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We detail the construction of electric string solutions in SUð2Þ Yang-Mills-Higgs theory with a scalar in
the fundamental representation and discuss the properties of the solution. We show that Schwinger gluon
pair production in the electric string background is absent. A similar construction in other models, such as
with an adjoint scalar field and the electroweak model, does not yield solutions.
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I. INTRODUCTION

A homogeneous electric field in Maxwell electrodynam-
ics corresponds to the familiar gauge potential

Aμ ¼ ð−Ez; 0; 0; 0Þ; ð1Þ

where E is the electric field strength. When coupled to
external charges, the electric field is known to decay by
Schwinger pair production [1]. Similarly, an SUð2Þ non-
Abelian electric field1 can be derived from the gauge
potential

Aμa ¼ ð−Ez; 0; 0; 0Þδa3; ð2Þ

where a ¼ 1, 2, 3 is the group index. Unlike in the Maxwell
case, it is not necessary to introduce “external” charges
as even the pure non-Abelian gauge theory includes
charged quanta (“gluons”). Schwinger pair production of
gluons will cause the non-Abelian electric field to decay
rapidly [2–16]. However, the story for non-Abelian electric
fields is more subtle, as embedding the Maxwell gauge
potential into the non-Abelian theory is not the only way to
obtain a non-Abelian electric field. As shown by Brown
and Weisberger (BW) [3], and described in Sec. II, there is
a one parameter set of gauge inequivalent gauge fields
that all lead to the same homogeneous electric field. An
analysis of Schwinger pair production in such gauge field
backgrounds shows that Schwinger gluon production is
absent [17].

An issue with BW gauge fields is that, unlike Eq. (2),
they are not classical solutions of the vacuum equations
of non-Abelian gauge theory; instead, they require sources.
A possibility is that quantum backreaction on the classical
dynamics effectively provides such sources, but this is
difficult to show. A second possibility, one that has been
reported in Ref. [18] and that we will detail in this paper,
is that suitable sources can be provided by an external
classical field, such as a scalar field. Then the BW gauge
fields are solutions of the Yang-Mills-Higgs classical
equations of motion, much like other classical solutions
such as strings and magnetic monopoles [19], but a key
difference is that the solution contains a flux of electric field
instead of a magnetic field. Such solutions are called
“electric strings.”
The electric string solution presented in Ref. [18] was

arrived at by using a certain amount of guesswork. In the
present paper, we present some rationale for the guesses, in
addition to exploring certain other issues. The starting point
for our discussions is to consider a homogeneous BW
electric field, discussed in Sec. II. In Sec. III, we show that a
homogeneous BWelectric field can indeed be sourced by a
scalar field that transforms in the fundamental representa-
tion of SUð2Þ. The necessary scalar field configuration
also solves its own equation of motion but only for certain
parameters.
Encouraged by the case of the homogeneous electric

field, we turn our attention to “electric string” solutions in
which the electric field is localized to a tubular region. In
Sec. IV, we construct such a solution. We find that the
tubular electric field is wrapped by magnetic fields in an
oscillating pattern with a slow asymptotic falloff.
The question of Schwinger gluon production in the

background of an electric string is considered in Sec. V,
and as in the homogeneous electric field case, this process
is absent. A classical stability analysis of the electric string
solution is postponed for future work.
The existence of an electric string solution in a

Yang-Mills with a fundamental Higgs naturally raises
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1We will explicitly only consider SUð2Þ non-Abelian gauge
theory. The solutions may be embedded in theories with larger
gauge groups.
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the question if such strings can arise in other theories.
In Appendix A, we examine the case when the scalar field
is in the adjoint representation of SUð2Þ and show that the
solution does not exist. Similarly in Appendix B, we
examine if the solution can be found in the electroweak
model that has an additional Uð1Þ hypercharge gauge
field, and there too, we find that a solution does not exist.
These no-go results though are based on certain assump-
tions about the structure of the solutions and it is possible
that a more general analysis might successfully find
solutions.
Our conclusions are summarized in Sec. VI, and some

helpful formulas are listed in Appendix C.

II. GAUGE FIELDS

A. BW homogeneous gauge fields

The nonvanishing SUð2Þ gauge fields that give a
homogeneous electric field are [3]

W1
μ ¼

Ω
g
∂μt; W2

μ ¼ −
E
Ω
∂μz; W3

μ ¼ 0: ð3Þ

where Ω is a parameter. We will assume without loss of
generality that Ω > 0. The field strength is found from

Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ gϵabcWb

μWc
ν; ð4Þ

and the nonvanishing field strength is

W3
μν ¼ −Eð∂μt∂νz − ∂νt∂μzÞ; ð5Þ

and W1
μν ¼ 0 ¼ W2

μν.
The currents are found from the classical equations of

motion for the gauge fields,

jμa ¼ ∂νWμνa þ gϵabcWb
νWμνc; ð6Þ

and (in the BW gauge) are given by

jμ1 ¼ −g
E2

Ω
∂
μt; jμ2 ¼ −ΩE∂μz; jμ3 ¼ 0: ð7Þ

B. Temporal gauge

To bring the BW gauge fields to temporal gauge, we
perform the gauge transformation,

U ¼ eiσ
2π=4eiσ

1π=4e−iσ
1Ωt=2; ð8Þ

where σa are the Pauli spin matrices. Then,

Wμ → W0
μ ¼ UWμU† þ 2i

g
U∂μU†; ð9Þ

where Wμ ≡Wa
μσ

a. This gives the gauge fields for a
homogeneous electric field in the form,

W�
μ ¼ −

ϵ

g
e�iΩt

∂μz; W3
μ ¼ 0; ð10Þ

where

ϵ≡ gE=Ω: ð11Þ
Next we also include a string profile function, fðrÞ, since
we eventually want to discuss electric string configurations.
Then the gauge fields we will consider are

W�
μ ¼ −

ϵ

g
e�iΩtfðrÞ∂μz; W3

μ ¼ 0; ð12Þ

where W�
μ ≡W1

μ � iW2
μ, r refers to the cylindrical radial

coordinate. Alternately, we can write

W1
μ ¼ −

ϵ

g
cosðΩtÞfðrÞ∂μz; ð13Þ

W2
μ ¼ −

ϵ

g
sinðΩtÞfðrÞ∂μz: ð14Þ

The field strengths are

W1
μν ¼ −

ϵ

g
½−Ω sinðΩtÞfðrÞð∂μt∂νz − ∂νt∂μzÞ

þ cosðΩtÞf0ðrÞð∂μr∂νz − ∂νr∂μzÞ�; ð15Þ

W2
μν ¼ −

ϵ

g
½Ω cosðΩtÞfðrÞð∂μt∂νz − ∂νt∂μzÞ

þ sinðΩtÞf0ðrÞð∂μr∂νz − ∂νr∂μzÞ�; ð16Þ
W3

μν ¼ 0; ð17Þ
where prime denotes differentiation with respect to the
argument. Note that the electric field is accompanied by a
magnetic field in the azimuthal direction. To decide if the
field configuration is electric or magnetic, we will calculate
the gauge and Lorentz invariant Lagrangian density,

Lg ¼ −
1

4
Wa

μνWμνa ¼ ϵ2

2g2
ðΩ2f2 − f02Þ: ð18Þ

Positive Lg implies that the field is electriclike while
negative values imply a magneticlike field.
The SUð2Þ currents are obtained from (6),

j1μ ¼ −
ϵ

g
cosðΩtÞ

�
f00 þ f0

r
þΩ2f

�
∂μz; ð19Þ

j2μ ¼ −
ϵ

g
sinðΩtÞ

�
f00 þ f0

r
þ Ω2f

�
∂μz; ð20Þ

j3μ ¼ −
ϵ2

g
Ωf2∂μt: ð21Þ
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Note that the a ¼ 1, 2 equations may also be written as

jaμ ¼
1

f

�
f00 þ f0

r
þ Ω2f

�
Wa

μ; ða ¼ 1; 2Þ: ð22Þ

We are interested in finding if these currents can be
sourced by scalar fields. We will first consider the simpler
case of a homogeneous electric field (fðrÞ ¼ 1) and show
that it can be sourced by a scalar field in the fundamental
representation. The case of a scalar field in the adjoint
representation is discussed in Appendix A with the con-
clusion that it cannot source the electric field.

III. HOMOGENEOUS ELECTRIC FIELD

In this section, fðrÞ ¼ 1.

A. Fundamental scalar

The model now is similar to the electroweak model
where the symmetry is SUð2Þ ×Uð1Þ, except that the Uð1Þ
charge, commonly denoted by g0, is set to zero. In other
words, the SUð2Þ is a gauged symmetry while the Uð1Þ is a
global symmetry.
We denote the fundamental scalar field by Φ. The

Lagrangian for the model is

L ¼ −
1

4
Wa

μνWμνa þ jDμΦj2 − VðΦÞ; ð23Þ

where

DμΦ ¼ ∂μΦ − i
g
2
Wa

μσ
aΦ; ð24Þ

VðΦÞ ¼ m2jΦj2 þ λjΦj4; ð25Þ

where m2 may be negative or positive but λ > 0.
The gauge field equations of motion are

DνWμνa ¼ jaμ ¼ i
g
2
½Φ†σaDμΦ − H:c:�; ð26Þ

where H:c: stands for Hermitian conjugate.
Using σaσb ¼ δab þ iϵabcσc, we find

Φ†σaDμΦ

¼ Φ†σa∂μΦ −
ig
2
jΦj2Wa

μ þ
g
2
jΦj2ðW⃗μ × n̂Þa; ð27Þ

where the unit vector n̂a is given by

n̂a ≡Φ†σaΦ
Φ†Φ

: ð28Þ

Inserting (27) in the expression for the current, we get

jaμ ¼ i
g
2
½Φ†σa∂μΦ − H:c:� þ g2

2
jΦj2Wa

μ: ð29Þ

We will start by solving (29) for Φ with jaμ given
in (19)–(21) with f ¼ 1. We can write Φ in the Hopf
parametrization,

Φ ¼ η

�
cos αeiβ

sin αeiγ

�
: ð30Þ

We will assume that Φ is homogeneous, so α, β, and γ are
only functions of time, and η is a constant.
The μ ¼ 3 component of (29) is nontrivial only for

a ¼ 1, 2, giving

jaz ¼
g2

2
jΦj2Wa

z ; ða ¼ 1; 2Þ: ð31Þ

Comparison with (22) gives

Ω2 ¼ 1

2
g2η2; or; η ¼

ffiffiffi
2

p
Ω

g
: ð32Þ

(Recall that we are considering f ¼ 1.) Next we turn to
the μ ¼ 0 components. Some algebra (see Appendix C)
leads to

2_α sinðγ − βÞ þ sinð2αÞ cosðγ − βÞð _β þ _γÞ ¼ 0; ð33Þ

2_α cosðγ − βÞ − sinð2αÞ sinðγ − βÞð _β þ _γÞ ¼ 0; ð34Þ

gη2ðcos2α_β − sin2α_γÞ − ϵ2Ω
g

¼ 0: ð35Þ

The solution to these three equations leads to

Φ ¼ η

�
z1eþiωt

z2e−iωt

�
; ð36Þ

where z1; z2 ∈ C are constants with jz1j2 þ jz2j2 ¼ 1, and

ω ¼ ϵ2

2Ω
: ð37Þ

Now we have to make sure that Φ solves its own
equation of motion,

DμDμΦþ V 0ðΦÞ ¼ 0; ð38Þ

where the prime denotes derivative with respect to Φ†.
For V in (25) and Φ in (36), we can write

V 0ðΦÞ ¼ ðm2 þ 2λη2ÞΦ: ð39Þ

We also evaluate

DμDμΦ ¼ −
�
ω2 −

ϵ2

4

�
Φ: ð40Þ
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Therefore (38) leads to the equation,

−ω2 þ ϵ2

4
þm2 þ 2λη2 ¼ 0: ð41Þ

Consistency with (37) implies

ω2 −
ωΩ
2

−m2 − 2λη2 ¼ 0: ð42Þ

Therefore,

ω ¼ 1

2

"
Ω
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

4
þ 4

�
m2 þ 4λ

g2
Ω2

�s #
: ð43Þ

Note that (37) implies that ω=Ω > 0. Depending on the
signs and magnitude of the parameters m2, λ=g2 and Ω2,
only one or both roots in (43) are valid.
If we choose potential parameters such thatm2þ2λη2¼0,

we obtain simpler expressions. With this choice of param-
eters, Eq. (39) gives V 0ðΦÞ ¼ 0; i.e.,Φ is at an extrema of its
potential. Then (43) gives two solutions:ω ¼ 0 orω ¼ Ω=2.
The solution with ω ¼ 0 is trivial for then ϵ ¼ 0 because
of (37) and the electric field vanishes. For the nontrivial
solution ω ¼ Ω=2, (37) gives

ϵ ¼ Ω; ðV 0 ¼ 0Þ: ð44Þ

To summarize these results, we have found a solution of
the classical equations of motion that corresponds to a
homogeneous electric field,

Φ ¼
ffiffiffi
2

p
Ω

g

�
z1eþiωt

z2e−iωt

�
ð45Þ

W⃗μ ¼ −
ffiffiffiffiffiffiffiffiffiffi
2ωΩ

p

g
ðcosðΩtÞ; sinðΩtÞ; 0Þ∂μz; ð46Þ

where z1; z2 ∈ C are constants with jz1j2 þ jz2j2 ¼ 1,
and ω is given in terms of Ω and the parameters in the
scalar potential by (43). The electric field is found
from (11) and (37),

E ¼ Ω
ffiffiffiffiffiffiffiffiffiffi
2ωΩ

p

g
: ð47Þ

IV. ELECTRIC STRING (f ðrÞ ≠ 1)

We now move on from the homogeneous electric field to
electric string solutions. The gauge fields are given by (12),
the required currents by (19)–(21), and the currents that Φ
can source by (29). Hence, we must now find Φ by solving

i
2
gðΦ†σ1DμΦ − ðDμΦÞ†σ1ΦÞ

¼ −
ϵ

g
cosðΩtÞ

�
f00 þ f0

r
þΩ2f

�
∂μz; ð48Þ

i
2
gðΦ†σ2DμΦ − ðDμΦÞ†σ2ΦÞ

¼ −
ϵ

g
sinðΩtÞ

�
f00 þ f0

r
þ Ω2f

�
∂μz; ð49Þ

i
2
gðΦ†σ3DμΦ − ðDμΦÞ†σ3ΦÞ ¼ −

ϵ2

g
Ωf2∂μt: ð50Þ

Guided by the homogeneous electric field case of
Sec. III, we try

Φ ¼ ηhðrÞ
�
z1eþiωt

z2e−iωt

�
; ð51Þ

where hðrÞ is a real profile function that is to be
determined.
We first consider μ ¼ 0 in (48)–(50). We find that (48)

and (49) are trivially satisfied, while Eq. (50) gives

−gη2h2ω ¼ −
ϵ2

g
Ωf2; ð52Þ

which implies

hðrÞ ¼ ϵ

gη

ffiffiffiffi
Ω
ω

r
fðrÞ; ð53Þ

and we should have ω=Ω > 0 since h is real.
The μ ¼ 1, 2 equations are trivially satisfied, so we now

consider μ ¼ 3; i.e., the μ ¼ z equations. Equations (48)
and (49) then give

f00 þ f0

r
þ
�
Ω2 −

g2η2

2
h2
�
f ¼ 0 ð54Þ

and (50) is trivially satisfied.
Inserting (53) in (54) gives

f00 þ f0

r
þ Ω2

�
1 −

ϵ2

2ωΩ
f2
�
f ¼ 0: ð55Þ

Next we consider the Φ equation of motion in (38)
together with (53) to get

f00 þ f0

r
þ
�
ðω2 −m2Þ −

�
ϵ2

4
þ 2λϵ2Ω

g2ω

�
f2
�
f ¼ 0: ð56Þ
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Consistency with (54) requires

Ω2 ¼ ω2 −m2 ð57Þ
Ω
2ω

¼ 1

4
þ 2λΩ

g2ω
: ð58Þ

Equation (58) can be written as

ω ¼ 2

�
1 −

4λ

g2

�
Ω; ð59Þ

and since we have already assumed ω=Ω > 0 [see Eq. (53)],
we should restrict to λ ≤ g2=4. Also, since the potential V
should be bounded from below, we have 0 ≤ λ ≤ g2=4.
For fixed parameters m2, λ, Eqs. (57) and (58) can be

solved to obtain Ω and ω,

Ω2 ¼ m2

4ð1 − 4λ=g2Þ2 − 1
; ð60Þ

ω2 ¼ 4ð1 − 4λ=g2Þ2m2

4ð1 − 4λ=g2Þ2 − 1
: ð61Þ

This is a valid solution provided

m2

4ð1 − 4λ=g2Þ2 − 1
> 0; ð62Þ

which gives the conditions 0 < λ < g2=8 or λ > 3g2=8
if m2 > 0, and g2=8 < λ < 3g2=8 if m2 < 0. Taking into
account the tighter restriction discussed below (59)
that ω > 0 for Ω > 0, the range of λ for m2 < 0 is
g2=8 < λ < g2=4. These constraints are shown in Fig. 1.
Hence, there is a range of values of the parameters m2

and λ of the potential for which (55) and (56) are identical,
provided (60) and (61) hold. In this case, (55) can be solved
numerically. It is preferable to rescale variables,

R ¼ Ωr; F ¼ ϵffiffiffiffiffiffiffiffiffiffi
2ωΩ

p f; ð63Þ

and then

F00 þ F0

R
þ ð1 − F2ÞF ¼ 0: ð64Þ

Only the combination ϵfðrÞ appears in the gauge field [see
Eq. (12)], and we are free to take fð0Þ ¼ 1 or

Fð0Þ ¼ ϵffiffiffiffiffiffiffiffiffiffi
2ωΩ

p : ð65Þ

Since the electric field strength is proportional to F,
we would like to choose boundary conditions such that
Fð0Þ ¼ F0 ≠ 0 and Fð∞Þ → 0. Different values of F0

correspond to different external charges placed at z → �∞

that produce the electric field. Smoothness at R ¼ 0
requires F0ð0Þ ¼ 0.
There are no solutions that fall off asymptotically

for F0 > 1. For F0 ≪ 1, the nonlinear term with F2 is
subdominant, and the solutions are well approximated by a
Bessel function of zero order,

FðRÞ ≈ F0J0ðRÞ: ð66Þ

A plot of the numerically evaluated FðRÞ is shown in
Fig. 2. The asymptotic behavior of FðRÞ is therefore,

FðRÞ ∼ F0

ffiffiffiffiffiffi
2

πR

r
cos

�
R −

π

4

�
: ð67Þ

The energy density in all the fields is given by the
expression,

E¼1

2
ðWa

0iÞ2þ
1

4
ðWa

ijÞ2þjDtΦj2þjDiΦj2þVðΦÞ: ð68Þ

Inserting the expressions for the solution, we get

E ¼ ϵ2Ω2

2g2
f2 þ ϵ2

2g2
f02 þ ϵ2ωΩ

g2
f2 þ ϵ2Ω

g2ω
f02 þ ϵ4Ω

4g2ω
f4

þm2
ϵ2Ω
g2ω

f2 þ λ
ϵ4Ω2

g4ω2
f4; ð69Þ

imag

imag 

imag 

 < 0
 > 0

 > 0

 < 0

8 /g2

m2

1
2
3

0

FIG. 1. Constraints on the parameters in the m2-8λ=g2 plane.
The unshaded regions give imaginary Ω and are not allowed.
The solution is only valid in the regions of parameter space
where ω > 0.

5 10 15 20 25
R

–0.2

–0.1

0.1

0.2

0.3

0.4

0.5

F

FIG. 2. FðRÞ vs R for F0 ¼ 0.5.
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or in terms of rescaled variables,

E0 ≡ g2

2ωΩ3
E

¼
�
1

2
þ 1

κ

�
F02 þ

�
1

2
þ 2κ −

1

κ

�
F2 þ 1

2

�
1

2
þ 1

κ

�
F4;

ð70Þ

where [see Eq. (59)],

κ≡ ω

Ω
¼ 2

�
1 −

4λ

g2

�
: ð71Þ

Due to the constraints on λ=g2, we find 1< κ<2 form2 > 0

and 0 < κ < 1 for m2 < 0. In Fig. 3, we show E0 for a
sample value of κ and F0.
The energy per unit length along the z direction is

defined to be the tension of the string. Therefore, the
rescaled tension with a radial cutoff at Rc is

μðRcÞ ¼ 2π

Z
Rc

0

dRRE0

≈
��

1

2
þ 1

κ

�
0.54þ

�
1

2
þ 2κ −

1

κ

�
0.54

�
Rc

þ 1

2

�
1

2
þ 1

κ

�
0.09 lnðRcÞ: ð72Þ

Therefore, the tension diverges linearly with the radial
cutoff. Thus, while the electric field is axisymmetric and
concentrated along the central axis, it is not as sharply
localized as in a magnetic Nielsen-Olesen string [20],
though it is more localized than the homogeneous con-
figuration. The situation is similar to that of a global string
for which the energy diverges logarithmically and to global
monopoles for which the energy diverges linearly [19].
Form2 < 0, the potential VðΦÞ has a minimum atΦ ≠ 0.

However, the solution of (64) implies thatΦ→0 as r → ∞.

Therefore, Φ is not in its true vacuum asymptotically, and
there is nonvanishing vacuum energy at spatial infinity. In
this case, the electric string is a cylindrical “bubble” of the
true vacuum (with nonvanishing Φ) in a background of
the false vacuum phase with Φ ¼ 0. This is different from
the case of the electric string with m2 > 0 for then, the true
vacuum is at Φ ¼ 0, and the potential energy of Φ goes to
zero in the asymptotic region.
Finally, we return to the question of whether the solution

corresponds to an electric string as azimuthal magnetic
fields are also present [see Eqs. (15)–(17)]. Hence, we
calculate Lg using (18) and plot the quantity F2 − ðF0Þ2
in Fig. 4. The behavior at large R can be seen from the
properties of the Bessel functions,

F2 − ðF0Þ2 ∼ F2
0½J20ðRÞ − J21ðRÞ� → F2

0

2 sinð2RÞ
πR

; ð73Þ

where we have used J1ðRÞ ¼ −J00ðRÞ and (67). The gauge
field strength is electriclike where F2 − ðF0Þ2 > 0; other-
wise, it is magneticlike. This shows that the solution has
alternating electric and magnetic fields where the electric
field is along the z direction and the magnetic field is along
the azimuthal direction. So, a caricature of the electric
string configuration is a tube of electric field along the z
direction, wrapped by weak azimuthal magnetic fields, that
are again contained in a sheath of weaker electric field, ad
infinitum (see the sketch in Fig. 5).
To summarize the main result of this section, we have

found the electric string solution,

Φ ¼ ϵ

g

ffiffiffiffi
Ω
ω

r
fðrÞ

�
z1eþiωt

z2e−iωt

�
ð74Þ

W�
μ ¼ −

ϵ

g
e�iΩtfðrÞ∂μz; W3

μ ¼ 0; ð75Þ

5 10 15 20 25
R

0.2

0.4

0.6

FIG. 3. E0 vs R for F0 ¼ 0.5 and κ ¼ 1.5.

5 10 15 20 25
R

–0.05

0.05

0.10

0.15

0.20

0.25

F2 – (F )2

FIG. 4. FðRÞ2 − F0ðRÞ2 vs R for F0 ¼ 0.5. The field strength is
electriclike where FðRÞ2 − F0ðRÞ2 is positive and magneticlike
where FðRÞ2 − F0ðRÞ2 is negative.

TANMAY VACHASPATI PHYS. REV. D 107, 096015 (2023)

096015-6



where jz1j2 þ jz2j2 ¼ 1, and Ω and ω are given by

Ω ¼
�

m2

4ð1 − 4λ=g2Þ2 − 1

�
1=2

; ð76Þ

ω ¼
�
4ð1 − 4λ=g2Þ2m2

4ð1 − 4λ=g2Þ2 − 1

�
1=2

; ð77Þ

and m2 and λ are parameters of the scalar potential [see
Eq. (25)]. The solution is valid for 0 < λ < g2=8 for
m2 > 0 and for g2=8 < λ < g2=4 for m2 < 0. The profile
function, fðrÞ, is common to both the gauge field and the
scalar field and satisfies (55) with boundary conditions
fð0Þ ¼ 1, f0ð0Þ ¼ 0. The solution for the profile is closely
approximated by the zeroth order Bessel function, J0ðΩrÞ,
up to a multiplicative constant that fixes the strength of the
electric field at the origin.

V. SCHWINGER GLUON PRODUCTION?

The gauge particles (“gluons”) are charged under SUð2Þ,
as are excitations of the scalar field Φ, and there can be
Schwinger pair production of both kinds of excitations.
Here, we are interested in whether the electric field is
protected from pair production of gluons. Pair production
of scalar quanta is similar to pair production of quarks
in QCD that results in string breaking. The effect can be
suppressed by considering large masses of the scalar
quanta, i.e., large positive values of the parameter m2.
To see that the electric field is stable to Schwinger gluon

production, we perturb the gauge field,

W�
μ ¼ A�

μ þ e�iΩtQ�
μ ; W3

μ ¼ A3
μ þQ3

μ; ð78Þ

where Aa
μ is the background [see Eq. (12)]

A�
μ ¼ −

ϵ

g
e�iΩtfðrÞ∂μz; A3

μ ¼ 0; ð79Þ

and Qa
μ are the perturbations. The scalar field is left

unperturbed,

Φ ¼ ηhðrÞ
�
z1eþiωt

z2e−iωt

�
; ð80Þ

since we are interested in gluon production, and the mass of
the Φ field can be taken to be large.
As in Ref. [17], the expressions in (78) are inserted in the

Lagrangian density for the gauge fields

Lg ¼ −
1

4
Wa

μνWμνa; ð81Þ

to obtain the Lagrangian density for the perturbations Qa
μ.

The expressions are lengthy, but the important point is
that there is no explicit time dependence in the Lagrangian
even though the background in (79) is time dependent. For
example, the Lagrangian density to second order in the
perturbations is

Lð2Þ
g ¼ 1

2

�
_Qð1Þ
i −ΩQð2Þ

i

�
2 þ 1

2

�
_Qð2Þ
i þ ΩQð1Þ

i

�
2

þ 1

2

�
_Qð3Þ
i

�
2
−
1

4

�
∂iQ

ð1Þ
j − ∂jQ

ð1Þ
i

�
2

−
1

4

�
∂iQ

ð2Þ
j − ∂jQ

ð2Þ
i þ ϵf

�
ẑiQ

ð3Þ
j − ẑjQ

ð3Þ
i

��
2

−
1

4

�
∂iQ

ð3Þ
j − ∂jQ

ð3Þ
i − ϵf

�
ẑiQ

ð2Þ
j − ẑjQ

ð2Þ
i

��
2

þ ϵf0ðẑir̂j − ẑjr̂iÞQð2Þ
i Qð3Þ

j ; ð82Þ

where ẑi, r̂i are unit vectors in the z and r directions, and the
contraction of spatial indices is with the Kronecker delta,

e.g., ð _Qð3Þ
i Þ2 ¼ _Qð3Þ

i
_Qð3Þ
i . Similar expressions are obtained

at all orders in perturbations, and there is no explicit time
dependence in any of them. If we expand the perturbations

in modes in Lð2Þ
g , the mode coefficients correspond

to simple harmonic oscillators with time-independent
frequencies, which implies that there is no particle
production.
In the present analysis, since we include the scalar

field Φ, there is an extra term in Qa
μ coming from the

covariant gradient term in the Lagrangian,

LΦ ¼ jDμΦj2 − VðΦÞ → …þ g2

4
jΦj2Qa

μQμa; ð83Þ

where the … include terms that are zeroth and first order
in Qa

μ. Since jΦj2 ¼ η2h2 is independent of time, the last
term in (83) is simply a mass term forQa

μ with a mass that is
independent of time. Once again, the quantum state of the
modes ofQa

μ will correspond to simple harmonic oscillators
with time-independent frequencies. Thus the time depend-
ence of the background gauge field does not lead to any
Schwinger particle production of the gauge excitations.

FIG. 5. A sketch of the electric and magnetic fields in an
electric string.

CONSTRUCTION OF NON-ABELIAN ELECTRIC STRINGS PHYS. REV. D 107, 096015 (2023)

096015-7



VI. CONCLUSIONS

We have first constructed homogeneous electric field
solutions in non-Abelian gauge theories with a scalar
field that transforms in the fundamental representation.
This construction paved the way for the construction of
electric string solutions that are summarized in Eqs. (74),
(75), (76), and (77). The solutions describe a flux tube
of electric field, wrapped by azimuthal magnetic fields,
followed by a sheath of electric field, which is again
wrapped by azimuthal magnetic field, ad infinitum. The
strength of the electric and magnetic fields falls off with
distance as 1=

ffiffiffi
r

p
. The slow falloff implies a linear

divergence in the energy per unit length of the electric
string for m2 > 0. In the case where m2 < 0, the electric
solution has Φ ¼ 0 asymptotically while the true vacuum
has Φ ≠ 0. Hence, the electric string for m2 < 0 is like
a cylindrical bubble solution that contains gauge fields
and Φ ≠ 0 that is immersed in a false vacuum region
with Φ ¼ 0.
The electric string solution could have some relevance in

QCD because quantum fluctuations about the electric string
background might effectively provide the required sources
for the electric field. However, to actually show this is a
difficult task. Electric string solutions with vanishing
hypercharge gauge field do not exist, but a more reasonable
requirement might be to set the electromagnetic gauge field
to vanish. Then the electric string would be composed
of W� and Z gauge fields. Another interesting direction to
explore is whether fermions can provide suitable sources
for electric string solutions.
In Sec. V, we have shown that Schwinger gluon

production is absent in the electric string background.
This still leaves room for classical instabilities of the
electric string solution, especially since unstable modes
are known to exist in the homogeneous BW gauge field
background in pure gauge theory [21]. With the Φ field
included, the main difference is that there is now an
interaction term jΦj2ðWa

i Þ2 in the energy functional.
Since Φ is nonzero in the electric string solution, the
gauge field excitations above the background are massive.
This should suppress instabilities, but it is difficult to say if
the suppression is sufficient to eliminate the instabilities.
We plan to perform a classical stability analysis of the
electric string solution in future work.
The electric string solution also contains azimuthal

magnetic fields, and there is danger of an Ambjorn-
Olesen (or W-condensation) instability [22]. The instability
was found for a uniform non-Abelian magnetic field and
can be understood in terms of the gauge particle’s magnetic
dipole coupling to the magnetic field. Since gauge particles
are spin 1 particles, the coupling can be large and negative,
enough to overcome any energy costs in producing the
particles from the vacuum. The leads to an instability
toward condensation of the gauge particles. In our case, the

magnetic field is in the azimuthal direction (see Fig. 5) and
is not homogeneous. It remains to be seen if the Ambjorn-
Olesen instability applies to the magnetic field in the
electric string solution.
There is a large body of work on the quantization of

classical solutions [23], The procedure is to consider
fluctuations around the background solution. In our case,
the gauge field with fluctuations can be written as in
Eq. (78) and similarly the scalar field is

Φ ¼ Φ0 þ Φ̂; ð84Þ

where Φ0 is the classical solution and Φ̂ represent fluctua-
tions. Assuming weak coupling and that there are no
classical instabilities, the fluctuations can be treated to
lowest quadratic order in the action, and their eigenmodes
are simple harmonic oscillators that can be quantized in the
standard way. The backreaction of these quantum fluctua-
tions on the classical background will be small. However,
this straightforward quantization does not hold at strong
coupling. In that case, the action cannot be truncated to
quadratic order in the fluctuations and the backreaction
may change the classical solution in a significant way. Then
lattice methods seem to be the only recourse. It would be
very interesting if strong coupling effects could control the
asymptotic behavior of the electric string so as to give a
finite string tension.
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APPENDIX A: HOMOGENEOUS ELECTRIC
FIELD AND ADJOINT SCALAR FIELD

The SUð2Þ gauge fields [see Eqs. (13) and (14)] will be
written as

W⃗μ ¼ −
ϵ

g
ðcosðΩtÞ; sinðΩtÞ; 0Þ∂μz; ðA1Þ

where the vector sign denotes a vector in internal space.
From (19)–(21), the current is

j⃗μ ¼ −
ϵΩ
g
ðΩ cosðΩtÞ∂μz;Ω sinðΩtÞ∂μz; ϵ∂μtÞ: ðA2Þ

The adjoint scalar will be denoted by ϕ⃗. In terms of ϕ⃗, the
current is

j⃗μ ¼ gϕ⃗ ×Dμϕ⃗; ðA3Þ

TANMAY VACHASPATI PHYS. REV. D 107, 096015 (2023)

096015-8



where

Dμϕ⃗ ¼ ∂μϕ⃗þ gW⃗μ × ϕ⃗: ðA4Þ

Therefore, given j⃗μ, ϕ⃗ must satisfy the constraint

ϕ⃗ · j⃗μ ¼ 0 ðA5Þ

for every μ. Setting μ ¼ 0, we obtain the requirement
ϕ3 ¼ 0. And, setting μ ¼ 3 gives

cosðΩtÞϕ1 þ sinðΩtÞϕ2 ¼ 0: ðA6Þ

Therefore,

ϕ⃗ ¼ ηð− sinðΩtÞ; cosðΩtÞ; 0Þ; ðA7Þ

where η is some unspecified vacuum expectation value of
the scalar. Then

∂μϕ⃗ ¼ −ηΩðcosðΩtÞ; sinðΩtÞ; 0Þ∂μt; ðA8Þ

and

ϕ⃗ × ∂μϕ⃗ ¼ η2Ωð0; 0; 1Þ∂μt; ðA9Þ

ϕ⃗ × ðW⃗μ × ϕ⃗Þ ¼ ðϕ⃗ · ϕ⃗ÞW⃗μ − ðϕ⃗ · W⃗μÞϕ⃗ ¼ η2W⃗μ; ðA10Þ

since ϕ⃗ · W⃗μ ¼ 0.
Equation (A3) gives

j⃗μ ¼ gη2½Ωê3∂μtþ gW⃗μ�
¼ gη2ð−ϵ cosðΩtÞ∂μz;−ϵ sinðΩtÞ∂μz;Ω∂μtÞ ðA11Þ

Comparison of the μ ¼ 3 expressions with the desired
currents (A2) gives

Ω ¼ gη; ðA12Þ

The trouble arises in matching the μ ¼ 0 expressions,
for then,

ϵ2 ¼ −g2η2; ðA13Þ

and a real solution does not exist.
We conclude that the adjoint scalar ϕ⃗ cannot source the

initial gauge field in (A1).

APPENDIX B: HOMOGENOUS ELECTRIC FIELD
AND ELECTROWEAK MODEL

The electroweak model has the same ingredients as our
model with an electric string solution, except that the Uð1Þ

symmetry is gauged with gauge coupling g0, and we have
an extra gauge field, Yμ, called the hypercharge gauge field.
We will look for an electric string solution of the same form
as in (12) and with Yμ ¼ 0.
The W currents are unchanged, and we still need to

satisfy (48)–(50). In addition, since Yμ ¼ 0, the hyper-
charge current must also vanish

∂νYμν ¼ jYμ ¼ i
g0

2
ðΦ†DμΦ − H:c:Þ ¼ 0 ðB1Þ

The form of Φ and Wa
μ is fixed and given in (74) and (75).

Inserting these in (B1) gives

0 ¼ −
g0ϵ2

g2
Ωf2ðjz1j2 − jz2j2Þ∂μt

−
g0ϵ3

2g2
Ω
ω
f3½z1z�2eiðΩþ2ωÞt þ H:c:�∂μz; ðB2Þ

The μ ¼ 0 component requires jz1j2 ¼ jz2j2 ¼ 1=2, while
the μ ¼ z component requires

z1z�2e
iðΩþ2ωÞt þ H:c: ¼ 0: ðB3Þ

This forces ω=Ω ¼ −1=2, but this is in conflict with the
requirement that ω=Ω > 0 discussed below (53). Hence,
the electric string solution with Yμ ¼ 0 does not exist in the
electroweak model. This does not exclude the possibility of
an electric string solution with Yμ ≠ 0.

APPENDIX C: SOME HELPFUL FORMULAS

If we use the Hopf parametrization to write Φ,

Φ ¼ η

�
cos αeiβ

sin αeiγ

�
; ðC1Þ

where α, β, γ only depend on time. Then

n⃗≡Φ†σ⃗Φ ¼ η2ðsinð2αÞ cos θ; sinð2αÞ sin θ; cosð2αÞÞ;
ðC2Þ

where θ≡ γ − β. And,

Φ†σ1 _Φ−H:c:¼ iη2½2sinθ _αþsin2αcosθð _βþ _γÞ�; ðC3Þ

Φ†σ2 _Φ−H:c:¼ iη2½−2cosθ _αþsin2αsinθð _βþ _γÞ�; ðC4Þ

Φ†σ3 _Φ − H:c: ¼ iη22ðcos2α_β − sin2α_γÞ; ðC5Þ

Φ† _Φ − H:c: ¼ iη22ðcos2α _β þ sin2α_γÞ: ðC6Þ
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