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Since it has been pointed out that physics beyond the Standard Model may be constrained by
gravitational waves from cosmic strings, it has been more important to clarify in what cases cosmic strings
are formed. We study the stability of the embedded string which is formed when SUðNÞ × Uð1ÞX gauge
symmetries are broken to SUðN − 1Þ × Uð1ÞQ, and find that the stability condition can be determined by
two mass ratios of the Higgs and massive gauge bosons, and does not explicitly depend onN. We also show
that the result can be extended in supersymmetric models. In addition, we apply these results to several
models and discuss the important feature of the Higgs to produce the embedded string. Although we find it
difficult to be satisfied in normal realistic grand unified theory models, it is possible if SUðNÞ and Uð1ÞX
have different origins.
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I. INTRODUCTION

It is known that cosmic strings [1,2] are formed as
topological defects after phase transitions in a lot of models
beyond the Standard Model (SM) including grand unified
theories (GUTs) [3–5]. The characteristic signatures of
these strings can be observed through cosmic microwave
background [6], gravitational lensing [7] or gravitational
wave background [8]. Moreover, the observation of the
gravitational wave spectrum reveals the tension of the
cosmic string, which gives the energy scale of the phase
transition [9,10]. In 2020, the NANOGrav experiment
reported their result [11], which is consistent with the
gravitational wave signal from cosmic strings [12–14]. This
signal suggests the presence of a symmetry breaking whose
energy scale is 1014–16 GeV [13,15]. Furthermore, several
gravitational wave observations, for example LISA [16]
and DECIGO [17], are planned within a few decades. Since
the gravitational wave observations will be powerful tools

for detecting past phase transitions [10], it is important to
clarify the conditions for cosmic string formation.
There exists a well-known result for cosmic string

formation. When Uð1Þ gauge symmetry is broken by
developing a vacuum expectation value (VEV) of a com-
plex Higgs, a cosmic string, which is called Nielsen-Olesen
(N-O) string, can be formed [18]. The existence of the N-O
string is related to a topological feature of a moduli space V,
specifically the first homotopy group π1ðVÞ. This N-O
string can be generalized in other spontaneous symmetry
breaking (SSB). If π1ðVÞ is nontrivial for the general
SSB, stable cosmic strings can be produced [1]. Since
the stability of these strings is guaranteed by the topolo-
gical features of the moduli space, these strings are called
topological strings.
The above general argument for cosmic string formation

does not mean that cosmic strings cannot be formed when
π1ðVÞ is trivial. Actually, the string solutions in the
electroweak symmetry breaking, in which π1ðVÞ is trivial,
have been studied. These are called the Z strings (for a
review, see Ref. [19]). The idea of the Z-string solution with
the ends (the electroweak dumbbell) has been proposed in
Ref. [20] by Nambu, and the Z-string solution without the
ends has been considered in Ref. [21] by Vachaspati. The Z
string is not always classically stable and its stability
depends on two parameters, the mixing angle θW and
the ratio of Higgs mass to Z boson mass mH=mZ. The
region in the space of the two parameters in which the Z
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string is classically stable has been calculated numerically
in Ref. [22], and it has been clear that the Z string becomes
unstable with the realistic parameters in the SM. The
stability of the Z string has been studied in the two
Higgs doublet model (2HDM) and has been found to be
also unstable in the realistic parameters in the SM [23–25].
The Z-string solution is constructed by embedding the N-O
string in the Higgs doublet field and the Z gauge boson
field. The strings constructed by embedding the N-O
strings are called embedded strings [26] and the Z string
is one of them.
As mentioned above, the embedded strings have been

well studied in the symmetry breaking, SUð2ÞL×
Uð1ÞY → Uð1ÞQ, but it is not yet clear whether they are
formed or not in other SSB. There are many predicted
models beyond the SM, such as GUTs, and they have
various SSB at a high energy scale. It becomes more
important to clarify which SSB produces embedded strings
or not, because the gravitational waves from the embedded
strings may be detected in future experiments.
In this paper, we consider more general embedded string

which may be produced in the gauge symmetry breaking
SUðNÞ × Uð1ÞX → SUðN − 1Þ ×Uð1ÞQ and examine its
classical stability. Since this is a generalization of the Z
string, we call the embedded string as generalized Z string
in this paper. The method to check the stability is the same
as in Ref. [22], thus we calculate the sign of the energy
variation made by infinitesimal perturbations. As a result,
we find that the classical stability of the generalized Z string
is essentially determined by two mass ratios of Higgs and
massive gauge bosons. To achieve the stability, the mass of
the neutral gauge boson must be at least several times the
mass of the charged gauge boson. We also consider the
generalized Z string in the supersymmetric (SUSY)
SUðNÞ × Uð1ÞX Higgs model and show that its classical
stability is essentially the same as in the non-SUSY case.
For N ¼ 2, it is pointed out in Ref. [27].
Since the breaking SUðNÞ ×Uð1ÞX → SUðN − 1Þ ×

Uð1ÞQ can be seen in many GUT models, we apply the
condition for generalized string formation to several sce-
narios of GUTs in which SUðNÞ ×Uð1ÞX breaking hap-
pens. Unfortunately, we conclude that it is difficult to
satisfy the condition in normal realistic GUT models.
However, if a special GUT which we explain later can
be constructed, the condition may be satisfied. To obtain
several times larger neutral gauge boson mass than the
charged gauge boson mass, the Higgs must have large
Uð1ÞX charge which becomes possible if the Higgs belong
to a higher representation field of the unified gauge group.
We discuss how large a representation field, in which the
Higgs field is included, we need to produce classically
stable generalized Z string in several toy GUT models. If
the embedded strings are discovered by future cosmologi-
cal observations, it may become a strict constraint for
various models beyond the SM.

This paper is organized as follows. In Sec. II, we
review the Z string and how to check its classical stability
because we use the same method for our study. We examine
the classical stability of the generalized Z string in the
SUðNÞ × Uð1ÞX model in Sec. III and consider its SUSY
extension in Sec. IV. As a result of them, we find the
condition for a formation of the generalized Z string. In
Sec. V, we apply the condition to the case in which SUðNÞ
and Uð1ÞX are unified into a simple group.

II. REVIEW OF THE Z STRING

In this section, we will review the Z string and how to
check its stability briefly. The Z string is an embedded
string which can be constructed in a gauge theory with
SUð2ÞL ×Uð1ÞY gauge symmetry broken to Uð1ÞQ by
developing a VEV of a doublet Higgs.
First, let us show the concrete form of the Z-string

solution which has been found by Vachaspati [21]. We
consider SUð2ÞL × Uð1ÞY gauge theory with a doublet
Higgs H which has Uð1ÞY charge 1=2. The Lagrangian is
given as

L ¼ −
1

4
Wa

μνWaμν −
1

4
BμνBμν þ jDμHj2 − λðjHj2 − v2Þ2;

ð1Þ
where Wa

μν (a ¼ 1, 2, 3) and Bμν are field strengths of
SUð2ÞL and Uð1ÞY , respectively. In this model, the gauge
symmetries are broken to Uð1ÞQ when H obtains a non-
vanishing VEV. When we take Wa

μ and Bμ as the gauge
fields of SUð2ÞL and Uð1ÞY , respectively, the gauge field
for unbroken Uð1ÞQ is Aμ ≡ sin θWW3

μ þ cos θWBμ and
those for the broken gauge symmetries are

W1
μ;W2

μ; Zμ ≡ cos θWW3
μ − sin θWBμ; ð2Þ

where g1 and g2 denote the gauge coupling constants of
Uð1ÞY and SUð2ÞL, respectively, and tan θW ≡ g1=g2. The
moduli space of Higgs for this breaking is homeomorphic
to S3, and hence there is no topological string formed
[∵ π1ðS3Þ is trivial]. However, an embedded string can be
formed as shown in the following.
The Z-string solutions are classical solutions of this

system and they are given as

HðxÞ ¼
�

0

fðrÞeinθ
�
; ZθðxÞ ¼ −nzðrÞ;

ZtðxÞ ¼ ZrðxÞ ¼ ZzðxÞ ¼ AμðxÞ ¼ Wā
μðxÞ ¼ 0

ðā ¼ 1; 2Þ; ð3Þ
where we use cylindrical coordinates ðt; r; θ; zÞ and n ∈
Znf0g is a winding number. fðrÞ and zðrÞ are monotonic
increasing functions of rwhich satisfy boundary conditions
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fð0Þ ¼ zð0Þ ¼ 0; fð∞Þ ¼ v; zð∞Þ ¼ 2

α
; ð4Þ

where α≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
. The shapes of them are determined

by the Euler-Lagrange equations which are obtained from
the Lagrangian (1) as

f00ðrÞ þ f0ðrÞ
r

− n2
�
1 −

α

2
zðrÞ

�
2 fðrÞ

r2

þ 2λðv2 − fðrÞ2ÞfðrÞ ¼ 0; ð5Þ

z00ðrÞ − z0ðrÞ
r

þ α

�
1 −

α

2
zðrÞ

�
f2ðrÞ ¼ 0: ð6Þ

These equations can be solved numerically.
The first homotopy group of the moduli space of H is

trivial, thus any topological strings such as N-O strings do
not appear in the breaking, SUð2ÞL ×Uð1ÞY → Uð1ÞQ. In
the notation of Zμ, Aμ andWā

μ, we can deform the covariant
derivative as

DμH ¼
�
∂μ þ i

α

2
ZμTZ − i

g2g1
α

AμTA − ig2Wā
μ
σā

2

�
H

ðā ¼ 1; 2Þ; ð7Þ

where

TZ ≡
�
sin2θW − cos2θW 0

0 1

�
; TA ≡

�
1 0

0 0

�
: ð8Þ

Now we show Uð1Þ which is generated by Tz as Uð1ÞZ. If
we ignore Wā

μ and Aμ, we can regard the symmetry
breaking as Uð1ÞZ → × and find “N-O string” solutions
which are related to this Uð1ÞZ breaking. They are nothing
but the Z-string solutions. Thus, the Z string is constructed
as N-O string for symmetry breaking of the subgroup, and
called an embedded string.
The Z string is a classical solution, but it is not sure

that it is classically stable. Next, we show how to
check the classical stability of the Z string. The method
is very simple. We check whether perturbation modes of the

Z-string solutions make the energy of the system lower or
not. The perturbation modes of the n ¼ 1 Z-string solutions
are given as

HðxÞ ¼
�

hðxÞ
fðrÞeiθ þ δϕðxÞ

�
; Z0ðxÞ ¼ δZ0ðxÞ;

Z⃗ðxÞ ¼ −
zðrÞ
r

e⃗θ þ δZ⃗ðxÞ ð9Þ

and we also consider AμðxÞ and Wā
μðxÞ as perturbations.

We substitute them into the energy of the system and
evaluate the sign of the variation. If the variation becomes
negative, there is a perturbation mode which makes the
Z-string solutions unstable.
Since the t and z dependence of the perturbations and

nonvanishing t and z components of the gauge fields only
increases the energy, we take the perturbations independent
of t and z, and we ignore the t and z components of the
gauge fields. Thus, we can determine the stability using an
energy linear density (string tension) μEW instead of the
energy. μEW is given as

μEW ¼
Z

rdrdθ

�
1

4
ðWa

ī j̄Þ2 þ
1

4
ðBī j̄Þ2 þ jDīHj2

þ λðjHj2 − v2Þ2
�

ðī; j̄ ¼ 1; 2Þ: ð10Þ

Next, we find perturbations which do not give negative
variation and ignore them. Since the Z-string solution
satisfies the classical equations of motion, the leading
terms of the variation of the string tension are quadratic
terms of these perturbation modes δϕðxÞ, δZμðxÞ, hðxÞ,
AμðxÞ and Wā

μðxÞ. Because of conservation of Uð1ÞQ
charge, the quadratic terms of neutral fields δμn and the
quadratic terms of charged fields δμc are separated, i.e.,
δμ ¼ μ − μ0 ∼ δμn þ δμc. The neutral part δμn must be
non-negative because this part takes the same form as the
perturbation from the energy linear density of the N-O
string solution in the Uð1Þ Higgs model. This has been also
checked numerically in Ref. [28]. Thus, it is sufficient to
evaluate the sign of δμc, which is given as

δμc ¼
Z

d2x

�
2

�
ð∇ × W⃗þÞz −

ig22
α

z
r
Wþ

r

��
ð∇ × W⃗−Þz þ

ig22
α

z
r
W−

r

�
þ 2ig22

α

z0

r
ðW⃗þ × W⃗−Þz

− ig2

��
f0W−

r − if
ð1 − α

2
zÞ

r
W−

θ

�
e−iθhþ feiθ

�
Wþ

r ∂rh� þWþ
θ

1

r

�
∂θ − i

α

2
ðcos2θW − sin2θWÞz

�
h�
��

þ ig2

��
f0Wþ

r þ if
ð1 − α

2
zÞ

r
Wþ

θ

�
eiθh� þ fe−iθ

�
W−

r ∂rhþW−
θ

1

r

�
∂θ þ i

α

2
ðcos2θW − sin2θWÞz

�
h

��

þ j∂rhj2 þ
1

r2

				
�
∂θ þ i

α

2
ðcos2θW − sin2θWÞz

�
h

				2 þ g22f
2Wþ

ī W
−
ī þ 2λðf2 − v2Þjhj2

�
; ð11Þ
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where �
W⃗þ

W⃗−

�
≡ 1

2

�
1 −i
1 i

��
W⃗1

W⃗2

�
: ð12Þ

Ignoring other perturbation modes which do not make
the Z-string solutions unstable, it can be seen that there is
only one perturbation mode that could give a negative
contribution. The perturbation mode can be written as a
certain linear combination of hðxÞ and Wā

ī ðxÞ. The calcu-
lations to reduce the number of perturbation modes are
summarized in the Appendix.1 The variation of string
tension is given as

δμζ ¼ 2π

Z
rdr ζ

�
−
1

r
d
dr

�
r
P

d
dr

�

þ
�

2S
r2f2

þ 1

r
d
dr

�
rf0

Pf

�
þ ðf0Þ2

Pf2

��
ζ

≡ 2π

Z
rdr ζOζ; ð13Þ

where

P ¼ g22r
2f2

2
þ
�
1 −

g22
α
z

�
2

; ð14Þ

S ¼ r
d
dr

�
1

rP

�
1 −

g22
α
z

�
z0

α

�
þ f2

2
−
1

P
g22
α2

ðz0Þ2: ð15Þ

In Eq. (13), we have already integrated by θ and ζðrÞ
corresponds to the perturbation mode. If the operator O
has a negative eigenvalue, there must be a perturbation
which makes δμζ negative. Therefore, it is important to
know whether O has negative eigenvalues or not. It has
already been solved by numerical calculation and we also
review it briefly for later discussions. To do the numerical
calculation, r, fðrÞ and zðrÞ are nondimensionalized as

R≡ αv
2
r; FðRÞ≡ fðrÞ

v
; ZðRÞ≡ α

2
zðrÞ: ð16Þ

In this nondimensionalization, the Euler-Lagrange equa-
tions, Eqs. (5) and (6), are rewritten as

F00ðRÞ þ F0ðRÞ
R

− ð1 − ZðRÞÞ2 FðRÞ
R2

þ βð1 − F2ðRÞÞFðRÞ ¼ 0; ð17Þ

Z00ðRÞ − Z0ðRÞ
R

þ 2ð1 − ZðRÞÞF2ðRÞ ¼ 0; ð18Þ

where β≡ 8λ=α2. O is also normalized as

O ¼ αv2

4

�
−
1

R
d
dR

�
R

P̃

d
dR

�

þ
�

2S̃
R2F2

þ 1

R
d
dR

�
RF0

P̃F

�
þ ðF0Þ2

P̃F2

��

≡ αv2

4
Õ; ð19Þ

where

P̃≡ P ¼ 2cos2θWR2F2 þ ð1 − 2cos2θWZÞ2 ð20Þ
S̃≡ S

v2
¼ R

2

d
dR

�
Z0

RP̃
ð1 − 2cos2θWZÞ

�

þ F2

2
−
1

P̃
cos2θWðZ0Þ2: ð21Þ

Since Õ only depends on β and cos2 θW , the condition
for the Z-string solutions to be stable is given as a region
in parameter space ðβ; cos2 θWÞ, which is shown in Fig. 1
of Ref. [22]. Basically, cos2 θW ∼ 0 is required. This is
consistent with the stability of semilocal string in the model
with SUð2Þ global symmetry ×Uð1Þ gauge symmetry (i.e.,
g2 ¼ 0 in Z string) [29].

III. EMBEDDED STRING
IN SUðNÞ × Uð1ÞX → SUðN − 1Þ × Uð1ÞQ

Embedded string solutions can also exist in breaking
other than the electroweak symmetry breaking [26]. In this
section, we consider the embedded string in a breaking
where SUðNÞ ×Uð1ÞX gauge symmetries are broken to
SUðN − 1Þ × Uð1ÞQ. It is a generalization of the Z string.
First, we consider the SUðNÞ × Uð1ÞX gauge theory with

SUðNÞ fundamental Higgs ϕ whose Uð1ÞX charge is
normalized as 1=2. The Lagrangian is given as

L ¼ −
1

4
Ga

μνGaμν −
1

4
FμνFμν þ jDμϕj2 − λðjϕj2 − v2Þ2;

ð22Þ
where Ga

μνða ¼ 1;…; N2 − 1Þ and Fμν are field strengths
of SUðNÞ andUð1ÞX, respectively. The covariant derivative
of ϕ is

Dμϕ ¼
�
∂μ − igNGa

μTa
N − i

g1
2
Fμ

�
ϕ; ð23Þ

where Ga
μ and Fμ are gauge fields of SUðNÞ and Uð1ÞX,

respectively. Ta
N are generator matrices of the fundamental

representation of SUðNÞ which satisfy that tr½TaTb� ¼
δab=2. In this paper, we choose the basis of fundamental
representation such that Ta

N are given as follows:

ðTα
NÞij ¼

� ðTα
N−1Þij ði; j ≤ N − 1Þ

0 ði ¼ N or j ¼ NÞ
ðα ¼ 1;…; ðN − 1Þ2 − 1Þ ð24Þ

1In the Appendix, we calculate for the case of SUðNÞ×
Uð1Þ → SUðN − 1Þ × Uð1Þ. This is just a generalization of the
electroweak breaking and set N ¼ 2 if you want to see the
Z-string case.
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ðTā
NÞij ¼

1

2
δ
i;ā−ðN−1Þ2

2
þ1
δj;N þ 1

2
δi;Nδj;ā−ðN−1Þ2

2
þ1
δj;N

−
i
2
δ
i;ā−ðN−1Þ2þ1

2

δj;N þ i
2
δi;Nδj;ā−ðN−1Þ2þ1

2

δj;N

ðā ¼ ðN − 1Þ2;…; N2 − 2Þ ð25Þ

TN2−1
N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN − 1Þp × diagð1;…; 1; 1 − NÞ: ð26Þ

Approximately, these are also given as

Tα
N ¼

0
BBBBB@

..

.

Tα
N−1 0

..

.

� � � 0 � � � 0

1
CCCCCA; TN2−1

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðN − 1Þp

0
BBBBB@

1 ..
.

. .
.

0

1 ..
.

� � � 0 � � � 1 − N

1
CCCCCA

Tā
N ¼ 1

2

0
BBBBBBBBBBBBBBB@

0

..

.

0

0 1

0

..

.

0

0 � � � 0 1 0 � � � 0 0

1
CCCCCCCCCCCCCCCA

or
1

2

0
BBBBBBBBBBBBBBB@

0

..

.

0

0 −i
0

..

.

0

0 � � � 0 i 0 � � � 0 0

1
CCCCCCCCCCCCCCCA

: ð27Þ

When ϕ obtains the VEV as hϕi ¼ ð0;…; 0; vÞ⊤,
SUðNÞ × Uð1ÞX are broken to SUðN − 1Þ ×Uð1ÞQ.
The massless gauge fields are

Gα
μ; Ãμ ≡ g21

c2Ng
2
N þ g21

GN2−1
μ þ c2Ng

2
N

c2Ng
2
N þ g21

Fμ; ð28Þ

and the massive gauge fields are

Gā
μ; Z̃μ ≡ c2Ng

2
N

c2Ng
2
N þ g21

GN2−1
μ −

g21
c2Ng

2
N þ g21

Fμ; ð29Þ

where cN ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ðN−1Þ

N

q
. To simplify notation, we define

αN ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ c2Ng

2
N

p
and tan θG ≡ g1=ðcNgNÞ. Thus the

relation between ðGN2−1
μ ; FμÞ and ðZ̃μ; ÃμÞ is given as

� Z̃μ

Ãμ

�
¼

�
cos θG − sin θG
sin θG cos θG

��
GN2−1

μ

Fμ

�
: ð30Þ

Particulary when N ¼ 2, this model is nothing but the
SUð2ÞL ×Uð1ÞY Higgs model.
For a later discussion, we rewrite the coupling constants

using the ratio of the masses. After the SSB, there are one
Higgs, one neutral gauge boson and 2ðN − 1Þ charged

gauge bosons as massive modes. Their squared masses are
given as

m2
ϕ ¼ 8λv2; m2

Z̃
¼ α2Nv

2 ¼ ðg21 þ c2Ng
2
NÞv2;

m2
G ¼ g2Nv

2; ð31Þ

respectively. Thus we can rewrite the coupling constants as

gN →
mG

v
; g1 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z̃
− c2Nm

2
G

q
v

; λ →
m2

ϕ

8v2
: ð32Þ

Hereafter, we write the coupling constants as in (32). This
reparametrization will make the discussion about the
stability of the embedded string clear as we will show later.
The moduli space of Higgs is homeomorphic to S2N−1

and no topological string is formed. However, if we
consider N-O string solutions in the breaking of Uð1Þ
which corresponds to the gauge transformation of Z̃μ,
they are nothing but an embedded string solution in
SUðNÞ × Uð1ÞX → SUðN − 1Þ ×Uð1ÞQ. Because Z̃μ does
not have the charge of the Uð1ÞQ, the solutions are
generalized solutions of Z-string solutions. Hence, we call
them “generalized Z-string” solutions in this paper. The
ansatz of them is given as
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ϕðxÞ ¼

0
BBB@

0

..

.

0

fðrÞeinθ

1
CCCA; Z̃θðxÞ ¼ −nzðrÞ; ðn ∈ Znf0gÞ

Z̃tðxÞ ¼ Z̃rðxÞ ¼ Z̃zðxÞ ¼ ÃμðxÞ ¼ Gα
μ ¼ Gā

μ ¼ 0: ð33Þ

For this solution to be solitonic, they have to make the
energy density nonzero when r ∼ 0 and zero when r → ∞.
The energy density of the generalized Z string is given as

E ¼ n2z02

2r2
þ f02 þ n2f2

r2

�
1 −

mZ̃

2v
z

�
2

þ m2
ϕ

8v2
ðv2 − f2Þ2:

ð34Þ

Thus, fðrÞ and zðrÞ satisfy the boundary conditions,

fð0Þ¼ zð0Þ¼ 0; fð∞Þ¼ v; zð∞Þ¼ 2v
mZ̃

: ð35Þ

Because Eq. (33) is classical solutions of this system, we
can find equations which f and z obey by substituting
Eq. (33) into the Euler-Lagrange equation. The equations
are given as

f00ðrÞ þ f0ðrÞ
r

− n2
�
1 −

mZ̃

2v
zðrÞ

�
2 fðrÞ

r2

þ m2
ϕ

4v2
ðv2 − fðrÞ2ÞfðrÞ ¼ 0; ð36Þ

z00ðrÞ − z0ðrÞ
r

þmZ̃

v

�
1 −

mZ̃

2v
zðrÞ

�
f2ðrÞ ¼ 0: ð37Þ

Furthermore, if we nondimensionalize r, fðrÞ and zðrÞ as

R≡mZ̃

2
r; FðRÞ≡ fðrÞ

v
; ZðRÞ≡mZ̃

2v
zðrÞ; ð38Þ

the boundary conditions become

Fð0Þ ¼ Zð0Þ ¼ 0; Fð∞Þ ¼ Zð∞Þ ¼ 1; ð39Þ

and Eqs. (36) and (37) are rewritten as

F00ðRÞ þ F0ðRÞ
R

− ð1 − ZðRÞÞ2 FðRÞ
R2

þm2
ϕ

m2
Z̃

ð1 − F2ðRÞÞFðRÞ ¼ 0 ð40Þ

Z00ðRÞ − Z0ðRÞ
R

þ 2ð1 − ZðRÞÞF2ðRÞ ¼ 0: ð41Þ

Note that these nondimensionalized equations and boun-
dary conditions do not explicitly depend on N. Hence,
we find that the shape of FðRÞ and ZðRÞ depends only
on the ratio of masses of Higgs and the massive neutral
gauge boson.
Next, we explore conditions that the generalized

Z-string solutions are classically stable as in Sec. II. The
perturbation modes around the generalized Z string are
denoted as

δϕðxÞ; δZ̃μðxÞ; ϕcðxÞ; Gα
μðxÞ; Gā

μðxÞ; ÃμðxÞ; ð42Þ

where

ϕðxÞ ¼
�

ϕcðxÞ
fðrÞeinθ þ δϕðxÞ

�
; ⃗Z̃ ¼ −

nzðrÞ
r

e⃗θ þ δ ⃗Z̃ðxÞ:

ð43Þ

Here, Gα
μðxÞ, Gā

μðxÞ and ÃμðxÞ are the components of the
gauge fields. Because the generalized Z-string solutions
are independent of the t and z coordinates, the perturbation
modes that depend on t or z can only make a positive
contribution to the energy. This logic holds for the
perturbation modes of the t and z components of the gauge
fields. Hence, we ignore them and discuss a variation of the
energy linear density along the z axis as in the case of Z
string.
Since the generalized Z-string solutions are static and

classical solutions, variational terms of the first order of the
perturbation modes vanish and terms of the second order
become leading. Thus we evaluate the sign of the quadratic
terms in the energy linear density to check the stability.
The variation of the energy linear density is divided into
three parts by the transformation properties of perturbation
modes under SUðN − 1Þ as μ ¼ μad þ μf þ μs, where μad
includes only the adjoint representation modes Gα

μ, μf
includes the fundamental and antifundamental representa-
tion modes ϕc and Gā

μ, and μs includes the singlet
perturbation modes δϕ, δZ̃μ, Ãμ. This is because the energy
linear density is SUðN − 1Þ invariant. μad, μf, and μs are
explicitly written as follows:

μad ¼
XðN−1Þ2−1

α¼1

Z
d2x

�
1

2
ð∇ × G⃗αÞ2

�
: ð44Þ
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μf ¼
XN−1

k¼1

Z
d2x

�
2

�
ð∇ × G⃗kþÞz −

im2
G

vmZ̃

nz
r
Gkþ

r

��
ð∇ × G⃗k−Þz þ

im2
G

vmZ̃

nz
r
Gk−

r

�
þ 2im2

G

vmZ̃

nz0

r
ðG⃗kþ × G⃗k−Þz

þ j∂rϕc;kj2 þ
1

r2

				
�
∂θ − i

mZ̃

2v

�
1 −

2m2
G

m2
Z̃

�
nz

�
ϕc;k

				2 þm2
G

v2
f2Gkþ

ī Gk−
ī þ m2

ϕ

4v2
ðf2 − v2Þjϕc;kj2

− i
mG

v

��
f0Gk−

r − if
nð1 − mZ̃

2v zÞ
r

Gk−
θ

�
e−inθϕc;k

þ feinθ
�
Gkþ

r ∂rϕ
�
c;k þ

Gkþ
θ

r

�
∂θ þ i

mZ̃

2v

�
1 −

2m2
G

m2
Z̃

�
nz

�
ϕ�
c;k

��

þ i
mG

v

��
f0Gkþ

r þ if
nð1 − mZ̃

2v zÞ
r

Gkþ
θ

�
einθðϕc;kÞ�

þ fe−inθ
�
Gk−

r ∂rϕc;k þ
Gk−

θ

r

�
∂θ − i

mZ̃

2v

�
1 −

2m2
G

m2
Z̃

�
nz

�
ϕc;k

���
; ð45Þ

where we write the components of ϕc and Gā
μ as

ϕc ≡
0
B@

ϕc;1

..

.

ϕc;N−1

1
CA ð46Þ

�
G⃗kþ

G⃗k−

�
≡ 1

2

�
1 −i
1 i

��
G⃗ðN−1Þ2þ2ðk−1Þ

G⃗ðN−1Þ2þ2k−1

�
; ð47Þ

where k ¼ 1;…; N − 1.

μs ¼
Z

d2x

�
1

2
ð∇ × ⃗Z̃Þ2 þ 1

2
ð∇ × ⃗ÃÞ2

þ
				
�
∂ī þ i

mZ̃

2v
Z̃ī

�
ϕn

				2 þ m2
ϕ

8v2
ðjϕnj2 − v2Þ2

�
; ð48Þ

where ϕnðxÞ≡ fðrÞeinθ þ δϕðxÞ and ⃗Z̃ðxÞ ¼ − nzðrÞ
r e⃗θ þ

δ ⃗Z̃ðxÞ.
The integrand in μad is non-negative. In addition, μs is

never smaller than the energy linear density of the
generalized Z string because it takes the same form as
the one of the N-O string solution, which is classically
stable, in the Uð1Þ Higgs model. Therefore we will
ignore them. As can be seen from Eq. (45), μf can be
written as the sum of N − 1 parts, μf ≡P

k μk. All μk
have the same form as the functional of ðϕc;kðxÞ; Gk�

μ ðxÞÞ
and thus it is sufficient to consider any one of them, for
example, μ1.
If we nondimensionalize fðrÞ, zðrÞ and r as in Eq. (38),

μk becomes

μk ¼
Z

RdRdθ

�
2

�
ð∇ × G⃗kþÞz − 2i

m2
G

m2
Z̃

nZ
R

Gkþ
R

��
ð∇ × G⃗k−Þz þ 2i

m2
G

m2
Z̃

nZ
R

Gk−
R

�
þ 4i

m2
G

m2
Z̃

nZ0

R
ðG⃗kþ × G⃗k−Þz

þ j∂Rϕc;kj2 þ
1

R2

				
�
∂θ − i

�
1 −

2m2
G

m2
Z̃

�
nZ

�
ϕc;k

				2 − i
2mG

mZ̃

��
F0Gk−

R − iF
nð1 − ZÞ

R
Gk−

θ

�
e−inθϕc;k

þ Feinθ
�
Gkþ

R ∂Rϕ
�
c;k þ

Gkþ
θ

R

�
∂θ þ i

�
1 −

2m2
G

m2
Z̃

�
nZ

�
ϕ�
c;k

��

þ i
2mG

mZ̃

��
F0Gkþ

R þ iF
nð1 − ZÞ

R
Gkþ

θ

�
einθðϕc;kÞ� þ Fe−inθ

�
Gk−

R ∂Rϕc;k þ
Gk−

θ

R

�
∂θ − i

�
1 −

2m2
G

m2
Z̃

�
nZ

�
ϕc;k

��

þ 4m2
G

m2
Z̃

F2Gkþ
ī Gk−

ī þm2
ϕ

m2
Z̃

ðF2 − 1Þjϕc;kj2
�
: ð49Þ
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Note that μk for any perturbation modes G⃗k�ðxÞ and ϕc;kðxÞ
is determined by FðRÞ, ZðRÞ, and two mass ratios mϕ=mZ̃
and mG=mZ̃. Since FðRÞ and ZðRÞ are determined by
mϕ=mZ̃, the classical stability of the generalized Z string is
determined only by two mass ratios mϕ=mZ̃ and mG=mZ̃. It
is important that it does not explicitly depend on N in
Eq. (49). Since the region for the stability of the string
solution for N ¼ 2 has already been shown in Ref. [22], the
regions for the stability of the generalized Z-string solution
in parameter space of the above two mass ratios can be
understood by replacing these boson masses for N ¼ 2
with those for any N.2

We have shown our numerical result of the stability
analysis for the generalized Z string in Fig. 1 as a
plot in the parameter space of the two mass ratios
ðmϕ=mZ̃;m

2
G=m

2
Z̃
Þ. The numerical methods are explained

below. First, for fixed mϕ=mZ̃, we calculate the generalized
Z-string solution. In more detail, two dimensionless func-
tions FðRÞ and ZðRÞ with the range 10−11 ≤ R ≤ 50 are
obtainedby thegradient flowof the energywhosedensity has
been shown in Eq. (34). Second, we check the stability of the
solutions for fixed two mass ratios mϕ=mZ̃ and m2

G=m
2
Z̃
.

Concretely, we calculate the sign of theminimum eigenvalue
of the operator ÕN in Eq. (A21) in the Appendix by
Mathematica [30]. Finally, for fixed mϕ=mZ̃, we obtain
the maximal value of m2

G=m
2
Z̃
for the stable generalized Z

string. It has been checked that changing themaximumvalue

of R does not change the result. If g2 ¼ 0 (i.e.,m2
G=m

2
Z̃
¼ 0)

andN ¼ 2, the solution is knownas the semilocal string [29],
which is stablewhenmϕ=mZ̃ ≤ 1 as inRef. [31].On the other
hand, our obtained maximal value ofm2

G=m
2
Z̃
for mϕ=mZ̃ ¼

1 is 0.0021. It means that there is at least an error ofOð0.001Þ
in our calculation. We think that our results are qualitatively
consistent with the results in Ref. [22], although the
quantitative consistency is not clear because the errors of
both calculations are not clear.
Since the data points in Fig. 1 are approximately on a

straight line, we can obtain a linear approximate formula for
the regionwhere thegeneralized Z string becomes classically
stable as

mϕ

mZ̃
≲ 1 − 11

m2
G

m2
Z̃

ð50Þ

by using the least squared method. Note that this formula is
not reliable for mϕ

mZ̃
< 0.15, where the numerical calculation

becomes more difficult. We will apply this approximate
formula to several patterns of symmetry breaking later.

IV. EMBEDDED STRING
IN SUSY SUðNÞ × Uð1ÞX MODEL

In this section, we consider the embedded string in the
SUSY SUðNÞ × Uð1ÞX gauge theory with two Higgses
whose VEVs break SUðNÞ ×Uð1ÞX into SUðN − 1Þ×
Uð1ÞQ. It is a SUSY extension of the generalized Z string.
Wewill show that its classical stability also can be determined
by the ratios of themasses of theHiggs and themassive gauge
bosons. We will find that the stability condition for the
solution becomes the same as that in the non-SUSY model,
while the stability region cannot increase but may decrease in
general when the number of Higgses increases. The case of
N ¼ 2 has already been studied in Ref. [27].
We consider a SUSY SUðNÞ ×Uð1ÞX gauge theory in

which a SUðNÞ fundamental representation Higgs Φ1 and
an antifundamental representation Higgs Φ2 are introduced
as chiral superfields. Both Φ1 and Φ2 have Uð1ÞX charges
1=2 and −1=2, respectively. The superpotential of the
Higgses is given as

W ¼ λsSðΦ⊤
2 Φ1 − u2Þ ðλs; u ∈ RÞ; ð51Þ

where S is a gauge singlet chiral superfield. Here, without
loss of generality, the parameters λs and u can be taken real.
We write the scalar component fieldsΦ1,Φ2 and S as ϕ1,

ϕ2, and s, respectively. The F-term contributions are given as

VFðϕ1;ϕ2; sÞ ¼ λ2s jϕ⊤
2 ϕ1 − u2j2 þ λ2s jsj2ðjϕ1j2 þ jϕ2j2Þ;

ð52Þ

and the D-term contribution is also given as

FIG. 1. In this figure, we have shown the region in which the
generalized Z string becomes classically stable, in the parameter
space of m2

G=m
2
Z̃
and mϕ=mZ̃. The region to the left of the red

dots, which are obtained by our numerical calculation, indicates
the region where the generalized Z string is stable. The blue
straight line through ðm2

G=m
2
Z̃
; mϕ=mZ̃Þ ¼ ð0; 1Þ is obtained by

using the least squared method, and the concrete formula is
shown in Eq. (50).

2Note that if we use other parameters instead of these mass
ratios, for example, the mass ratio mϕ=mZ̃ and the mixing sin θG
as in the case of Z string [22], the stability depends explicitly on
N, which can be seen in the Appendix. Therefore, the argument
here becomes more difficult for other parametrizations.
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VDðϕ1;ϕ2Þ ¼
g21
8
ðjϕ1j2− jϕ2j2Þ2þ

g2N
2
ðϕ†

1T
aϕ1−ϕ⊤

2 T
aϕ�

2Þ2

¼
�
g21
8
−
g2N
4N

�
ðjϕ1j2 − jϕ2j2Þ2

þ g2N
4
ðjϕ1j4þjϕ2j4 − 2jϕ⊤

2 ϕ1j2Þ: ð53Þ

In the last step in Eq. (53), we have used a Fierz identity. The
F-flatness conditions are given as

ϕ⊤
2 ϕ1 ¼ u2; sϕ1 ¼ sϕ2 ¼ 0; ð54Þ

and the D-flatness conditions become

jϕ1j2 − jϕ2j2 ¼ ϕ†
1T

aϕ1 − ϕ⊤
2 T

aϕ�
2 ¼ 0: ð55Þ

Therefore, we can find that the VEVs are

ϕ1 ¼

0
BBBBB@

0

..

.

0

u

1
CCCCCA; ϕ2 ¼

0
BBBBB@

0

..

.

0

u

1
CCCCCA; s ¼ 0; ð56Þ

which break SUðNÞ ×Uð1ÞX gauge symmetries into
SUðN − 1Þ × Uð1ÞQ.
The ansatz for the embedded string solutions can be

written as

ϕ1 ¼

0
BBBBB@

0

..

.

0

f1ðrÞeinθ

1
CCCCCA; ϕ2 ¼

0
BBBBB@

0

..

.

0

f2ðrÞe−inθ

1
CCCCCA;

Z̃θðxÞ ¼ −nzðrÞ; ðn ∈ Znf0gÞ
Z̃tðxÞ ¼ Z̃rðxÞ ¼ Z̃zðxÞ ¼ ÃμðxÞ ¼ Gα

μ ¼ Gā
μ ¼ 0; ð57Þ

where f1ðrÞ, f2ðrÞ and zðrÞ are real functions. The winding
numbers of ϕ1 and ϕ2 are the same absolute values and
opposite signs because of the F-flatness conditions when
r → ∞. f1ðrÞ, f2ðrÞ and zðrÞ have to satisfy the boundary
conditions which are given as

f1ð0Þ ¼ f2ð0Þ ¼ zð0Þ ¼ 0;

f1ð∞Þ ¼ f2ð∞Þ ¼ u; zð∞Þ ¼ 2

αN
; ð58Þ

because they have to be single valued when r ¼ 0 and make
the energy density zero when r → ∞. Furthermore, we can
conclude that f1ðrÞ ¼ f2ðrÞ because the action is invariant
to the exchange of f1ðrÞ and f2ðrÞ and they have the
same boundary conditions. Actually, this conclusion can
be numerically confirmed. Hereafter, we write f1ðrÞ ¼
f2ðrÞ≡ fðrÞ. The equation of motions for fðrÞ and zðrÞ
become

f00 þ f0

r
− n2

�
1 −

αN
2
z

�
f
r2

þ λ2sðu2 − f2Þf ¼ 0 ð59Þ

z00 −
z0

r
þ 2αN

�
1 −

αN
2
z

�
f2 ¼ 0: ð60Þ

We examine to see whether the classical solutions
are stable or not by the perturbation method as in the
previous sections. The perturbations from Eq. (57) can be
written as

ϕ1 ¼

0
BBBBB@

ϕ1c;1ðxÞ
..
.

ϕ1c;N−1ðxÞ
fðrÞeinθ þ δϕ1ðxÞ

1
CCCCCA;

ϕ2 ¼

0
BBBBB@

ϕ2c;1ðxÞ
..
.

ϕ2c;N−1ðxÞ
fðrÞe−inθ þ δϕ2ðxÞ

1
CCCCCA;

⃗Z̃ðxÞ ¼ −
nzðrÞ
r

e⃗θ þ δ ⃗Z̃ðxÞ; ð61Þ

and we also consider

Gα
μðxÞ; Gā

μðxÞ; ÃμðxÞ and sðxÞ; ð62Þ

as perturbations. For the same reasons as in the non-SUSY
case, we can ignore t and z coordinate dependence and
the t and z components of the gauge fields; furthermore,
as in the previous section that the variation of the energy
linear density can be divided into three categories in terms
of SUðN − 1Þ representation of the perturbation modes.
The part which includes Gα

μðxÞ (adjoint representation) has
the same form as in Eq. (44) and it is non-negative. The part

which includes singlets, δϕ1ðxÞ, δϕ2ðxÞ, δ ⃗Z̃ðxÞ, and ⃗ÃðxÞ,
is given as

Z
rdrdθ

�
1

2
ð∇ × ⃗Z̃Þ2þ

				
�
∂ī þ i

αN
2
Z̃ī

�
ϕ1n

				2

þ
				
�
∂ī − i

αN
2
Z̃ī

�
ϕ2n

				2 þ j∂īsj2

þ λ2s jϕ1nϕ2n − u2j2 þ λ2s jsj2ðjϕ1nj2 þ jϕ2nj2Þ

þ α2N
8
ðjϕ1nj2 − jϕ2nj22þ

1

2
ð∇ × ⃗ÃÞ2

�
; ð63Þ

where ϕ1nðxÞ≡ fðrÞeinθ þ δϕ1ðxÞ and ϕ2nðxÞ≡
fðrÞe−inθ þ δϕ2ðxÞ. In the integrand of Eq. (63), the fourth,
sixth and eighth terms must be non-negative and we can set

s ¼ 0 and ∇ × ⃗Ã ¼ 0, which makes these terms vanishing.
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Thus, Eq. (63) becomes the same energy linear density as
that of Uð1Þ gauge theory with two Higgses, ϕ1n and ϕ2n
which is non-negative because the N-O string with two
Higgses is also a topological defect [23].
Only perturbations of the SUðN − 1Þ fundamental (and

antifundamental) part of ϕ1 and ϕ2, and Gā
μ can make a

variation of the energy density negative. We call them
the charged perturbations in the following. We will show
that the arguments for a classically stable string solution
become the same as those in the non-SUSY case. Let us
rotate ϕ1 and the complex conjugate of ϕ2 as

�
ϕ0ðxÞ
ϕðxÞ

�
≡ 1ffiffiffi

2
p

�
1 −1
1 1

��
ϕ1ðxÞ
ϕ�
2ðxÞ

�
; ð64Þ

where the ϕ0ðxÞ has a zero VEV, hϕ0i ¼ 0. If we write the
charged perturbations as3

ϕ0ðxÞ ¼
�
ϕ0cðxÞ

0

�
; ϕðxÞ ¼

�
ϕcðxÞffiffiffi
2

p
fðrÞeinθ

�
; ð65Þ

the variation of the Higgs potential VF in Eq. (52) and VD
in Eq. (53) is given as

δV ¼ ½λ2sðu2 − f2Þ þ g2Nf
2�jϕ0cj2 − λ2sðu2 − f2Þjϕcj2:

ð66Þ

The first term in Eq. (66) does not become negative because
fðrÞ is a real function satisfying 0 ≤ fðrÞ < u. The
variation of the gradient energy of ϕ0c also must be
non-negative, thus the perturbation of ϕ0 does not affect
the stability of the embedded string.
If we rewrite the Higgs potential Vðϕ0;ϕ; sÞ≡ VF þ VD

without ϕ0, we obtain that

Vðϕ0 ¼ 0;ϕ; sÞ ¼ λ2s
4
ðjϕj2 − 2u2Þ2 þ λ2s jsj2jϕj2: ð67Þ

If we ignore the second term in Eq. (67) since it does not
affect the stability, we find that it is nothing but the Mexican
hat potential which is the same as the potential in Sec. III

by replacing λ and v with λ2s
4
and

ffiffiffi
2

p
u, respectively. Thus,

we can conclude that the classical stability of the gener-
alized Z string in the SUSY SUðNÞ ×Uð1ÞX Higgs model
is determined by mϕ=mZ̃ and mG=mZ̃, where mϕ, mZ̃ and
mG are the masses of the neutral part of ϕ, the neutral
massive gauge boson and the charged massive gauge
boson, respectively. The region in the parameter space of
ðmϕ=mZ̃;mG=mZ̃Þ where the embedded string is classically
stable is the same as the region in Fig. 1 that we derived
in Sec. III.

V. APPLICATIONS

In this section, we will consider the application of the
stability conditions for the generalized Z string. We would
like to clarify which models can produce the stable
generalized Z string. First of all, the stability condition
in Eq. (50) is rewritten to the condition between gauge
couplings, because this form of the condition is easier
to be applied to concrete models than condition (50). It is
given as

g1 ≳
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11

1 −mϕ=mZ̃
−
2ðN − 1Þ

N

s
gN; ð68Þ

where the Uð1ÞX gauge coupling is normalized so that the
charge of Higgs is taken as 1=2. For example, if we take
mϕ ≪ mZ̃ and N → ∞, we obtain g1 > 3gN . Since this is
almost the minimum lower bound for g1, we can conclude
that very large g1 is needed to obtain the stable string. The
stable generalized Z string can be produced when this
condition (68) is satisfied at the phase transition.
Next, we consider situations in which the gauge cou-

plings of SUðNÞ and Uð1ÞX are related with each other.
Suppose that SUðNÞ and Uð1ÞX gauge interactions are
unified into SUðN þ 1Þ gauge interaction. The SUðN þ 1Þ
fundamental representation is divided with the SUðNÞ ×
Uð1ÞX representation as

Nþ 1 ¼ Nc ⊕ 1−Nc; ð69Þ

FIG. 2. If the Higgs is the SUðNÞ fundamental representation
included in the completely symmetric k th-rank tensor repre-
sentation of SUðN þ 1Þ, the minimum value of k for the
classically stable Z string is shown. Each color in the graph
corresponds to the minimum value of k. The dashed line denotes
mϕ=mZ̃ ¼ 0.15, which is the minimum value that we have
checked in our numerical calculation.

3Note that the Higgs part of the embedded string solutions in
Eq. (57) is shown as ϕ ¼ ffiffiffi

2
p

fðrÞeinθ.
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where the indices denote the Uð1ÞX charges normalized so
that g1 ¼ gN ,

4 which results in c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðN þ 1Þp

. When
the SUðNÞ fundamental Higgs has the Uð1ÞX charge q,
Eq. (68) can be rewritten as

q2 ≳ 2.75
1 −mϕ=mZ̃

−
N − 1

2N
: ð70Þ

This condition (70) gives the lower bound for q, which
must be quite large.
Let us consider how to realize such a large q. If

we consider a completely symmetric kth-rank tensor
representation field of SUðN þ 1Þ, it includes an SUðNÞ
fundamental representation field with the Uð1ÞX charge
q¼ ð1− ðk− 1ÞNÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðNþ 1Þp
. Thus Eq. (70) becomes

k2 −
2ðN þ 1Þ

N
k −

N þ 1

N

�
5.5

1 −mϕ=mZ̃
− 2

�
≳ 0: ð71Þ

For givenN andmϕ=mZ̃, theminimum value of k to stabilize
the generalized Z string classically can be obtained by
Eq. (71) as shown in Fig. 2. From Fig. 2, we find the region
in which the generalized Z string can be stabilized if we
take k ≥ 4.
In practice, the renormalization group effects must be

considered. When we take gN ¼ αRGg1ðαRG > 0Þ, where
αRG denotes the renormalization group effect, Eq. (70)
becomes

q2 ≳ α2RG

�
2.75

1 −mϕ=mZ̃
−
N − 1

2N

�
: ð72Þ

SinceαRG is usually larger than 1, jqjmust be larger.However,
in principle, it is possible that αRG < 1 as discussed later.
Thus, theminimum value of jqj and k for the classically stable
Z string becomes smaller than in the above example.
The above discussion can be extended to the general

unified group G. As seen in the above, a higher rank
representation field of G is important to obtain the SUðNÞ
fundamental Higgs with large q. In the following, we
consider two famous patterns of symmetry breaking from
SOð10Þ to the SM gauge group and discuss what happens
when we apply the condition for the classically stable
generalized Z string to these scenarios.

As a first example, we consider a case where SOð10Þ→
SUð3ÞC×SUð2ÞL×SUð2ÞR×Uð1ÞX→SUð3ÞC×SUð2ÞL×
Uð1ÞY . The first symmetry breaking can be caused
by developing a VEV of adjoint Higgs of SOð10Þ. If
the second symmetry breaking is caused by Higgs
ð1; 1; 2; qÞðq ≠ 0Þ under SUð3ÞC × SUð2ÞL × SUð2ÞR×
Uð1ÞX, Eq. (72) with N ¼ 2 can be applied for the stability
of the generalized Z string as

q2 ≳ α2RG

�
2.75

1 −mϕ=mZ̃
−
1

4

�
; ð73Þ

where Uð1ÞX is normalized so that the gauge coupling
constants of SUð3ÞC, SUð2ÞL, SUð2ÞR, and Uð1ÞX are
equal at the unification scale. If the Higgs doublet is from
16 of SOð10Þ, q becomes 3

2
ffiffi
6

p , which is too small to satisfy

Eq. (73) as addressed in Refs. [27,32,33]. Here, we
consider other cases where the Higgs comes from higher
dimensional representations. Such Higgses can have larger

Uð1ÞX charge q ¼ � 3ð2lþ1Þ
2
ffiffi
6

p , ðl ¼ 1; 2; 3;…Þ and the higher
dimensional representations of SOð10Þ mentioned in
Ref. [34] are written in Table I.
We show the regions in parameter space of

ðmϕ=mZ̃; αRGÞ where the generalized Z string becomes
classically stable in the left graph in Fig. 3. The generalized
Z string becomes classically stable in the below region of
each line for each jqj. We can see that the bigger jqj gives
the larger stability region. In Fig. 3, we show the results for
αRG > 0.5, because αRG can be smaller5 than 1 although
αRG is usually expected to be larger than 1 due to the non-
Abelian property of SUð2ÞR.
Next, we consider another case in which SOð10Þ →

SUð4ÞC × SUð2ÞL ×Uð1ÞX → SUð3ÞC × SUð2Þ ×Uð1ÞY .
If the second symmetry breaking is caused by developing a
VEV of Higgs whose representation is ð4; 1; qÞðq ≠ 0Þ of
SUð4ÞC × SUð2ÞL ×Uð1ÞX, we can consider the general-
ized Z string with N ¼ 4. We normalize the gauge coupling
constants of SUð4ÞC andUð1ÞX so that they are equal at the
unification scale. Thus we obtain the constraint for the
Uð1ÞX charge q by Eq. (72) with N ¼ 4 as

TABLE I. The representations of SOð10Þ which include ð1; 1; 2; qÞ under SUð3ÞC × SUð2ÞL × SUð2ÞR × Uð1ÞX.
Included representations Representations of SOð10Þ

1; 1; 2;� 9

2
ffiffi
6

p
�
or



1; 1; 2̄;� 9

2
ffiffi
6

p
�

1200, 8800, 11088, 17280, 25200, 30800, 34992, 38016, 49280, 55440, 102960, 124800,
144144, 164736, 258720, 428064, 465696, and their complex conjugate representations (c.c.)


1; 1; 2;� 15

2
ffiffi
6

p
�
or 1; 1; 2̄;� 15

2
ffiffi
6

p
�

30800, 196560, 364000, 428064, 465696, 498960, and c.c.

1; 1; 2;� 21

2
ffiffi
6

p
�
or



1; 1; 2̄;� 21

2
ffiffi
6

p
�

428064 and c.c.

4Here we do not consider the renormalization group effects.

5For example, in the breaking SOð10Þ → SUð4ÞC × SUð2ÞL×
SUð2ÞR → SUð3ÞC × SUð2ÞL × SUð2ÞR × Uð1ÞX → SUð3ÞC ×
SUð2ÞL × Uð1ÞY , the gauge coupling of Uð1ÞX can be almost the
same as SUð3ÞC which is expected to be larger than SUð2ÞR.
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q2 ≳ α2RG

�
2.75

1 −mϕ=mZ̃
−
3

8

�
; ð74Þ

where αRG is the ratio of the gauge coupling constant of
SUð4ÞC to the one of Uð1ÞX when SUð4ÞC ×Uð1ÞX are
broken to SUð3ÞC ×Uð1ÞY . If the Higgs doublet is from 16
of SOð10Þ, q becomes � 1

2
, which is too small to satisfy

Eq. (74). Here, we consider other cases where the Higgs
comes from higher dimensional representations as in the
first case. Such Higgses can have larger Uð1ÞX charge
q ¼ � 2lþ1

2
, ðl ¼ 1; 2; 3;…Þ and the higher dimensional

representations of SOð10Þ mentioned in Ref. [34] are
written in Table II. For each set of representations, we
show the regions in parameter space of ðmϕ=mZ̃; αRGÞ
where the generalized Z string is classically stable in the
right graph in Fig. 3.
Unfortunately, if we consider a higher dimensional

representation Higgs to form the generalized Z string as
above, the simple unification of matters in the usual SOð10Þ
GUT becomes impossible because the definition of Uð1ÞY
becomes different from the usual one. For example, if a VEV
of Higgs whose representation is ð1; 1; 2; 9=ð2 ffiffiffi

6
p ÞÞ under

SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞX, which is included in
1200 for example, breaks SUð2ÞR ×Uð1ÞX into Uð1ÞY , the
spinor 16 is divided as

16 ¼
�
3; 2;

1

6

�
⊕

�
1; 2;−

1

2

�
⊕

�
3̄; 1;−

5

3

�

⊕
�
3̄; 1;

4

3

�
⊕ ð1; 1; 2Þ ⊕ ð1; 1;−1Þ; ð75Þ

where we normalize the Uð1ÞY charge so that the hyper-
charge of the doublet quark becomes 1=6. Since this charge
assignment in Eq. (75) is different from the unification of
matters in the usual SOð10Þ GUT as

16 ¼
�
3; 2;

1

6

�
⊕

�
1; 2;−

1

2

�
⊕

�
3̄; 1;−

2

3

�

⊕
�
3̄; 1;

1

3

�
⊕ ð1; 1; 1Þ ⊕ ð1; 1; 0Þ; ð76Þ

other representation fields are needed to include the SM
quark and leptons in this scenario. It is interesting to build
concrete SOð10ÞGUTmodels which include the SM quarks

FIG. 3. The region in the parameter space of ðmϕ=mZ̃; αRGÞ to make the generalized Z string classically stable in the second
symmetry breaking in SOð10Þ→ SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞX → SUð3ÞC × SUð2ÞL ×Uð1ÞY (left) and SOð10Þ → SUð4ÞC ×
SUð2ÞL × Uð1ÞX → SUð3ÞC × SUð2Þ ×Uð1ÞY (right). The left regions of each line are the regions where the generalized Z string
becomes classically stable for each case, respectively. The dashed lines denote mϕ=mZ̃ ¼ 0.15, which is the minimum value that we
have checked in our numerical calculation.

TABLE II. The representations of SOð10Þ which include ð4; 1; qÞ under SUð4ÞC × SUð2ÞL × Uð1ÞX.
Included representations Representations of SOð10Þ
ð4; 1;� 3

2
Þ or ð4̄; 1;� 3

2
Þ 560, 3696, 8064, 8800, 15120, 25200, 34992, 38016, 43680, 48048, 70560, 124800, 129360,

144144, 155232, 196560, 205920, 258720, 308880, 332640, 343200, 364000, 388080,
443520, 4435200, 465696, 529200, and c.c.

ð4; 1;� 5
2
Þ or ð4̄; 1;� 5

2
Þ 8064, 43680, 70560, 144144, 155232, 258720, 332640, 388080, 443520, 4435200, 529200,

and c.c.

ð4; 1;� 7
2
Þ or ð4̄; 1;� 7

2
Þ 70560, 332640, 4435200, and c.c.

ð4; 1;� 9
2
Þ or ð4̄; 1;� 9

2
Þ 4435200, and c.c.
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and leptonswith stable generalized Z string, butwe think that
it is beyond the scope of this paper.
Finally, we should note that if the origins of SUðNÞ and

Uð1ÞX are independent of each other, we do not have the
difficulty which appears in the above unified models to
satisfy the condition (68).

VI. DISCUSSION AND SUMMARY

The embedded strings, which can be cosmic strings, are
produced even when the first homotopy group of the
moduli space is trivial unlike the topological string such
as the N-O string. The classical stability of the embedded
string is not guaranteed by the topological features of the
moduli space, and it has been studied for the Z string in
the breaking SUð2ÞL ×Uð1ÞY → Uð1ÞQ both analytically
and numerically since the 1990s [21–25,32], but few for
other symmetry breaking [26].
We have considered the embedded string in the

breaking SUðNÞ ×Uð1ÞX → SUðN − 1Þ ×Uð1ÞQ caused
by SUðNÞ fundamental Higgs with Uð1ÞX charge, which
we call the generalized Z string in this paper. We have
examined the classical stability of the generalized Z string
by perturbation from the Hamiltonian at tree level. We have
found that its stability is determined only by two mass
ratios, mϕ=mZ̃ and mG=mZ̃. Note that it does not depend
on N explicitly. This means that the region in the para-
meter space of the two mass ratios, where the generalized Z
string becomes stable, can be obtained by that for the Z
string in Ref. [22], which is also given in Fig. 1 in
this paper.
We have also considered the generalized Z string in the

SUSY SUðNÞ ×Uð1ÞX Higgs model and have shown
that the discussion of the stability of the SUSY generalized
Z strings is exactly the same as in the case of non-
SUSY, although SUSY models include two Higgs fields.
Therefore, the stability is determined by the two mass ratios
and the region in the parameter space of the two mass
ratios, in which the SUSY generalized Z string is classically
stable, is equivalent to that in the non-SUSY case. It is an
extension of the result that we pointed out in Ref. [27].
We have applied the stability condition for the general-

ized Z string into several models. If the origins of SUðNÞ
and Uð1ÞX are independent of each other, the stable
generalized Z string just requires a much larger mass of
the neutral gauge boson than the charged gauge boson
mass. Furthermore, we have considered the case in which
SUðNÞ and Uð1ÞX had been unified into a simple gauge
group G, which fixes the normalization of the Uð1ÞX.

We have shown that the Uð1ÞX charge of the Higgs which
breaks SUðNÞ ×Uð1ÞX into SUðN − 1Þ ×Uð1ÞQ must be
large to obtain the stable generalized Z string. This requires
that the higher representation field of G includes the Higgs
field. We have applied the condition to several patterns of
symmetry breaking and have discussed how large repre-
sentation Higgs under G is needed for formation of the
generalized Z string.
Our results on the embedded string are based on the

potential in tree level. If we take account of the effective
potential, our results must change. For example, the
stability depends not only on the two mass ratios but also
on N and/or Yukawa couplings if any.
Our ultimate goal is to test the models beyond the SM

through the embedded string. As the first step, we have
clarified what kind of model the embedded string is
formed in, when the SUðNÞ ×Uð1ÞX is broken into
SUðN − 1Þ × Uð1ÞQ. If we can know how to observe
the cosmic embedded string, the goal will be achieved.
For example, if the embedded string has a sufficiently long
lifetime, the gravitational waves from the cosmic embedded
string are expected to be similar to those from the
topological string. Thus, the NANOGrav’s result in 2020
can be interpreted as the gravitational waves not only
from the topological string but also from the embedded
string. If the embedded string easily decays, the cosmo-
logical observables of the embedded string must be differ-
ent from those of the topological string. It must be
interesting to clarify these issues, but these are beyond
the scope of this paper.
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APPENDIX

In this Appendix, we show that only one perturbation
mode determines the stability of the generalized Z string.
This argument is essentially the same as discussed
in Ref. [22].
We have shown that only perturbations of charged fields

may destabilize the generalized Z string in the SUðNÞ ×
Uð1ÞX Higgs model. The variation of the energy linear
density is given as
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μk ¼
Z

d2x

�
2

�
ð∇ × G⃗kþÞz −

ig2N
αN

z
r
Gkþ

r

��
ð∇ × G⃗k−Þz þ

ig2N
αN

z
r
Gk−

r

�
þ 2ig2N

αN

z0

r
ðG⃗kþ × G⃗k−Þz

þ j∂rϕc;kj2 þ
1

r2

				
�
∂θ þ i

αN
2

�
cos2θG
N − 1

− sin2θG

�
z

�
ϕc;k

				2 − igN

��
f0Gk−

r − if
1 − αN

2
z

r
Gk−

θ

�
e−iθϕc;k

þ feiθ
�
Gkþ

r ∂rϕ
�
c;k þ

Gkþ
θ

r

�
∂θ − i

αN
2

�
cos2θG
N − 1

− sin2θG

�
z

�
ϕ�
c;k

��
þ igN

��
f0Gkþ

r þ if
1 − αN

2
z

r
Gkþ

θ

�
eiθðϕc;kÞ�

þ fe−iθ
�
Gk−

r ∂rϕc;k þ
Gk−

θ

r

�
∂θ þ i

αN
2

�
cos2θG
N − 1

− sin2θG

�
z

�
ϕc;k

��
þ g2Nf

2Gkþ
ī Gk−

ī þ 2λðf2 − v2Þjϕc;kj2
�
; ðA1Þ

where k is an any integer from 1 to N − 1.
First, we consider the CP invariance of μk. Thus, μk can be divided as μk ¼ μþ þ μ−, where μþ is composed of CP-even

perturbations and μ− is composed of CP-odd ones. In the expansion of ϕc;k, G⃗
kþ and G⃗k− as

ϕc;kðxÞ ¼
X∞

m¼−∞
ϕmðrÞðiÞmeimθ ðA2Þ

G⃗kþðxÞ ¼
X∞

m¼−∞

�
GmðrÞðiÞmeimθe⃗r þ

ξmðrÞ
r

ðiÞmþ1eimθe⃗θ

�
ðA3Þ

G⃗k−ðxÞ ¼
X∞

m¼−∞

�
G�

−mðrÞðiÞmeimθe⃗r −
ξ�−mðrÞ

r
ðiÞmþ1eimθe⃗θ

�
; ðA4Þ

where G⃗k− ¼ ðG⃗kþÞ�, CP-even modes and CP-odd modes are given as

CP-even modes∶ Re½ϕmðrÞ�;Re½GmðrÞ�;Re½ξmðrÞ�; ðA5Þ

CP-odd modes∶ Im½ϕmðrÞ�; Im½GmðrÞ�; Im½ξmðrÞ� ðA6Þ

because CP transformation for fields on the ðr; θÞ plane is
equivalent to taking the complex conjugate of them and
coordinate transformation such that θ → π − θ.
On the other hand, since anUð1ÞQ gauge transformation,

which just multiplies �i to the fields ϕc;k, G⃗
kþ and G⃗k−,

exchanges the CP-even modes and CP-odd modes, we can

conclude that the instabilities made by μþ and μ− are
equivalent and it is sufficient to examine only one of them.
Hereafter, we consider only μþ, in other words, we assume
that ϕmðrÞ, GmðrÞ and ξmðrÞ in Eqs. (A2)–(A4) are real.
Substituting the expanded form of ϕc;k, G⃗

kþ and G⃗k−

into μþ and integrating by θ, we obtain that

μþ ¼ 2π

Z
rdr

X
m

�
2

r2

�
ξ0m−1 −

�
m −

�
1 −

g2N
αN

z

��
Gm−1

�
2

þ 4g2N
αN

z0

r2
Gm−1ξm−1

þ ðϕ0
mÞ2 þ

1

r2

�
mþ αN

2

�
1

N − 1
cos2θG − sin2θG

�
z
�

2

ϕ2
m

þ 2gN

�
f0Gm−1ϕm − f

1 − αN
2
z

r2
ξm−1ϕm − fGm−1ϕ

0
m

−
f
r2

�
mþ αN

2

�
1

N − 1
cos2θG − sin2θG

�
z

�
ξm−1ϕm

�

þ g2Nf
2

�
G2

m−1 þ
ξ2m−1
r2

�
þ 2λðf2 − v2Þϕ2

m

�
: ðA7Þ
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The fourth term of the integrand in Eq. (A7) diverges positively in r ∼ 0 when m ≠ 0, thus we set m ¼ 0 because it is most
likely to be negative. If we write the m ¼ 0 modes simply as

χðrÞ≡ ϕ0ðrÞ; GðrÞ≡G−1ðrÞ; ξðrÞ≡ ξ−1ðrÞ; ðA8Þ

the m ¼ 0 part of μþ is given as

μ0 ¼ 2π

Z
rdr

�
2

r2

�
ξ0 þ

�
1 −

g2N
αN

z

�
G

�
2

þ 4g2N
αN

z0

r2
Gξþ ðχ0Þ2 þ α2N

4r2

�
1
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�
2
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f
r2

�
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��
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�

þ g2Nf
2

�
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�
þ 2λðf2 − v2Þχ2

�
: ðA9Þ

Since there are no terms having a derivative of GðrÞ in Eq. (A9), we can transform all terms depending on GðrÞ in the
integrand of μ0 into a complete square as�
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r2

�
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z

�
2
�
G2 þ

�
4
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�
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z
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z
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2
ðf0χ − fχ0Þ
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2

−
2

r2PN
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z
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2
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�
2

; ðA10Þ

where

PN ≡ g2Nr
2f2

2
þ
�
1 −

g2N
αN

z

�
2

: ðA11Þ

This implies that the perturbation GðrÞ does not make a negative variation of the energy linear density. Therefore, we
assume that GðrÞ satisfies

G ¼ −
1

PN

��
1 −

g2N
αN

z

�
ξ0 þ g2N

αN
z0ξþ gNr2

2
ðf0χ − fχ0Þ

�
; ðA12Þ

and ignore it.
To summarize the calculations so far, the variation of the energy linear density we consider here is given as

μ0 ¼
Z

rdr

�
2

r2
ðξ0Þ2 þ ðχ0Þ2 þ α2N

4r2

�
1

N − 1
cos2θG − sin2θG
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− 2gN
f
r2

�
1þ αN
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z
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�
; ðA13Þ

where we have only two perturbation modes χðrÞ and ξðrÞ. Moreover, since one linear combination of them corresponds to
a gauge transformation, the physical degree of freedom of perturbations becomes only one as follows. By considering an
infinitesimal SUðNÞ gauge transformation which is calculated as

ϕðxÞ → ϕðxÞ þ igNΛðxÞϕðxÞ;
Ga

μðxÞ → Ga
μðxÞ þDμΛaðxÞ; ðA14Þ

where ΛðxÞ≡ ΛaðxÞTa is a real suðNÞ valued function and
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DμΛaðxÞ≡ ∂μΛaðxÞ − igN ½GμðxÞ;ΛðxÞ�a: ðA15Þ

We set ΛðxÞ as
ΛðxÞ ¼ sðrÞ sin θTðN−1Þ2þ2ðk−1Þ − sðrÞ cos θTðN−1Þ2þ2k−1; ðA16Þ

where sðrÞ is a smooth function, and consider the infinitesimal SUðNÞ gauge transformation of the generalized Z-string
solution in Eq. (33). As a result of calculations, we find that it is equivalent to the following perturbations6:

χðrÞ ¼ −gNfðrÞsðrÞ; ξðrÞ ¼
�
1 −

g2N
αN

zðrÞ
�
sðrÞ;

GðrÞ ¼ −s0ðrÞ: ðA17Þ
Because they are unphysical perturbations, they do not change the form of μ0. Hence, perturbations that are proportional to
Eq. (A17) must vanish in the integrand of μ0 and only the perturbations perpendicular to them which are denoted as

ζNðrÞ≡
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z

�
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remain. After some calculations, we obtain that
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¼
Z

rdrζN

�
−
1

r
d
dr

�
r
PN

d
dr

�
þ
�
2SN
r2f2

þ 1

r
d
dr

�
rf0

PNf

�
þ ðf0Þ2
PNf2

��
ζN

≡
Z

rdr ζNONζN; ðA19Þ

where

SN ≡ r
d
dr

�
1

rPN

�
1 −

g2N
αN

z

�
z0

αN

�
þ f2

2
−

1

PN

g2N
α2N

ðz0Þ2: ðA20Þ

Hence, we can find that only the perturbation mode ζNðrÞ may be able to destabilize the generalized Z string.
IfON has a negative eigenvalue, there must be a perturbation which makes μ0 negative. Hence, the parameter region such

thatON does not have a negative eigenvalue is the region where the generalized Z-string solutions are stable. If we take the
nondimensionalization in (38), ON becomes

ON ¼ m2
Z̃

4

�
−
1

R
d
dR

�
R

P̃N

d
dR

�
þ
�

2S̃N
R2F2

þ 1

R
d
dR

�
RF0

P̃NF

�
þ ðF0Þ2
P̃NF2

��

≡m2
Z̃

4
ÕN; ðA21Þ

where

P̃N ≡ PN ¼ 2
m2

G

m2
Z̃

R2F2 þ
�
1 − 2

m2
G

m2
Z̃

Z

�
2

ðA22Þ

S̃N ≡ SN
v2

¼ R
2

d
dR

�
Z0

RP̃N

�
1 − 2

m2
G

m2
Z̃

Z

��
þ F2

2
−

1

P̃N

m2
G

m2
Z̃

ðZ0Þ2: ðA23Þ

We can see that eigenvalues of ÕN depend on FðRÞ, ZðRÞ and mG=mZ̃. Since the shapes of FðRÞ and ZðRÞ are
determined by mϕ=mZ̃, we can conclude that the stability of the generalized Z string depends on mϕ=mZ̃ and mG=mZ̃

as in Sec. III.

6Note GðrÞ in Eq. (A17) satisfies the condition in Eq. (A12).
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