

zation uMuM ¼ −1 implies _τ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ_r2bb

2
p

n ; thus,

uM ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2bb

2
q

n
; 0; _rb

1
CA: ðC3Þ

The unit vector normal to the brane nM satisfies nMuM ¼ 0

and nMnM ¼ 1, and we find

nM ¼

0
B@_rb

b
n
; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2bb

2
q

b

1
CA: ðC4Þ

We then evaluate the stress tensor in the linear dilaton
background. Using that ∂rb

∂τ ¼ n_rb and the solution ϕ̄ ¼
v̄b − logðr=rbÞ, we get

19The expression of ρeff;ALD as a function of rb and rh is
given by

ρeff;ALDðrb; rhÞ ¼
3

4

M2
Pl

l2

WðcÞ þW2ðcÞ þ c4IðcÞ
c4W2ðcÞIðcrh=rbÞ

: ðB57Þ

From a comparison with Eq. (B58), it turns out that the
dependence rh ¼ rhðrbÞ is obtained from the solution of the
equation IðcrhðrbÞ=rbÞ ¼ Iðcrh;0=lÞðrb=lÞ3ð1þweff ðcÞÞ. Alterna-
tively, rhðrbÞ can be obtained by plugging Eq. (B57) into the
conservation equation (4.18) and solving the resulting first-order
differential equation for rhðrbÞ with boundary condition
rhðlÞ ¼ rh;0. We have checked that both methods lead to the
same result.
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1

3M3
5

Tϕ
00 ¼

1

2
ð∂τϕ̄Þ2 þ

n2

2b2
ð∂rϕ̄Þ2

���
r¼rb

þ n2V̄

¼ 1

2
n2H2 þ n2

2b2r2b
þ n2V̄; ðC5Þ

1

3M3
5

Tϕ
05¼

1

3M3
5

T50¼ð∂τϕ̄Þð∂rϕ̄Þjr¼rb ¼−
nH
rb

; ðC6Þ

1

3M3
5

Tϕ
55 ¼

1

2
ð∂rϕ̄Þ2

���
r¼rb

þ b2

2n2
ð∂τϕ̄Þ2 − b2V̄

¼ 1

2r2b
þ b2

2
H2 − b2V̄: ðC7Þ

The result is

Tϕ
MNu

MnN ¼ 3M3
5

H
rbb

h
−H2r2bb

2

þð1þH2r2bb
2Þ
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þH2r2bb
2

q
−1

��
: ðC8Þ

In the low-energy regime H ≪ η, we then find

Tϕ
MNu

MnN ¼ 0þO

�
H3

η3

�
: ðC9Þ

The fact that the leading term vanishes is nontrivial. As a
result, the Tϕ

MNu
MnN term is negligible in the conservation

law. The same cancellation as in Eq. (C9) is obtained in the
ALD background.
Finally, for completeness, we also verify the general

relation of Eq. (4.19) in the low-energy regime. We have

Tϕ
MNn

MnN ¼ 3

2
M3

5

h 1

r2bb
2
þ 2H4r2bb

2

þH2
	
3 − 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2r2bb

2

q 

− 2V̄

i
¼ 3M3

5

�
1

2r2bb
2
− V̄

�
þO

�
H2

η2

�
; ðC10Þ

and, thus,

2
M2

Pl

M3
5

HTϕ
MNn

MnM þHτΛμμ

¼ 6M2
PlH

�
1

2

ϕ̄0ðrbÞ2
b2

− V̄

�
þHτΛμμ ¼ HTeffμ

μ : ðC11Þ

We perform the same calculations in the ALD model and
get the same result as Eq. (C11).
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