PHYSICAL REVIEW D 107, 096014 (2023)

QED fermions in a noisy magnetic field background
Jorge David Castafio-Yepes®,"" Marcelo Loewe®,"***" Enrique Mufioz®,">*
Juan Cristobal Rojas,é’§ and Renato Zamora®’*!

"Facultad de Fisica, Pontificia Universidad Catélica de Chile, Vicuiia Mackenna 4860, Santiago, Chile
Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town,
Rondebosch 7700, South Africa
3Centro Cientifico Tecnoldgico de Valparaiso CCTVAL, Universidad Técnica Federico Santa Maria,
Casilla 110-V, Valparaiso, Chile
*Facultad de Ingenieria, Arquitectura y Diseiio, Universidad San Sebastidn, Santiago, Chile
>Center for Nanotechnology and Advanced Materials CIEN-UC,

Avenida Vicuiia Mackenna 4860, Santiago, Chile
®Departamento de Fisica, Universidad Catdlica del Norte, Angamos 610, Antofagasta, Chile
"Centro de Investigacion y Desarrollo en Ciencias Aeroespaciales (CIDCA), Fuerza Aérea de Chile,
Casilla 8020744, Santiago, Chile
8Instituto de Ciencias Bdsicas, Universidad Diego Portales, Casilla 298-V, Santiago, Chile

® (Received 28 November 2022; accepted 27 April 2023; published 18 May 2023)

We consider the effects of a noisy magnetic field background over the fermion propagator in QED as an
approximation to the spatial inhomogeneities that would naturally arise in certain physical scenarios, such
as heavy-ion collisions or the quark-gluon plasma in the early stages of the evolution of the Universe. We
considered a classical, finite, and uniform average magnetic field background (B(x)) = B, subject to
white-noise spatial fluctuations with autocorrelation of magnitude Agz. By means of the Schwinger
representation of the propagator in the average magnetic field as a reference system, we used the replica
formalism to study the effects of the magnetic noise in the form of renormalized quasiparticle parameters,
leading to an effective charge and an effective refraction index that depend not only on the energy scale, as

usual, but also on the magnitude of the noise Ay and the average field B.
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I. INTRODUCTION

High-energy physics under the presence of strong
magnetic fields is an important subject of research in many
scenarios, such as heavy-ion collisions [1-5], the quark-
gluon plasma [6-9], and the early-universe evolution
[3,10]. In such systems, rather strong magnetic fields
can emerge in comparatively small regions of space and,
moreover, strong spatial anisotropies and fluctuations can
develop in the magnitude of such fields [1,3].

Remarkably, magnetic fields can influence the physical
properties of both charged as well as neutral particles, the
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latter due to the quantum mechanical fluctuations of the
vacuum that lead to the creation of virtual charged fermion-
antifermion pairs. In the context of high-energy physics,
the effect of a constant and “classical” magnetic field
background has been studied since the seminal work of
Schwinger [11], followed with extensive discussions in
the literature in the context of semiclassical effective
Lagrangians [12,13]. More recently, the effect of magnetic
fields on nucleon parameters have been discussed in the
context of QCD [14]. In addition, several studies have been
reported concerning the effects of a classical, static, and
uniform background magnetic field on the charged vacuum
fluctuations leading to the gluon polarization tensor
[7,8,15,16], in particular the role of the field in the breaking
of the Lorentz invariance, thus predicting the emergence of
the vacuum birefringence phenomena [15,16]. On the other
hand, vacuum fluctuations also affect the propagation of
fermions in such magnetized background [17], as expressed
by the self-energy, that leads to the definition of a magnetic
mass and, according to recent studies in QED [18], to an
spectral width involving the contribution of all the magnetic
Landau levels. Moreover, nonperturbative theoretical
approaches [19] reveal the magnetic catalysis effect, where

Published by the American Physical Society
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the presence of a strong uniform magnetic field leads to the
emergence of effective masses for the fermion species,
regardless of their bare mass.

Interestingly, in most of these studies, the background
magnetic field is always idealized as static and uniform,
and hence the presence of spatial anisotropies or fluctua-
tions in its magnitude are disregarded in the state of the
art of such calculations. A nonuniform but deterministic
background magnetic field has been studied in QED by
means of a path-integral formulation [20]. On the other
hand, statistical fluctuations near a zero average magnetic
field have been studied in the context of QED,.; [21,22],
as it arises as an effective continuum theory for certain low-
dimensional Dirac materials such as Graphene [19]. In the
latter, however, the average background field is assumed to
be zero, and hence the reference system is characterized by
a free fermion propagator rather than by a Schwinger
propagator as we consider in the present study. Since spatial
fluctuations with respect to a finite background magnetic
field may indeed exist in the different aforementioned
physical scenarios [3], in the present work we shall study
their effect over the renormalization of the fermion propa-
gator itself in QED. As we shall discuss in this article, a
perturbative treatment of such fluctuations in the frame-
work of the replica method [23,24] allows us to show that
their effect can be captured in terms of a renormalization
of the charge e — zze and an effective refraction index
v'/c = z7'. Moreover, we show that z; and z depend
not only on the energy scale, as usual, but also on the
magnitude of the average magnetic field |B|, as well as on
the strength of its spatial fluctuations that we define as Ap.

II. THE MODEL

We shall consider a physical scenario where a classical
and static magnetic field background, possessing random
spatial fluctuations, modifies the quantum dynamics of a
system of fermions. For this purpose, we shall assume the
standard QED theory involving fermionic fields y(x), as
well as gauge fields A#(x). In the latter, we shall distinguish
three physically different contributions

AF(x) = AF(x) 4+ Al (x) + 6ARG(X). (1)

Here, A#(x) represents the dynamical photonic quantum
field, while BG stands for “background,” representing
the presence of a classical external field imposed by the
experimental conditions. Moreover, for this BG contribu-
tion, we consider the effect of static (quenched) white noise
spatial fluctuations 6Aj(x) with respect to the mean value
Al (x), satisfying the statistical properties

(6Ah(x)8AkG (X)) = Apdj6°(x — X'),
(6AjG(x)) = 0. (2)

These statistical properties are represented by a Gaussian
functional distribution of the form

(34, (01

dPloAl) = N S B Dlsah (). (3)

In the context of heavy-ion collisions (HIC), spatial
fluctuations arise from the fact that strong magnetic fields
B =V x Agg are generated locally within a small spatial
region during individual collisions, where the characteristic
length scale is L ~ /o, with ¢ being the effective cross
section. In these collisions, the dominant component of the
magnetic field is along the axial z-direction, such that on
average we have (B) = &3 B. However, there are also smaller
transverse components 6B, and 6B, such that we can
estimate the fluctuation of the field within the small collision
region to be on the order of (6B)? ~ (6B,)* + (6B,)*. Since
many such collisions occur at different points in space, an
approximate model for this physical scenario is provided by
the spatial random noise Eq. (2). By dimensional analysis,
the magnitude of Ay is of the order

Ag ~ (6B)*L> ~ (6B)*c"/2. (4)

The effective cross section for a nuclear collision can be
estimated as the fraction f of the area of perfectly central
collisions between two nuclei, each with a radius of ry,

o= frri. (5)

Here, f represents the fraction of the geometrical cross
section 6 4.,m, Which is defined as the area of the circle with
a radius of r; + r, = 2R in a maximum peripheral colli-
sion, and the cross section ¢, for a peripheral collision with
impact parameter b [25,26]:

gm0 (M) (6
Ogcom 2N ’

where ¢;, describes an effective nucleus of radius b. The
nuclear radius is always written as 7, = roN'/?, where N is
the number of nucleons per ion and ry ~ 1.25 fm. Here,

Npar is the number of participants corresponding to the
effective nucleus.
Therefore,
N, 5/3
Ag ~ n5%(6B)* N>/ <2LI';‘,“> . (7)

In peripheral heavy-ion collisions, the magnetic field
fluctuations along the transverse plane are approximately
|e6B| ~ m2/4, where m, is the pion mass [26,27]. For an
Au + Au collision with N =197, and if Ny,q/N = 1/2,
we obtain
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A=e’Ag~2.6MeV!, (8)

or for less central collisions with Ny, /N = 1/8,
A ~026 MeV~L 9)

As we shall later show in our analysis, the effect of such
fluctuations is determined by the dimensionless parameter
mA, where m is the mass of the fermions that propagate
through the region where the magnetic field and its fluctua-
tions are present. If mA <« 1 (i.e., for m <« 0.4 MeV), then
one may in principle neglect the magnetic fluctuation effects.
However, if mA ~ 1 (i.e., for m ~ 0.4 MeV or larger), those
effects may become quite significant. This is an important
physical motivation for this theoretical study.

We write the Lagrangian for this model as a super-
position of two terms

L = Lrpc + Lnges (10)

where the first represents the system of fermions (and
photons) immersed in the deterministic background
field (FBG)

. 1
['FBG:W(ld_eABG_EA_m)l//_ZF;wFﬂyv (11)

with F,, = d,A, — 9,A, the electromagnetic tensor for the
quantum photon gauge fields. The second term in the
Lagrangian Eq. (11) represents the interaction between
the fermions and the static classical noise (NBG), repre-
sented by the spatial fluctuations A% (x)

W (—edhpe)y. (12)

'CNBG -

The generating functional (in the absence of sources) for
a given realization of the noisy fields is given by

A= [ Dip

To study the physics of this system, we need to calculate
the statistical average over the magnetic background noise
SA% of the InZ. For this purpose, we apply the replica
method, which is based on the following identity [23]:

l//]ei fd4x[»CFBG+»CNBG] . (13)

Z'"A| -1
InZ[A] = limL.
n—0 n

(14)

Here, we defined the statistical average according to the
Gaussian functional measure of Eq. (3), and Z" is obtained
by incorporating an additional “replica” component for
each of the fermion fields, i.e., w(x) - w*(x), for
1 < a < n. The “replicated” Lagrangian has the same form
as Egs. (11) and (12), but with an additional sum over the
replica components of the fermion fields. Therefore, the
averaging procedure leads to

aA”

/HDw y /D5A’ée -

elfd4x 2”:1 (Lrna [ w1 +Lpa i w])

— [ 1L o yejesers, (15)
a=1

where in the last step we explicitly performed the Gaussian
integral over the background noise, leading to the definition
of the effective averaged action for the replica system

S'[v_/“’ l//a;A] = /d4x <lea(1¢_ eABG - eA - m)‘//a - %FMDFW/)

3

d*x d4y

Xy ()t (y)y w” (v)5° (x —y). (16)

Clearly, we end up with an effective interacting theory,
with an instantaneous local interaction proportional to the
fluctuation amplitude Ap that characterizes the magnetic
noise, as defined in Eq. (2). The “free” part of the action
corresponds to fermions in the average background
classical field Afg(x). We choose this background
to represent a uniform, static magnetic field along the
z-direction B = &3 B, using the gauge [12]

1

Ao (x) = 5 (0.~Bx* Bx',0). (17)

[
Therefore, this allows us to use directly the Schwinger

proper-time representation of the free-fermion propagator
dressed by the background field [11,12],

4
Sp(x.x') = B(x. ) / %e-fp-<x-x’>sF<p>, (18)

where the Schwinger phase ®(x, x’) can be gauged away
(see Appendix A for details and Ref. [18]) when calculating
diagrams involving an even number of vertices (such as the
self-energy and vertex corrections considered in this work).
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Therefore, we restrict ourselves to the consideration of the
translational-invariant part of the Schwinger propagator

dr (-1 e ric)

[Sr(K)]ap = =164 /oo

o cos(eBr)

x {[cos(eBT) +iy'y* sin(eBr)](m + K))

+h}, (19)

cos(eBr)

which is clearly diagonal in replica space. Moreover, since
it is an explicit function of the average magnetic field B =
V x Apg (rather than a function of the background gauge
field A’éG), it is also gauge-invariant. Here, as usual, we
separated the parallel from the perpendicular directions
with respect to the background external magnetic field by
splitting the metric tensor as ¢ = g} + ¢", with

d* = diag(1,0,0,-1),
¢ = diag(0,—1,-1,0), (20)

thus implying that for any four-vector, such as the
momentum k¥, we write

K=K +¥ (21)
and

K =ki - k3. (22)
In particular, ki = kj — k3, while k| = (k',k?) is the
Euclidean two-vector lying in the plane perpendicular to

the field, such that its square-norm is k3 = k? + k3. The
Schwinger propagator can be expressed as

[SE(k)]0p = =16, | (m 4+ §).A;

+ (ieB)iy'y*(m+ ¥)) STAZL] + (ieB)*K1 a(()zk—?gz
= _i5a,b{(m + k”)Al
+iy1y2(m+k||)-f42 + Ak, ] (23)

Here, we defined the function
2

o] . ) 2, - k
Al (k7 B) = / dTelT(kH_m +1€)—1(,—é‘tan(e31) (24)
0

that clearly reproduces the inverse scalar propagator (with a
Feynman prescription) in the zero-field limit

i

lim A, (k, B) = = , 25
BI_IT(I) 1( ) k2_m2+1€ Do(k) ( )
with
Dy(k) = k* — m* + ie, (26)
and its derivatives
Az(k, B) = /°° d»[tan(eBT)eif(kﬁ_l}s(f)ki—m2+ie)
0
o
B a(lf121 )’ (27a)
1
A (k B) = /oodreiT(kz—fB(T)ki—m2+ie)
WP o cos?(eBr)
’PA
- A] + (163)2 1 (27b)

a(k1)*

Moreover, with these definitions it is straightforward to
verify that the inverse of the Schwinger propagator Eq. (23)
is given by

Si' (k) = ﬁ [(m = )AL =iy (m = ) A —Ask ]

(28)
where
D(k) = A3k} — (A} = A3)(kf —m?).  (29)

Then, all the relevant expressions will be given in terms
of Al .

III. PERTURBATION THEORY: SELF-ENERGY
AND VERTEX CORRECTIONS

Our goal is to develop a perturbation theory in powers of
A, where as described in Sec. II and particularly in Eq. (16),
the effective fermion-fermion interaction arises as a result
of averaging over the background magnetic noise. Starting
from a free Fermion propagator, as defined by Eq. (19),
we include the magnetic noise-induced interaction effects
by “dressing” the propagator with a self-energy, as shown
diagrammatically in the Dyson equation depicted in Fig. 1.
We remark that for this theory, the skeleton diagram for the
self-energy is represented in Fig. 2.

FIG. 1. Dyson equation for the “dressed” propagator (double-
line), in terms of the free propagator (single-line) and the
self-energy X.
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N

FIG. 2. Skeleton diagram representing the self-energy for the
effective interacting theory. The dashed line is the disorder-
induced interaction Ag, while the box I represents the four-point
vertex function.

IV. SELF-ENERGY AT ORDER A

It is possible to express the background-noise contribution
to the self-energy (where for notational simplicity, we define
the parameter A = e?>Ap), as depicted in the Feynman
diagram in Fig. 3, by the integral expression

3
2a(q) = (iA)/ éﬂl)’g v'Sr(p + q:po = O)y;
= W/ d‘P{3(VOCI0 —m)A(qo, P3P L)

. . 7]
+iy'y*(m — qoy°) (ieB) aPTAl(QOa P3;PJ_)}-
1

(30)

The derivative term in the last expression can be
integrated in cylindrical coordinates d°p = wdpsd(p?),
as follows:

d
d3PF«41(6107P3;P¢)
1

+oo o0 d
277/ dp3/ d(Pi)ﬁAl(Clo»Pﬁpi)
-0 0 apl

+0o0
= —ﬂ/ dp3Ai(qo. P3P = 0), (31)

o]

where the identity lim> 5o A1(gos P33PL) =0 was
applied. Substituting this result into Eq. (31), we finally
obtain the exact expression (valid at all orders in the

background average magnetic field B)

A
A
A

FIG. 3. Self-energy diagram at first order in A = e?Ag.

Sa(q) = 2(21:)1 [3(70610 —m) A, (qo)

—iy! 2 (imeB)(m = 07} o (a0) |, (32)

where we have defined

Al(%) E/d3pA1(QO’p3;pL)v

~ +o00
Az (q0) E/_ dp3Ai(qo. p3;pL = 0). (33)

[Se]

Inserting the first order in the A expression for the self-
energy Eq. (32) into the Dyson equation, as depicted
diagrammatically in Fig. 1, we obtain the dressed inverse
propagator at first order in A,

§3' (k) = Sz' (k) - £, (34)

so that by using Egs. (28) and (32) we explicitly obtain

{0
i “g((:)) + ?;f)i A (CIO):| (q07°)
[t e s
+i [“;(5)) - iﬂ(@)fB) Az(%)} (ir'7*qo”)
—i “;l;((qq)) (g357°) +i%(iy‘y2%73) —i%m-
(35)

V. RENORMALIZATION OF THE PROPAGATOR

Let us define by m/, z, and z3 the renormalization factors
for the mass, the wave function, and the charge, respec-
tively. While z will emerge as a global factor in the dressed
propagator, the factor z3 will only be associated with the
tensor structures involving the spin-magnetic field inter-
action eo,, Fiy; = iy 7,eB. Therefore, we can compare
Eq. (28) with Eq. (35), in order to identify the correspond-
ing scalar factors for each tensor structure in both expres-
sions, thus leading to the definition of the renormalized
coefficients as follows:

(1) For 1:
mA(q) 3m(iA) -~ _ m'A(q)
Dla) * ap 0= (6
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(ii) For y'y%y":
Aolg) _inA)(eB) -

D(q) (2”)3 2(q0) =223 D(q) (36b)
(iii) For y'y?:
mA;(q) imz(iA)(eB) - m' Ay (q)
D) Gap e =TaTpy
(36¢)

Then, solving the system of equations we obtain

3iA -;l1 (flo)
(27)° Ai(q)

| _ inlid)(eB) As(g0) D(q)

D(q), (37a)

27)  Ay(q)
B= <Sii -;ll(‘;))q ’ (37b)
L+ e (g Pla)
m = m, (37¢)

and

7)?/: Z_l _ <1 (3iA AI(QO) (37(1)

27 Ailg) ”‘”) '

With these definitions into the “magnetic noise-dressed”
inverse propagator Eq. (35), after organizing the different
tensor structures, we obtain the expression

Sx'(q) = % [(m = qoy° —z7'q37°) Al (g)

— z3(iy'r?) (m — qor° — 27 q37°) Ax(q)

—iAs(q)z'4.]
N % [(m — ))Ai(q) — 23 (iy'y*) (m — )

x Ay (q) —iAs3(q)d 1], (38)
where in the last line we defined the four-vector g* =
(¢°,z7'q) that incorporates the definition of the effective
refraction index v'/c =z~ due to the random magnetic
fluctuations. By comparing Eq. (38) with Eq. (28), it is
clear that they possess the same tensor structure. Therefore,
by means of the elementary properties of the Dirac
matrices, this expression can be readily inverted to obtain
the “magnetic noise-dressed” fermion propagator

Salg) = izt 20 [(me)Al( )

q)+ As(@)dL]. (39)

where D(g) was defined in Eq. (29), and

D(q) = Az72q] — (A} — AD)(z7qf —m?). (40)

Let us now discuss the explicit magnetic field and
magnetic noise dependence of the renormalized parameters
defined in Egs. (37a) and (37b), i.e., z and z3. For this
purpose, we shall distinguish three different regimes,
corresponding to the very weak, the intermediate, and
the ultra-intense magnetic field, respectively.

A. Very weak field eB/m* < 1

As shown in detail in Appendix B, for very weak fields
eB/m?> < 1 the function A, (k,B) can be expanded in
terms of the power series

A, (k. B) :Di <1 +Z (‘;T) £; (x)>, (41)

Jj=

where for notational simplicity, we defined the “parallel”
inverse scalar propagator

’DH = kﬁ —m? + ie, (42)

and the dimensionless variable x = k3 /eB. We also
defined the polynomials &£;(x), as those generated by the
function e~¥@n? je

i(e—ix tan v)‘ (43)

For instance, the explicit analytical expressions for the
first three polynomials (j = 1,2, 3) are as follows:

Es(x) = =2ix +ix>.

At the lowest order, after subtracting the divergent vacuum
contribution from Eq. (41), we have after Eq. (B15) (see
Appendix B for details)

~2i(eB)’k] _+0((eB)). (44)

Ay (k. B) = i

- Ai(k,0) =

Therefore, using this weak field expansion of the propa-
gator, we calculate the integral (details in Appendix D)

A :—2ie32/d3 P
1(40) (eB) p(q%—p%— 2

7> (eB)?
~~ St )
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In addition, at order O((eB)?) we also need to evaluate
the integral (details in Appendix D)

- . [ d
AZ(‘IO) = 1/ 2 3)2p3

o q5—(pP)F—m? +ie
= (46)
qgo —m

Therefore, from Eqgs. (37a), (44), (45), and (46), we can
directly evaluate the renormalization parameters to obtain

= Gy Alg) D9
A(eB)* q:
=1+ 87 (¢*> —m? + 16)3(;2 —m? +ie)3/?
=1+ 0((eB)*), (47)

and similarly from Eq. (37b)

73 =1+ 0((eB)*). (48)

B. Intermediate field

For intermediate magnetic field intensities, we can
calculate the integral .4, by means of an expansion in
terms of Landau levels. For this purpose, let us consider the
generating function of the Laguerre polynomials [28]

eTi = )e= /2 Z (=1)"LY(x) (49)
since

e—ix tan v __ exp [—x(l _ e—2iu)/<1 + e—ziv)}

o0

Jer ) (-1

n=0

1 + e—21’b

n —Zlnng Zx) (50)

Therefore, we have (for x = ki /eB)

Al(k)—e‘J‘<Z<—1)"L2<2x> A drei(PI=2(m+eB)e
n=0

+> (=1)"LY(2x) A " drei(D_z""B)T) (51)

n=0

Evaluating the exponential integrals, we obtain

T ,—X - n Lg(zx)
i (k) =fe (Z(_l) D —2(n+1)eB

n=0
> L9(2x)
—1)" n
+ nZ:O( ) DH — 2”83)
)"[LY(2x) —

IF[ Z 1—2n33

n=1 Dy

L) 1<2x>1]. 52)

Inserting this expression into the definition of :4, of
Eq. (33), we obtain

Ai(qo) = /d3p«41(610,p3;p¢)

—pi/eB
&
/ p L] p3 —m? +ie

0 2 2
—1)" —p? /eB L (:)E) L (epBL)
+Z( )t Pl — -
= g3 — p3 —m?> —2neB +ie
+) (=1)"T,,. (53)
n=1

Here, we defined

e—pi/eB
I,=1i[| & -
! / pq%—p%—mz—i-le
7*eB
R R (54)
\Vqy—m 1€
and
2p% _ 2p%

Zz7n—i/d3pe—l’i/63 . n(2 ) n-1(ep) —.  (55)

qy— P35 — 2neB + 1€

We calculate the momentum integrals in cylindrical
coordinates, making use of the azimuthal symmetry, such
that &®p = dpsnd(p? ). Moreover, in the integral over p |,

. . 2p2
we define the auxiliary variable x = %, such that

meB [ dps
I2,n = T 2 w2 = p2 _2ngB +i
— gy —m P3 ngb + 1€
X /oo dxe 2L, (x) = L,_ (x)]
0
= d
= ZﬂeB(—l)"/ b3 —. (56)

_wq%—mz—pg—anB—&—le

where we used the identity [29]
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/ " dxe™L,(x) = (b— 1)"b""'Reb > 0. (57)
0

Inserting Eq. (54) and Eq. (56) into Eq. (53), we obtain
(after shifting the index n — n + 1)

~ 7*(eB
AI(QO):%
qo—m-+1e

+o0
+2rneB / dp;

= 1
. (58
X;)Q(z)_mz—[?%—%n—l-l)eB—i—ie (58)

Let us introduce the density of states for Landau levels

p(E) / dpSZfSE E,(p3)) (59)

with the dispersion relation for the spectrum

E(ps) = /P +m? +2n+1)eB.  (60)

As shown in detail in Appendix C
E
E) = ©(E - /m + 2¢B)
p(E) wJeB
1 E>—m?—2e¢B
- — E
1 E>—m

- 9 bl 61
‘)] )

where we defined

E—m’ 1J , (62)

M) = |

with x| the integer part of x, and {(n, z) is the Riemann
zeta function. The spectral density Eq. (61) is represented
in Fig. 4, as a function of the dimensionless energy scale
E/m. For large magnetic fields eB/m? > 1, the spectral
density displays a clear staircase pattern, where each step
represents the contribution arising from a single Landau
level n =0,1,.... On the other hand, for weak magnetic
fields eB/m? < 1, the spectral density exhibits a denser,
quasicontinuum behavior.

With these definitions, we obtain from Eq. (59) the exact
expression

0 10 20 30 40 50
E/m

FIG. 4. Spectral density for the Landau level spectrum p(E), as
a function of the dimensionless energy scale E/m, for different
values of the average background magnetic field eB/m?. The
inset is shown in order to appreciate in detail the staircase pattern
produced by the discrete Landau levels.

~ n*eB Foo p(E)
A :—+47T2€B/ dE——5—.
1(a0) JR-m i o G- EPtie
(63)
On the other hand, from Eq. (33) we have
Ay(4o) =/ dp3pAi (4o, p3:pL=0)
© 1
=1 d
1/_00 p3q%—p§—m2+i€
: 0) —L,,(0)
d
+1/_ p3z —m?*—=2neB +ie’
(64)
where the second term vanishes, given that

L,(0) =1V n. Hence, we end up with the simple
expression

m
\/q%—mz—i—ie.

In order to evaluate the formulas for z in Eq. (37a) and z3
in Eq. (37b), we also need to evaluate the following
coefficients [for x = k? /(eB)]:

-212(610) = (65)

096014-8



QED FERMIONS IN A NOISY MAGNETIC FIELD BACKGROUND PHYS. REV. D 107, 096014 (2023)

0A; .0A
= B— =1—
A, =ie et i—
e [1 L U (L(28) =220 = Ly (20) + 2, (20)
D = 1=25"
*A, P A,
A;=A ieB)? =A -—
s = At (ieB) g = A~ 52
N (ML) — Ly (20) = 2L4(20) + 4LU(2Y) + 2L, (2x) — AL, (24)) )
=i 1258
Finally, in order to further simplify these expressions, it L'(2x) =6, L<2)2(2x), (68)
is convenient to use the identities "
) where 6,_, is the Heaviside step function
- >
N e o
i 9 n —
0, otherwise o — { | (69)
=0, -quljl(2x), (67) 0, otherwise.

With these identities, we obtain the final expressions

x ™ n (1) (1)
a = {1 30 EDE2) 42,0020 = Ly (20) = 200 Ln_2(2x>>] ’

_ nneB
n=1 I=2%

=

e (=) (L (25) = Loy (20) + 2L (26) + 40, - LD (2x) = 2L, (2x) — 46,5 - LY, (2x))

A =i = o = (70
D“ n=1 - 2D—f
With these expressions, we evaluate
D(k) = Ak — (A}~ A (K2 —m?).  (T1) mA = 0.1; g5 — 0

and finally evaluate z and z3 with Eq. (37a) and Eq. (37b),
respectively. These results can be appreciated in Figs. 5-10,
as a function of the energy scale g,/m, as well as the
magnitude of the average background magnetic field
eB/m?, respectively.

C. Ultra-intense (LLL) field eB/m?* > 1

Let us now analyze the asymptotic behavior of the
quasiparticle renormalization parameters z, z3, and v'/c,
respectively, in the ultra-intense magnetic field regime
eB/m? > 1. Here, we obtain the corresponding asymptotic
expression for A;(g) by considering only the lowest-
Landau level (LLL) n = 0 in Eq. (53). Therefore, we have

) e—qi/eB
AI(Q) ~1— 2 (72) QO/m
aq=-m
FIG. 5. Wave function renormalization factor z as a function of
and the corresponding expressions for its derivatives are the dimensionless energy scale go/m. Here g3 = 0.
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0 100 200 300 400 500
eB/m?

FIG. 6. Wave function renormalization factor z as a function of
the dimensionless magnetic field scale eB/m?>. Here g5 = 0, and
eB/m? [10,500].

e—qf_/eB

A (q) = 5— (73)

qp—m
and

As(q) = 0. (74)

mA =0.1; g3 =0
2 4 6 8 10 12

1

QO/m

FIG. 7. Charge renormalization factor z3 as a function of the
dimensionless energy scale g,/m. Here g3 = 0.

mA =0.1; g3=0

0.4 . . h
0 100 200 300 400 500
eB/m?
FIG. 8. Charge renormalization factor z3 as a function of the

dimensionless magnetic field scale eB/m?*. Here g; = 0, and
eB/m? € [10,500].

Similarly, we also have

e—Zqi/eB
Dlg) =25 (75)

2 2
qgp—m

Finally, the integrals of .4, (q) are given, in this approxi-
mation, by the expressions

eB/m*1

0.2f - mA=0.1; ¢3=0 1

1 1

2 4 6 8 10 12

QO/m

FIG. 9. Effective refraction index v'/c as a function of the
dimensionless energy scale g,/m. Here g3 = 0.
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mA=0.1; g3=0
0 100 200 300 400 500

eB/m?

FIG. 10. Effective refraction index v'/c¢ as a function of the
dimensionless magnetic field scale eB/m?. Here g; = 0, and
eB/m? € [10,500].

- 20B
Ai(q) = . (76)
o —m
~ V3
Ay (qo) = > > (76b)
9o —m

Applying these asymptotic results for the ultrastrong
field regime, and substituting into the general definitions
Eq. (37a) and Eq. (37b), we obtain explicit analytical
expressions for the renormalization factors z and z3,
respectively, as follows:

3A(eB)e 9i/<B

2 2

=1+
4 n\/qi—m

(77)

and

A(eB)e™0/eB\
B=|1+—F=z
drr/ qf — m?
- A(eme—qi/(es)
z 2 _ 2
S A (78)

—q2 N
(BB)Q qL/@B)

A
1+3
4 4 /qg_mz

Remarkably, while for very large magnetic fields
7~ eB/m? grows linearly, z; instead converges asymptoti-
cally to the constant limit

1

Let us now summarize the behavior of the renormaliza-
tion factors z and z3 as a function of the energy scale ¢,/m,
and the average background magnetic field eB/m?, respec-
tively, in the whole range of both parameters, as displayed
in Figs. 5-8, respectively. As can be appreciated in Fig. 5,
z presents a monotonically decreasing behavior as a
function of the energy ¢,/m that asymptotically reaches
the limit z — 1 as go/m > 1, for all values of the average
background magnetic field eB/m?>. In physical terms, this
shows that the quasiparticle renormalization due to the
random magnetic field fluctuations tends to be negligible as
the energy of the propagating fermions becomes very large,
but in contrast it can be quite significant at low-energy
scales. This trend is also consistent with the effective
refraction index v'/c = z~! as shown in Figs. 9 and 10.
For low-energy scales, v'/c < 1, indicating a strong
renormalization of the effective group velocity of the
propagating quasiparticles due to the presence of the
magnetic background fluctuations. In contrast, for larger
energy scales the effect becomes weaker, thus recovering
the asymptotic limit v'/c — 1 as gy/m > 1. Since low-
energy and momentum components in the Fourier repre-
sentation of the propagator correspond to long-wavelength
components in the space of configurations, our results are
consistent with the fact that such long-wavelength compo-
nents are more sensitive to the spatial distribution of the
magnetic fluctuations, and hence experience a higher
degree of decoherence, thus reducing the corresponding
group velocity. In contrast, the high-energy Fourier modes
of the propagator that correspond to short-wavelength
components in the configuration space are less sensitive
to the presence of spatial fluctuations of the background
magnetic field.

Concerning the charge renormalization factor z3, as can
be appreciated in Fig. 7 it experiences a strong effect z; < 1
at low quasiparticle energies g,/m, but this effect becomes
negligible a large energy scales g,/m > 1, since zz — 1 as
an asymptotic limit. This behavior, which can be inter-
preted physically as a charge screening due to the spatial
magnetic fluctuations in the background, is consistent with
the aforementioned interpretation for the effective index of
refraction as a function of energy. On the other hand, as can
be appreciated in Fig. 8, z3 tends to decrease as a function
of the average background magnetic field intensity, achiev-
ing an asymptotic limit zz; — 1/3 as shown in Eq. (79).

VI. VERTEX CORRECTIONS AT O(A?)

Let us now consider the renormalization of the effective
interaction term A — A that characterizes the strength of
the effective interaction vertex in the effective, averaged
action for the replica system, Eq. (16). Following the
skeleton diagrams for the perturbation theory, as depicted
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p p-q p b p-q p
h | | N Ve
| | h N , 7
qa vq >Lq
| | 4 N
! | d } ‘\
1 |
p’ p-q p’ p’ p'+q p'
(a) (b)
-~ _
;7 q N
/ \
Pl L P
p+q | ptq
Yp-p
I
p p’
(c)
FIG. 11. Diagrams contributing to the four-point vertex func-

tion [ at order A2

in Fig. 2, the diagrams contributing at order A? to the four-
point vertex I" are depicted in Fig. 11.

Therefore, the matrix elements corresponding to each
diagram are given by the following integral expressions:

N &dq . ,

T = / (27)37’&(17 - @)y’ @ riSe(p' —q)y;,  (80a)
a dq ‘ ,

For = | Gap? Se(p = q)r' ® viSe(p' +q)y;,  (80b)
and

A dq : ,

Py = [ a7 Selp + a0 @ rSelp = a)r; - (80)

In order to compute the expressions above, it is con-
venient to introduce the notation

N d3q . .
T )z/(zﬂ)ﬂ’SF(p +29)r ®7,Se(p' +0q)y;.  (81)

where 4,0 = £1. Then, we have the correspondence
f<a) =), f(b) = (=) and f(c> = ["7), respectively.

By considering the tensor structure of the propagator, it is
straightforward to realize that the full vertex, taking into
account the multiplicity and symmetry factors for each
diagram, is given by

N A

[ =207 4 2P ) gf o), (82)

The former leads to an effective interaction of the form

[' = A(@y'w)(@y'y) + other tensor structures,  (83)

where the renormalized coefficient A is given, up to second
order in A (see Appendix E for details) by the expression

A=a+20%(g5 7 + g5 290
+1-R)(1-R)T ) +(1-3)(1-R)IT5"
+2(1 = 2) (1= R)T57). (84)

Here, we defined the integrals

3
TV (p.p) = /(;ZTC)IS“‘H (P +49)A (P’ +0g).  (852)

, ) > /
T )(p,P)E/—qqul(pHQ)Al(p +oq). (85)

(2x)?
and
(o) &q , ,
I3 (p,p)E/(zﬂquAl(qu)Al(p +0q). (85¢c)

In order to calculate the integrals 7;, we shall use the
analytical expression for A;(k), Eq. (B24) (details in
Appendix B):

ie—ki/eB

2¢B

Ay (k) =

iﬂ(kﬁ - m?)
o[-

A. The integral J,

Let us first consider the integral

3
jg/l.n) (p’p/) — /(62176)13.,41 (p —|—/lq),,41 (p/ + 6‘]). (87)

For the case (4,6) = (-1, —1) we change the integration
variables as follows:

P-q=4q+0,
p—-q=4q-0. (88)

For notational simplicity, in what follows we shall use ¢
instead of ¢’, and we shall define the parameters
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-1
:_M, I'(=1+¢e)=—+y.—1+0(e), (91)
2eB €

4 = _M. (89) where y, = 0.577 is the Euler-Mascheroni constant. In
2eB addition, given that there is a strong exponential damping in
. . he integral, we consider the expansion of the Kummer

Furth hall use the identity (for z = 2q2 /eB) ~ -© 'Mtegral ne exp
urthermore, we shall use the identity (for z q4i/eB) function for small values of its argument, which is given by

1
F(G)U(G,QZ):;M(G,G,Z)+F(—l+€)ZM(1+G,2,Z), M(a,b,z) = I—I—EZ+0(Z2) (92)
9 b b 9

(90)
so that, after regularization by removing the divergences in
along with the singular expansion for € — 0, 1/e, we end up with the integral

o . 2 22 o d ) , 0 d2 2q2 2 _ 2
j(l ' )(P,P/) = <L> e” e;/ ﬂel”(‘“r“)/ qu e‘%F(a)U(a,e,i(q i Qh)l"(a’)U(a’,e, -9 Qh)
- 0

2eB w 27 (2m) eB eB
1/ \2 29 o
_ — d in(a+a’)
(2x)} (2eB> ¢ /_oo 03¢
o0 _ﬁ 1 Ve — 1 1 Ve — 1
< [TeqeF i @ 0w od| |G A @ 20w eh] o9

Furthermore, we shall set the external three-momenta to zero, except for the presence of the Q| factors, which we shall
keep as finite in order to use this expression as a generating function. Therefore, the integral reduces to the simpler
expression

(=) Ny dqs iz, 2
Ji e p) = 47126 ' —o (q%+m2+i€)ze p ZeB(q3+m )
(ye - I)QLz(qg + mZ) (ye - 1)(11% + mZ)
1 . 94
x { - (eB)? - eB (94)

Performing the last integral explicitly, we obtain (details in Appendix E)

)

where erf(x) is the error function.

B. The integral 7,

For this second integral, we notice that qﬁ = —q3, so that after integration over z = 2q% /(eB) we obtain (details in
Appendix E)

(=) / eB _ZQi /00 q% in 2 2
5 = — e. d _— —
Ty PP =gae | BlZrm +ie) P 203 B HM)
(re = 1D)QI(qz +m*)  (y.—1)(g5 +m?)
X [1 + (B + B . (96)

After performing the remaining momentum integral over g3, as shown in detail in Appendix E, we finally obtain
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| eB/m?

Re [(Z - A) /zN}

1. 1.5 2. 2.5 3.
po/m

FIG. 12. The real and imaginary parts of the correction coefficient from Eq. (84) as a function of the fermion’s energy. Here, we take

Q0 =0 and p3 = pj — m>.

(- oy — B U= D7 e
‘72 (pvp) 47[26 \/E

= B )

C. The integral J;

By following the same procedure as in the previous two
cases, as shown in Appendix E, it is straightforward to
obtain the analytical expression

- eBz ZQi (1 - i)” izm?2
VARl D' :——6_7{7eﬁ
s PP = m T Ve

()

S ()
(97)

Moreover, it is straightforward to verify the following
relations:

S p) =T (p. p),
T ) =I5 () =T (0. 0| gps (98)

for n = 1,2, 3, which allows us to generate all the remain-
ing expressions from these three explicit analytical results.

An explicit numerical evaluation of our analytical
expressions for the renormalized effective interaction,

expressed by the combination (A — A)/(2A2), is displayed

in Fig. 12. Clearly, this effective coupling develops both a
real as well as an imaginary part (left and right panels in
Fig. 12, respectively). In particular, the emergence of an
imaginary component implies an imaginary contribution to
the self-energy, corresponding to a relaxation time (spectral
broadening) of the quasiparticle spectrum. This is a natural
consequence of the decoherence mechanism induced by the
random fluctuating magnetic environment. On the other
hand, as can be appreciated in Fig. 12, both the real and
imaginary contributions to the effective interaction A
display a large enhancement (in absolute value) at low-
energy scales po/m < 1, while asymptotically A — A at
higher energies py/m > 1. This strong renormalization
effect at low energies is consistent with the effect observed
in the previous section for the charge z; and refraction
index v'/c, respectively, and can be explained in similar
terms due to the short-range spatial distribution of the
magnetic noise that therefore renormalizes mainly the long-
wavelength components of the propagator, corresponding to
the small energy-momentum components in Fourier space.

VII. CONCLUSIONS

We have studied the effects of quenched, white noise
spatial fluctuations in an otherwise uniform background
magnetic field, over the properties of the QED fermion
propagator. This configuration is important in different
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physical scenarios, including heavy-ion collisions and the
quark-gluon plasma, where spatial anisotropies of the
background magnetic field may be present. We developed
explicit results that we carried over by combining the
replica method to average over spatial fluctuations, with a
perturbation theory based on the Schwinger propagator for
the average background field. Upon averaging over mag-
netic fluctuations, we obtained an effective action in the
replica fields, with an effective particle-particle interaction
proportional to the strength A of the spatial autocorrelation
function of the background noise. Our perturbative results
show that, up to first order in A, the propagator retains its
form, thus representing renormalized quasiparticles with
the same mass m’ = m, but propagating in the medium with
a magnetic field and noise-dependent index of refraction
v'/c = z7', and effective charge e’ = z;e, where z and z3
are renormalization factors. We showed that z presents a
monotonically decreasing behavior as a function of the
energy ¢o/m that reaches the asymptotic limit z — 1 as
qo/m > 1, for all values of the average background
magnetic field eB/m?. In physical terms, this shows that
the quasiparticle renormalization due to the random mag-
netic field fluctuations, while being quite significant at low-
energy scales, tends to be negligible as the energy of the
propagating fermions becomes very large. This trend is also
observed in the effective refraction index v/'/¢ = 77!, since
at low-energy scales v'/c < 1, indicating a strong renorm-
alization of the effective group velocity of the propagating
quasiparticles due to the presence of the magnetic back-
ground fluctuations. In contrast, for larger energy scales the
effect becomes weaker, thus recovering the asymptotic
limit v'/c — 1 as go/m > 1.

Our results show that the effective quasiparticle charge
experiences a strong renormalization z; < 1 at low energies
qo/m, while the effect becomes negligible at large energy
scales go/m > 1, since zz — 1 as an asymptotic limit.
We interpret this as a charge screening due to the spatial
magnetic fluctuations in the background. On the other
hand, z3 tends to decrease as a function of the average
background magnetic field intensity, achieving an asymp-
totic limit z; — 1/3 as shown in Eq. (79).

We remark that both the effective refraction index v/ /¢ =
z~! and charge screening z5 display a similar, and therefore
consistent, renormalization behavior of the quasiparticle
properties in the magnetically fluctuating environment. In
order to understand such effects in physical terms, we
remark that the low-energy and momentum components in
the Fourier representation of the propagator correspond to
long-wavelength components in the space of configura-
tions. Therefore, our results are consistent with the fact that
such long-wavelength components are more sensitive to
the spatial distribution of the background magnetic noise,
and hence experience a higher degree of decoherence, thus
reducing the corresponding group velocity and enhancing
the charge screening. In contrast, the high-energy Fourier

components of the propagator that correspond to
short-wavelength components in the configuration space
are less sensitive to the presence of spatial fluctuations of
the background magnetic field. In addition, we remark that
the intensity of the average background magnetic field
defines a characteristic length scale known as the Landau
radius [z = 1/v/eB that determines the support of the
quasiparticle propagator in configuration space. Moreover,
in the semiclassical picture this length scale represents the
typical size of the ‘“cyclotron radius” of the helicoidal
trajectories that propagate along the magnetic field axis.
Therefore, the stronger the magnetic field, the smaller the
Landau radius, and hence the quasiparticle propagator is
modulated toward higher momentum and energy compo-
nents that, as previously discussed, are more sensitive to
the magnetic noise renormalization effects, as is verified by
the trend observed both in z3 and in ¢'/c¢, which strongly
decrease as the average magnetic field intensity increases
eB/m? > 1.

Moreover, we also showed that four-point vertex cor-
rections at the second order in A? lead to a renormalized
A = A + O(A?), whose relative magnitude grows with the
average magnetic field intensity eB/m? and tend to
decrease with the quasiparticle energy scale pg/m, in
agreement with the behavior of v’/ ¢ and z3 and the physical
interpretation previously discussed. As we pointed out in
Sec. II, in the context of heavy-ion collisions, our calcu-
lations suggest that the magnetic noise effects will depend
on the magnitude of the fermion mass m via the dimen-
sionless parameter mA. Therefore, we estimate that for
m < 0.4 MeV noise effects can in principle be neglected,
while for m ~ 0.4 MeV or larger those effects can be quite
significant.

The analysis and results presented in this work only
concern the study of the quasiparticle fermion propagator in
the noisy magnetic field background. However, the effec-
tive model obtained via the replica method and its conse-
quences can be extended toward the study of other physical
quantities, such as the photon polarization tensor. We are
currently investigating this, and it will be communicated in
a separate article.
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APPENDIX A: GAUGING AWAY THE PHASE
FACTOR IN THE SCHWINGER PROPAGATOR

In the presence of an external magnetic field, the fermion
propagator involves the presence of a phase factor ®(x, x'),

such that
D(x,x / )

where Sp(p) represents the translational-invariant factor
given by Eq. (19), while the phase takes the form

Sp(x,x) e Se(p), (Al

®(x, ) :exp{ie / o [A +;Fﬂy(§—x’)v“. (A2)

In order to evaluate the integral in Eq. (A2), let us choose
a straight line path parametrized by

G =xM4tx=x"*), forO<r<l1. (A3)
Therefore, the phase factor becomes
1
®(x,x') = exp [ie/ A, (x# —x’”)dt], (A4)
0

where the antisymmetry of F,, was used.
From the above, the phase can be removed by the gauge
transformation

Au(8) = AL(E) + o ald). (AS)

ag*

For our case, where the average magnetic field is
oriented in the z-direction, we have

B
Aﬂ E(O X2,.xl,0). (A6a)
Therefore, choosing
B 1
al8) =5 (¥ - &), (A6b)
we obtain
! B / /
A, = 5(0 Xy — xh, x; — x},0), (A7)
which implies that
A, (X = x") =0, (A8)

and thus the phase can be safely removed.

APPENDIX B: THE COEFFICIENT A,

We can calculate the integral A; in terms of Landau
levels by means of the generating function of the Laguerre
polynomials

+l —x/2z nLO (B])
since
e-ixtanv — e—x(l—e‘z“’)/(l+e‘2“')
= (14 e2)e™ > (=1)"e 2Ly (2x).  (B2)
n=0
Therefore, we have (for x = ki /eB)
A, = e—x( -1 ”Lg 2y /oo dfei(DH_2<"+1)eB)T
I ;( )" Ly (2x) 5
+) (=1)"LY(2x / ” drei(D_2"€B>T>. B3
;( )" Ly (2x) | (B3)
Evaluating the exponential integrals,
(N L (2x)
— ip—X —1n
Al 1 (HZ;( ) DH - 2(” + 1>€B
v LY( 2x)
e~ 0 n LO 2 2
Z x B ( X)} (B4)
— 1- 2neD
= [

This expansion seems to be fair for eB > 0. However, we
would like to inspect if it is possible to use it to generate a
valid expansion near eB = (.

1. Expansion for low magnetic fields
Notice that from Eq. (51) we have the identities

i . 0 e—ixtanv
= “2mp0(ox) = (BS)
— 1 4 20
© e—ZiL'e—ixtan v
—x Z e~ 2i(n+1)vy 0 (2)() W (B6)
e

n=0
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Therefore, we can calculate the following expansions:

ey 5y (5

k=0
x {e‘xZ( 1)"(n + 1)kLg(2x)]
n=0
1 © 2¢B\ k 1 ak e—2iv€—ixtanv
= — — - B7
DII;<D) (—2i)kavk< 1+ e >Ho (B7)
and similarly
D 2neB D — \ D
n=| [l k=0 [
% |:6 XZ n kLO 2x :|
n=0
1 <ZeB> 1o <e—imnv>
-7 D, Nk 3,k —2iv (BS)
Dy k; Dy) (20 o N1+ e /],

Substituting both expressions into Eq. (B4), we obtain
the infinite series

o (2 )

k=1

(B9)

Here, we have defined the polynomials & (x) (for
x = k% /eB) as generated by the function e*'n?,

£,(x) = lim -2 (- an v) (B10)
v—0 0V
The first few cases
Ei(x) =
& x) =
E(x) = =2ix + 1x3,
Eq(x) =
Es(x) = —ix® + 20ix? — 16ix,
Eg(x) = —x® +40x* — 136x2. (B11)
(B12)

Substituting these expressions into the series Eq. (41), it
can be reorganized as an expansion in terms of the variable
y = k3 /Dy, as follows:

i
Al—ﬁ{(1+y+y2+y3+---)
eB\?2 ) .
-2 D, y(1 44y 4+ 10y +20y* +--)
eB\ 4 eB
8| — 2+17 TTy: + - - o0
+ <D”) y(2+ 17y +77y* + )]+ <D”)
S
Dylt-y "\Dy) (1-y)*
eB 4y(3y+2)} (eB>6
+8<—) YO H2)) o (eBY
Dy) (1-y) D)

Finally, using the simple identity

(B13)

2

k
Dy(1-y) =Dy (1——l> =k —m’ + e,

B14
D, (B14)

we obtain the final form

i eB\2 y
A=t 12(2) 2
1 kz—m2+i€[ <D||) (1-y)°

()G

i —2i(eB)*k?.
= O((eB)*).
Pepmpe vl g g G

(B15)

2. A closed expression in terms
of hypergeometric functions

In order to simplify the integrals 7, let us provide an
analytical expression for A;(k). From the generating
function of Laguerre’s polynomials:

(5]

1 t
)HLE(x) = . (BI6
Z TP <1 i rx) (B16)

n=

and then, by defining

b=— B17
141 (B17)
we get
b . b"
(1 _ b)t+ae B Z(_l)n nL(}’ll(x) (Blg)
n=0 (1 - b)
Multiplying by /(1 — b)P+2,
PP(1+ b)rh=le=bv = N~ (=1)"b™P(1 — b) ™" P2Lg(x),
n=0

(B19)
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so that

—0 s nLa )
dbbP(1 + b)oP-te=bx = § EDLa0) . (B20
A ( ) ¢ ‘o n+pf+1 (B20)

Now by setting b — —b:

00 ”L"(x) /oo
=(=1)/ dbbP (1 + b)*P-1e=bx
n§zoj g =W b by

=e™T(1+p)U(1+p,1+a,x), (B21)

where I'(z) and U(a, b, z) are the gamma function and the
confluent hypergeometric function, respectively.
Now, from Eq. (B4)

e (=D)L (2x)  (=1)"La(2x)
Al —e ; (D —2(n+1)eB+ D”—ZHEB >

: _x

ie
- " 2¢B Z

n=0

(=1)"L3(2x) <—1>”L°<2x>
e (-2) 5

Therefore, by using Eq. (B21),

] . (B22)

ie™*
Ar=- 2¢eB

w lemmdr (1= P\ (1 BL 1o,
2¢B 2¢B’
o D D
—in(tp (- L)y ( ==L 1,2 B2
te ’ < 2¢B v 2¢B’ . (B23)

The latter can be simplified with the properties of the
gamma and the hypergeometric functions. First, from the

identity I'(z + 1) = zI'(2):
ie™ izD) D
= Sttty § ot (piegl B
A =25 ( 2eB> ( 2¢B

« | Py 1—ﬂ,1,2x cu(- P 1.2x
2eB 2¢B 2

(B24)
Moreover, given that
U(a,b,z) —aU(a+1,b,z) =U(a,b—1,z), (B25)
we finally arrive to
3/eB in(kj —m?)
Aj (k) = 2¢8 P [— 2643]

ki — ki — 2k?
I I 1
I Ul—,0,—|. B26
x < 2eB > ( 2¢B eB > ( )

APPENDIX C: THE DENSITY OF STATES p(E)

In this appendix, we show the details for the calculation
of the density of states for the Landau level spectrum p(E)
defined in the main text. We start from the definition of the
density of states

p(E) / dp%z ( —\/p§+m2+2(n+1)eB>

© d ( E?—m?-2(n+ 1)eB>
- Z[) % P/E
£ O(E—/m?+2(n+ 1)eB)
Y VEI—m>=2(n+1)eB (D)

Since this function, and hence the corresponding sum, is
defined for each fixed value of the energy E, there is a
maximum integer n = N, (E) at which the sum is
truncated by the condition imposed on the Heaviside step
function

E = \/m? 4 2Ny + 1)eB =0 (C2)

that leads to the definition (with | z] the lowest integer part)

E? —m?
N, . (E) = -1 C3
w8 = | S 1] (©3)
Hence, we have
p(E)=0O(E - m2—|—268)—
Nmax(E) 1
(C4)

x .
; VE>—m?>=2(n+1)eB

In this finite sum, 0 < n < N, (E), we can redefine the
index by

£ =Np(E)—n=0<¢ < Nyu(E), (C5)
and hence we have the equivalent expression
E
E) = 0(E~v/m +2eB) — —
p(E) =
Nmax(E) 1
x Yy (C6)

N

— E?—m*—2(N e (E) +1)¢B ’
=0 \/ 2eB +7

Finally, using the property of the Riemann zeta function

N
Y (@46 ={(s.2)

=0

-{(s,z+N+1), (C7)
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we obtain
E
p(E) = @(E —m? + 2eB)
v eB
1 E*2—m?—2eB
T E
X |:C<2’ 2@B Nmax( ))
1 E? —m?
- (5 ! Wﬂ : (C8)
APPENDIX D: COMPUTING A, AND 4,
1. Weak magnetic field limit
We need to compute
~ 2 3 pZL
Zila) = =2i(eB) [ |
e (g3 — p3 — p2 —m? +ie)*
(D1)

so that in spherical coordinates, with p; = pcos@ and
pL = psind,

4

Ay (qo)=—4ri(eB)? / " d0sin’ / Y dp P

0 o (gh—p*—m>+ie)*
4

4 [o
:—4ﬂi(eB)2§/ dp P
0

(q§—p>—m*+ie)*
4

. 4 [oo p
=—4 B)?— d .
7i(eB) 3A p(q%—pz—mz—l—ie)4

(D2)
By defining

2

a>=qgt—-m?+ie (D3)

and

a, = \/q%—mzj:ie,

we can use complex integration:

(D4)

~ . 41 [ z
— 2_ - S
Al (qo) - 4ﬂ1(83> 32 /—oo dz (Z2 _ a2)4

41271 & 2
A 2_ " _ -
= 47[1(88) 32 31 zllg}r dZ3 |:(Z _ a_)4:|

i (=3)

(Ds)

On the other hand, at order O((eB)?),

~ . 400 dp3
A :1/ -
Z(QO) . q(z)_ (p3)2—m2+1€

. +oo dZ
=1 . P—d?
e (Emap)(ztal)

By choosing a contour closing upside, we get from the
residue theorem

(D6)

+oo d
o (2—ay)(zta) ay
Then
~ /s
Ay (q0) = > > (D8)
qo —m
2. Arbitrary magnetic field
From the definition of ;11,
vzh(ro) = /d3P«41(610, P3:PL)
' e—pi/eB
= l/d%p|: 5 5 ) N
qy— p3—m” + 1€
o 2} 27
Ln (:)_B) - Ln—l (ep_B)

+ S0 (e e

n=1

- z-l + Z<_1)nz-2.n'

n=1

g3 — p3 — m* —2neB + ie

(D9)

Here, we defined

2
e_PL/"B
IT,=i| &
! / pq%—p%—mz—l—ie

. o dz
— _ —p’ /eB
I/JZPJ‘e /_oo (z—a—ie)(z+ a+ie)

27l 7*eB

= —in(eB — = D10
( )2(a+1e) /@2 = m + i (D10)
and
LA 2}
Izn_i/d3pe—Pi/eB nCep) = L1 ) —. (DI1)
’ g3 — p3—m?* —2neB +ic
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E
E) = ®<E— Vm? + 2eB)
p(E) B

In cylindrical coordinates, with azimuthal symmetry,
d®p = dpsrnd(p3). Moreover, in the integral over p,
define x = %, such that « ¢ l’EZ —m?—2eB Ny (E)
2 2eB
ngB [ dp; 1 E>—m?
Iop= Lz, — ], D18
) / g3 —m? — p3—2nqB +ie C(Z 2eB (D18)
X / dxe™2[L,(x) = L,_;(x)] where we defined
0
® dp; {Ez - m’ J
—27gB(—1)" . (D12 Ny (E) = |——— -1, D19
nq ( ) /_ooq(z)_m2_p%_2nq3+1€ ( ) max( ) 2¢B ( )
with |x| the integer part of x, and {(n, z) is the Riemann

zeta function.
On the other hand,

where we used the identity (Gradshteyn-Ryzhik)

(b—1)b"Reb > 0.  (DI3)  Ay(qp) = / dpsp Ay (g0, pripL = 0)
1

/oo dxe L, (x) =
0
' ~ . = i/ dps——— m2 43
Inserting Eq. (54) and Eq. (56) into Eq. (53), we obtain —0 qo—p5;—m”+1e
(after shifting the index n — n + 1) " / dp Z L,(0) —Ln 1(0)
_ 3 p —m?—2neB +ie’
~ 7*(eB
Ai(q0) = ————= ( 2) =, (D20)
\Vqy—m +1e
too where the second term vanishes, given that
—I—27TqB/ dp; L,(0) =1V n. Hence
= 1 ~ n’eB
X —. D14 A =7 =—. D21
;qg—mz—p§—2(n+l)e3+1€ ( ) Z(qO) 1 /7q%—m2+i€ ( )
Let us introduce the density of states for Landau levels
3. Strong magnetic field limit
dp In this limit
3
p(E) / Z S(E-E,(ps). (D15 i
n= . e_qL/EB
Ai(q) =i5——. (D22a)
aq=mn
with the dispersion relation for the spectrum : et
e"dL/e
A (q) =—5——. (D22b)
aq-m
E,(ps) = \/pi+m> +2(n+ )eB.  (DI6)
As(q) =0, (D22¢)
With these definitions, we obtain from Eq. (59) the exact —2q2 /B
. e L
expression D(q) =2 5 (D22d)
aq—n
~ n’eB
Ai(q0) = T and
Vqy—m +1e _ 2eB
o0 E Al(g) = == (D23a)
+ 471268/ dEZLZ,)., (D17) 1 5 —m’
—oo q; — E- +1e .
Ay (q0) = B (D23b)
9o —m

where, as shown in detail in Appendix C
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APPENDIX E: VERTEX CORRECTIONS
AT O(A?)

The diagrams contributing at order A? to the four-point
vertex are depicted in Fig. 11, and hence their correspond-
ing matrix elements are given by the following integral
expressions:

R d*q

L :/(2 )37’31:(17 Q)7 ® viSe(p' —q)r;,  (Ela)

r qu i Jj /

Ly = (zﬂ)gySF(p—q)r ® v:Se(p' +q)v;,  (EIb)

and

fo = [-L9 s i ® 1:Se(p’ El
©= | Gap? v+ @) @ viSe(p' —q)y;.  (Elc)
In order to compute the former expressions, it is

convenient to introduce the notation

Mo dq . )
i) = [ S Sl +aa)y @ 1Su(p' +aq)y;. (£

where 1,0 = £1. Then, we have the correspondence
Ly = =), Ly = [+, and I = =) respec-
tively. By considering the tensor structure of the propaga-

tor, it is straightforward to realize that the full vertex, taking
into account the multiplicity factors for each diagram,

A A A A

[ =207 4 2P (4 L 4ptho)) (E3)

leads to an effective interaction of the form

[' = A(@y'y)(@y'w) + other tensor structures,  (E4)

where the renormalized coefficient A is given up to second
order in A by

A:A+2(A)2(j + g5 4700
+(1 =R (1 =R T + (1 -R)(1 - BT
+2(1-R)(1 - R)T57). (ES)

Now, from Eq. (23)
P = (3 + P+ £+ 14
+EGHEEY 4 PG+ £E7 PG, (ko)

where

Nt =/(§37()13<m+lf Hﬂn) (’”“’T\ +“%H)

x Ai(p +4q) A (p' + oq), (E7a)

x Ay(p + M)Az(P +6q), (E7b)
o B ,
l—‘% ) — / (2]33 (m + 7 +/M||> (p/l + O'ﬂj_)

x Ai(p +2q)As(p' + 0q), (E7c¢)

- 2o 4) o )

x Ay(p +Aq) A (p' + o), (E7d)

ko = /(2 (m+ 1+ 24y ) (m+ ) + o)

x A (p + 2q9) A (p' + 6q), (E7e)

Ao . &
P57 =iy'y? / (2]:)13 (m +7)+ /Wn) (ﬂl + 0%)

x A (p +2q9) A3 (p' + 6q), (E7f)
o PE ,
x A3(p +4q) A (p’ + 6q), (E7g)

R / (3376)13 (m + ﬂfh) (m +/+ Uﬂin)

x A3(p +29) Ay (p' + 09q), (E7h)
3
f%ﬁ) = / (;1”()13 ([ﬂ + /WL) (ﬂlj_ + Gﬂl)
x A3(p + 19)As(p' + 6q). (E7i)

The latter equations can be condensed by defining a
single master integral in terms of .4, and its derivatives. To
do so, note that

(m +/)+ /1¢1”> (m +7)+ o—qH)

=m’+m [pH +/+(c+ 1);11“] + 77
+opdy + P + Ao ld))*, (E8)

and given that A; are even functions of ¢, the linear terms
can be ignored. Then
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(m + /) + MH) (m + ”ﬁ + a;sz)

- m? + m(ﬁH + ﬂil) + ﬂ”ﬁﬂ +laqﬁ. (E9)

Now, it is convenient to define

p? ;r P

0=""0, (E10)
from which
(m )+ /1¢j”) (m + )+ o%H)
— m*+2mpP| + (P” - Q”) (}"” + Q”) +4ogj. (El1)

Similarly,

(m + /) + /IﬂH) (ﬂl + 6%L>

Sm(Pot )+ (Pr-2)(Peren). (E12)

(lﬂ + ML) (m +7)+ og”>
- m<P¢ - QJ_) + (PJ_ - QJ_) (11’\\ + QH), (E13)

and

(VL + /WL) (I/l + 0¢ﬁ)

- (PJ. - QJ_) (PJ_ + QJ.) —doq]. (E14)

Moreover, Egs. (27) provide relations between A; and
A, and A; so that by introducing the variables

T4 = —[(P) = (P + ) +2mP| + m*|[1 + 9,9, — r'* (0, — T (p.p)

P

- (PL—-01)
— Ao

14 0,0, — 7720, — 9,)]T 5

(e} d3
j(lﬂ )(p’p/) = /(27733./4](]7 —|-/1q)A1(P, +UQ)’ (E17a)

Gor o n_ [ da , ,
J; " (p.p') = WCIHAI(P+/1Q)A1(P +0q).

(E17b)

and

o / d3
TENpp) = [ SR A+ ) A +00)

(El7c)
In order to simplify the integrals 7;, we shall use the

analytical expression for A;(k) Eq. (B24) (details in
Appendix B):

—[(P = 2)(PL+020) +mPL+ L)1 —7r'720)(1 =BT (p, p)
—[(PL— 0Py + Q) +m(PL— Q)1 +7'720,)(1 =T (p, p)
(PL+0)1-)(1 =BT (p.p)

2 2
P PT
==L ==L El
. eB’ Y eB’ (E15)
so that
(p. ) = do(1 = 2)(1 =) T (p, p), (E16)

ie—ki/eB

Ay (k) =

iﬂ(kﬁ —m?)
2eB °xp [_ 2¢eB }

i S JP
I — U - b ’— .
* < 2eB > < 2eB eB ) (E18)

1. The integral 7,
We shall consider the integral

TV (') 2/5733«41(1?%161)«41(1"*“1)- (E19)

For the case (4, 0) = (—1, —1) we change the integration
variables as follows:

P-q=4q+0,

p—q=4q-0. (E20)
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In what follows, we shall use ¢ instead of ¢’. For notation
simplicity, we shall define the parameters

_ Dyles+ 2y

a 2¢eB

_Dylgs - Q)
2¢eB

’

!/

d = (E21)

s

and we shall use the identity

I(-1+e€) _?1+ Ye — 1+ 0(e), (E23)

where y, = 0.577 is the Euler-Mascheroni constant. Also,
given that there is a strong exponential damping in the
integral, we consider the expansion of the Kummer
function for small values of its argument that is given by

a
1 M(a,b,z) =1+—-z+ 0(Z?), E24
F(a)U(a,e,z):;M(a,e,z)+F(—1+e)zM(l+a,2,z), (a.5.2) et () (E24)
(E22)
so that, after removing the divergences, we end up with the
together with ¢ — 0™ integral
|
(~=)(p i\ 2 / ®dqs aa) / ©dq, @+ N\ g (a=1
s = —_— e _— 4 e F U s, T F U s Ly
T (p. ) <2eB> ¢ o 27 ¢ o (27)? erFla)U|a.e eB (@)U{d.e eB
1 i) 20 [ in(a+d
— (271.)3 (2eB> e B /_mdq3e (a+a’)
® 5 _q_zL L ye— 1 2 2 1 Ve~ 1 2 2
X ; d°q e Z+ °B (@1 +2Q.-q. +Q7) Z_I_ °B (@1 -2Q.-q. +Q7)|. (E25)
Let us focus on the integrand. At order O(q?}), we have
I y.—1 1 vy, -1
{Z‘f‘ °B (a7 +2QL-q. + Qi)] [;‘f‘ B (a3 -2Q.-q. + Qi)]
1 (ye B 1)q2i 1 1 2(}/6 B I)Qi (ye B 1)(2QJ_ ) qJ_) 1 1
" ad - eB a * a + eB - eB ad a
(7@ - I)Z(ZQL i qJ_)2 (Ye - 1)Qi 1 1
- eB? L aa) (E26)
Then, by defining
2¢1
_ 241 E27
=y (E27)
such that
eB
Q.4 =1Qullgy|cost = \/7|QL|ZI/ZCOS‘97
3 5 eB
d’q=dqydq, = szd&dq3, (E28)

where after angular integration we obtain
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(=) ! P\ e (D (43 +0))+D) (43-Q)))
Jy 7 (p.p) = — |55 €7 dqse s\ PINB T TR 4=

© _ _ 2
X/ dze_z{;+w<1+;>z+w(z+g>}, (E29)
0 aa 2 a a eB a a

Performing the integration over z:

—— eB ZQi i”(Qﬁfmz) [+3) exp (1_71' q%)
j( s )(P, p/) — _ e e / dCI3 2eB.
1 4r’ o (0f g5 —m? +ie)? —403q3

« |:1_(YE_1)QZL(Q2_qg_m2) (ye_l)(Qz_qg_mz)]

o0

(eB)? eB (E30)

In what follows, we shall set the external three-momenta to zero, except for the presence of the Q| factors—those we
shall keep in order to use this expression as a generating function. Then

(--) n_ _eB —ﬁ *© dgs o 2
Ji e r) = 472 ¢ —oo (g5 +m? + ie)zexP 2¢B (g5 +m)
(re = DQI (g5 +m*) | (re—1)(g5 +m?)
X {1 + (eB)2 B . (E31)
Now, from the well-known results
o dx in, 5 5 T . m . m
— =—|1-(1-1DC{—=| - (1 S| — E32
/_oo x>+ m? P [219 (" 4 m )] m [ ( 2 <\/l_?) (1) (\/E)] ( 2

and

where C(x) and S(x) are the cosine and sine Fresnel integrals, respectively. From the property

C(x) +iS(x) = \/72?12ﬂerf(1\[—21x> (E33)

we have

(=) n_ _€eB _% (1-i)m iz (eB +imm?)n L Pt 1—-i m
T p) ﬂze 2\/eBmze2 - 2(eB)m’ ) V2

2 (D)

where erf(x) is the error function.

2. The integral 7,

For this integral, note that qﬁ = —q%, so that after integration over z we get
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(=-) n_ €eB _g & q% i 2 2
\72 (P,P)—4ﬂ2€ /_wdQ3(q%+m2+i€)zeXp |:2€B(Q3+m):|
(re = DQi(g5 +m?) | (r.—1)(q5+m?)
% [1 N (eB)? i eB '
By using
[ e [ 2 )
o P
— (1 +i)e%\/5—mﬂ{l ~( q)c(\%) —(1 +i)s<\%>}
and
[Caat 02 4 )
n x(x2 m2)2exp 5, & m
(i=1D7r w2 (ib+zm*)x 3 . m B m
= o Fie( ) = -0s( ) |
we get

R G P R X =)
ma(y, — 2 7 —-im
-t (15 -V ()|

3. The integral J;

By following the same procedure, it is straightforward to obtain at order O(z):

- eB> 2 ((1=i)r we (eB+imm?)n T 1—i m
TS (p, p) = _—e_T{ €25 + 1—/zerf| —
(PP 87* 2v/eBm? 2(eB)m? 2 V2 VeB

sl ()

Moreover, it is easy to check that

T p.p) = T (0. 1),
T o) =T (0. p) = T (0. ) g

forn=1,2,3.
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