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In many-cycle plane waves at intermediate intensities, the nonlinear trident process can be well
approximated by the two sequential steps of nonlinear Compton scattering of a polarized real photon
followed by its transformation into an electron-positron pair via nonlinear Breit-Wheeler pair creation. We
investigate this two-step process in the intermediate intensity regime by employing the locally
monochromatic approximation for each step and numerically evaluating resulting expressions. When
photon polarization is included, it is found to produce an order 10% decrease in the trident rate: the
importance of polarization increases at lower intensities, and decreases at higher intensities. Its importance
persists at higher intensities in a linearly polarized background, but disappears at high intensities in a
circularly polarized background. If the two steps are made to take place in two linearly polarized plane
wave pulses with perpendicular polarizations, the pair yield can be increased by approximately 30%
compared to two plane waves with the same polarization. It is also shown that harmonic structures in the
Compton step can be passed to the pair step if the Compton edge is at an energy of the order of the threshold
for linear Breit-Wheeler.
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I. INTRODUCTION

In sufficiently intense electromagnetic backgrounds,
quantum electrodynamics (QED) becomes nonlinear and
all orders of interaction between charges and the back-
ground must be taken into account. “Nonlinear” Compton
scattering then, can involve many interactions with some
intense and (typically) low-energy background in the
process of a charge emitted a single, high-energy photon.
In the landmark E144 experiment at SLAC in the mid
1990s, a 46.6 GeV electron beam was collided with a
weakly focused laser of moderate intensity parameter
(ξ ≈ 0.3) in a near head-on collision [1–3]. This provided
the first measurement of nonlinear Compton scattering
(NLC) of real high energy photons and their transformation
into electron-positron pairs via the nonlinear Breit-Wheeler
(NBW) process in the multiphoton regime. This sequence
of processes is the “two-step” part of the nonlinear trident
process e� → e� þ eþe−. Recently, the NA63 experiment

at CERN measured the two-step nonlinear trident process
with ξ ∼Oð10Þ, at strong-field parameter χ ≈ 2.4 in the
collision of 200 GeV electrons with germanium single
crystals [4]. It is planned, at the E320 experiment at SLAC
[5] and the LUXE experiment at DESY [6], to measure
this two-step process in the intermediate intensity regime
ξ ∼Oð1Þ. Since the intensity parameter represents the
charge-field coupling, these new experiments will probe
strong-field quantum electrodynamics (QED) effects where
the charge-field interaction is nonperturbative and can
no longer be described using leading-order multiphoton
contributions.
Although exact solutions for the complete nonlinear

trident process have been calculated in a plane wave pulse
[7–13] also including radiation reaction [13] (as well as in a
constant crossed field [14–18], a magnetic field [19], a
Coulomb field [20] and also studied using an adiabatic
approximation [21] and in trains of laser pulses [22]),
they are computationally expensive and a more efficient
and versatile method is required to model experiments.
Therefore, a simulational approach that calculates particle
trajectories classically, and adds first-order QED effects
such as the NLC and NBW processes via Monte-Carlo
methods, is typically favored in designing and analyzing
experiments [3,5,6,23–26]. For second (and higher) order
processes, the correct factorization of the n-step subprocess

*b.king@plymouth.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 096004 (2023)

2470-0010=2023=107(9)=096004(14) 096004-1 Published by the American Physical Society

https://orcid.org/0000-0003-2668-6795
https://orcid.org/0000-0003-4489-8468
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.096004&domain=pdf&date_stamp=2023-05-08
https://doi.org/10.1103/PhysRevD.107.096004
https://doi.org/10.1103/PhysRevD.107.096004
https://doi.org/10.1103/PhysRevD.107.096004
https://doi.org/10.1103/PhysRevD.107.096004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


requires taking into account the polarization of intermediate
particles. For the nonlinear trident process, this means the
polarization of the intermediate photon must be included in
the NLC and NBW steps [15]. The inclusion of photon
polarized strong-field QED processes into simulational
approaches is a relatively recent development [4,27–31]
and is so far achieved using the locally constant field
approximation (LCFA) [32–34]. However, at intermediate
intensity values ξ ∼Oð1Þ, the LCFA for the first-order
processes is known to become inaccurate for typical
experimental parameters [35–39].
In the current paper, we assess the importance of photon

polarization in modeling the two-step nonlinear trident
process. This is achieved by adapting the locally mono-
chromatic approximation (LMA) [40–42], which is being
used to model the interaction-point physics of the LUXE
experiment [6] as well as strong-field QED experiments at
the BELLA PW laser [43] (also appearing in other forms
[44,45] and being used in the modeling of the E144
experiment [3]), to include photon-polarized rates for the
NLC and NBW processes. Photon polarization has been
studied in NLC in monochromatic backgrounds [46] and
in plane-wave pulses [47,48]; photon polarization in NBW
in the LMA and in plane-wave backgrounds has also been
studied [49,50]; the total probability of the photon-
polarized trident process in the LMA in a circularly
polarized background has also recently been studied
[51]; here we gather and present the LMA formulas in a
circularly polarized and linearly polarized background. A
second focus of this paper is to consider the role of
harmonics: whether the harmonic structure of nonlinear
Compton, which is a key experimental observable, e.g. in
LUXE, can be found in the pair spectrum in the nonlinear
trident process. The LMAwas chosen as it has been shown
that first-order subprocesses can be described more accu-
rately at intermediate intensity values, which are planned to
be used in upcoming experiments [41,42]. Although it is
known that there are effects missed by the LMA that are
related to the finite bandwidth of the background pulse,
such as harmonic broadening, low-energy photons pro-
duced in NLC [52] and pairs created by the low intensity
part of the pulse [53], these should be negligible for realistic
set-ups with the parameters we consider here. (For more
background on strong-field QED, we direct the reader to
the reviews [32,34,54,55].)
This paper is organized as follows. In Sec. II the results

are presented for the two-step nonlinear trident process in a
circularly polarized (Sec. II A) and a linearly polarized
(Sec. II B) background. The results are discussed in Sec. III
and conclusions drawn in Sec. IV. Appendix A contains
further details about bandwidth effects in the LMA, and in
Appendix B, the LMA formulas for photon-polarized
nonlinear Compton scattering and photon-polarized non-
linear Breit-Wheeler are given. Finally, in Appendix C,
Table I of common parameters is given.

II. LMA FOR TWO-STEP TRIDENT PROCESS

In this section, we combine the LMA formulas (shown in
Appendix B) for the NLC and NBW processes [40,49] to
calculate the yield of the two-step trident process.
In an intense background, kinematic channels are opened

which are otherwise closed in vacuum. This is due to the
background being able to supply energy and momentum to
a process. Nonlinear QED processes, as they involve
multiple interactions with a background can hence have
different kinematics to their perturbative, linear counter-
parts. Overall, nonlinear trident enabled in a strong field
background is a 1 → 3 process: e� → e� þ eþe−, but we
are also interested in the intermediate steps, which are both
1 → 2 processes: e� → e� þ γ followed by γ → eþe−, and
in the two-step case, we take the photon to be on-shell. In
this paper, we assume the initial particle is an electron
(analogous conclusions follow for a positron). The total
probability will depend on: (i) the incoming particle’s
energy parameter η ¼ ϰ · p=m2, where ϰ is the plane wave
background wave vector, p is the probe electron momen-
tum, m is the mass of the electron; (ii) the intensity
parameter ξ of the background, which will be defined in
the following in terms of the gauge potential, and (iii) the
number of cycles, N of the background. We mainly focus
on the total probability, P ¼ Pðξ; η; NÞ and lightfront
momentum spectrum of the two-step trident process. The
parameter space is large and we will also be studying the
impact of photon polarization on the total probability.
Therefore, in this paper we will restrict our attention to
the most relevant parameter ranges, given below.
The initial particle energy will mainly be chosen to be

16.5 GeV and the laser photon energy to be 1.55 eV
(800 nm wavelength), or its third harmonic 4.65 eV. This
particle energy is chosen as it is the energy of electrons
planned to be used at LUXE, and is similar to the energy of
13 GeV used at E320. To investigate higher harmonics, we
will calculate one example with 80 GeV and 500 GeV
electrons, which are both currently much higher than
planned for in experiments. The investigation into potential
harmonic structure is particularly relevant for our approach
using the LMA, where such effects are captured, in
comparison to approaches based on the LCFA, which do
not capture harmonic effects. For convenience, in this paper
we will use a cosine-squared pulse envelope. We note that
this pulse shape has a much wider bandwidth than can be
transmitted through optical elements in an experiment. As a
consequence, when ξ≲ 1 and initial electron energies are
lower than around 10 GeV, an exact plane-wave calculation
will show bandwidth effects beyond the LMA can become
dominant. However, these effects will not be present in an
experiment. For consistency, we consider initial electron
energies higher than this. (See Appendix A for more details
on this point.)
The intensity parameter will be varied in the “intermediate

regime,” ξ ∼Oð1Þ, which we take to be ξ ¼ 0.5…5. This is
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significant because the LMA is accurate in this regime,
whereas studies of trident based on the LCFA, are limited to
higher values of ξ. This parameter regimewill also be probed
by the E320 and LUXE experiments.
The number of laser cycles N is a less important

parameter in the LMA because it can be factored out
and occurs just as a preintegral over the laser phase.
However, N must be large enough that the LMA is a good
approximation to the full QED probability (it is assumed
that N ≫ 1 for this to be the case). We will consider a
gauge potential a ¼ jejA describing the background as a
plane wave pulse. The potential depends upon the phase
ϕ ¼ ϰ · x in the form:

a⊥ ¼
�
mξfðϕÞðcosϕ; ς sinϕÞ jϕj < Φ=2

0 otherwise;
ð1Þ

where a ¼ ð0; a⊥; 0Þ and ς ∈ f−1; 0; 1g is chosen to switch
between linear (ς ¼ 0) or circular (ς ¼ �1) polarization (we
note that the time-averaged amplitude of the potential is
different for these two choices). In this paper, wewill always
use fðϕÞ ¼ cos2ðπϕ=ΦÞ and ς ¼ 1 for circular polarization,
where Φ ¼ 2πN, and will choose N ¼ 16, which corre-
sponds to a full-width-at-half-maximum duration of 21.3 fs
for a wavelength of λ ¼ 2π=ϰ0 ¼ 800 nm.
Let us denote the lightfront momentum fraction of the

photon sγ ¼ ϰ · l=ϰ · p, where l is momentum of photon
outgoing from NLC-step and ingoing for NBW-step. The
probability for nonlinear Compton scattering of a photon in
polarization state σ is Pσ

γ , and nonlinear Breit-Wheeler pair-
creation from a photon in the same state is Pσ

e. Then the
total probability P for the two-step trident process, can be
written [15]:

P ¼
X
σ

Z
1

0

dsγ

Z
dϕ

d2Pσ
γ ðϕ; sγÞ

dsγdϕ
Pσ
eðϕ; sγÞ; ð2Þ

where Pσ
eðϕ;sγÞ¼−

R
ϕdϕ

0dPσ
eðϕ0;sγÞ=dϕ0 and σ ∈ fk;⊥g

refers to the two polarization eigenstates of the background.
This is depicted in Fig. 1.
For a linearly polarized background, the designation

k (⊥) refers to the photon polarization eigenstate being in
the same (opposite) polarization state as the background

with a fixed direction in lab coordinates. For a circularly
polarized background, these directions rotate with k (⊥)
referring to when a photon collides head-on with the
background having a polarization that rotates in the same
(opposite) direction as the background.1 (The polarized
NBW probability Pσ

e is defined such that the total unpo-

larized probability, Pe ¼ Pk
e þ P⊥

e , i.e., the usual 1=2
polarization averaging factor [15] is included already in
Pσ
e, and analogously for Pσ

γ .) In order to assess the
importance of photon polarization, we will also be inter-
ested in the approximation to this probability that uses
unpolarized probabilities, Pγ and Pe for the nonlinear
Compton and Breit-Wheeler steps respectively. We denote:

P̃ ¼
Z

1

0

dsγ

Z
dϕ

d2Pγðϕ; sγÞ
dsγdϕ

Peðϕ; sγÞ: ð3Þ

(This approximation to the two-step trident probability has
often been used in numerical simulations of trident and
QED cascades [56–63].) Since the total probability, Eq. (2),
involves a sum over polarization eigenstates of the back-
ground, to assess the importance of photon polarization,
one should consider different background polarization.
Here, we study the cases of a circularly and a linearly
polarized plane wave pulse.
Probabilities for sub-processes will be calculated within

the locally monochromatic approximation [40,49]. This is
an adiabatic approximation that neglects derivatives of the
slow timescale of the pulse envelope, but includes the fast
timescale of the carrier frequency exactly. It can be shown
to be equal to the leading order term in an expansion of the
total probability in Φ−1 [51].
The lightfront momentum is conserved in the interaction

with the plane-wave. We use the variable 0 ≤ s ≤ 1 to
denote what fraction a particle’s lightfront momentum is
of the initial electron lightfront momentum. This can be
written:

1 ¼ se0 þ sγ; sγ ¼ sq þ se00 ; ð4Þ

where sγ is the lightfront momentum fraction of the photon,
se0 of the scattered electron, se00 of the created electron and
sq of the positron. In this paper, only sγ and sq will appear
explicitly; the other lightfront momentum fractions will be
integrated out. Then we can write the total probability as an
integral over the double differential probability:

P ¼
Z

1

0

dsq

Z
1

sq

dsγ
d2P

dsqdsγ
; ð5Þ

FIG. 1. The nonlinear trident process is approximated as
factorized by the sequential processes of nonlinear Compton
scattering and nonlinear Breit-Wheeler pair creation involving a
real, polarized photon.

1We note that in terms of helicity states, k (⊥) refer to the
photon have the opposite (same) helicity as the background.
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where the double differential involves two integrals over
the average phase positions of incoming particle in NLC
and NBW:

d2P
dsqdsγ

¼
X
σ

Z
ϕf

ϕi

dϕ
d2Pσ

γ ðϕ; sγÞ
dsγdϕ

Z
ϕf

ϕ
dϕ0 d

2Pσ
eðϕ0; sqÞ
dsqdϕ0

ð6Þ

(where again σ ∈ fk;⊥g). The production of the positron
depends not only on the energy of the NLC photon, but also
on the polarization of the photon. The polarization degree
of the NLC photon is defined as

ΓðsγÞ ¼
dPk

γ=dsγ − dP⊥
γ =dsγ

dPγ=dsγ
; ð7Þ

where dPγ=dsγ ¼ dPk
γ=dsγ þ dP⊥

γ =dsγ. Following the def-
inition in Eq. (7), we define the polarization degree for a

distribution of photons to be Γ where Γ ¼ ðPk
γ − P⊥

γ Þ=Pγ

and Pγ ¼ Pk
γ − P⊥

γ . For photons in the k polarization
eigenstate, Γ ¼ 1; if they are in the ⊥ eigenstate then Γ ¼
−1 and if they are completely unpolarized, Γ ¼ 0.

A. Circularly polarized background

First, we investigate the potential harmonic structure in
the energy spectrum of the outgoing positron. For the
harmonic structure from both NLC and NBW steps to be
discernible: (i) pairs must be produced by photons with
momentum fractions around the first NLC harmonic
sγ;1 ¼ 2η=ð2ηþ 1þ ξ2Þ; and (ii) the photon momentum
fraction must be larger than the threshold for pair creation
from a single laser photon, i.e. linear Breit Wheeler from
the carrier frequency, which requires 2ð1þξ2Þ=ðηsγ;1Þ< 1.
Combining these conditions, one arrives at the requirement
on the initial electron’s energy parameter of η > ð1þ ffiffiffi

2
p Þ

ð1þ ξ2Þ. For ξ ¼ 1, and a standard laser carrier frequency
of 1.55 eV, this corresponds already to 407 GeV electrons
(or an energy parameter of η ¼ 4.83). Therefore to dem-
onstrate harmonic structure in the pair spectrum, we
consider 500 GeV electrons colliding head-on with a 16
cycle, ξ ¼ 1 circularly polarized plane wave with carrier
frequency 1.55 eV (i.e. η ¼ 5.94).
The double differential lightfront spectrum, d2P=dsq=dsγ

for this case is plotted in Fig. 2(a). We see the main features:
(i) the harmonic structures from the NLC spectrum are
observed around the black dashed lines, namely sγ;n ¼
2nη=ð2nηþ 1þ ξ2Þ for n ¼ 1, 2. This is made manifest
via the comparisonwith the red solid linewhichplots theNLC
spectrum of photons before the pair is created; and (ii) the
double differential spectrum rises up around the magenta
dotted line, sq¼f1�½1−2ð1þξ2Þ=ðsγηÞ�1=2g=2, corre-
sponding to the edge of the first NBW harmonic triggered

by the intermediate photon with the momentum fraction
sγ > 2ð1þ ξ2Þ=η. This is illustrated by the location of
harmonic peaks in the NBW positron spectrum [magenta
dot-dashed line plotted in Fig. 2(b)] created by a photon with
energy equal to the edge of the first NLC harmonic range (the
“Compton edge” [64]), with energy ηγ ¼ ηsγ;1. The double
differential spectrum peaks up around the crossing points
between the first NLC-harmonic (black dashed) line and the
first NBW-harmonic (magenta dotted) line in Fig. 2(a). After
integrating over the photon lightfront momentum sγ , the
lower harmonic peak (sq ¼ 0.23) remains in the positron
spectrumof thenonlinear two-step trident process as shown in
Fig. 2(b) (but the upper harmonic peak around sq ¼ 0.62 is
smoothed out.)
In Figs. 3(a) and 3(b), the double differential spectrum

for a lower-energy case is plotted, in which an 80 GeV
electron collides head-on with a 16 cycle circularly
polarized plane wave pulse with carrier frequency at the
third harmonic of the laser at 4.65 eV, corresponding to
an energy parameter of η ¼ 2.85. In this case, harmonic
structure is again present in the NLC photon spectrum
(illustrated by the red solid line), but the energy parameter

FIG. 2. Differential probability for the two-step trident process
in a ξ ¼ 1, N ¼ 16, circularly polarized pulse of frequency
1.55 eV colliding head on with a 500 GeV electron, correspond-
ing to an energy parameter of η ¼ 5.94. (a) Double lightfront
spectrum, d2P=dsq=dsγ is plotted for the polarized intermediate
photon and compared to the NLC spectrum (red overlaid line).
The black dashed lines give the location of the first two
harmonics in the photon spectrum at sγ;n ¼ 2nη=ð2nηþ 1þ
ξ2Þ for n ¼ 1, 2; the magenta dotted line denotes the location of
the first harmonic in the positron spectrum created by the photon
with the energy ηsγ at sq ¼ f1� ½1 − 2ð1þ ξ2Þ=ðsγηÞ�1=2g=2.
(b) Positron energy spectrum for the two-step trident process
dP=dsq and for the NBW process dPe=dsq created by the first-
harmonic photon (with the energy parameter ηγ ¼ ηsγ;1) in the
NLC spectrum.
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is significantly lower, η < 2ð1þ ξ2Þ, so that pairs are only
created via the nonlinear process, i.e. requiring higher
harmonics from the laser. The leading NBW harmonic is

now the second order with smooth harmonic edges, as
shown in the figure by the magenta dotted line plotted at
sq ¼ f1� ½1 − 2ð1þ ξ2Þ=ð2sγηÞ�1=2g=2. Therefore, there
is no noticeable NBW-harmonic structure remaining in the
double differential spectrum of the trident process.
In Fig. 3(c), the single differential spectrum dP=dsγ is

plotted, which shows the spectrum of photons that created
pairs in the two-step trident process. The locations of the
Compton harmonics can be clearly seen. We note that the
major contribution originates from the middle of the sγ-
range. There is clearly a competition between: (i) more
photons being produced at low values of sγ , and (ii) pairs
being created more easily for photons with higher values
of sγ . The optimum region of sγ falls between these two
extremes. For the parameters in Fig. 3, the low-order
harmonics in the photon spectrum coincide with the
optimal region, and therefore clear harmonic structures
from the NLC spectrum can be observed in the double
differential plots in Figs. 3(a) and 3(b). (As we will see later
in Fig. 4, if the initial electron energy is lowered to
16.5 GeV, this optimal region of the photon spectrum
corresponds to higher harmonic order and hence no
harmonic structure is observable.) Despite the appearance
of harmonic structure in the double differential for the
80 GeVelectron case due to NLC, the harmonic structure is
not passed on to the energy spectrum of the produced pair.
This is because: (i) the Compton spectrum is integrated
over, and (ii) pairs can only be created at higher har-
monic order.
Now we consider the effect of photon polarization. For

some parameters, the photon from NLC can be highly
polarized [47,48], and since NBW can be strongly affected
by the polarization of the photon [33,49,50,65], we expect
photon polarization to play a role in the two-step trident
process. The dependence of the differential probability on
the polarization of the photon is plotted in Fig. 3. First, we
see that the harmonic position in the double differential
spectrum is unchanged when the photon is unpolarized in
Fig. 3(b), which is to be expected, since polarization can
only affect energy spectra of the photons in different states,
but not the total photon spectrum and the kinematic ranges.
However, in Fig. 3(c), we see that the height of the
harmonic peak is reduced. This has a straightforward
explanation when compared to the photon polarization
degree at the harmonic peak. At this energy, photons are
more likely to be produced by NLC in the k polarization
state, which is the state least likely to produce pairs via
NBW. This is why, for these parameters, including photon
polarization leads to a suppression of pairs at the leading
Compton harmonic. In general, we can see that photon
polarization can have the affect of enhancing and sup-
pressing different parts of the pair spectrum. For example in
the same plot, we see that at photon energies lower than the
first Compton harmonic, the spectrum of pairs is instead
enhanced. Again, this can be understood by comparing

FIG. 3. Differential probability for the two-step trident process in
a ξ ¼ 1, N ¼ 16, circularly polarized pulse of frequency 4.65 eV
colliding head on with a 80 GeV electron, corresponding to an
energy parameter of η ¼ 2.85. The double lightfront spectra
d2P=dsq=dsγ for the (a) polarized and (b) unpolarized photon
and compared to theNLCspectrum (redoverlaid line). Themagenta
dotted lines denote the location of the leading-NBWharmonic in the
positron spectrum created by the photon with energy ηsγ at
sq ¼f1�½1−2ð1þ ξ2Þ=ð2sγηÞ�1=2g=2. (c) Dependence of the
probability on the lightfront momentum of a polarized (blue dashed
line) and unpolarized (blue sold line) photon: for the polarized case,
the polarization degree is given by the magenta dashed-dotted line.
(d) Energy spectrum of the positron, dP=dsq, for unpolarized
(Γ ¼ 0) and polarized (Γ ¼ Γγ) intermediate photons. The shaded
areas underneath the photon-polarized spectrum denote the con-
tribution from each polarization eigenstate. In (a)–(c), the black
dashed lines give the location of the first two harmonics in the
photon spectrum at sγ ¼ 2nη=ð2nηþ1þ ξ2Þ for n ¼ 1, 2.
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with the polarization degree, where we see that NLC is
more likely to produce photons polarized in the ⊥
polarization state, which is more likely to lead to NBW
pair creation. While photon polarization can influence the

pair spectrum, the total yield is not always affected: in
Fig. 3(d) it can be seen that the integrals of the polarized
and unpolarized spectra are approximately equal. However,
for higher energies, e.g. those in Fig. 2, the yield can be
increased due to photon polarization. In Fig. 2, because the
first Compton harmonic appears at sγ;1 → 1, the effect of
the pair suppression due to the photon polarization in the
regime sγ > sγ;1 can be weaker overall than the enhance-
ment due to the photon polarization in the regime sγ < sγ;1.
In contrast, for lower photon energies, as we will show in
Fig. 4, the total trident yield can be noticeably reduced by
photon polarization as only photons with sγ > sγ;1 can
contribute effectively to the production process.
In Fig. 4, we present the results for a 16.5 GeVelectron.

For this lower energy, harmonic structures in the double
differential lightfront spectrum are no longer observable
because the main contribution is from higher-order har-
monics (around sγ ¼ 0.64, the harmonic order is n ¼ 3).
The contribution from the most visible NLC harmonic at
n ¼ 1, is strongly suppressed. Also in this case, because of
the photon polarization, the yield of pairs is slightly
reduced around the central peak in the double-differential
spectrum and because the contribution from photons at
energies below the first NLC harmonic is so suppressed, the
part of the spectrum where photon polarization enhances
pair production is also suppressed. As a result, in Fig. 4(d),
it can be seen that the integral of the polarized case is now
noticeably smaller than the unpolarized case. The other
notable difference from the high-energy case in Fig. 3 is that
the photons polarized in the k-eigenstate has larger contri-
bution to the total positron yield from the NLC-polarized
photons as shown in Fig. 4(d).
In Fig. 5 the total yield of positrons is calculated as a

function of intensity for various photon polarization
choices. With the increase of the laser intensity, the positron
yield increases significantly. For single-vertex processes, it
is known that as ξ increases, the LMA tends to the LCFA
for a plane-wave background [40]. Since a locally constant
field is the same for different circularly polarized back-
ground helicities, we expect that as ξ increases, the
difference between each photon helicity state should
decrease. This is indeed what we observe in the inset in
Fig. 5. We also observe the converse: as ξ is reduced past
ξ ¼ 1, the relative importance of photon helicity increases.
This is another example of physics that is beyond the
locally constant-field approach. (The relative importance of
the photon polarization with the change of the laser
intensity for the two-step trident process will be discussed
later in Fig. 8.)

B. Linearly polarized background

The LMA for a linearly polarized background is more
computationally expensive to calculate than the LMA
for a circularly polarized background due to the latter
having azimuthal symmetry in the transverse plane. As a

FIG. 4. Differential probability for the two-step trident process
in a ξ ¼ 1, N ¼ 16, circularly polarized pulse of frequency
4.65 eV colliding head on with a 16.5 GeVelectron, correspond-
ing to an energy parameter of η ¼ 0.59. The double lightfront
spectra, d2P=dsq=dsγ are plotted for an (a) polarized and
(b) unpolarized photons and compared to the NLC spectrum
(red overlaid line). (c) The dependence of the probability on the
lightfront momentum of a polarized (blue dashed line) and
unpolarized (blue sold line) photon is plotted: for the polarized
case, the polarization degree is given by the magenta dashed-
dotted line. (d) The energy spectrum of the positron, dP=dsq, for
unpolarized (Γ ¼ 0) and polarized (Γ ¼ Γγ) intermediate photon
is plotted. The shaded areas underneath the polarized spectrum
denote the contributions from each polarization eigenstate. In (a)–
(c), the black dashed lines give the location of the first three
harmonics in the photon spectrum at sγ ¼ 2nη=ð2nηþ 1þ ξ2Þ
for n ¼ 1, 2, 3.
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consequence, one must calculate generalized Bessel func-
tions [32,66,67] in the integrand for a linearly polarized
background, compared to just standard Bessel functions of
the first kind for a circularly polarized background.
Here we perform a similar analysis as in the previous

section but focus on the case of a 16.5 GeV electron
colliding head-on with a ξ ¼ 1, N ¼ 16 linearly polarized
pulse of frequency 4.65 eV, corresponding to an energy
parameter of η ≈ 0.59. In Fig. 6 rich harmonic structures are
observed in the double differential plots, d2P=dsp=dsγ for a
polarized [Fig. 6(a)] and unpolarized [Fig. 6(b)] intermedi-
ate photon. Again, these harmonic structures correspond to
harmonics in the NLC spectrum and cannot be observed in
the energy spectrum of the produced pair. Similar to the
circularly polarized case, the effect of the photon polari-
zation decreases the height of the harmonic peak in the
double differential plots. However, in linearly polarized
laser backgrounds, the photon is always more likely to be
produced in the k polarization state (Γγ > 0), shown by the
magenta line in Fig. 6(c). Therefore, even with very high-
energy electrons, in a linearly polarized background, the
effect of photon polarization is always to reduce the
probability of nonlinear trident in the two-step process.
Similar to the low-energy case in circularly polarized
backgrounds, the photons in the k-polarization eigenstate
has a larger contribution to the total positron yield for the
NLC-polarized photons in Fig. 6(d).
The positron yield is plotted against the background

intensity parameter ξ in Fig. 7. As in the circularly polarized
case, the positron yields for the unpolarized (Γ ¼ 0) and
polarized (Γ ¼ Γγ) photon increase significantly with laser

intensity, and in the photon-polarized case, the difference
between the yield for each photon polarization eigenstate
becomes smaller at higher intensities. However, in the
linearly polarized background, the decrease of this differ-
ence is much slower than that in the circularly polarized
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FIG. 5. Positron yield as a function of laser intensity for the
two-step trident process in a head-on collision of a 16.5 GeV
electron and a 16-cycle circularly polarized plane wave pulse with
carrier frequency ωl ¼ 4.65 eV (corresponding to η ¼ 0.59). The
plot shows the yield for photons that are unpolarized (Γ ¼ 0),
polarized by NLC (Γ ¼ Γγ) or polarized in one of the eigenstates
of the laser background (Γ ¼ �1). The inset shows the ratio of
the yield for photons in a polarization eigenstate to the total yield
for the NLC-polarized photons.

FIG. 6. Differential probability for the two-step trident process
in a ξ ¼ 1, N ¼ 16, linearly polarized pulse of frequency 4.65 eV
colliding head on with a 16.5 GeV electron, corresponding to an
energy parameter of η ¼ 0.59. The double lightfront spectra,
d2P=dsq=dsγ are plotted for an (a) polarized and (b) unpolarized
photon and compared to the NLC spectrum (red overlaid line).
(c) Dependence of the probability on the lightfront momentum of
a polarized (blue dashed line) and unpolarized (blue sold line)
photon: for the polarized case, the polarization degree is given by
the magenta dashed-dotted line. (d) Energy spectra of the
positron, dP=dsq in the two-step trident process for the unpo-
larized (Γ ¼ 0) and polarized (Γ ¼ Γγ) photon. The shaded areas
underneath the polarized spectrum denote the contributions from
each polarization eigenstate. In (a)–(c), the black dashed lines
give the location of the first six harmonics in the photon spectrum
at sγ ¼ 2nη=ð2nηþ 1þ ξ2Þ for integers n ¼ 1 to n ¼ 6.
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background, which implies that the polarization effects in
linearly polarized backgrounds persist at much higher laser
intensities (we will investigate this in the discussion in
Sec. III). As the direction of polarization does not change
with the phase in linearly polarized backgrounds, there is a
well-defined constant field limit. In Fig. 7(b), the differ-
ence between the LMA and LCFA for predicting the
positron yield is plotted. This illustrates the result that
the LMA agrees with the LCFA at large intensity parameter
ξ and at small intensities the LMA predicts higher positron
yield than the LCFA. The threshold intensity for the
agreement between the LMA and LCFA depends on the
frequency of the background field: for the larger laser
frequency, the LMA result matches the LCFA at higher
intensities.

III. DISCUSSION

One of the motivations for the current work was to
investigate harmonic structure in the two-step trident

process. We found that the harmonic structure from the
Compton step is generally washed out in the pair creation
step, because the photon energies most likely to create pairs
correspond to higher Breit-Wheeler harmonics where
harmonic structure is no longer visible. The implications
of this for n-step higher-order processes and cascades, is
that harmonic structure from lower-order processes
becomes washed out in later generations due to the light-
front momentum being reduced. For a pair-creation stage,
this is clear: to see harmonic structure requires the energy
parameter to be of the order of 2ð1þ ξ2Þ; already for ξ ¼ 1
and a triple-harmonic laser frequency of 4.65 eV this
corresponds to around 130 GeV electrons. This washing-
out of harmonic structure must also apply to multiple
nonlinear Compton scattering of hard photons, where the
Compton edge is at energy parameter 2η2=ð2ηþ 1þ ξ2Þ;
as the energy parameter η reduces in each stage of the
cascade, the Compton edge is pushed to lower energies,
which are less likely to seed the next generation of the
cascade. In order to obtain harmonic structures in later
generations, which carry information of the subprocesses in
earlier generations, the energy parameter needs to be very
high. We demonstrated this for the two-step trident process
by considering a 500 GeVelectron in a circularly polarized
background with frequency 1.55 eV.
Another motivation for the current work was to study the

effect due to the intermediate photon being polarized. It is
known from past studies of the trident process [17,27] that
in a constant crossed field the relative importance of photon
polarization is an order 10% effect. Indeed this is what we
found using the LMA when the intensity parameter was
increased toward the ξ ≫ 1 region. However, with the
LMA, we could also study the effect of photon polarization
in the range when ξ≫1, which is the parameter regime of
some topical experiments E320 and LUXE that will
employ electron beams from a linac.
In Fig. 8, we compare the relative importance of the

polarization property of the intermediate photon in the two-
step trident process in differently polarized laser back-
grounds. In a linearly-polarized background, the effect of
photon polarization in the two-step trident for likely future
experimental parameters, is to lower the trident rate by
around 15% in the intermediate intensity regime of
ξ ∼Oð1Þ. This agrees with a similar analysis performed
for a constant crossed field background [27]. In a linearly
polarized background, the direction of polarization does not
change with phase in the lab frame, and therefore there is a
well-defined constant field limit. However, for circular
polarization, there is no well-defined constant-crossed field
limit. Therefore, if the LCFA becomes more accurate as ξ is
increased, the importance of photon polarization in circular
backgrounds must reduce for larger ξ, which we indeed find
in Fig. 8. For ξ≲ 1 in circular backgrounds, the polariza-
tion effect can also reduce the trident rate, in principle even
more than 10%. Here we see the point of using the LMA,

FIG. 7. Positron yield as a function of laser intensity for the
two-step trident process in a head-on collision of a 16.5 GeV
electron and a 16-cycle linearly-polarized plane wave pulse with
carrier frequencyω ¼ 4.65 eV, corresponding to η ¼ 0.59. In plot
(a), the yield for photons that are unpolarized (Γ ¼ 0), polarized by
NLC (Γ ¼ Γγ) or polarized in one of the eigenstates of the laser
background (Γ ¼ �1) is shown; the inset shows the ratio of the
yield for photons produced in a polarization eigenstate to the total
yield for the NLC-polarized photons. In plot (b), the locally
monochromatic approximation is compared to the locally constant
field approximation for different laser carrier frequencies.
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which has been used to calculate the polarization effect in
the intermediate intensity region and in field backgrounds
with the circular polarization. Agreement between the
LMA and LCFA in the high-intensity region is shown in
Fig. 8. Since the applicability of the LCFA also depends on
the energy parameter, we include in the plot the leading and
third harmonic of the background frequency. We see little
difference in the relative importance although the energy
parameter differs by a factor of three. This is perhaps due
to the fact that, when all other parameters are fixed, for
increasing energy parameter, the LCFA for NLC becomes
less accurate, but the LCFA for NBW becomes more
accurate. So while linear polarization is an attractive
background to use for trident experiments since, for fixed
laser pulse energy, it allows for ξ to be increased by a factorffiffiffi
2

p
compared to a circularly polarized background, we see

that there is a slight cost to this increase when one takes into
account the polarization of intermediate photons.
One may ask the question of whether knowledge of the

influence of photon polarization can be used to optimize the
two-step. Since nonlinear Compton most abundantly pro-
duces photons in the polarization state that is least likely to
create pairs, if a single laser pulse is used, there is a natural
compensation against the effects of polarization. However,
if one uses a double laser pulse, with each subpulse being
linearly polarized in a plane orthogonal to the polarization
of the other pulse, and if one chooses the properties of the
pulses such that in the first pulse mainly only nonlinear
Compton scattering takes place, then one can engineer a
situation in which the most abundantly produced polari-
zation in nonlinear Compton scattering is also the polari-
zation most likely to create pairs in the second pulse.
Such an approach can be presumably generalized to n-stage

processes, depending on which subprocess is favored in
each generation.
The total yield of pairs in this two-step scenario can be

calculated as in the previous sections using Eq. (2), but now
where the corresponding phase integrals for NLC and
NBW correspond to an integral over different laser pulses.
In Fig. 9, we compare the positron yield in the double laser
pulses with the parallel and perpendicular linear polariza-
tion. As we can see, by using laser pulses with orthogonal
polarizations, one can improve the positron yield about
32% than that from the two laser pulses with the parallel
polarization.

IV. CONCLUSION

In the two-step trident process, photon polarization can
have an O(10%) effect on the total rate. This conclusion
agrees with previous studies in a constant crossed field and
via the locally constant field approximation, which one
would expect to be a good approximation when ξ ≫ 1.
What is new here is that we have used the locally
monochromatic approximation, which allowed us to ana-
lyze ξ ∼Oð1Þ as well as backgrounds with circularly
polarization. We find that the effect of photon polarization
increases slightly for a linearly polarized background as ξ is
made smaller; for a circularly polarized background,
photon polarization is only Oð10%Þ for ξ≲ 1: as ξ is
increased above this, the effect of photon polarization
disappears. In order to reach this conclusion we have
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FIG. 9. Positron yield in the two-step trident scenario, in which
a beam of 16.5 GeV electrons collide head-on with one plane-
wave pulse to scatter highly polarized γ photons via nonlinear
Compton scattering, which then collide with a second plane-wave
pulse to create pairs via the nonlinear Breit-Wheeler process.
Both the plane waves are 16-cycle linearly polarized pulses with
intensity parameter ξ ¼ 2 and carrier frequency 1.55 eV, which
are polarized in the plane parallel or perpendicular to each other.
The relative difference in the positron yield between the two cases
is shown by the magenta line. Ppara (Pperp) denotes the positron
yield in the case with the parallel (perpendicular) polarization.
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FIG. 8. The dependency on the intensity parameter of the
“relative importance”: ðPΓ¼0 − PΓ¼Γγ Þ=PΓ¼Γγ of the polarization
of the intermediate photon in the two-step trident process is
illustrated for differently polarized laser backgrounds. N ¼ 16,
Ee ¼ 16.5 GeV.
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derived photon-polarized rates for nonlinear Compton
scattering and nonlinear Breit-Wheeler pair creation, in
both a circularly polarized and a linearly polarized back-
ground. Such expressions can be useful in extending
simulation codes based on the locally monochromatic
approximation to include photon-polarized subprocesses.
If the energy of the scattered electrons and positrons

were measured in experiment, the double-differential prob-
ability can in principle show harmonic structure from the
Compton step intersecting with harmonic structure from
nonlinear Breit-Wheeler. However, this can only be
achieved if the centre-of-mass energy for a single back-
ground photon colliding with the electron is significantly
over the threshold for linear Breit-Wheeler. We illustrated
this with an example of 500 GeV electrons and a 1.55 eV
laser frequency. In general we conclude that harmonic
structure will be washed out in later generations in any n-
step process such as a QED cascade.
Finally, one way to exploit the dependence on photon

polarization to enhance the two-step trident process, is to
collide initial electrons with two linearly polarized laser
pulses, which have perpendicular polarizations. This can
lead to an enhancement of around 30% compared to two
pulses with the same polarization.
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APPENDIX A: BANDWIDTH EFFECT AT
LOWER ELECTRON ENERGIES

As mentioned in the Introduction, when the initial
electron energy parameter η is sufficiently low, bandwidth
effects become important in the process of pair creation,
and therefore also in the trident process. If the strong-field
parameter χ ¼ ηξ satisfies χ ≪ 1, pair-creation is strongly
suppressed. This suppression can be partially reduced
due to the contribution from linear Breit-Wheeler using
photons from the upper half of the bandwidth of the pulse
(see e.g. [68,69] where this effect was first reported, for
more details on this point). Essentially, there are two
routes to pair-creation: (i) via nonlinear Breit-Wheeler
with the background photons with energies at the carrier
frequency; and (ii) via linear Breit-Wheeler with high
energy background photons from the upper wings of
the pulse bandwidth (they are suppressed, since they are in
the wings). For χ ∼Oð1Þ, nonlinear Breit-Wheeler is

dominant for the parameters studied in this paper. As χ
is reduced and enters the χ < 1 region, eventually, non-
linear Breit-Wheeler is suppressed exponentially and for
small enough χ, it is suppressed even more than the linear
Breit-Wheeler contribution, which can become dominant.
This is an artefact due to the theoretical description of the
pulse (in reality, such high energy photons from the pulse
would not be transmitted through all the optical elements
of an experiment). This bandwidth effect was also recently
studied in relation to the LMA for Breit-Wheeler [41,53]
and also nonlinear Compton scattering [42,52].
In relation to the trident process, the finite bandwidth of

the pulse mostly affects the nonlinear Breit-Wheeler step.
In Fig. 10, we compare the positron lightfront momentum
spectra dPe=dt acquired from the full QED expression and
the LMA calculations, where we recall that t is the fraction
of the lightfront momentum taken by the positron from
the incident photon. We see that, as the photon energy is
reduced, the LMA becomes increasingly inaccurate. To
interpret the accuracy for predicting the two-step trident
process, one needs to take into account that the photon
energy emitted in the first step that is most likely to create
pairs, is at around half of the electron energy (for the
parameters studied in this paper, it is at around 60% of the
electron energy). Therefore if ξ ¼ 1 and the LMA starts to
become inaccurate for, say 8 GeV photons for the NBW
process, this means that the LMA for the two-step trident
will likely become inaccurate for an initial electron energy
lower than 16 GeV (for the specific parameters used here,
we estimate this to be around 13.3 GeV). This cutoff
energy, below which benchmarking the LMAwith the full

0.5 0.55 0.6 0.65 0.7 0.75 0.8

10-25

10-20

10-15

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
10-16

10-12

10-8

FIG. 10. Benchmark of the LMA positron spectra dPe=dt with
the full QED calculations for the nonlinear Breit-Wheeler pair
production in a circularly polarized laser background for different
photon energies. The laser pulse has the carrier frequency
ωl ¼ 1.55 eV, 16 cycles and an amplitude of (a) ξ ¼ 1; and
(b) ξ ¼ 2. The fraction of the lightfront momentum taken by the
positron from the incident photon is denoted in this section
only, by sq.
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QED expression loses its applicability, depends on χ; if ξ
and η (or ωl) were increased, the cutoff energy would be
lower as can be seen from Fig. 10.
We emphasize that this discrepancy between the full

QED and the LMA approach is a theoretical artefact and
would not be an issue in a real experiment. Even if an
experiment were deliberately made to transmit the high-
frequency components of the laser pulse, the region where
the LMA becomes inaccurate corresponds to very few
pairs being created, and so is practically experimentally
inaccessible.

APPENDIX B: LMA FORMULAS FOR
POLARIZED NONLINEAR COMPTON

AND BREIT-WHEELER

All LMA probabilities, P, can be written as a sum over
partial probabilities, Pn, corresponding to integer harmon-
ics n, with the lower bound of the sum ⌈n�⌉ depending on
the process and experimental parameters. The total prob-
ability is calculated as an integral over the lightfront
spectrum dP=ds ¼ P∞

n¼⌈n�ðsÞ⌉ dPn=ds of one of the out-
going particles.
The photon polarization eigenstates are defined as:

εμ1;2 ¼ ϵμ1;2 −
l · ϵ1;2
k · l

kμ; εμ� ¼ ϵμ� −
l · ϵ�
k · l

kμ; ðB1Þ

where ϵ� ¼ ðϵ1 � iϵ2Þ=
ffiffiffi
2

p
and ϵμj ¼ δμj . where ε

μ
1;2 are the

eigenstates in a linearly polarized plane wave background
and εμ� those in a circularly polarized plane-wave back-
ground. The designation: k (⊥) refers to ε1 (ε2) in a linearly
polarized background and in a circularly polarized back-
ground to photons polarized in the εþ (ε−) state, which are
states with the opposite (same) helicity as the background.
The photon polarization degree of the photons, can be

defined for the entire spectrum, Γ; for a particular photon
energy in the spectrum ΓðsÞ; or for a particular photon
energy at a given instantaneous value of the phase, ϕ as
Γðs;ϕÞ. Explicitly, the definitions are

Γ ¼ Pk −P⊥

Pk þ P⊥ ; ΓðsÞ ¼ dPkðsÞ=ds− dP⊥ðsÞ=ds
dPkðsÞ=dsþ dP⊥ðsÞ=ds ;

Γðs;ϕÞ ¼ d2Pkðs;ϕÞ=dsdϕ− d2P⊥ðs;ϕÞ=dsdϕ
d2Pkðs;ϕÞ=dsdϕþ d2P⊥ðs;ϕÞ=dsdϕ :

ðB2Þ

These relations can be straightforwardly inverted, e.g.
Pk ¼ Pð1þ ΓÞ=2, and P⊥ ¼ Pð1 − ΓÞ=2.
First-order rates are usually defined in terms of the

lightfront momentum fraction s ∈ ½0; 1� of the incoming
particle. For the two-step trident process, in the NBW part,
the lightfront momentum fraction of the positron sq is not
bounded by 1, but instead, sq ∈ ½0; sγ�, as explained in

Eq. (4). Therefore, to keep these definitions as referring to
single-vertex processes, we introduce the lightfront momen-
tum variable for the positron t ¼ sq=sγ , so that t ∈ ½0; 1�.

1. Photon-polarized nonlinear Compton scattering
in a circularly polarized background

The partial lightfront momentum spectrum, dPkð⊥Þ
cp;γ;n=ds,

of photons in the kð⊥Þ-state emitted by an unpolarized
electron with energy parameter η via nonlinear Compton
scattering in a circularly polarized plane wave background
is given by:

dPk
cp;γ;n

ds
¼ α

2η

Z
dϕΘ½n − n�cp;γðϕÞ�

�
ξ2ðϕÞ

�
J02nðzγ;nÞ

þ n2

ðzγ;nÞ2
J2nðzγ;nÞ − J2nðzγ;nÞ

�
hs − J2nðzγ;nÞ

þ 2hs
ξðϕÞ
Pcp;γ;n

�
1þ ξ2ðϕÞ − nη

1 − s
s

�

× J0nðzγ;nÞJnðzγ;nÞ
�
; ðB3aÞ

dP⊥
cp;γ;n

ds
¼ α

2η

Z
dϕΘ½n − n�cp;γðϕÞ�

�
ξ2ðϕÞ

�
J02nðzγ;nÞ

þ n2

ðzγ;nÞ2
J2nðzγ;nÞ − J2nðzγ;nÞ

�
hs − J2nðzγ;nÞ

− 2hs
ξðϕÞ
Pcp;γ;n

�
1þ ξ2ðϕÞ − nη

1 − s
s

�

× J0nðzγ;nÞJnðzγ;nÞ
�
; ðB3bÞ

where ξðϕÞ≡ ξfðϕÞ, and

zγ;n¼
sξðϕÞ
ηð1−sÞPcp;γ;n; Pcp;γ;n¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nη

1−s
s

−1−ξ2ðϕÞ
r

;

ncp�;γðϕÞ¼s½1þξ2ðϕÞ�
2ηð1−sÞ ; hs¼

1þð1−sÞ2
2ð1−sÞ :

The total spectrum of the emitted photon from an unpo-
larized electron in a circularly polarized background can
then be given as

d
ds

Pcp;γ;n ¼
d
ds

Pk
cp;γ;n þ d

ds
P⊥
cp;γ;n:

2. Photon-polarized nonlinear Breit-Wheeler
pair-creation in a circularly polarized

background

The partial lightfront momentum spectrum, dPkð⊥Þ
cp;e;n=dt

of positrons created via the nonlinear Breit-Wheeler proc-
ess in a circularly polarized plane wave background by a
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photon with energy parameter ηl and polarized in the kð⊥Þ-
eigenstate is given by:

dPk
cp;e;n

dt
¼ α

ηl

Z
dφΘ½n − n�cp;eðϕÞ�

�
J2nðze;nÞ þ ξ2ðϕÞ

×

�
n2

ðze;nÞ2
J2nðze;nÞ þ J02nðze;nÞ − J2nðze;nÞ

�
gt

þ 2ξðϕÞ
Pcp;e;n

½nηltð1 − tÞ − 1 − ξ2ðϕÞ�J0nðze;nÞ

× Jnðze;nÞgt
�
; ðB4aÞ

dP⊥
cp;e;n

dt
¼ α

ηl

Z
dφΘ½n − n�cp;eðϕÞ�

�
J2nðze;nÞ þ ξ2ðϕÞ

×

�
n2

ðze;nÞ2
J2nðze;nÞ þ J02nðze;nÞ − J2nðze;nÞ

�
gt

−
2ξðϕÞ
Pcp;e;n

½nηltð1 − tÞ − 1 − ξ2ðϕÞ�J0nðze;nÞ

× Jnðze;nÞgt
�
; ðB4bÞ

where

ze;n¼
ξðϕÞPcp;e;n

ηltð1−tÞ ; Pcp;e;n¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nηltð1−tÞ−1−ξ2ðϕÞ

q
;

n�cp;eðϕÞ¼
1þξ2ðϕÞ
2ηltð1−tÞ; gt¼

t2þð1−tÞ2
2tð1−tÞ :

We can then obtain the positron lightfront spectrum created
by an unpolarized photon in a circularly polarized back-
ground as

d
dt
Pcp;e;n ¼

1

2

�
d
dt
Pk
cp;e;n þ

d
dt
P⊥
cp;e;n

�
:

3. Photon-polarized nonlinear Compton scattering
in a linearly polarized background

The partial lightfront spectrum, dPkð⊥Þ
lp;γ;n=ds, of photons in

the kð⊥Þ-state emitted by an unpolarized electron with
energy parameter η via nonlinear Compton scattering in a
linearly polarized plane wave background is given by:

dPk
lp;γ;n

ds
¼ α

2η

Z
dϕΘ½n−n�lp;γðϕÞ�

Z
π

−π

dθ
2π

fξ2ðϕÞ½Λ2
1;nðαγ;βγÞ

−Λ0;nðαγ;βγÞΛ2;nðαγ;βγÞ�hs−Λ2
0;nðαγ;βγÞ

þ ½Λ0;nðαγ;βγÞP lp;γ;n cosθ−ξðϕÞΛ1;nðαγ;βγÞ�2
− ½Λ0;nðαγ;βγÞP lp;γ;n sinθ�2g; ðB5aÞ

dP⊥
lp;γ;n

ds
¼ α

2η

Z
dϕΘ½n−n�lp;γðϕÞ�

Z
π

−π

dθ
2π

fξ2ðϕÞ½Λ2
1;nðαγ;βγÞ

−Λ0;nðαγ;βγÞΛ2;nðαγ;βγÞ�hs−Λ2
0;nðαγ;βγÞ

− ½Λ0;nðαγ;βγÞP lp;γ;n cosθ−ξðϕÞΛ1;nðαγ;βγÞ�2
þ½Λ0;nðαγ;βγÞP lp;γ;n sinθ�2g; ðB5bÞ

where

P lp;γ;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nη

1 − s
s

− 1 −
1

2
ξ2ðϕÞ

r
;

n�lp;γðϕÞ ¼
s½1þ ξ2ðϕÞ=2�

2ηð1 − sÞ ; αγ ¼ P lp;γ;n
sξðϕÞ cos θ
ηð1 − sÞ ;

βγ ¼
sξ2ðϕÞ

8ηð1 − sÞ :

and

Λ0;nðx; yÞ ¼
X∞
k¼−∞

Jnþ2kðxÞJkðyÞ; ðB6aÞ

Λ1;nðx; yÞ ¼
1

x

X∞
k¼−∞

ðnþ 2kÞJnþ2kðxÞJkðyÞ ðB6bÞ

Λ2;nðx; yÞ ¼
1

2

X∞
k¼−∞

Jnþ2kðxÞ
�
k
y
þ 1

�
JkðyÞ; ðB6cÞ

The total spectrum of the emitted photon from an
unpolarized electron can then be given as

dPlp;γ;n

ds
¼ dPk

lp;γ;n

ds
þ dP⊥

lp;γ;n

ds
:

4. Photon-polarized nonlinear Breit-Wheeler
pair-creation in a linearly polarized

background

The partial lightfront momentum spectrum, dPkð⊥Þ
lp;e;n=dt of

positrons created via the nonlinear Breit-Wheeler process
in a linearly polarized plane wave background by a photon
with energy parameter ηl and polarized in the kð⊥Þ-state is
given by:

dPk
lp;e;n

dt
¼ α

ηl

Z
dϕΘ½n−n�lp;eðϕÞ�

Z
π

−π

dθ
2π

fξ2ðϕÞ½Λ2
1;nðαe;βeÞ

−Λ0;nðαe;βeÞΛ2;nðαe;βeÞ�gtþΛ2
0;nðαe;βeÞ

þ ½Λ0;nðαe;βeÞP lp;e;n sinθ�2− ½Λ0;nðαe;βeÞ
×P lp;e;n cosθ−ξðϕÞΛ1;nðαe;βeÞ�2g; ðB7aÞ

dP⊥
lp;e;n

dt
¼ α

ηl

Z
dϕΘ½n−n�lp;eðϕÞ�

Z
π

−π

dθ
2π

fξ2ðϕÞ½Λ2
1;nðαe;βeÞ

−Λ0;nðαe;βeÞΛ2;nðαe;βeÞ�gtþΛ2
0;nðαe;βeÞ

− ½Λ0;nðαe;βeÞP lp;e;n sinθ�2þ½Λ0;nðαe;βeÞ
×P lp;e;n cosθ−ξðϕÞΛ1;nðαe;βeÞ�2g; ðB7bÞ
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where the expressions of Λj;n for j ∈ f0; 1; 2g are the same
as in Eq. (B6), and

P lp;e;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nηltð1 − tÞ − 1 −

1

2
ξ2ðϕÞ

r
;

n�lp;eðϕÞ ¼
1þ ξ2ðϕÞ=2
2ηltð1 − tÞ ; αe ¼ P lp;e;n

ξðϕÞ cos θ
ηlð1 − tÞt ;

βe ¼
ξ2ðϕÞ

8tηlð1 − tÞ :

The partial lightfront momentum spectrum of the positrons
created by an unpolarized photon in a linearly polarized
plane wave background is then given by

dPlp;e;n

dt
¼ 1

2

�
dPk

lp;e;n

dt
þ dP⊥

lp;e;n

dt

�
:

APPENDIX C: TABLE OF COMMON
PARAMETERS

Below is a table of common parameters used in the
manuscript.
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