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We present a radically new proposal for the solution of the naturalness/hierarchy problem, where the
fine-tuning of the Higgs mass finds its physical explanation and the well-known multiplicative
renormalization of the usual perturbative approach emerges as an IR property of the nonperturbative
running of the mass.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is an
effective theory, i.e., a quantum field theory valid up to a
certain scale ðMP;MGUT;…Þ, above which it has to be
replaced by its ultraviolet (UV) completion. This scale,
which we generically indicate with Λ, is the physical cutoff
of the theory: the SM effective Lagrangian LðΛÞ

SM allows to
describe processes at momenta p≲ Λ.
Because of unsuppressed quantum fluctuations, the

square of the Higgs boson mass m2
H receives contributions

proportional to Λ2. In this respect, we stress that the result
m2

H ∼ Λ2 from the physical point of view indicates a
“quadratic sensitivity” of m2

H to the ultimate scale of the
theory, rather than a “quadratic divergence.”Moreover, this
value ofm2

H is nothing but the square of the runningm2
HðμÞ

at the scale μ ¼ Λ. If Λ is too large,m2
HðΛÞ is “unnaturally”

large, and this poses a problem of “hierarchy” with the
Fermi scale μF, where mHðμFÞ ∼ 125 GeV. Several
attempts have been made to find the “solution” to this
naturalness/hierarchy (NH) problem. Here we focus on
three of them, as they will help to introduce our proposal.
(1) A popular approach is based on the assumption that

the UV completion of the SM could provide the
condition

m2
HðΛÞ ≪ Λ2 ð1Þ

at the scale Λ [1–3]. Sometimes (1) is viewed
as a “quantum gravity miracle” [1], which could
result from a conspiracy among the SM couplings
at the scale Λ. This is for instance the case of the
so-called Veltman condition1 [4]. In such a sce-
nario: (i) the naturalness problem is solved from
physics “outside” the SM realm, since (1) is con-
sidered as a leftover of its UV completion (or
extensions of it) and (ii) the hierarchy problem is
solved “inside” the SM, as for the running Higgs
mass m2

HðμÞ the perturbative renormalization group
(RG) equation (γ ≪ 1 is the perturbative anomalous
mass dimension)

μ
d
dμ

m2
HðμÞ ¼ γm2

HðμÞ ð2Þ

is considered. In fact, from (1) and (2) it turns out
that m2

HðμFÞ and m2
HðΛÞ are of the same order.

Therefore, the combined use of these two equations
leads one to conclude there is no problem of
hierarchy.

(2) A somehow complementary approach consists in
considering again Eq. (2) for m2

HðμÞ, but assuming
this time that gravity could provide a nonperturba-
tive value for γ (∼2) [5–12]. In this case, the large
hierarchy between the Fermi scale μF and the UV
scale Λ could be easily accommodated, and again no
NH problem would arise.
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1If not directly to the SM itself, this condition can be applied to
some of its extensions [3].
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(3) Finally, some authors suggest that dimensional
regularization (DR) could be endowed with special
physical properties that make it the correct
“physical” way to calculate the radiative corrections
in quantum field theory (QFT). If no new heavy
particles are coupled to the Higgs boson, once again
the NH problem would seem to be absent from the
beginning [13–36].

However, as shown in a recent paper [37], none of these
approaches can really provide a solution to the problem.
The reason is that any effective field theory (EFT),
including the SM and extensions of it, is necessarily
defined and interpreted in a Wilsonian framework. The
meaning of this statement is twofold: (i) the parameters
(masses and couplings) giðΛÞ in the effective Lagrangian

LðΛÞ
SM result from integrating out the higher energy modes

k > Λ related to the UV completion of the SM and (ii) the
same parameters giðμÞ at a lower scale μ < Λ result from

integrating out the modes of the fields that appear in LðΛÞ
SM in

the range ½μ;Λ�.
It is shown in [37] that DR provides a specific imple-

mentation of the Wilsonian strategy, where the fine-tuning
is automatically encoded in the calculations, although in a
hidden manner. As a consequence, DR cannot provide a
solution to the problem. Moreover, it is shown that the
RG equation (2) is obtained when the “critical value” of
the scalar (Higgs) mass m2

crðμÞ is subtracted to the
Wilsonian running mass m2ðμÞ. In other words, m2

HðμÞ
in (2) is not the Wilsonian mass m2ðμÞ but rather the
difference m2

HðμÞ≡m2ðμÞ −m2
crðμÞ. Equation (2) then

incorporates the fine-tuning, and cannot be invoked to
solve the NH problem.
In this work we make a radically different proposal,

rooted in simple and (in our opinion) indisputable “facts”:
(i) the SM is an EFT valid up to an ultimate UV scale Λ;
(ii) the Wilsonian integration of modes is the only physi-
cally consistent way of including the quantum fluctuations
in an EFT.

II. RUNNING SCALAR MASS

To introduce our proposal, we begin by considering the
Wilsonian RG equations for the scalar ϕ4 theory, whose
(Euclidean) Lagrangian is

L ¼ 1

2
∂μϕ∂

μϕþ 1

2
m2

Λϕ
2 þ λΛ

4!
ϕ4; ð3Þ

where m2
Λ ≡m2ðΛÞ and λΛ ≡ λðΛÞ are the mass

and coupling constant at the (physical) scale Λ.
By considering the corresponding Wilsonian action
within the so-called “local potential approximation,”
Sk½ϕ� ¼

R
d4xð1

2
∂μϕ∂μϕþ UkðϕÞÞ, and truncating the

potential to the first two terms, UkðϕÞ¼ 1
2
m2

kϕ
2þ 1

4!
λkϕ

4,
the RG equations for m2

k and λk are (see Refs. [37,38])

k
dm2

k

dk
¼ −

k4

16π2
λk

k2 þm2
k

; ð4Þ

k
dλk
dk

¼ k4

16π2
3λ2k

ðk2 þm2
kÞ2

: ð5Þ

When the UV boundaries for (4) and (5) are such that the
condition m2

k ≪ k2 is satisfied in the whole range of
integration, this system is well approximated by

k
dm2

k

dk
¼ −

λk
16π2

k2 þ λk
16π2

m2
k ð6Þ

k
dλk
dk

¼ 3λ2k
16π2

: ð7Þ

Taking for instance “SM-like” IR boundaries, mðμFÞ ¼
125.7 GeV and λðμFÞ ¼ 0.1272, and solving both systems
numerically, we find that the solutions to (4) and (5), and
(6) and (7), coincide with great accuracy.
The flow equations (6) and (7) can be solved analytically.

The solution to (7) is the well-known one-loop-improved
running quartic coupling

λðμÞ ¼ λΛ
1 − 3

16π2
λΛ logðμΛÞ

; ð8Þ

while the exact solution of (6) is (for notational simplicity
from now on we replace λΛ → λ)

m2ðμÞ ¼ 1

3 · 22=3ð3λ log μ
Λ − 16π2Þ

�

22=3Λ2e
32π2

3λ

×

�

16π2 − 3λ log
μ

Λ

�

E2
3

�
32π2

3λ
− 2 log

μ

Λ

�

þ 4λ

ffiffiffiffiffiffiffi

−
1

λ
3

r �

Λ2e
32π2

3λ E2
3

�
32π2

3λ

�

þ 3m2
Λ

�

×

�

3π log
μ

Λ
−
16π3

λ

�
2=3

�

; ð9Þ

where E2
3
ðxÞ is the generalized exponential integral function

EpðxÞ for p ¼ 2
3
. To get closer to the notation typically used

in phenomenological applications, we indicate the running
scale with μ rather than with k. Moreover, according to
notational convenience, we will equivalently write the
running mass as m2ðμÞ or m2

μ.
Let us focus now on the nonperturbative evolution

equation (9) that we have just found. First of all we note
that, expanding it for λ ≪ 1 (and μ2 ≪ Λ2), we obtain the
well-known perturbative result

m2
μ ¼ m2

Λ þ λ

32π2

�

Λ2 −m2
Λ log

Λ2

μ2

�

: ð10Þ

More important for our scopes, however, is to note that
the flow equation (9) has a very interesting nonperturbative
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approximation, which can be obtained replacing in the
right-hand side of (6) λk with λ. Solving the resulting
equation for the running mass m2

μ we have

m2
μ ¼

�
μ

Λ

� λ
16π2

�

m2
Λ þ λΛ2

32π2 − λ

�

−
λμ2

32π2 − λ
: ð11Þ

This solution can be improved if in ðμΛÞ
λ

16π2 and in λμ2

32π2−λ the
(UV value of the) coupling λ is replaced with the running

λðμÞ in (8). Note that the coefficient of ðμΛÞ
λ

16π2 in the round
bracket is a UV boundary value (the integration constant),
and this is why we should not make the replacement λ →
λðμÞ in it. Using for instance the same boundary values
considered before [see below (7)], we easily check that this
improved version of (11) provides a very good approxi-
mation to the flow governed by (4).
Equation (11) is a crucial result of the present work

(below it will be extended to the SM) and contains several
important lessons. First it shows how the fine-tuning
usually realized in perturbative QFT operates in the
Wilsonian framework: It simply fixes the boundary at
the UV scale μ ¼ Λ for the running of the mass m2

μ.
This is given by the terms in the round brackets in the right-
hand side of (11), where m2

Λ and λΛ2

32π2−λ need to be
enormously fine-tuned if at the IR scale μlow we
want mμlow ∼Oð100Þ GeV.
There is another important lesson in (11). By simple

inspection, we see that the combination

m2
μ;r ≡m2

μ þ
λμ2

32π2 − λ
ð12Þ

obeys the RG equation

μ
d
dμ

m2
μ;r ¼ γm2

μ;r; ð13Þ

where γ ¼ λ
16π2

is the mass anomalous dimension for the ϕ4

theory at one-loop order. Equation (13) coincides with the
well-known one-loop improved flow equation for the
renormalized running mass. Therefore, m2

rðμÞ defined in
(12) is the renormalized running mass. At the same time we
note that

m2
μ;cr ≡ −

λμ2

32π2 − λ
ð14Þ

is the “critical mass” defined at each value of the running
scale μ, and that the subtraction in (13) drives the RG flow
close to the critical surface of the Gaussian fixed point. The
simple integration of (13) gives (μ0 > μ)

m2
μ;r ¼

�
μ

μ0

� λ
16π2m2

μ0;r: ð15Þ

For the purposes of our analysis, it is important to note
that we derived Eq. (13) in the Wilsonian framework,
namely from the RG flow (11), whereas usually it is derived
in the context of “technical schemes,” as dimensional, heat
kernel, or zeta function regularization. In this respect, we
stress that, when the quantum fluctuations are calculated in
the framework of a technical scheme, we only have access
to (13) [and then to its solution (15)], but we are blind to the
fact that the renormalized running mass is obtained only
after operating at each scale μ the subtraction in (12).
When, on the contrary, the quantum fluctuations are
calculated within the Wilsonian “physical scheme,” we
clearly see how the renormalized mass emerges.
There is a third important lesson contained in (11), which

is related to the following question. Should we identify the
physical running mass with (11) or with (15), i.e. with the
original Wilsonian mass m2

μ, or with the subtracted mass
m2

μ;r? In QFT the running mass is usually identified with
(15). On the other hand, according to the definition of
Wilsonian action, the running couplings giðμÞ at the scale μ
result from the integration over the quantum fluctuations in
the range ½μ;Λ�, and are the effective couplings at this scale.
This is true, in particular, for the mass. Therefore, it is the
original Wilsonian massm2

μ, not the subtractedm2
μ;r that has

to be identified with the physical mass at the scale μ.
Being this the case, how can we justify the traditional

(textbook) approach to QFT, where it is m2
μ;r that is

identified with the physical running mass at the scale μ?
The answer to this question comes from the comparison

between our result (11) and (the textbook) Eq. (15). As long
as we confine ourselves to sufficiently low values of μ (IR
regime), the flow governed by (15) practically coincides
with the flow (11). The overlap region is defined by the
condition

λμ2

32π2 − λ
≪

�
μ

Λ

� λ
16π2

�

m2
Λ þ λΛ2

32π2 − λ

�

; ð16Þ

where (we stress again) the term inside the parentheses
contains the fine-tuning necessary to obtain the IR (mea-
sured) value of the physical mass. Moreover, our equa-
tion (11) allows to find the energy range to which Eq. (15)
is limited. Clearly, if we are interested in energy scales μ
above the region determined by (16), we must go back to
the original flow (11), which has a much wider range of
validity.

III. THE PROPOSAL

We are now ready to move to the SM (similar consid-
erations hold even for an extended version of the SM) and
to present our proposal. Following steps similar to those
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that led to (6), for the running Higgs mass we get the
Wilsonian RG equation

μ
d
dμ

m2
H ¼ αðμÞμ2 þ γðμÞm2

H; ð17Þ

where αðμÞ is a combination of SM running couplings
(gauge, Yukawa, scalar), which at one-loop level reads (for
the purposes of the present work it is sufficient to restrict
ourselves to the one-loop order)

16π2αðμÞ ¼ 12y2t − 12λ −
3

2
g21 −

9

2
g22; ð18Þ

and γðμÞ is the mass anomalous dimension

16π2γðμÞ ¼ 6y2t þ 12λ −
3

2
g21 −

9

2
g22: ð19Þ

Considering constant values for the couplings, from (17)
we obtain

m2
HðμÞ ¼

�
μ

Λ

�
γ
�

m2
HðΛÞ −

αΛ2

2 − γ

�

þ αμ2

2 − γ
; ð20Þ

which, as it is easy to check, provides a very good
approximation to the flow governed by (17). As for the
scalar theory previously considered [see Eq. (11) and
comments below it], an improvement to (20) is obtained
if α and γ outside the round brackets are replaced with αðμÞ
and γðμÞ [the term in the round brackets is an integration
constant, where α ¼ αðΛÞ and γ ¼ γðΛÞ]. In Fig. 1 both the
numerical solution to (17) and the approximate analytical
solution (20) (with the just mentioned improvement) are
plotted. They are practically indistinguishable.
Equation (20) is one of the most important results of the

present work, and deserves several comments. Before
doing that, however, it is worth deriving a few other related
results. Let us define [as in (14)] the critical mass,

m2
H;crðμÞ≡ αμ2

2 − γ
; ð21Þ

and [as in (12)] the subtracted mass

m2
H;rðμÞ≡m2

HðμÞ −m2
H;crðμÞ: ð22Þ

From (20) we derive the equation

μ
d
dμ

m2
H;rðμÞ ¼ γm2

H;rðμÞ; ð23Þ

which once solved gives (μ0 > μ)

m2
H;rðμÞ ¼

�
μ

μ0

�
γ

m2
H;rðμ0Þ: ð24Þ

Equation (23) coincides with the well-known (textbook)
one-loop improved RG equation for the renormalized
running Higgs mass, and is nothing but Eq. (2). We then
conclude that m2

H;rðμÞ defined in (22) is the usual renor-
malized running Higgs mass. However, we observe that (as
explained in the section devoted to the scalar theory) it is
the Wilsonian mass parameter m2

HðμÞ in (20) that has to be
identified with the running Higgs mass. In this respect, let
us consider the two following points.

(i) Requiring that m2
HðμÞ at the Fermi scale μF is the

measured m2
H;exp ∼ ð125.7Þ2 GeV2, from (20) we

see that m2
HðΛÞ needs to be enormously fine-tuned.

(ii) Turning to the RG flow (24) for m2
H;rðμÞ, and

requiring this time that it is m2
H;rðμFÞ that takes

the experimental value ∼ð125.7Þ2 GeV2, we see that
the two flowsm2

HðμÞ andm2
H;rðμÞ coincide for all the

values of μ that satisfy the condition
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FIG. 1. Left panel: log-log plot of mHðμÞ, with UV boundary mHðMPÞ ∼ 6.347 × 1017 GeV, see Eq. (17). The latter is coupled to the
RG equations for the SM couplings, λ, yt, g1, g2 and g3, solved numerically using one-loop beta functions, and IR (experimental)
boundary values: λðmtÞ ¼ 0.1272, ytðmtÞ ¼ 0.9369, g1ðmtÞ ¼ 0.3587, g2ðmtÞ ¼ 0.6483, g3ðmtÞ ¼ 1.1671 (mt is the top quark mass).
Equation (20) [analytical approximation to the solution of (17)] is also plotted, but the two curves are indistinguishable. Right panel:
Zoom in the region 102–106 GeV of the running shown in the left panel. The “elbow” around μ ∼ 103 GeV signals that the IR flow is
entering the region where mHðμÞ is very well approximated by mH;rðμÞ [Eq. (24)].
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αμ2

2 − γ
≪

�
μ

Λ

�
γ
�

m2
HðΛÞ −

αΛ2

2 − γ

�

: ð25Þ

These results contain crucial physical lessons. First of
all, we learn that the “fine-tuning” of m2

HðΛÞ, which in the
traditional approach to QFT is formally realized through the
introduction of counterterms, has a profound physical
meaning. It provides the boundary for the RG flow of
the running mass m2

HðμÞ at the UV scale Λ. A very large
value ofm2

H at Λ is then physically necessary and welcome,
not an unwanted result to get rid of.
Moreover, from Eq. (20) and from Fig. 1, we see that

through a quadratic running that lasts for most of the
m2

HðμÞ flow towards the IR, this finely tuned value of
m2

HðΛÞ allows to reach the experimental value of the Higgs
mass at the Fermi scale. What is crucial to realize is that,
proceeding towards the IR, the initial “quadratic running”
m2

HðμÞ ∼ μ2 sooner or later gives way to a lower energy
running, where the “multiplicative renormalization” [see
Eq. (24)] emerges. In schemes as DR we only have access
to (24), but from a truly physical perspective the latter is an
“emergent property” of the running, which rises when the
flow approaches the IR. The region, say the scale μ̄, where
the transition from the quadratic to the multiplicative
running occurs, and the value of the squared mass
m2

Hðμ̄Þ, are determined by the fine-tuning, i.e. by the
quantity inside the parentheses in (20) [(11) for the ϕ4

theory]. For μ≲ μ̄, the running is extremely slow, and we
then understand the profound role of the boundary con-
ditionm2

HðΛÞ, and thus of the fine-tuning: it determines the
scale μ̄ below which the running appears approximately
frozen and, up to small corrections, the value m2

HðμÞ that
the mass necessarily assumes for all scales2 μ≲ μ̄.
This is a great change in the usual paradigm. In the

physically unavoidable top-down Wilsonian approach, a
large hierarchy between the UV and the IR values of m2

H,
together with the fine-tuning of m2

HðΛÞ, are physically
mandatory and the typical multiplicative renormalization
(24) emerges as an IR property of the complete physical
running (20). It is also worth observing that, while in
traditional approaches (Veltman condition, supersymmetric
models, Higgs composite models) to the naturalness
problem the central idea is to avoid/cancel terms quadrati-
cally sensitive to the scale, in our Wilsonian approach their
presence is necessary to drive the mass towards the IR

measured value. Moreover, we stress that this physical
picture holds not only for the SM but also for beyond
Standard Model (BSM) models as long as γ stays pertur-
bative. The change in the parameter α only determines a
change in the boundary condition m2

HðΛÞ.
Moreover, Eq. (20) shows the limitations of (23), or

equivalently of its solution (24): they can be used only at
sufficiently low energies [where (25) is satisfied], which in
most of the cases are the only experimentally reachable
energies. In the right panel of Fig. 1, a zoom of the mHðμÞ
running is shown. The presence of an elbow near μ ∼
103 GeV and the almost “freezing” of the mHðμÞ flow at
lower scales signal that the first term in the right-hand side
of (20) takes over the second one. This realizes the
“transition” from the additive to the multiplicative renorm-
alization of the mass, which is the transition from (20) to
(24). If one were to extend (24) outside its realm of validity,
the experimental value mH ¼ 125.7 GeV at the Fermi
scale would be reached starting with the UV boundary
mHðMPÞ ∼ 132.4 GeV. This is connected with one of the
popular (but, as shown above, incorrect) approaches to the
NH problem [see Eq. (1) and the related discussion].
The fine-tuning manifests itself through the term

ðm2
HðΛÞ − α=ð2 − γÞΛ2Þ in (20), and the choice of this

combination in the UV determines the measured (IR) value
of m2

H. Therefore, taking into account the experimental
uncertainties, we conclude that there exists a region of
“tiny size” in the SM parameter space from which very
large UV boundary values of m2

H give rise, through the
RG flow, to the measured (within errors) value of the
Higgs mass. Such a region can only be inherited from
the ultimate UV completion of the SM (or of the yet
unknown BSM), namely the theory of everything. In string
theory, for instance, an enormous variety of theories/vacua
has to be considered, and the conditions for the existence of
such a region are certainly met. Moreover, in connection
with the quadratic dependence of the Higgs mass in the
UV, we note that in the string framework the common
expectation is that the Higgs mass at the string scale MS

is m2
HðMSÞ ∼M2

S [39].

IV. IR RUNNING AND PHYSICAL MASS

Going back to the running (24) (multiplicative renorm-
alization), we observe that it can be obtained within
different schemes (DR, heat kernel, …), and that no
physical content can ever be related to the choice of a
specific scheme. However, our analysis has shown that
this behavior is related only to the IR sector of the flow. The
whole UV → IR running is given by the Wilsonian flow
(20), while (24) is confined to the IR regime alone.
In light of these findings, an interesting question arises

that might be subject to experimental investigation in
the (hopefully not too far) future. Although no one has
observed up to now the running of the Higgs mass, we can

2Note that at very low scales the expansion of the kind (6) no
longer holds (in the present case this happens for scales much
lower than mt). The full Wilsonian equations predict a complete
freezing of the running of m2

HðμÞ, so that the fact that in our
approximation the solutions (20) and (11) seem to flow towards
zero in a small region of μ very close to μ ¼ 0 should not be taken
as a physical prediction: when we refer to freezing we mean that
this really extends down to μ → 0.
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consider physical processes that should allow to test the
m2

HðμÞ flow (much in the same spirit of what is done with
the running bottom quark mass [40]): think, for instance, of
ongoing work on precision measurements of the trilinear
coupling [41]. If future experiments will be able to enter the
energy regime where the complete flow (20) and the
approximate IR flow (24) start to be significantly different,
and experimentally distinguishable, it should become
possible to discriminate between these two alternatives
(see Fig. 2).
In this respect, we observe that the connection between

quantum field theory and statistical physics is usually done
by establishing a one-to-one correspondence between the
request ξ ≫ a in the theory of critical phenomena (a is the
lattice spacing, ξ the correlation length) and the request
m2 ≪ Λ2 in the QFT framework (m is the particle mass, Λ
the ultimate UV scale of the theory). When phrased in RG
language, this corresponds to the tuning towards the
“critical surface,” achieved through the subtraction of
the critical mass: m2

renðμÞ ¼ m2ðμÞ −m2
crðμÞ. However,

we have seen that m2
renðμÞ only captures the final part of

the running of the physical mass. Actually, the RG flow is
physically meaningful even far from the critical surface and
from fixed points. This is in fact what happens to our flow
(20) that approaches the critical surface of the Gaussian
fixed point in the IR, giving eventually rise to the flow (24).
These points can be well illustrated if we go for a

moment to d ¼ 3 dimensions, and consider the Ginzburg-
Landau free energy (used to describe the ferromagnetic
transition), F½ϕ� ¼ R

d3xð1
2
ð∇⃗ϕÞ2 þ VkðϕÞÞ, with potential

VkðϕÞ ¼ 1
2
m2

kϕ
2 þ λk

4!
ϕ4. The RG equations for the

dimensionless couplings m̃2
k ≡ k−2m2

k and λ̃k ≡ k−1λk
(t≡ log k=k0, with k0 a reference scale) are

dm̃2
k

dt
¼ −2m̃2

k −
λ̃k

4π2ð1þ m̃2
kÞ

ð26Þ

dλ̃k
dt

¼ −λ̃k þ
3λ̃2k

4π2ð1þ m̃2
kÞ2

: ð27Þ

It is immediate to see that these equations have a Gaussian
and a Wilson-Fisher fixed point, G and WF in Fig. 3, and
that G is an IR repulsive fixed point.
Figure 3 conveys two messages: (a) Let us consider the

UV → IR flow given by the blue line. In the region around
G, where (26) and (27) can be linearized, this flow is well
approximated by the “subtracted flow” (green line), the
analog of (24) in this case. Beyond this region, however, the
green flow deviates from the true physical flow (blue line).
The very existence of the ferromagnetic transition shows
that the green flow cannot be the true one. (b) The blue and
red flows have slightly different UV boundaries. Thanks to
the fine-tuning operated in the UV, the blue flow is driven
towards WF (i.e. towards the ferromagnetic transition).
This example clearly shows that, if (as it is certainly the
case) the IR physics is dictated by WF, the fine-tuning in
the UV is physical and unavoidable.
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FIG. 2. This figure shows a focus of the mHðμÞ flow of
Fig. 1, Eq. (20), in the IR region between mt [where
mHðmtÞ ∼ 125.7 GeV] and 200 GeV (blue line). The yellow
curve is the flow given by (24) again with mHðmtÞ ∼ 125.7 GeV.
Future experiments should allow to evidentiate the difference
between these two flows.

FIG. 3. RG flows [Eqs. (26) and (27)] in the parameter space
ðm̃2

k; λ̃kÞ of a ϕ4 theory in d ¼ 3 dimensions. The blue and red
flows emanate from the UV region close to the Gaussian fixed
point G (different boundary values). The green line is obtained
linearizing (26) and (27) around G, with the same boundary as the
blue one.
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