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Stability of the embedded string in the SU(N) x U(1) Higgs model
and its application
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Since it has been pointed out that physics beyond the Standard Model may be constrained by
gravitational waves from cosmic strings, it has been more important to clarify in what cases cosmic strings
are formed. We study the stability of the embedded string which is formed when SU(N) x U(1)y gauge
symmetries are broken to SU(N — 1) x U(1),, and find that the stability condition can be determined by

two mass ratios of the Higgs and massive gauge bosons, and does not explicitly depend on N. We also show
that the result can be extended in supersymmetric models. In addition, we apply these results to several
models and discuss the important feature of the Higgs to produce the embedded string. Although we find it
difficult to be satisfied in normal realistic grand unified theory models, it is possible if SU(N) and U(1)y

have different origins.

DOI: 10.1103/PhysRevD.107.096007

I. INTRODUCTION

It is known that cosmic strings [1,2] are formed as
topological defects after phase transitions in a lot of models
beyond the Standard Model (SM) including grand unified
theories (GUTs) [3-5]. The characteristic signatures of
these strings can be observed through cosmic microwave
background [6], gravitational lensing [7] or gravitational
wave background [8]. Moreover, the observation of the
gravitational wave spectrum reveals the tension of the
cosmic string, which gives the energy scale of the phase
transition [9,10]. In 2020, the NANOGrav experiment
reported their result [11], which is consistent with the
gravitational wave signal from cosmic strings [12—14]. This
signal suggests the presence of a symmetry breaking whose
energy scale is 10'%1® GeV [13,15]. Furthermore, several
gravitational wave observations, for example LISA [16]
and DECIGO [17], are planned within a few decades. Since
the gravitational wave observations will be powerful tools
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for detecting past phase transitions [10], it is important to
clarify the conditions for cosmic string formation.

There exists a well-known result for cosmic string
formation. When U(1) gauge symmetry is broken by
developing a vacuum expectation value (VEV) of a com-
plex Higgs, a cosmic string, which is called Nielsen-Olesen
(N-O) string, can be formed [18]. The existence of the N-O
string is related to a topological feature of a moduli space V),
specifically the first homotopy group z;(V). This N-O
string can be generalized in other spontaneous symmetry
breaking (SSB). If z,(V) is nontrivial for the general
SSB, stable cosmic strings can be produced [1]. Since
the stability of these strings is guaranteed by the topolo-
gical features of the moduli space, these strings are called
topological strings.

The above general argument for cosmic string formation
does not mean that cosmic strings cannot be formed when
(V) is trivial. Actually, the string solutions in the
electroweak symmetry breaking, in which z;()) is trivial,
have been studied. These are called the Z strings (for a
review, see Ref. [19]). The idea of the Z-string solution with
the ends (the electroweak dumbbell) has been proposed in
Ref. [20] by Nambu, and the Z-string solution without the
ends has been considered in Ref. [21] by Vachaspati. The Z
string is not always classically stable and its stability
depends on two parameters, the mixing angle Oy and
the ratio of Higgs mass to Z boson mass my/m,. The
region in the space of the two parameters in which the Z
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string is classically stable has been calculated numerically
in Ref. [22], and it has been clear that the Z string becomes
unstable with the realistic parameters in the SM. The
stability of the Z string has been studied in the two
Higgs doublet model (2HDM) and has been found to be
also unstable in the realistic parameters in the SM [23-25].
The Z-string solution is constructed by embedding the N-O
string in the Higgs doublet field and the Z gauge boson
field. The strings constructed by embedding the N-O
strings are called embedded strings [26] and the Z string
is one of them.

As mentioned above, the embedded strings have been
well studied in the symmetry breaking, SU(2),x
U(1)y — U(1)p, but it is not yet clear whether they are
formed or not in other SSB. There are many predicted
models beyond the SM, such as GUTs, and they have
various SSB at a high energy scale. It becomes more
important to clarify which SSB produces embedded strings
or not, because the gravitational waves from the embedded
strings may be detected in future experiments.

In this paper, we consider more general embedded string
which may be produced in the gauge symmetry breaking
SU(N) x U(1)x — SU(N —1) x U(1), and examine its
classical stability. Since this is a generalization of the Z
string, we call the embedded string as generalized Z string
in this paper. The method to check the stability is the same
as in Ref. [22], thus we calculate the sign of the energy
variation made by infinitesimal perturbations. As a result,
we find that the classical stability of the generalized Z string
is essentially determined by two mass ratios of Higgs and
massive gauge bosons. To achieve the stability, the mass of
the neutral gauge boson must be at least several times the
mass of the charged gauge boson. We also consider the
generalized Z string in the supersymmetric (SUSY)
SU(N) x U(1)y Higgs model and show that its classical
stability is essentially the same as in the non-SUSY case.
For N =2, it is pointed out in Ref. [27].

Since the breaking SU(N) x U(1)y — SU(N —1) x
U(1), can be seen in many GUT models, we apply the
condition for generalized string formation to several sce-
narios of GUTSs in which SU(N) x U(1)y breaking hap-
pens. Unfortunately, we conclude that it is difficult to
satisfy the condition in normal realistic GUT models.
However, if a special GUT which we explain later can
be constructed, the condition may be satisfied. To obtain
several times larger neutral gauge boson mass than the
charged gauge boson mass, the Higgs must have large
U(1)y charge which becomes possible if the Higgs belong
to a higher representation field of the unified gauge group.
We discuss how large a representation field, in which the
Higgs field is included, we need to produce classically
stable generalized Z string in several toy GUT models. If
the embedded strings are discovered by future cosmologi-
cal observations, it may become a strict constraint for
various models beyond the SM.

This paper is organized as follows. In Sec. II, we
review the Z string and how to check its classical stability
because we use the same method for our study. We examine
the classical stability of the generalized Z string in the
SU(N) x U(1)y model in Sec. III and consider its SUSY
extension in Sec. IV. As a result of them, we find the
condition for a formation of the generalized Z string. In
Sec. V, we apply the condition to the case in which SU(N)
and U(1)y are unified into a simple group.

II. REVIEW OF THE Z STRING

In this section, we will review the Z string and how to
check its stability briefly. The Z string is an embedded
string which can be constructed in a gauge theory with
SU(2), x U(1)y gauge symmetry broken to U(1), by
developing a VEV of a doublet Higgs.

First, let us show the concrete form of the Z-string
solution which has been found by Vachaspati [21]. We
consider SU(2);, x U(1), gauge theory with a doublet
Higgs H which has U(1), charge 1/2. The Lagrangian is
given as

1 1
L=——WiWu — 1 BuB" + D H|* — A(|H|* = v*)?,

4
(1)

where Wy, (a =1, 2, 3) and B, are field strengths of
SU(2), and U(1)y, respectively. In this model, the gauge
symmetries are broken to U(1), when H obtains a non-
vanishing VEV. When we take Wj; and B, as the gauge
fields of SU(2), and U(1)y, respectively, the gauge field
for unbroken U(1), is A, = sin@yW; + cos OB, and
those for the broken gauge symmetries are

W), W2, Z, = cos Oy W; — sinOyB,, (2)

where g; and g, denote the gauge coupling constants of
U(1)y and SU(2),, respectively, and tan 0y, = g,/g,. The
moduli space of Higgs for this breaking is homeomorphic
to S3, and hence there is no topological string formed
[, (S?) is trivial]. However, an embedded string can be
formed as shown in the following.

The Z-string solutions are classical solutions of this
system and they are given as

H(x) = <f<r;)em@>’ Zy(x) = —nz(r).

(a=1,2), (3)

where we use cylindrical coordinates (z,7,0,z) and n €
Z\{0} is a winding number. f(r) and z(r) are monotonic
increasing functions of r which satisfy boundary conditions
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where a = /g7 + g5. The shapes of them are determined
by the Euler-Lagrange equations which are obtained from
the Lagrangian (1) as

o+ P e (1520 ) 18

r

+24(0% = f(r))f(r) =0, (5)

Z”(I’) _ Z’Ef’) + a<1 —gz(r)>f2(r) —0. (6)

These equations can be solved numerically.

The first homotopy group of the moduli space of H is
trivial, thus any topological strings such as N-O strings do
not appear in the breaking, SU(2), x U(1)y — U(1),. In
the notation of Z,, A, and Wj_j, we can deform the covariant
derivative as

DH=(0d,+ igZMTZ _ i%AMTA - ingZG— H
2 a 2
(@a=1,2), (7)
where
sin?@y, — cos’0y, 0 10
T, = , T, = . (8

Now we show U(1) which is generated by T, as U(1),. If
we ignore ij and A,, we can regard the symmetry
breaking as U(1), — x and find “N-O string” solutions
which are related to this U(1), breaking. They are nothing
but the Z-string solutions. Thus, the Z string is constructed
as N-O string for symmetry breaking of the subgroup, and
called an embedded string.

The Z string is a classical solution, but it is not sure
that it is classically stable. Next, we show how to
check the classical stability of the Z string. The method
is very simple. We check whether perturbation modes of the

ar

(1-52)

. 2 .
5ﬂc:/dzx[z{(vXW*)Z—@EWj}{(VXW‘)Z+@§W—
ar

- (1w -1
(1-9z
r

+ i!]z{ (f/Wr+ +if

1
+ \a,h|2 +5
’

2

2
(69 +i 2 (cos?By — sinzﬁw)z)h‘ + GfPWIWr 4 24(f% - v2)|h|2] :

Z-string solutions make the energy of the system lower or
not. The perturbation modes of the n = 1 Z-string solutions
are given as

- h(x) 2 .
HO = (s apy ) Pl =00
Z(x) = -i:)zg + 6Z(x) (9)

and we also consider A,(x) and W¢(x) as perturbations.
We substitute them into the energy of the system and
evaluate the sign of the variation. If the variation becomes
negative, there is a perturbation mode which makes the
Z-string solutions unstable.

Since the ¢ and z dependence of the perturbations and
nonvanishing ¢ and z components of the gauge fields only
increases the energy, we take the perturbations independent
of ¢ and z, and we ignore the ¢t and z components of the
gauge fields. Thus, we can determine the stability using an
energy linear density (string tension) ugyw instead of the
energy. pugw 1S given as

1 1
UEwW = / rdrd0 [Z(W?])Z + 2 (B;}_)Z + |D;H|2

A(HP - mz} (7=12) (10)

Next, we find perturbations which do not give negative
variation and ignore them. Since the Z-string solution
satisfies the classical equations of motion, the leading
terms of the variation of the string tension are quadratic
terms of these perturbation modes &¢(x), 6Z,(x), h(x),
A,(x) and Wi (x). Because of conservation of U(1),
charge, the quadratic terms of neutral fields Sy, and the
quadratic terms of charged fields Ju,. are separated, i.e.,
Op =y — po ~ 6u,, + op.. The neutral part Su,, must be
non-negative because this part takes the same form as the
perturbation from the energy linear density of the N-O
string solution in the U(1) Higgs model. This has been also
checked numerically in Ref. [28]. Thus, it is sufficient to
evaluate the sign of du., which is given as

. 4 i
W;) e+ fel (W;fa,h* WS- (ag - ig (cos?y — sin29W)1> h*) }
r

2

) ) 1
) W;) en* 4 fe10 <W;a,h + Wy - <69 +iZ (cos?Oy — sinzew)z> h) }
r

(11)
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where

()0 E) e

Ignoring other perturbation modes which do not make
the Z-string solutions unstable, it can be seen that there is
only one perturbation mode that could give a negative
contribution. The perturbation mode can be written as a
certain linear combination of A(x) and W¥(x). The calcu-
lations to reduce the number of perturbation modes are
summarized in the Appendix.1 The variation of string
tension is given as

1
pmse e 12 (22)
28 1d [(rf (f’)2
+{W+‘—(P—f) Ty HC
=2z / rdr COC, (13)
where
_@PP (B
P—T—i—(l—;z), (14)

d (1 AN Y
S Py P 0 AL AL
S rdr(rP( a’)a) 2 Paz(z) (15)

In Eq. (13), we have already integrated by 6 and {(r)
corresponds to the perturbation mode. If the operator O
has a negative eigenvalue, there must be a perturbation
which makes Sy negative. Therefore, it is important to
know whether O has negative eigenvalues or not. It has
already been solved by numerical calculation and we also
review it briefly for later discussions. To do the numerical
calculation, r, f(r) and z(r) are nondimensionalized as

v f(r)

—,

2 v

R

Z(R)=32(r).  (16)

In this nondimensionalization, the Euler-Lagrange equa-
tions, Egs. (5) and (6), are rewritten as

P+ 20 1 ) L)
+p(1 = F*(R))F(R) =0, (17)
2/() - o1 - zmyPm) =0, (18)

where = 81/a*. O is also normalized as

'In the Appendix, we calculate for the case of SU(N) x
U(1) » SU(N — 1) x U(1). This is just a generalization of the
electroweak breaking and set N =2 if you want to see the
Z-string case.

O_LUZ 1d (Rd
- RdAR \PdR

{Rze rar (7r) * 57

T

(19)
where

P =P =2c05’0yR*F? + (1 — 2c0s’*0yZ)*  (20)

- S Rd
S= ST 3uR < (1- 200829WZ)>
F? 1
—1—7—?00529‘4/(2/)2. (21)

Since O only depends on f and cos’ @y, the condition
for the Z-string solutions to be stable is given as a region
in parameter space (f3, cos” y,), which is shown in Fig. 1
of Ref. [22]. Basically, cos? 8y ~ 0 is required. This is
consistent with the stability of semilocal string in the model
with SU(2) global symmetry xU(1) gauge symmetry (i.e.,
g» = 0 in Z string) [29].

I1I. EMBEDDED STRING
IN SU(N) x U(1)y - SUNN-1) x U(1),

Embedded string solutions can also exist in breaking
other than the electroweak symmetry breaking [26]. In this
section, we consider the embedded string in a breaking
where SU(N) x U(1)y gauge symmetries are broken to
SU(N —1) x U(1),. It is a generalization of the Z string.

First, we consider the SU(N) x U(1)y gauge theory with
SU(N) fundamental Higgs ¢ whose U(1)y charge is
normalized as 1/2. The Lagrangian is given as

1 1
L=~ 7GLG" ~ L F\F* + D¢

: — Al - )2

(22)

where G4,(a =1,...,N*—1) and F,, are field strengths

of SU(N) and U(1)y, respectively. The covariant derivative
of ¢ is

Db = <a — igyGaTY — zgle,,>¢, (23)
where Gy, and F, are gauge fields of SU(N) and U(1)y,
respectively. T4, are generator matrices of the fundamental
representation of SU(N) which satisfy that tr[T¢T?] =
59 /2. In this paper, we choose the basis of fundamental
representation such that 7 are given as follows:

oy TRy (JSN=1)
(TN)i_i_{O (i=Norj=N)
(@a=1,...(N-1)*-1) (24)
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1 1
oint+= 5i.N5 a2

(T?_V)ij = §5i.a—w-l>2 +15j.1v
i
E luNl +15JN+251N5 1Yj.N
(@=(N=-1)?...N-2) (25)
|
TY = T 0 , T%Z—l =
0o - 0
0
0
- 1 0 1
) 0
0
0 01 0 0 0
When ¢ obtains the VEV as (¢) = (0,...,0,v)T,
SU(N)x U(1)y are broken to SU(N—1)xU(1),.
The massless gauge fields are
2 2 2
1 91 N2—1 CNIN
Gl A =5 ————=F,, (28)
TR +a "t Qevtar "
and the massive gauge fields are
5 2R , 7
Ga’ NIN N-—1 _ 1 F , (29)
PTG g " G ta "
_ 2(N-D) L .
where ¢y = /=5 To simplify notation, we define

ay =/gi +cygy and tanbg = g;/(cygy). Thus the

relation between (Gﬁ’z‘l,F ) and (Z,.A,) is given as

w
(Z,) _ (cosGG —sin9G> (Gﬁ’z‘l) (30)
A, sinf;  cosfg F,
Particulary when N = 2, this model is nothing but the
SU(2); x U(1), Higgs model.
For a later discussion, we rewrite the coupling constants

using the ratio of the masses. After the SSB, there are one
Higgs, one neutral gauge boson and 2(N — 1) charged

) 1
TN ' =—————— xdiag(l,....1,1 = N). 26
¥ = e * i - (26)
Approximately, these are also given as
1 :
1 - 0
IN(N - 1) I :
0 1-N
0
0
1 0 —i .
or - 0 (27)
0
0 0 ¢ O 0 0

gauge bosons as massive modes. Their squared masses are
given as

mé = 81172, mé =3 v? = (¢} + X g3)v?%,

(31)

2 _ 2.2
m G g N v-,
respectively. Thus we can rewrite the coupling constants as

m% — ¢, m> 2
meg NG m
gv == N /1_)874;' (32)

Hereafter, we write the coupling constants as in (32). This
reparametrization will make the discussion about the
stability of the embedded string clear as we will show later.

The moduli space of Higgs is homeomorphic to §?V-!
and no topological string is formed. However, if we
consider N-O string solutions in the breaking of U(1)
which corresponds to the gauge transformation of Z,,
they are nothing but an embedded string solution in
SU(N) x U(1)y — SU(N — 1) x U(1),. Because Z, does
not have the charge of the U(1),, the solutions are
generalized solutions of Z-string solutions. Hence, we call
them “generalized Z-string” solutions in this paper. The
ansatz of them is given as
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0
b(x) = O L Zy) = (). (neZ\{0})
f(r)einé’
Z(x)=2Z,(x)=Z,(x) =A,(x) =G =G =0. (33)

For this solution to be solitonic, they have to make the
energy density nonzero when r ~ 0 and zero when r — oo.
The energy density of the generalized Z string is given as

. nzz/z Py 2f2( ZZ>2+§5( f2)

20 8v?
(34)
Thus, f(r) and z(r) satisfy the boundary conditions,
2v
f0)=2(0)=0,  fleo)=v, z(e0)=——. (35
z

Because Eq. (33) is classical solutions of this system, we
can find equations which f and z obey by substituting
Eq. (33) into the Euler-Lagrange equation. The equations
are given as

.
my 2
£ 02 = f(P) ) = 0, (36)
2'(r) - Z'(r’) +22 (1 Z—Zz(r)>f2(r) 0. (37)
Furthermore, if we nondimensionalize r, f(r) and z(r) as
_mz _f(r) _my
R = ) r, F(R):T, Z(R):EZ(V), (38)

the boundary conditions become

and Egs. (36) and (37) are rewritten as

F'(R)
R

F//(R) _|_

’"—%(1 ~ F*(R))F(R) =0 (40)
mz

Z"(R) - +2(1 = Z(R))F*(R) =0. (41)

Z'(R)
R
Note that these nondimensionalized equations and boun-
dary conditions do not explicitly depend on N. Hence,
we find that the shape of F(R) and Z(R) depends only
on the ratio of masses of Higgs and the massive neutral

gauge boson.

Next, we explore conditions that the generalized
Z-string solutions are classically stable as in Sec. II. The
perturbation modes around the generalized Z string are
denoted as

5p(x), 6Z,(x), ¢.(x), Gi(x), Gi(x), A,(x), (42)
where

W
#lx) = <f(r)e"”" ()

Here, G%(x), Gé(x) and A, (x) are the components of the
gauge fields. Because the generalized Z-string solutions
are independent of the # and z coordinates, the perturbation
modes that depend on ¢ or z can only make a positive
contribution to the energy. This logic holds for the
perturbation modes of the ¢ and z components of the gauge
fields. Hence, we ignore them and discuss a variation of the
energy linear density along the z axis as in the case of Z
string.

Since the generalized Z-string solutions are static and
classical solutions, variational terms of the first order of the
perturbation modes vanish and terms of the second order
become leading. Thus we evaluate the sign of the quadratic
terms in the energy linear density to check the stability.
The variation of the energy linear density is divided into
three parts by the transformation properties of perturbation
modes under SU(N — 1) as y = poq + py + s, Where piyq
includes only the adjoint representation modes Gy, us
includes the fundamental and antifundamental representa-
tion modes ¢, and GZ, and p; includes the singlet
perturbation modes 8¢, 67 s Aﬂ. This is because the energy
linear density is SU(N — 1) invariant. p,q, ptf, and u; are
explicitly written as follows:

(N-1)2-1

s = Z [esly@xer].
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pp = ]:Zi / dx {2{(v x G, -

vmy r

+ |ar¢c,k|2 + -

- i@{(f/(;/;— _ ifn(l ~%
v r

20

. Gyt 2
+ fe’"9<G’§+6,¢jk+ - (ag+ @<1 - ZG

)

img 12 Gk+}{(v x G, +

1 5 2m?
Wlop=i"2(1227)0 ) g
2v mZ

Z) — —in
Gz ) e 9¢c,k

img nz "2 i 21'm2Gn_z’(ék+ « &)
vmy 1 vmy 1 <
2
m - 475
+18 2GE G T (72— ) g

=+ i% { (f/G];+ + l'fn(l _ri )Gk+>ein€<¢ak)*

Gk_ 2
+ fe _m€<Gk_ r¢ck+<aé}_lmz (1— r,:

20

where we write the components of ¢, and G,‘_j as

¢c,l
.= : (46)
¢L‘,N—l
ék+ 1/1 —i é(N—1)2+2(1<—1)
(a) =0 7)o ) @
where k =1, . - 1.
1 Z
V X Z 5 (VxA)
m
](&, e A TN e H D
Akt .mg nZ k+
Hi = RdRdO |2 (VXG )Z—zlﬁr R (VXG
Z
1 ) 2m? 2 2m
+ |0R¢c,k|2 + F (aG - l< - —26) nZ>¢c,k - l—G
s, ms

. Gkr 2m?
+ FeznG (Gfe‘*‘aRgbik —+ Ti) (6,9 + 1(1 — 2G> nZ>¢ '
mz

2
7), +2i—S$ 2 Gk }4—41—2—
m

)}

o)

[
where ¢, (x)

67 (x).

The integrand in p,4 is non-negative. In addition, y; is
never smaller than the energy linear density of the
generalized Z string because it takes the same form as
the one of the N-O string solution, which is classically
stable, in the U(1) Higgs model. Therefore we will
ignore them. As can be seen from Eq. (45), uy can be
written as the sum of N —1 parts, u, =3 . All py
have the same form as the functional of (¢, ;(x), G&*(x))
and thus it is sufficient to consider any one of them, for
example, yu.

If we nondimensionalize f(r),
U becomes

= f(r)e + 5¢p(x) and Z(x) = -2, +

z(r) and r as in Eq. (38),

2
mgnZ

ZR V4

{ (F/Gk— n(llg Z) G§_> e_in9¢c,k

2m n(l-2 . . G- ) 2m?
+i—< { (F’G’;(,* + lF%GSJr) e ()" + Fe™? (Gﬁ_aRfﬁc.k + Tf <aa - l<1 - m—zG) "Z> ¢c,k> }

mz

2 2
+ 316 e i 0 (2

- il

Z

(49)
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, , , , , 2, 2
0.02 0.04 0.06 0.08 010 MMz
FIG. 1. In this figure, we have shown the region in which the
generalized Z string becomes classically stable, in the parameter
space of m%/ mZZ and my/my. The region to the left of the red
dots, which are obtained by our numerical calculation, indicates
the region where the generalized Z string is stable. The blue
straight line through (mg/m%.my/myz) = (0,1) is obtained by
using the least squared method, and the concrete formula is
shown in Eq. (50).

Note that s, for any perturbation modes G**(x) and ¢ ; (x)
is determined by F(R), Z(R), and two mass ratios m,/m;
and mg/mz. Since F(R) and Z(R) are determined by
m,,/my, the classical stability of the generalized Z string is
determined only by two mass ratios m,/my and mg/m5. It
is important that it does not explicitly depend on N in
Eq. (49). Since the region for the stability of the string
solution for N = 2 has already been shown in Ref. [22], the
regions for the stability of the generalized Z-string solution
in parameter space of the above two mass ratios can be
understood by replacing these boson masses for N =2
with those for any N2

We have shown our numerical result of the stability
analysis for the generalized Z string in Fig. 1 as a
plot in the parameter space of the two mass ratios
(my/mz, mg,/m3). The numerical methods are explained
below. First, for fixed m, /mz, we calculate the generalized
Z-string solution. In more detail, two dimensionless func-
tions F(R) and Z(R) with the range 107! < R < 50 are
obtained by the gradient flow of the energy whose density has
been shown in Eq. (34). Second, we check the stability of the
solutions for fixed two mass ratios m;/m; and mz/ m%.
Concretely, we calculate the sign of the minimum eigenvalue
of the operator @y in Eq. (A21) in the Appendix by
Mathematica [30]. Finally, for fixed my/m;, we obtain
the maximal value of mg/m? for the stable generalized Z
string. It has been checked that changing the maximum value

Note that if we use other parameters instead of these mass
ratios, for example, the mass ratio m;/m; and the mixing sin 6
as in the case of Z string [22], the stability depends explicitly on
N, which can be seen in the Appendix. Therefore, the argument
here becomes more difficult for other parametrizations.

of R does not change the result. If g, = 0 (i.e., mg/m3 = 0)
and N = 2, the solution is known as the semilocal string [29],
which is stable when m, /mz < lasinRef.[31]. On the other
hand, our obtained maximal value of mg, /m? for m,/m; =
1is 0.0021. It means that there is at least an error of O(0.001)
in our calculation. We think that our results are qualitatively
consistent with the results in Ref. [22], although the
quantitative consistency is not clear because the errors of
both calculations are not clear.

Since the data points in Fig. 1 are approximately on a
straight line, we can obtain a linear approximate formula for
the region where the generalized Z string becomes classically
stable as

2

<1-11%¢ (50)
ms m,

My

by using the least squared method. Note that this formula is
not reliable for :Z < 0.15, where the numerical calculation
becomes more difficult. We will apply this approximate
formula to several patterns of symmetry breaking later.

IV. EMBEDDED STRING
IN SUSY SU(N) x U(1)y MODEL

In this section, we consider the embedded string in the
SUSY SU(N) x U(1)y gauge theory with two Higgses
whose VEVs break SU(N) x U(1)y into SU(N —1) x
U(1),. Itis a SUSY extension of the generalized Z string.
We will show that its classical stability also can be determined
by the ratios of the masses of the Higgs and the massive gauge
bosons. We will find that the stability condition for the
solution becomes the same as that in the non-SUSY model,
while the stability region cannot increase but may decrease in
general when the number of Higgses increases. The case of
N = 2 has already been studied in Ref. [27].

We consider a SUSY SU(N) x U(1)y gauge theory in
which a SU(N) fundamental representation Higgs @, and
an antifundamental representation Higgs @, are introduced
as chiral superfields. Both ®; and ®, have U(1)y charges
1/2 and —1/2, respectively. The superpotential of the
Higgses is given as

W =21S8(®,® —u?) (A, u€R), (51)
where S is a gauge singlet chiral superfield. Here, without
loss of generality, the parameters A, and u can be taken real.

We write the scalar component fields @, @, and S as ¢,
¢», and s, respectively. The F-term contributions are given as

Vi, da.s) = s 1 — | + 23[s[* (| [* + |9h2]*).
(52)

and the D-term contribution is also given as
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2 2
Vol o) =211 = 9P + DG T ¢y — T T3

2 2
— (-2 ) (i - 4P
2
IV 1y * + 1ol = 21T 1 2). (53)

4

In the last step in Eq. (53), we have used a Fierz identity. The
F-flatness conditions are given as

¢2T¢1 =u?, sy = s¢, =0, (54)
and the D-flatness conditions become
|p1* = ol = PiT 1 — Py T3 = 0. (55)
Therefore, we can find that the VEVs are
0 0
¢1 - ) ¢2 - ) § = Oa (56)
0 0
u u

which break SU(N) x U(1), gauge symmetries into
SU(N —1) x U(1),,.

The ansatz for the embedded string solutions can be
written as

0 0
b = : . = ,
0 0
f1(r)ei fa(r)e e

Zy(x) = —nz(r).  (n€Z\{0})

Zi(x) = Z,(x) = Z;(x) = A,(x) = G = G =0, (57)
where f(r), fo(r) and z(r) are real functions. The winding
numbers of ¢; and ¢, are the same absolute values and
opposite signs because of the F-flatness conditions when
r — 0. f1(r), f2(r) and z(r) have to satisfy the boundary
conditions which are given as

[1(0) = £2(0) = z(0) = 0.

(o) = faleo) =u.  z(o0) = —.  (58)

an

because they have to be single valued when » = 0 and make
the energy density zero when r — oco. Furthermore, we can
conclude that f(r) = f,(r) because the action is invariant
to the exchange of f(r) and f,(r) and they have the
same boundary conditions. Actually, this conclusion can
be numerically confirmed. Hereafter, we write f(r) =
f2(r) = f(r). The equation of motions for f(r) and z(r)
become

f

f”+é—n2<l—aTNz)p—i—/I?(uz—fz)f_O (59)
4 —Z7+2a1v<1 —(%NZ)fz =0. (60)

We examine to see whether the classical solutions
are stable or not by the perturbation method as in the
previous sections. The perturbations from Eq. (57) can be
written as

¢lc~1 (X)
b = : .
$ren-1(x)
f(r)e™ + 6¢, (x)
¢2c,1 (X)
b = 5 ,
$ren-1(x)
F(r)e™ + 8¢y (x)
Z(x) = - ”Zﬁr) 2y + 62(x), (61)
and we also consider
G (x), Gi(x), A, (x) and s(x), (62)

as perturbations. For the same reasons as in the non-SUSY
case, we can ignore ¢ and z coordinate dependence and
the ¢ and z components of the gauge fields; furthermore,
as in the previous section that the variation of the energy
linear density can be divided into three categories in terms
of SU(N — 1) representation of the perturbation modes.
The part which includes Gf;(x) (adjoint representation) has
the same form as in Eq. (44) and it is non-negative. The part

which includes singlets, 6¢; (x), 6¢p,(x), éé(x), and A(x),
is given as

2

/ rdrd6 B (V x §)2+‘ <&i 4 i%\’27>¢1n

+K&i - i%NZ;)r/)zn
+ 22| P1atpan — [ + 2P (|d1* + 2, ]?)

2
+ [o5s?

ay 2 29, 1 a2
R (= P24 5 (9 x A2 (63)
where g, (x) = f(1)e" + o) and () =

f(r)e™™% + 8¢, (x). In the integrand of Eq. (63), the fourth,
sixth and eighth terms must be non-negative and we can set

s=0and VxA= 0, which makes these terms vanishing.
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Thus, Eq. (63) becomes the same energy linear density as
that of U(1) gauge theory with two Higgses, ¢, and ¢,,
which is non-negative because the N-O string with two
Higgses is also a topological defect [23].

Only perturbations of the SU(N — 1) fundamental (and
antifundamental) part of ¢, and ¢,, and GZ can make a
variation of the energy density negative. We call them
the charged perturbations in the following. We will show
that the arguments for a classically stable string solution
become the same as those in the non-SUSY case. Let us
rotate ¢»; and the complex conjugate of ¢, as

¢0(X)> 1 <1 -1 ) <¢1<x>> o
(¢(x) V2L 1 )\ s(x) ) (64
where the ¢,(x) has a zero VEV, (¢,) = 0. If we write the
charged perturbations as

wi = (") = () )

the variation of the Higgs potential V in Eq. (52) and V
in Eq. (53) is given as

oV = [B0® = f2) + g2 ldoc* = 2 = f2) | |-
(66)

The first term in Eq. (66) does not become negative because
f(r) is a real function satisfying O < f(r) < u. The
variation of the gradient energy of ¢,. also must be
non-negative, thus the perturbation of ¢, does not affect
the stability of the embedded string.

If we rewrite the Higgs potential V(¢g, ¢, s) = Vi + Vp
without ¢, we obtain that

/12
V(go = 0.¢.5) = - (19 = 2u?)* + KsP|pP. (67)

If we ignore the second term in Eq. (67) since it does not
affect the stability, we find that it is nothing but the Mexican
hat potential which is the same as the potential in Sec. III
by replacing 4 and v with ’%? and /2u, respectively. Thus,
we can conclude that the classical stability of the gener-
alized Z string in the SUSY SU(N) x U(1)y Higgs model
is determined by m;/mj and mg/m;, where my, m; and
mg are the masses of the neutral part of ¢, the neutral
massive gauge boson and the charged massive gauge
boson, respectively. The region in the parameter space of
(my/mz, mg/myz) where the embedded string is classically
stable is the same as the region in Fig. 1 that we derived
in Sec. IIL

*Note that the Higgs part of the embedded string solutions in
Eq. (57) is shown as ¢p = v/2f(r)e™”.

V. APPLICATIONS

In this section, we will consider the application of the
stability conditions for the generalized Z string. We would
like to clarify which models can produce the stable
generalized Z string. First of all, the stability condition
in Eq. (50) is rewritten to the condition between gauge
couplings, because this form of the condition is easier
to be applied to concrete models than condition (50). It is
given as

11 2(N-1)
> - : 68
glw\/l_m(ﬁ/mz NN (68)

where the U(1)y gauge coupling is normalized so that the
charge of Higgs is taken as 1/2. For example, if we take
my < mz and N — oo, we obtain g; > 3gy. Since this is
almost the minimum lower bound for g;, we can conclude
that very large g, is needed to obtain the stable string. The
stable generalized Z string can be produced when this
condition (68) is satisfied at the phase transition.

Next, we consider situations in which the gauge cou-
plings of SU(N) and U(1)y are related with each other.
Suppose that SU(N) and U(1)y gauge interactions are
unified into SU(N + 1) gauge interaction. The SU(N + 1)
fundamental representation is divided with the SU(N) x
U(1)y representation as

N+1=N. @1y, (69)

12
11

mg/ ms

A 00O N ® ©

FIG. 2. If the Higgs is the SU(N) fundamental representation
included in the completely symmetric k th-rank tensor repre-
sentation of SU(N + 1), the minimum value of k for the
classically stable Z string is shown. Each color in the graph
corresponds to the minimum value of k. The dashed line denotes
my/myz = 0.15, which is the minimum value that we have
checked in our numerical calculation.
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TABLE 1.

The representations of SO(10) which include (1,1,2,¢q) under SU(3) x SU(2), x SU(2)g x U(1)y.

Included representations

Representations of SO(10)

9 2 9
(1, 1.2, im) or (1, 1.2, im)

(L12.455) or 113,455

21 5 21 428064 and c.c.
(1,1,2,im) or (l,l,Z,im>

1200, 8800, 11088, 17280, 25200, 30800, 34992, 38016, 49280, 55440, 102960, 124800,
144144, 164736, 258720, 428064, 465696, and their complex conjugate representations (c.c.)

30800, 196560, 364000, 428064, 465696, 498960, and c.c.

where the indices denote the U(1), charges normalized so
that g; = gy," which results in ¢ = 1/1/2N(N + 1). When
the SU(N) fundamental Higgs has the U(1)y charge ¢,
Eq. (68) can be rewritten as

.. 275 N-1
q° 2 - .
l—my/my; 2N

(70)

This condition (70) gives the lower bound for ¢, which
must be quite large.

Let us consider how to realize such a large ¢. If
we consider a completely symmetric kth-rank tensor
representation field of SU(N + 1), it includes an SU(N)
fundamental representation field with the U(1)y charge

g=(1=(k—=1)N)/y/2N(N +1). Thus Eq. (70) becomes

2(N+1)k_N+l( 55

K> —
N N \l-my/my

- 2> >0. (71

For given N and m /m, the minimum value of  to stabilize
the generalized Z string classically can be obtained by
Eq. (71) as shown in Fig. 2. From Fig. 2, we find the region
in which the generalized Z string can be stabilized if we
take k > 4.

In practice, the renormalization group effects must be
considered. When we take gy = agggi(agrg > 0), where
apc denotes the renormalization group effect, Eq. (70)
becomes

2.75 N-1
my/my; 2N |

2 2
q zaRG 1—

(72)

Since ag is usually larger than 1, |¢| must be larger. However,
in principle, it is possible that ap; < 1 as discussed later.
Thus, the minimum value of |¢| and k for the classically stable
Z string becomes smaller than in the above example.

The above discussion can be extended to the general
unified group G. As seen in the above, a higher rank
representation field of G is important to obtain the SU(N)
fundamental Higgs with large ¢. In the following, we
consider two famous patterns of symmetry breaking from
SO(10) to the SM gauge group and discuss what happens
when we apply the condition for the classically stable
generalized Z string to these scenarios.

*Here we do not consider the renormalization group effects.

As a first example, we consider a case where SO(10) —
SU3)exSUR2), xSUR)gxU(1)y—=SU3)-xSU(2), %
U(l)y. The first symmetry breaking can be caused
by developing a VEV of adjoint Higgs of SO(10). If
the second symmetry breaking is caused by Higgs
(1,1,2,9)(q¢ #0) under SU(3)r x SU(2), x SU(2)xx
U(1)y, Eq. (72) with N = 2 can be applied for the stability
of the generalized Z string as

2.75 1
2> @ |— == 73

I NaRG[l—md)/mz 4]’ 73)
where U(1)y is normalized so that the gauge coupling
constants of SU(3)., SU(2),, SU(2)g, and U(1l)y are
equal at the unification scale. If the Higgs doublet is from

16 of SO(10), ¢ becomes ﬁg’ which is too small to satisfy

Eq. (73) as addressed in Refs. [27,32,33]. Here, we
consider other cases where the Higgs comes from higher
dimensional representations. Such Higgses can have larger

U(1)x charge g = + 22020, (1 =1,2,3, ...) and the higher
dimensional representations of SO(10) mentioned in
Ref. [34] are written in Table 1.

We show the regions in parameter space of
(my/myz, agg) where the generalized Z string becomes
classically stable in the left graph in Fig. 3. The generalized
Z string becomes classically stable in the below region of
each line for each |g|. We can see that the bigger |g| gives
the larger stability region. In Fig. 3, we show the results for
agc > 0.5, because ag; can be smaller’ than 1 although
agg 1s usually expected to be larger than 1 due to the non-
Abelian property of SU(2)g.

Next, we consider another case in which SO(10) —
SUA)exSU2), xU(l)x = SU(3) - x SU((2) x U(1)y.
If the second symmetry breaking is caused by developing a
VEV of Higgs whose representation is (4,1, g)(q # 0) of
SU(4)c x SU(2), x U(1)x, we can consider the general-
ized Z string with N = 4. We normalize the gauge coupling
constants of SU(4). and U(1)y so that they are equal at the
unification scale. Thus we obtain the constraint for the
U(1)y charge g by Eq. (72) with N =4 as

>For example, in the breaking SO(10) — SU(4) x SU(2), x
SUQR)g = SUB)e x SU2), x SU22)g x U(1)y = SU(3)¢ x
SU(2), x U(1)y, the gauge coupling of U(1)y can be almost the
same as SU(3). which is expected to be larger than SU(2).
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FIG. 3. The region in the parameter space of (m,/my,agg) to make the generalized Z string classically stable in the second
symmetry breaking in SO(10) —» SU(3) x SU(2);, x SU(2)x x U(1)x = SU(3) x SU(2), x U(1)y (left) and SO(10) — SU(4). x
SU2), xU(l)y - SU(3)- x SU(2) x U(1)y (right). The left regions of each line are the regions where the generalized Z string
becomes classically stable for each case, respectively. The dashed lines denote m;/m; = 0.15, which is the minimum value that we

have checked in our numerical calculation.

2.75 3
e P i ——— 74
q NaRG|:1_m¢/mZ 8:| ( )

where aps is the ratio of the gauge coupling constant of
SU(4)c to the one of U(l)y when SU(4). x U(1)y are
broken to SU(3) x U(1)y. If the Higgs doublet is from 16
of SO(10), g becomes 41, which is too small to satisfy
Eq. (74). Here, we consider other cases where the Higgs
comes from higher dimensional representations as in the
first case. Such Higgses can have larger U(1), charge
qg= i%, (I=1,2,3,...) and the higher dimensional
representations of SO(10) mentioned in Ref. [34] are
written in Table II. For each set of representations, we
show the regions in parameter space of (mg,/my,agg)
where the generalized Z string is classically stable in the
right graph in Fig. 3.

Unfortunately, if we consider a higher dimensional
representation Higgs to form the generalized Z string as
above, the simple unification of matters in the usual SO(10)
GUT becomes impossible because the definition of U(1),
becomes different from the usual one. For example, ifa VEV

of Higgs whose representation is (1,1, 2, 9/(2\/6)) under

TABLE II.

SU(3)c x SU(2), x SU(2)x x U(1)y, whichis included in
1200 for example, breaks SU(2)z x U(1)y into U(1)y, the
spinor 16 is divided as

1 1 < 5
16: 3,2,_ 1,2,__ 3’17__
p2g)e (23] e (315)
= 4
o(313)earnent-n. 03
where we normalize the U(1), charge so that the hyper-
charge of the doublet quark becomes 1/6. Since this charge

assignment in Eq. (75) is different from the unification of
matters in the usual SO(10) GUT as

1 1 . 2
16— (321) 0 (12-1) @ (31.-2)
® <3,1,%) ®(1,1,1) @ (1,1,0), (76)

other representation fields are needed to include the SM
quark and leptons in this scenario. It is interesting to build
concrete SO(10) GUT models which include the SM quarks

The representations of SO(10) which include (4,1, ¢) under SU(4). x SU(2), x U(1)y.

Included representations

Representations of SO(10)

(4.1,43) or (4,1,43)

560, 3696, 8064, 8800, 15120, 25200, 34992, 38016, 43680, 48048, 70560, 124800, 129360,

144144, 155232, 196560, 205920, 258720, 308880, 332640, 343200, 364000, 388080,
443520, 443520', 465696, 529200, and c.c.

and c.c.

443520’, and c.c.

8064, 43680, 70560, 144144, 155232, 258720, 332640, 388080, 443520, 443520', 529200,

70560, 332640, 443520’, and c.c.
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and leptons with stable generalized Z string, but we think that
it is beyond the scope of this paper.

Finally, we should note that if the origins of SU(N) and
U(1)y are independent of each other, we do not have the
difficulty which appears in the above unified models to
satisfy the condition (68).

VI. DISCUSSION AND SUMMARY

The embedded strings, which can be cosmic strings, are
produced even when the first homotopy group of the
moduli space is trivial unlike the topological string such
as the N-O string. The classical stability of the embedded
string is not guaranteed by the topological features of the
moduli space, and it has been studied for the Z string in
the breaking SU(2), x U(1)y — U(1), both analytically
and numerically since the 1990s [21-25,32], but few for
other symmetry breaking [26].

We have considered the embedded string in the
breaking SU(N) x U(1)xy = SU(N —1) x U(1),, caused
by SU(N) fundamental Higgs with U(1)y charge, which
we call the generalized Z string in this paper. We have
examined the classical stability of the generalized Z string
by perturbation from the Hamiltonian at tree level. We have
found that its stability is determined only by two mass
ratios, m,/my and mg/my. Note that it does not depend
on N explicitly. This means that the region in the para-
meter space of the two mass ratios, where the generalized Z
string becomes stable, can be obtained by that for the Z
string in Ref. [22], which is also given in Fig. | in
this paper.

We have also considered the generalized Z string in the
SUSY SU(N) x U(1)y Higgs model and have shown
that the discussion of the stability of the SUSY generalized
Z strings is exactly the same as in the case of non-
SUSY, although SUSY models include two Higgs fields.
Therefore, the stability is determined by the two mass ratios
and the region in the parameter space of the two mass
ratios, in which the SUSY generalized Z string is classically
stable, is equivalent to that in the non-SUSY case. It is an
extension of the result that we pointed out in Ref. [27].

We have applied the stability condition for the general-
ized Z string into several models. If the origins of SU(N)
and U(1)y are independent of each other, the stable
generalized Z string just requires a much larger mass of
the neutral gauge boson than the charged gauge boson
mass. Furthermore, we have considered the case in which
SU(N) and U(1)y had been unified into a simple gauge
group G, which fixes the normalization of the U(1)y.

We have shown that the U(1)y charge of the Higgs which
breaks SU(N) x U(1)y into SU(N — 1) x U(1),, must be
large to obtain the stable generalized Z string. This requires
that the higher representation field of G includes the Higgs
field. We have applied the condition to several patterns of
symmetry breaking and have discussed how large repre-
sentation Higgs under G is needed for formation of the
generalized Z string.

Our results on the embedded string are based on the
potential in tree level. If we take account of the effective
potential, our results must change. For example, the
stability depends not only on the two mass ratios but also
on N and/or Yukawa couplings if any.

Our ultimate goal is to test the models beyond the SM
through the embedded string. As the first step, we have
clarified what kind of model the embedded string is
formed in, when the SU(N)x U(1)y is broken into
SU(N—-1)x U(1),y. If we can know how to observe
the cosmic embedded string, the goal will be achieved.
For example, if the embedded string has a sufficiently long
lifetime, the gravitational waves from the cosmic embedded
string are expected to be similar to those from the
topological string. Thus, the NANOGrav’s result in 2020
can be interpreted as the gravitational waves not only
from the topological string but also from the embedded
string. If the embedded string easily decays, the cosmo-
logical observables of the embedded string must be differ-
ent from those of the topological string. It must be
interesting to clarify these issues, but these are beyond
the scope of this paper.
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APPENDIX

In this Appendix, we show that only one perturbation
mode determines the stability of the generalized Z string.
This argument is essentially the same as discussed
in Ref. [22].

We have shown that only perturbations of charged fields
may destabilize the generalized Z string in the SU(N) x
U(1)y Higgs model. The variation of the energy linear
density is given as
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+ |ar¢c,k|2

where k is an any integer from 1 to N — 1.
First, we consider the CP invariance of y;. Thus, y; can be divided as y;, = Mo + u_, where /4+ is composed of CP-even
perturbations and p_ is composed of CP-odd ones. In the expansion of ¢.;, G G and G*

¢ck Z ¢m m eimo (A2)

=y B = o imO= fm(r) Am+1 ,im07
G (x) = > |Gulr)(i)me?e, += ()" e™e (A3)

= k— B = % m zmé"’ gim(r) \m+1 im0 3
G0 = Y |GLa(n)(i)meme, = (i) e0g, . (A4)

where G*~ = (é”)*, CP-even modes and CP-odd modes are given as

CP-even modes: Relg,,(r)],Re[G,,(r)],Re[&,, (r)], (A5)
CP-odd modes: Im|g,, (r)],Im[G,,(r)], Im[&,,(r)] (A6)

[
because CP transformation for fields on the (r,0) plane is ~ conclude that the instabilities made by u, and u_
equivalent to taking the complex conjugate of them and  equivalent and it is sufficient to examine only one of them.

coordinate transformation such that 8 — 7 — 6. Hereafter, we consider only ., in other words, we assume
On the other hand, since an U(1),, gauge transformation,  that ¢,,(r), G,,(r) and &,(r) in Eqgs. (A2)—(A4) are real.
which just multiplies +i to the fields ¢, G G*" and G*~ Substituting the expanded form of ¢, G*" and GF

exchanges the CP-even modes and CP-odd modes, we can  into y, and integrating by 6, we obtain that
|

Z 2 In 2 4oy 7
My :2]7,’/7’6”‘ . |:r2< ;n—l - (m— <1 —aNZ>>Gm_1) +— ay r2 m_lém_
1 ! 2 ) 2
+ ()% + —1—7 N1 O0g —sin“bg |z | ¢

+ 29N{f/Gm—1¢m - - me—1¢/m

2
r? -
1 .
_ri < L& o <N — cos’0; — sm26G> Z) fm—lf/’m}

2
cqr{e + ) - . (a7
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The fourth term of the integrand in Eq. (A7) diverges positively in r ~ 0 when m # 0, thus we set m = 0 because it is most
likely to be negative. If we write the m = 0 modes simply as

x(r)=go(r).  Gr)=G_i(r). &) =&.(r), (A8)

the m = O part of y, is given as

po = 21 / rdr e (1-9)6) ﬁ—/Gé=+ 0+ 3 (L cov0, - sinteg ) 2
ay ay T 42 \N-1
+

+ 29N{<f/)( - fx")G - % (1

+ g%\,fz{G2 52} +2A(f* - 1;2);(2]. (A9)

Since there are no terms having a derivative of G(r) in Eq. (A9), we can transform all terms depending on G(r) in the
integrand of u, into a complete square as

2 % 4
(303059 )e + {3 (- el
2
_%PN[GJFL{(l—@z)§’+g—’vz’§+ﬂ(f’x—fx’)}]
r Ay 2

2 / gN / / / 2 A10
_r2PN{< ax )6 7+ 2 (f)(—fx)}, (A10)
where
_arif? A%
Py = <1 ) (A11)

This implies that the perturbation G(r) does not make a negative variation of the energy linear density. Therefore, we
assume that G(r) satisfies

_ 1 g?\/ / 912\1/ gNr2 / /
G——P—N{<1—az)f +aZ§+T(f)(—f)()}’ (A12)

and ignore it.
To summarize the calculations so far, the variation of the energy linear density we consider here is given as

2 0 "2 ay 1 2 2 *
Uo = | rdr ﬁ(f) + () +t12 N_ICOSGG—SlnHG =y

a 1 . g
- 291\/% (1 + 71\’ (N - 1005296 —sin?0; — 1>>§){ +=5 ng & +24(f7 = v*)r

—r2—21,{< >§’ o Ze+ 2 > (f’x—fx’)}z}, (A13)

where we have only two perturbation modes y(r) and &(r). Moreover, since one linear combination of them corresponds to
a gauge transformation, the physical degree of freedom of perturbations becomes only one as follows. By considering an
infinitesimal SU(N) gauge transformation which is calculated as

¢(x) = $(x) + igyA(x)p(x),
G (x) = Gj(x) + D,A%(x), (A14)

where A(x) = A%(x)T* is a real 8u(N) valued function and
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D,A%(x) = 0,A%(x) — igy[G,(x), A(x)]“. (A15)
We set A(x) as
A(x) = s(r) sin @TN=D420=1) _ () cos GTNV=1"+2k=1, (A16)

where s(r) is a smooth function, and consider the infinitesimal SU(N) gauge transformation of the generalized Z-string
solution in Eq. (33). As a result of calculations, we find that it is equivalent to the following perturbations®:

2
A9 = —anf (s, &) = (1 —g—Nz<r>)s<r>,
G(r) = =s'(r). (A17)

Because they are unphysical perturbations, they do not change the form of 1. Hence, perturbations that are proportional to
Eq. (A17) must vanish in the integrand of y, and only the perturbations perpendicular to them which are denoted as

Cu(r) = (1 _ f—zz)m + gnfelr) (AI8)

remain. After some calculations, we obtain that

] 2 , 1\2
Ho = / rdr |:P_ (€;V)2 + { Nf2 l"dr <F’:—1{7‘f> ﬁJ;\’J)C2}CN:|

oSy 1d [(rf'\ ()
/rdrCN[ ar <PNdr> {rz—fﬁ;ﬂ <PNf) +PNf2HCN

= / rdr ENOyC, (A19)
where
d 1 9n Z f2 1 QN
=2 - I _ W A20
= rd’”<rPN< U’NZ>0!N> 2 PNaN( 28 (A20)

Hence, we can find that only the perturbation mode {y(r) may be able to destabilize the generalized Z string.

If Oy has a negative eigenvalue, there must be a perturbation which makes y, negative. Hence, the parameter region such
that O, does not have a negative eigenvalue is the region where the generalized Z-string solutions are stable. If we take the
nondimensionalization in (38), Oy becomes

m[ 1d (R d 28y 1 d [(RF (F')?
Ov="" "% \5 7%) T Ve T or \ 3 T35
4 | RdR\PydR R2F* ' RdR\PyF) ' PyF

[\]ll\)

" 1 O (A21)
where
PNEPN—2%§R2F2+ <1—2Z—§z>2 (A22)
VA zZ
§y=y _Rd <Z <1 2 >> L L (Z)2. (A23)
> 2dR \RPy 22 2 Py mzz

We can see that eigenvalues of Oy depend on F(R), Z(R) and mg/my. Since the shapes of F(R) and Z(R) are
determined by m,/mj, we can conclude that the stability of the generalized Z string depends on m,/mj and mg/m;
as in Sec. IIL

®*Note G(r) in Eq. (A17) satisfies the condition in Eq. (A12).
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