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As a follow up of our work on the electromagnetic four-current, we study for the first time the relativistic
polarization and magnetization spatial distributions inside a spin-1

2
target within the quantum phase-space

approach. While the polarization-magnetization tensor is usually defined in terms of the Gordon
decomposition of the electromagnetic four-current, a Breit frame analysis reveals that a physically simpler
and more natural picture of the system arises when the polarization-magnetization tensor is instead defined
in terms of a Sachs decomposition. Relativistic polarization and magnetization distributions for a moving
target are compared with their light-front counterparts. In particular, we show that the genuine light-front
magnetization distributions are defined in terms of Fourier transforms of the Sachs magnetic form factor,
rather than in terms of the Pauli form factor as suggested earlier in the literature. We finally illustrate our
results in the case of a nucleon using the electromagnetic form factors extracted from experimental data.
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I. INTRODUCTION

Nucleons (i.e. protons and neutrons) are by far the most
abundant bound-state systems in nature and are key for
studying quantum chromodynamics (QCD), the fundamen-
tal theory of strong interactions. A central goal of modern
nuclear physics is to explain how nucleons emerge in QCD
from first principles [1,2]. Due to the complicated non-
perturbative dynamics of their quark and gluon degrees of
freedom, nucleons inherit particularly rich and intricate
internal structures.
Electromagnetic form factors (FFs) encode fundamental

information on the internal electromagnetic structure of
hadrons [3–8]. Nucleon electromagnetic FFs in particular
have been extensively measured over the past decades
with very high precision in various scattering experiments
[9–37]. On the theory side, ab initio calculations within
the lattice QCD approach have also been significantly

improved in the last few years [38–54]. For recent reviews
on electromagnetic FFs, see Refs. [1,55–62].
Spatial distributions of charge and magnetization can be

defined in the Breit frame (BF) in terms of 3D Fourier
transforms of these electromagnetic FFs [63,64], but they
cannot be considered as probabilistic densities due to
relativistic recoil corrections [6,11,65–68]. Spatial distri-
butions with probabilistic interpretation can however be
defined within the light-front (LF) formalism [69–77], at
the cost of losing one spatial dimension and exhibiting
distortions induced by the LF perspective.
Understanding better the relation between 3D BF and 2D

LF distributions has been the focus of many recent works,
see e.g. Refs. [78–89]. The quantum phase-space formal-
ism distinguishes itself by the fact that the requirement of a
strict probabilistic interpretation is relaxed and replaced by
a milder quasiprobabilistic picture [90–92]. This approach
is quite appealing since it allows one to define in a
consistent way relativistic spatial distributions inside a
target with arbitrary spin and arbitrary average momentum
[93–101]. In particular, when the average momentum
vanishes one recovers the BF picture, while in the limit
of infinite average momentum one recovers essentially the
LF picture.
In this work, we use the quantum phase-space formal-

ism to study for the first time the relativistic polarization
and magnetization spatial distributions inside a spin-1
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target. The paper is organized as follows. In Sec. II, we
first briefly review the description of elastic electron-
nucleon scattering in terms of electromagnetic FFs, and
then discuss the concept of polarization-magnetization
tensor. In Sec. III, we present in detail the quantum phase-
space formalism and compare the phase-space picture
with the light-front picture. We start our analysis in
Sec. IV with the Breit frame distributions of polarization
and magnetization for a spin-1

2
target. We argue that the

polarization-magnetization tensor suggested by the Sachs
decomposition of the electromagnetic four-current is
physically more transparent than the one suggested by
the Gordon decomposition. We proceed in Sec. V with
the elastic frame distributions of polarization and mag-
netization, and study in detail their frame dependence,
and derive analytic expressions for electric and magnetic
dipole moments. For completeness, we also present
in Sec. VI the light-front distributions and multipole
moments, and compare them with the infinite-momentum
limit of their elastic frame counterparts. In particular, we
explain why the genuine light-front magnetization dis-
tributions are given by the 2D Fourier transforms of the
Sachs magnetic form factor, rather than the Pauli form
factor as suggested earlier in the literature. Finally, we
summarize our findings in Sec. VII, and provide further
discussions about charge radii, relativistic centers and
multipole decomposition of polarization and magnetiza-
tion distributions in three Appendices.

II. POLARIZATION AND MAGNETIZATION
FOR A SPIN-12 TARGET

Long ago it has been shown that the matrix elements of
the electromagnetic four-current operator for a general
spin-1

2
system can be parametrized as [6,102,103]

hp0; s0jĵμð0Þjp; si ¼ eūðp0; s0ÞΓμðP;ΔÞuðp; sÞ ð1Þ

with e the unit of electric charge (chosen to be that of a
proton) and

ΓμðP;ΔÞ ¼ γμF1ðQ2Þ þ iσμνΔν

2M
F2ðQ2Þ; ð2Þ

where F1ðQ2Þ and F2ðQ2Þ are Lorentz-invariant functions
called Dirac and Pauli form factors (FFs), respectively. For
convenience, we introduced the variables P ¼ 1

2
ðp0 þ pÞ,

Δ ¼ p0 − p and Q2 ¼ −Δ2; see, e.g., the tree-level
Feynman diagram in Fig. 1. The on-shell conditions p02 ¼
p2 ¼ M2 imply in particular P · Δ ¼ 0 and P2 þ Δ2

4
¼ M2.

There is therefore only one dimensionless Lorentz-
invariant variable which we chose as τ ¼ Q2=ð4M2Þ.
The initial and final canonical polarizations of the system
are denoted by s and s0, respectively.

In the Breit frame (BF), defined by the condition P ¼ 0,
the amplitudes read [6,63,64]

hp0
B; s

0
Bjĵ0ð0ÞjpB; sBi ¼ e2Mδs0BsBGEðQ2Þ;

hp0
B; s

0
Bj ĵð0ÞjpB; sBi ¼ eðσs0BsB × iΔÞGMðQ2Þ; ð3Þ

where σ are the Pauli matrices and the combinations

GEðQ2Þ ¼ F1ðQ2Þ − τF2ðQ2Þ;
GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ; ð4Þ

are known as the electric and magnetic Sachs FFs. The spin
structure of the amplitudes in the BF turns out to be the
same as in the nonrelativistic theory. In any other frame, the
spin structure becomes more complicated as a result of
Wigner rotations [80,96,100]. A somewhat related obser-
vation is that the differential cross section in the first
Born approximation (i.e. one-photon exchange) can be
expressed as [6,8]

dσ
dΩ

¼
�
dσ
dΩ

�
Mott

frecoil

�
G2

EðQ2Þ þ τ

ϵ
G2

MðQ2Þ
�

1

1þ τ
; ð5Þ

where ϵ ¼ ð1þ 2ð1þ τÞ tan2 θ
2
Þ−1 is the virtual photon

polarization with θ the scattered electron angle in the lab
frame. The Mott cross section and the recoil factor are
given by

�
dσ
dΩ

�
Mott

¼ α2cos2 θ
2

4E2 sin4 θ
2

; frecoil¼
E0

E
¼ 1

1þ 2E
M sin2 θ

2

; ð6Þ

where α ¼ e2=ð4πÞ ≈ 1=137 is the electromagnetic fine
structure constant1 and E (E0) is the initial (final) electron

FIG. 1. Feynman diagram of the t-channel elastic reaction
e−ðkÞ þ NðpÞ → e−ðk0Þ þ Nðp0Þ in the one-photon-exchange
approximation. The four-momentum transfer isΔ¼k−k0 ¼p0−p.

1The convention we used throughout this paper is ℏ ¼ c ¼ 1
with μ0 ¼ ϵ0 ¼ 1.
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energy in the lab frame. For comparison, in terms of Dirac
and Pauli FFs the differential cross section reads [3,6]

dσ
dΩ

¼
�
dσ
dΩ

�
Mott

frecoil

�
F2
1ðQ2Þ þ τ

�
F2
2ðQ2Þ

þ 2½F1ðQ2Þ þ F2ðQ2Þ�2tan2 θ
2

��
: ð7Þ

The absence of interference terms in Eq. (5) makes the
separate extraction of GE and GM easier, and suggests also
that they could be considered as the “physical” electro-
magnetic FFs. A parametrization of Eq. (1) directly in terms
of Sachs FFs reads [96,104]

ΓμðP;ΔÞ ¼ MPμ

P2
GEðQ2Þ þ iϵμαβλΔαPβγλγ5

2P2
GMðQ2Þ ð8Þ

with ϵ0123 ¼ þ1. It is equivalent to the parametrization (2)
on-shell, i.e. once sandwiched between Dirac spinors.
A similar expression for the Dirac theory, i.e. with
GEðQ2Þ ¼ GMðQ2Þ ¼ Z, has been considered in position
space in Ref. [105]. The structure of Eq. (8) is particularly
interesting since it is reminiscent of a classical current in a
polarizable medium, giving further support to the inter-
pretation of the Sachs FFs as the “physical” electromag-
netic FFs.2 Similar observations apply to spin-1 systems
[6,98,106] and a generalization of Eq. (8) to higher-spin
systems has even been proposed in Ref. [107].

A. Convection and polarization currents

In classical electromagnetism, it is customary to decom-
pose the electromagnetic four-current in position space into
“convection” and “polarization” currents [108,109]

JμðxÞ ¼ JμcðxÞ þ JμPðxÞ; JμPðxÞ ¼ ∂αPαμðxÞ: ð9Þ

The basic idea is that in a polarizable medium some of the
charges are somewhat free to move and constitute the
convective part of the current, also known as the “free”
current. The rest of the charges is confined in compact
regions, e.g. around atomic nuclei. Applying an external
electromagnetic field to the medium can induce (electric)
polarization P and magnetization M, generating a new
contribution to the total current often called the “bound”
current. From a relativistic perspective, polarization and
magnetization are the two sides of a same coin, the
polarization-magnetization tensor

Pμν ¼

0
BBB@

0 Px Py Pz

−Px 0 −Mz My

−Py Mz 0 −Mx

−Pz −My Mx 0

1
CCCA; ð10Þ

just like the electric andmagnetic fields are the two sides of the
Faraday tensor Fμν. This means that under a Lorentz boost,
polarization and magnetization will mix with each other.
Writing Eq. (9) more explicitly, one obtains

J0 ¼ ρc − ∇ ·P;

J ¼ ρcvþ ∇ ×M þ ∂0P: ð11Þ

Assuming as usual that surface terms vanish at spatial
infinity, we see that the induced polarization does not
change the total charge of the system but simply modifies
its spatial distribution. Relativistically, this arises from the
fact that the divergence of the polarization four-current
vanishes identically ∂μJ

μ
PðxÞ ¼ ∂μ∂αPαμðxÞ ¼ 0 owing to

the antisymmetry of the polarization-magnetization tensor.
In other words, the polarization four-current has the form of
what is known in the literature as a superpotential.
At the classical level, angular momentum appears only in

orbital form. Magnetization arises therefore from loops of
charge current, while polarization arises from the separation
of electric charges due to the external electric field. At the
quantum level, a new form of angular momentum known as
spin enters the game. As a result, a spinning charged particle
at rest will also present a permanent magnetic dipole moment
(MDM). We should therefore distinguish external and
internal contributions to the polarization-magnetization ten-
sor due to, respectively, the external electromagnetic fields
and the spin degrees of freedom. At the level of one-photon
exchange, we are only sensitive to the spin contribution. The
external contribution requires at least two photons and is
described at linear order in the electromagnetic field in terms
of the medium polarizabilities Pμν

ext ¼ αμναβFαβ [110]. In this
work, we will focus on the internal (or spin) polarization-
magnetization tensor.
For a particle at rest, a permanent electric dipole moment

(EDM) along the angular momentum breaks time-reversal
(T) and hence the combined charge-conjugation and parity
(CP) symmetries. In the Standard Model, these symmetries
are known to be broken by the weak interactions and the
θ-term in QCD [111], but the breaking is so small that
one can consider to an excellent approximation that these
symmetries remain exact when studying the internal
structure of hadrons. It follows that the polarization for a
point-like particle at rest must vanish. In the nonrelativistic
limit, Eq. (11) reduces then to

J0 ≈ ρc;

J ≈ ρcvþ ∇ ×M; ð12Þ

2Strictly speaking, both Eqs. (5) and (8) suggest that the
actual physical FFs are given by ḠE;MðQ2Þ≡ Mffiffiffiffi

P2
p GE;MðQ2Þ ¼

1ffiffiffiffiffiffi
1þτ

p GE;MðQ2Þ.
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where the term ∇ ×M is known as the spin current
[6,112–114] since M ∝ S with S the spin vector. For
systems moving with relativistic velocities, one should
also include the contributions from P. The latter do not
however contain any new intrinsic information since they
simply result from the Lorentz boost of the rest-frame
magnetization.

B. Polarization-magnetization tensor

Let us now come back to the electromagnetic four-
current for a spin-1

2
target. In momentum space, the

four-divergence turns into a contraction with the four-
momentum transfer

hp0; s0j∂μÔμðxÞjp; si ¼ iΔμhp0; s0jÔμðxÞjp; si; ð13Þ

using the translation invariance property. It is then clear that
the parametrization (8) exhibits the same structure as the
total current (9) in classical electromagnetism [84,96].
Accordingly, we identify the convection current with the
GE term and the polarization current with the GM term. In
other words, we write ΓμðP;ΔÞ ¼ Γμ

cðP;ΔÞ þ Γμ
PðP;ΔÞ

with

Γμ
cðP;ΔÞ ¼ MPμ

P2
GEðQ2Þ;

Γμ
PðP;ΔÞ ¼

iϵμαβλΔαPβγλγ5
2P2

GMðQ2Þ: ð14Þ

This suggests in particular that the polarization-
magnetization tensor for a spin-1

2
target is given in

momentum space by

P̃μν ¼ −
e
2M

MϵμνβλPβ

P2
ūðp0; s0Þγλγ5uðp; sÞGMðQ2Þ: ð15Þ

Since it involves the axial-vector Dirac bilinear, we will
refer to it as the A-type polarization-magnetization tensor.
We point out that the identification of a polarization-

magnetization tensor from the electromagnetic four-current
alone is in fact ambiguous. One reason is that only the
divergence of Pμν contributes to Jμ in Eq. (9). As a result,
one can alternatively consider the tensor

Pμν
A ðxÞ ¼ PμνðxÞ þ ϵμναβ∂αAβðxÞ ð16Þ

with Aβ an arbitrary axial four-vector field assumed to
vanish sufficiently fast at infinity. Our choice in Eq. (15)
is motivated by its simplicity and by the fact that the
relativistic spin appears explicitly in the form of the Dirac
axial-vector four-current. An additional ambiguity comes
from the equation of motion. Indeed, since Eq. (2) is meant
to be sandwiched between free Dirac spinors, we can use
the Gordon identity [115]

ūðp0; s0Þγμuðp; sÞ ¼ ūðp0; s0Þ
�
Pμ

M
þ iσμνΔν

2M

�
uðp; sÞ ð17Þ

and write ΓμðP;ΔÞ ¼ Γ0μ
cðP;ΔÞ þ Γ0μ

PðP;ΔÞ with

Γ0μ
cðP;ΔÞ ¼ Pμ

M
F1ðQ2Þ;

Γ0μ
PðP;ΔÞ ¼

iσμνΔν

2M
GMðQ2Þ; ð18Þ

suggesting another a priori acceptable definition for the
polarization-magnetization tensor

P̃0μν ¼ −
e
2M

ūðp0; s0Þσμνuðp; sÞGMðQ2Þ: ð19Þ

Since it involves the tensor Dirac bilinear, we will refer
to it as the T-type polarization-magnetization tensor. The
decomposition of a current into convection and polarization
parts is therefore not unique, and can be understood as a
consequence of the on-shell identity

ūðp0; s0ÞiσμνΔνuðp; sÞ

¼ ūðp0; s0Þ
�
Δ2

2P2
Pμ þMiϵμαβλΔαPβγλγ5

P2

�
uðp; sÞ; ð20Þ

which can easily be derived from the relations given in
Refs. [116,117]. As a result of Gordon’s work [115], the
T-type definition (19) is often the only one considered
in the literature, but we will show later that the A-type
definition (15) turns out in fact to be more natural.
As a last remark, we note that in field theory it is

customary to describe the full electromagnetic interaction
of particles through the single interaction term

Sint ¼
Z

d4xJμðxÞAμðxÞ; ð21Þ

which can be rewritten as follows

Sint ¼
Z

d4xJμcðxÞAμðxÞ −
1

2

Z
d4xPμνðxÞFμνðxÞ ð22Þ

using integration by parts. It is then easy to see that the
ambiguity mentioned in Eq. (16) exists because of the
homogeneous Maxwell equation ϵμναβ∂νFαβ ¼ 0, which
expresses the absence of magnetic charges. Even though
the form (22) makes the physics more transparent, it is in
practice easier to consider that all the electromagnetic
properties can be described in terms of a single electro-
magnetic four-current Jμ, rather than by a combination of
Jμc and Pμν. Opinions differ in the literature about whether
Jμ or Jμc should be regarded as the fundamental electro-
magnetic four-current, just like they differ about whether
the (symmetric) Belinfante or the (asymmetric) kinetic
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energy-momentum tensor should be considered as the
fundamental energy-momentum tensor [118]. In particular,
if one assumes that all forms of magnetism arise from the
sole circulation of charges, the polarization-magnetization
tensor

Pμν
J ðxÞ≡ −

1

2
½xμJνðxÞ − xνJμðxÞ� ð23Þ

would then seem to be a natural choice for a system sitting
at the origin, fixing therefore the form of the polarization
current to JμP ¼ ∂αP

αμ
J ¼ 1

2
½Jμ − ∂αðxαJμÞ� and hence the

convection current to Jμc ¼ 1
2
½Jμ þ ∂αðxαJμÞ�. We will not

discuss in detail this option in the present work.

III. QUANTUM PHASE-SPACE FORMALISM

Electromagnetic FFs describe the internal charge and
magnetization content of a system. While they are objects
defined in momentum space and extracted from experimen-
tal data involving particles with well-defined momenta, their
physical interpretation actually resides in position space. It is
therefore important to understand how the concept of spatial
distribution arises in quantum field theory.
Let us consider a generic local operator ÔðxÞ. Its

expectation value in a physical state can be written as

hΨjÔðxÞjΨi ¼
X
s0;s

Z
d3p0

ð2πÞ3
d3p
ð2πÞ3 Ψ̃

�ðp0; s0ÞΨ̃ðp; sÞ

×
hp0; s0jÔðxÞjp; si

2
ffiffiffiffiffiffiffiffiffiffiffi
p00p0

p ; ð24Þ

with the four-momentum eigenstates normalized as
hp0;s0jp;si¼2p0ð2πÞ3δð3Þðp0−pÞδs0s and the momentum-
space wave packet Ψ̃ðp;sÞ≡hp;sjΨi=

ffiffiffiffiffiffiffiffi
2p0

p
normalized as

X
s

Z
d3p
ð2πÞ3 jΨ̃ðp; sÞj

2 ¼ 1: ð25Þ

The four-momenta being on-shell, the energy components
are given by p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and p00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þM2

p
.

In a relativistic theory, the Newton-Wigner position
operator [119–122] is the only 3D position operator
satisfying usual commutation relations with linear and
angular momentum operators, and having mutually com-
muting components. Although this operator does not
transform as part of a Lorentz four-vector, it allows
one to localize a relativistic system at a fixed time. The
eigenstates of this operator at t ¼ 0 are related to momen-
tum eigenstates via Fourier transform

jr; si ¼
Z

d3p
ð2πÞ3 e

−ip·r jp; siffiffiffiffiffiffiffiffi
2p0

p ð26Þ

and are normalized as hr0; s0jr; si ¼ δð3Þðr0 − rÞδs0s. The
position-space wave packet at t ¼ 0 is then given by

Ψðr; sÞ≡ hr; sjΨi ¼
Z

d3p
ð2πÞ3 e

ip·rΨ̃ðp; sÞ ð27Þ

and satisfies the normalization condition

X
s

Z
d3rjΨðr; sÞj2 ¼ 1: ð28Þ

In position space, the expectation value (24) takes then the
familiar form

hΨjÔðxÞjΨi

¼
X
s0;s

Z
d3r0d3rΨ�ðr0;s0ÞΨðr;sÞhr0;s0jÔðxÞjr;si: ð29Þ

This construction is very similar to the nonrelativistic one
and reduces to the latter when p0 ≈ p00 ≈M.
For a probabilistic interpretation, we need to be able to

express the expectation value hΨjÔjΨi in a diagonal form.3

In position space this can be achieved in the case of
Galilean symmetry since the latter implies invariance of
inertia under a change of frame, and hence a decoupling in
momentum space of P- and Δ-dependences in the matrix
elements hp0; s0jÔðxÞjp; si=ð2

ffiffiffiffiffiffiffiffiffiffiffi
p00p0

p
Þ. One can then write

in general

Z
d3p0

ð2πÞ3
d3p
ð2πÞ3 Ψ̃

�ðp0; s0ÞΨ̃ðp; sÞfðPÞgðΔÞ ¼
Z

d3P
ð2πÞ3

d3Δ
ð2πÞ3 d

3r0d3rΨ�ðr0; s0ÞΨðr; sÞe−iP·zfðPÞeiΔ·RgðΔÞ

¼
Z

d3R

�
Ψ�ðR; s0Þf

�
1

i
∇
↔
�
ΨðR; sÞ

� Z
d3Δ
ð2πÞ3 e

iΔ·RgðΔÞ; ð30Þ

where f and g are two functions, and A∇
↔
B≡ 1

2
½Að∇BÞ−

Bð∇AÞ�. Note that the average momentum P is conjugate to
the position shift z ¼ r − r0, whereas the momentum trans-
fer Δ is conjugate to the average position R ¼ ðrþ r0Þ=2.
The ability to perform the P-integration independently of

3In spin space, one uses a spin density matrix representation
where two canonical polarizations are converted into an unpo-
larized contribution δs0s and polarized contributions involving the
spin matrices Ss0s.

NUCLEON RELATIVISTIC POLARIZATION AND … PHYS. REV. D 107, 096003 (2023)

096003-5



the value of Δ corresponds therefore to the ability to
provide a density interpretation in position space.
In a relativistic theory, inertia is a frame-dependent

concept and P is usually entangled with Δ. It is therefore
usually not possible to provide a relativistic density inter-
pretation in 3D position space. The only way out is to switch
to the light-front (LF) formalism [123] (or consider the
infinite-momentum frame), where a Galilean subgroup of the
Lorentz group is singled out by choosing a particular LF
direction [124,125], allowing for a density interpretation in
impact-parameter space (i.e. the 2D position space orthogo-
nal to the LF direction) [66,69,76,126]. Similar densities
were proposed earlier by Fleming [127] using a rescaling of
the wave packets. An extension of this method has recently
been used to define new 3D densities [82,83,85,88], but
concerns about their physical meaning have triggered some
discussions [86,87].
Despite their nice probabilistic interpretation, LF den-

sities in impact-parameter space have however some short-
comings. First, the probabilistic interpretation is limited
by the Galilean subgroup. Considering for example the
electromagnetic four-current operator ĵμ, a probabilistic
interpretation can be attributed to the LF charge density
ĵþ ¼ ðĵ0 þ ĵ3Þ= ffiffiffi

2
p

but not to the longitudinal LF current
ĵ− ¼ ðĵ0 − ĵ3Þ= ffiffiffi

2
p

, see e.g. Ref. [100]. Second, in the
nonrelativistic regime it is in general not clear how to relate
the LF densities to the standard nonrelativistic 3D densities,
even when the system is in average at rest. Third, LF
densities appear to be distorted for transversely polarized
targets [69,71–75,128], a phenomenon which can be
understood to some extent as an artifact coming from
looking at ĵþ instead of ĵ0. Last but not least, even for
unpolarized targets the structure of LF densities can
sometimes be difficult to conciliate with an intuitive picture
of the system. A typical example is the appearance of an
unexpected negative core in the LF charge distribution of a
neutron [70]. These additional LF distortions have recently
been understood as artifacts caused by the Melosh-Wigner
spin rotation4 [96,98,100].
Because of Lorentz symmetry, the notion of relativistic

spatial distribution necessarily depends on the target
average momentum P, hindering therefore in general a
probabilistic interpretation in position space. We are there-
fore naturally led to switch our perspective to a phase-space
picture, which is quasiprobabilistic at the quantum level
owing to Heisenberg’s uncertainty relations. Following the
quantum phase-space formalism [90–92], one rewrites
Eq. (24) as

hΨjÔðxÞjΨi¼
X
s0;s

Z
d3P
ð2πÞ3d

3Rρs
0s
Ψ ðR;PÞhÔis0sR;PðxÞ; ð31Þ

where

ρs
0s
Ψ ðR;PÞ≡

Z
d3z e−iP·zΨ�

�
R −

z
2
; s0

�
Ψ
�
Rþ z

2
; s

�

¼
Z

d3q
ð2πÞ3 e

−iq·RΨ̃�
�
Pþ q

2
; s0

�
Ψ̃
�
P −

q
2
; s

�
ð32Þ

is the Wigner distribution interpreted as the quantum weight
(positive or negative) for finding the system at average
position R with average momentum P. This construction
does not rely particularly on Galilean or Lorentz symmetries,
and hence makes the connection with the nonrelativistic
theory straightforward. Probabilistic densities are recovered
upon integration over average position or momentum
variables

Z
d3Rρs

0s
Ψ ðR;PÞ ¼ Ψ̃�ðP; s0ÞΨ̃ðP; sÞ;Z

d3P
ð2πÞ3 ρ

s0s
Ψ ðR;PÞ ¼ Ψ�ðR; s0ÞΨðR; sÞ: ð33Þ

A compelling feature of the quantum phase-space formalism
is that wave-packet details are cleanly factorized in Eq. (31).
We can then interpret the phase-space amplitude

hÔis0sR;PðxÞ¼
Z

d3Δ
ð2πÞ3e

iΔ·R hPþΔ
2
;s0jÔðxÞjP−Δ

2
;si

2
ffiffiffiffiffiffiffiffiffiffiffi
p00p0

p ð34Þ

as the internal distribution associated with a state localized in
the Wigner sense around average position R and average
momentum P [94,95,97]. Whenever the P-dependence of
hÔis0sR;PðxÞ is simple (typically when Galilean symmetry is at
play), we can extract it and use

Z
d3P
ð2πÞ3ρ

s0s
Ψ ðR;PÞfðPÞ¼Ψ�ðR;s0Þf

�
1

i
∇
↔
�
ΨðR;sÞ ð35Þ

to obtain genuine internal densities (i.e. internal distributions
with a probabilistic interpretation), see e.g. Ref. [86] for a
recent detailed discussion.
By relaxing the requirement of probabilistic interpreta-

tion, the quantum phase-space formalism overcomes the
shortcomings associated with the LF densities, shows that
the latter are closely related to the instant-form distributions
defined in the infinite-momentum frame (IMF), and
explains the various LF distortions as a result of relativistic
kinematical effects associated with spin [96,98,100].

4Melosh-Wigner rotations are also at the origin of some
relations between transverse-momentum dependent parton dis-
tributions and orbital angular momentum observed in various
models of the nucleon [129,130].
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IV. BREIT FRAME DISTRIBUTIONS

From a phase-space perspective, the BF can be regarded
as the average rest frame of the system. Since the energy
transfer constrained by Δ0 ¼ P · Δ=P0 vanishes when
P ¼ 0, internal distributions in the BF do not depend on
x0. BF distributions are therefore defined as

OBðrÞ≡ hÔis0BsB0;0 ðrÞ ¼
Z

d3Δ
ð2πÞ3 e

−iΔ·r hp0
B; s

0
BjÔð0ÞjpB; sBi
2P0

B
;

ð36Þ
where r ¼ x − R is the distance relative to the center of the
system, p0B¼−pB¼Δ=2 and P0

B ¼ p00
B ¼ p0

B ¼ M
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
.

Applying the general definition (36) to the electromag-
netic four-current operator, one obtains using the BF
amplitudes in Eq. (3) [6,96,131]

J0BðrÞ ¼ e
Z

d3Δ
ð2πÞ3 e

−iΔ·r M
P0
B
GEðΔ2Þ;

JBðrÞ ¼ e
∇ × σ
2M

Z
d3Δ
ð2πÞ3 e

−iΔ·r M
P0
B
GMðΔ2Þ; ð37Þ

where explicit spin indices have been omitted for better
legibility. These relativistic distributions differ from the
conventional ones introduced by Sachs [63,64], where the
factor M=P0

B ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
has been removed by hand. A

detailed discussion of these BF distributions for a nucleon
target can be found in Refs. [96,100].

A. A-type polarization-magnetization tensor

We can now apply the same formalism to the polarization-
magnetization tensor Pμν. Evaluating Eq. (15) in the BF
leads to

ePi
B¼ eP0i

B ¼0;

eMi
B¼−

1

2
ϵijkePjk

B ¼e

�
σi−

ΔiðΔ ·σÞ
4P0

BðP0
BþMÞ

�
GMðQ2Þ: ð38Þ

The corresponding relativistic 3D distributions are then
given by

PBðrÞ¼0;

MBðrÞ¼
e
2M

Z
d3Δ
ð2πÞ3e

−iΔ·r
�
σ−

ΔðΔ ·σÞ
4P0

BðP0
BþMÞ

�
M
P0
B
GMðΔ2Þ:

ð39Þ
We see that ρP ≡ −∇ ·P, the polarization contribution to
the charge distribution, vanishes in the BF simply because
the BF polarization distribution itself vanishes. The BF
magnetization distribution has two terms. Taking the curl
eliminates the second term and we find

JBðrÞ ¼ ∇ ×MBðrÞ; ð40Þ
as expected for a system in its average rest frame.

In magnetostatics, it is customary to define an effective
magnetic charge distribution

ρM ≡ −∇ ·M; ð41Þ
by analogy with the polarization charge distribution ρP.
Using the results in Eq. (39), we find that the BF effective
magnetic charge distribution is given by

ρM;BðrÞ¼
e
2M

Z
d3Δ
ð2πÞ3e

−iΔ·rðiΔ ·σÞ
�
M
P0
B

�
2

GMðΔ2Þ: ð42Þ

Contrary to the BF charge distribution J0BðrÞ, the BF
effective magnetic charge distribution is spin-dependent
and is not spherically symmetric. The target polarization
provides a preferred spatial direction which reduces spheri-
cal symmetry to axial symmetry.
Discrete spacetime symmetries impose that the total

EDMmust vanish in the average rest frame. We indeed find

dB ¼
Z

d3r rJ0BðrÞ ¼
Z

d3r rρP;BðrÞ ¼
Z

d3rPBðrÞ ¼ 0:

ð43Þ
In contrast, the total MDM in the rest frame is not required
to vanish and can be expressed in at least three different but
equivalent ways,

μB ¼
Z

d3rMBðrÞ ¼
Z

d3r rρM;BðrÞ

¼
Z

d3r
r × JBðrÞ

2
¼ σGMð0Þ

e
2M

; ð44Þ

provided that the surface terms vanish at infinity. Note
however that at the level of spatial distributions the
three integrands, namely MBðrÞ, Meff;BðrÞ≡ rρM;BðrÞ
and MJ;BðrÞ≡ 1

2
r × JBðrÞ, look quite different, see

Fig. 2. Since these BF spatial distributions are axially
symmetric about the polarization axis, it is sufficient to
show a section containing the latter. Strictly speaking,
MJ;BðrÞ should be interpreted as the contribution to the
MDM at r ¼ 0 due to the current element at position r.
Similarly, Meff;BðrÞ corresponds to the contribution to the
MDM at r ¼ 0 due to the effective magnetic charge
element at position r. Only MBðrÞ can be thought of as
the genuine spatial distribution of magnetization.

B. T-type polarization-magnetization tensor

For comparison, we consider here the T-type definition
P0μν for the polarization-magnetization tensor. Evaluating
Eq. (19) in the BF gives

eP0i
B¼ eP00i

B ¼e
iΔi

2M
GMðQ2Þ;

eM0i
B¼−

1

2
ϵijkeP0jk

B ¼e

�
σiþ ΔiðΔ ·σÞ

4MðP0
BþMÞ

�
GMðQ2Þ; ð45Þ
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FIG. 2. Comparisons between three kinds of magnetization distributions in the Breit frame MBðrÞ, Meff;BðrÞ≡ rρM;BðrÞ and
MJ;BðrÞ≡ 1

2
r × JBðrÞ inside a proton (left panels) or a neutron (right panels) polarized along the z-direction. The vector plots give the

direction and magnitude of the magnetization distributions, evaluated in the ry ¼ 0 plane using the parametrization for the nucleon
electromagnetic form factors given in Ref. [132].
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and so the corresponding relativistic 3D distributions read

P0
BðrÞ¼

e
2M

Z
d3Δ
ð2πÞ3e

−iΔ·r iΔ
2M

M
P0
B
GMðΔ2Þ;

M0
BðrÞ¼

e
2M

Z
d3Δ
ð2πÞ3e

−iΔ·r
�
σþ ΔðΔ ·σÞ

4MðP0
BþMÞ

�
M
P0
B
GMðΔ2Þ:

ð46Þ

This time we have a nonvanishing polarization distribution,
but since it is time-independent we still get a pure spin
current according to Eq. (11)

JBðrÞ ¼ ∇ ×M0
BðrÞ: ð47Þ

This can also be seen directly from the expressions for the
A-type and T-type magnetization distributions since they
differ only in the part that does not contribute to the curl.
Remembering that p0B¼−pB¼Δ=2 and p00

B¼p0
B¼P0

B,
we recognize in Eq. (45) the characteristic structure of spin
defined relative to the center of energy ðσ þ pBðpB·σÞ

Mðp0
BþMÞÞ,

while we find in Eq. (38) the characteristic structure of spin
defined relative to the center of mass ðσ − pBðpB·σÞ

p0
Bðp0

BþMÞÞ, see
Ref. [97].5 Therefore, part of the ambiguity in the definition
of the polarization-magnetization tensor comes from the
choice made for the center of the system, which in turn
defines the internal angular momentum or spin. Even
though the system in the BF is in average at rest, the
initial and final momenta are nonzero. Contrary to the
center of mass, the position of the center of energy inside a
spinning system depends on its momentum [94,97], see
Appendix B. For Δ ≠ 0 the center of energy is in general
shifted relative to the center of mass, but the shift in the
initial state is exactly opposite to that in the final state, so
that the average position of the center of energy coincides
in the BF with that of the center of mass. However, the
initial and final shifts affect the appearance of the spatial
distributions and imply that M0

BðrÞ ≠ MBðrÞ.
In Fig. 3, we show the spatial distributions of the T-type

polarization and magnetization in the BF. Except at the
origin, the T-type polarization distribution does not vanish
and has the structure of a spherical hedgehog. The T-type
magnetization distribution is indeed similar to but different
from the A-type magnetization distribution shown in Fig. 2.
In the picture based on the T-type decomposition (18)

of the electromagnetic four-current, the total charge
distribution

J0BðrÞ ¼ ρ0c;BðrÞ þ ρ0P;BðrÞ ð48Þ

consists in a convection charge distribution driven by the
Dirac FF

ρ0c;BðrÞ ¼ e
Z

d3Δ
ð2πÞ3 e

−iΔ·r P
0
B

M
F1ðΔ2Þ ð49Þ

and a nonvanishing polarization charge distribution
given by

ρ0P;BðrÞ¼−∇ ·P0
B¼−e

Z
d3Δ
ð2πÞ3e

−iΔ·rτ
M
P0
B
GMðΔ2Þ: ð50Þ

Both of these contributions are spherically symmetric and
are represented in Fig. 4. While the proton charge dis-
tribution is dominated by the convection contribution, the
neutron charge distribution appears to be globally domi-
nated by the polarization contribution for r≲ 1.4 fm and
by the convection contribution for r≳ 1.4 fm. We observe
in particular a large cancellation between the convection
and polarization charge distributions close to the center of
the nucleon, suggesting that the T-type decomposition is
not really natural (at least in the BF).
We also find that the T-type effective magnetic charge

distribution

ρ0M;BðrÞ ¼ −∇ ·M0
B ¼ e

2M

Z
d3Δ
ð2πÞ3 e

−iΔ·rðiΔ · σÞGMðΔ2Þ

ð51Þ
differs from the A-type one (42) by a relativistic kinemati-
cal factor ðM=P0

BÞ2, which reflects the difference in the
Lorentz boost properties between spin defined relative to
the center of mass and spin defined relative to the center of
energy [97].
Finally, the T-type BF EDM and MDM

d0B¼
Z

d3rrρ0P;BðrÞ¼
Z

d3rP0
BðrÞ¼0;

μ0B¼
Z

d3rM0
BðrÞ¼

Z
d3rrρ0M;BðrÞ¼σGMð0Þ

e
2M

; ð52Þ

are the same as the A-type ones, see Eqs. (43) and (44).
The reason is that integrating over whole position space
amounts to setting Δ ¼ 0 in momentum space. As one can
see from the on-shell identity [116,117]

ūðp0; s0Þσμνuðp; sÞ

¼ ūðp0; s0Þ
�
iΔ½μγν�

2M
þ ϵμνβλPβγλγ5

M

�
uðp; sÞ; ð53Þ

where we used the shorthand notation a½μbν�≡aμbν−aνbμ,
the difference between ePμν and eP0μν vanishes in the forward
limit Δ → 0, and so the A-type and T-type polarization-
magnetization tensors agree on the integrated quantities but
disagree on how these quantities are distributed over space.
The results in Eq. (52) should also be expected from the fact

5Pushing the logic further suggests that the combination
P00μν ¼ ð

ffiffiffiffiffiffi
P2

p
Pμν þMP0μνÞ=ð

ffiffiffiffiffiffi
P2

p
þMÞ could be interpreted

as the polarization-magnetization tensor defined relative to the
center of spin.
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that the EDM and MDM can be expressed directly in terms
of the electromagnetic four-current, and hence should not
depend on how the latter is decomposed into convection
and polarization contributions.
In conclusion, even if defining the polarization-magneti-

zation tensor in terms of the tensor Dirac bilinear seems
a priori natural, the associated picture turns out to be more
complicated than the one based on the axial-vector Dirac
bilinear. For this reason, we consider that the A-type
polarization-magnetization tensor gives a more physical
picture than the T-type one.

V. ELASTIC FRAME DISTRIBUTIONS

BF distributions provide our best proxy for picturing a
system at rest around the origin. If we are however

interested in the internal structure of a moving system,
we can use the so-called elastic frame (EF) distributions
introduced in Ref. [93]. They are defined as

OEFðb⊥;PzÞ≡
Z

drzhÔis0s0;PðrÞ

¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ hp0; s0jÔð0Þjp; si
2P0

				
Δz¼0

;

ð54Þ

where the z-axis has been chosen for convenience along
P ¼ ð0⊥; PzÞ, and r ¼ ðb⊥; rzÞ is the distance relative to
the center of the system, which has been set at the origin
R ¼ 0. Integrating over the longitudinal coordinate

FIG. 3. Breit frame T-type polarization and magnetization distributionsP0
BðrÞ andM0

BðrÞ, see Eq. (46), inside a proton (left panels) or
a neutron (right panels) polarized along the z-direction. The vector plots give the direction and magnitude of the distributions, evaluated
in the ry ¼ 0 plane using the parametrization for the nucleon electromagnetic form factors given in Ref. [132].
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amounts to setting the momentum transfer in the longi-
tudinal direction to zero, which in turn implies a vanishing
energy transfer Δ0 ¼ P · Δ=P0 ¼ 0 and hence a time-
independent distribution.
At Pz ¼ 0, the EF distributions coincide with the BF

distributions projected onto the transverse plane

OEFðb⊥; 0Þ ¼
Z

drzOBðrÞ: ð55Þ

In the limit Pz → ∞, we obtain the IMF distributions

OIMFðb⊥Þ≡ lim
Pz→∞

OEFðb⊥;PzÞ ð56Þ

which coincide most of the time with the distributions
defined within the LF formalism, up to some trivial factors
[80,81,95,96,98,100,101]. EF distributions provide there-
fore a nice and clear interpolation between BF and LF
distributions.
To understand how the distributions change with Pz, we

need to know how matrix elements for different sets of
initial and final momenta are related to each other. For the
electromagnetic four-current operator, Poincaré symmetry
implies that [7,133]

hp0; s0jĵμð0Þjp; si ¼
X
s0B;sB

D†ðjÞ
s0s0B

ðp0
B;ΛÞDðjÞ

sBsðpB;ΛÞ

× Λμ
νhp0

B; s
0
Bjĵνð0ÞjpB; sBi; ð57Þ

where pð0Þμ ¼ Λμ
ν p

ð0Þν
B and DðjÞ is the Wigner rotation

matrix for spin-j targets. For the polarization-magnetization
tensor, we can write in a similar way

ðePμνÞs0s ¼
X
s0B;sB

D†ðjÞ
s0s0B

ðp0
B;ΛÞDðjÞ

sBsðpB;ΛÞΛμ
αΛν

βðePαβ
B Þs0BsB :

ð58Þ

In the case of a spin-1
2
system in the EF, the Wigner rotation

matrix takes the form

Dð1=2Þ
sBs ðpB;ΛÞ ¼ D†ð1=2Þ

s0s0B
ðp0

B;ΛÞ

¼
�

cos θ
2

−e−iϕΔ sin θ
2

eiϕΔ sin θ
2

cos θ
2

�
; ð59Þ

with Δ ¼ ðQ cosϕΔ; Q sinϕΔ; 0Þ, and the Wigner rotation
angle θ satisfies [100]

FIG. 4. Decomposition of the Breit frame charge distribution into T-type convection and polarization contributions, see Eqs. (49)
and (50), inside a proton (left panels) or a neutron (right panels), based on the parametrization for the nucleon electromagnetic form
factors given in Ref. [132].
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cos θ ¼ P0 þMð1þ τÞ
ðP0 þMÞ ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p ;

sin θ ¼ −
ffiffiffi
τ

p
Pz

ðP0 þMÞ ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ; ð60Þ

where the EF energy is given by P0 ¼ p00 ¼ p0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þM2ð1þ τÞ

p
. When Pz ≠ 0, the Wigner rotation

depends on the momentum transfer Δ, and hence distorts
the spatial distributions after the Fourier transform [100].

A. Elastic frame polarization and magnetization

Since the BF analysis in the previous section revealed
that the A-type definition of the polarization-magnetization
tensor from the physics perspective was more natural than
the T-type one, we will consider only the former in the
following. Evaluating Eq. (15) in the generic EF leads to

eMz;EF ¼ eσzGMðQ2Þ;
eM⊥;EF ¼ eγ

�ðez × iΔÞ⊥
jΔ⊥j

�ðσ × iΔÞz
jΔ⊥j

cos θ − sin θ

�

þ Δ⊥ðΔ⊥ · σ⊥Þ
Δ2⊥

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
�
GMðQ2Þ;

ePEF ¼ β × eMEF; ð61Þ

where γ ¼ P0=
ffiffiffiffiffiffi
P2

p
and β ¼ P=P0. We see that the Wigner

rotation mixes ðσs0s × iΔÞz and δs0s, but leaves ðσzÞs0s and
ðΔ⊥ · σs0sÞ unchanged,6 as can be checked using Eq. (59).
Beside the Wigner rotation, we recognize the familiar
structure of the Lorentz transformation of a rest-frame
MDM (or of a pure magnetic field). Moreover, the
expression for the polarization amplitudes is reminiscent
of the classical expression for an induced EDM d ¼ v × μ.
Comparing with the BF amplitudes (38) in the limit

Δz → 0, we see that Eq. (61) is fully consistent with the
general expectation (58).
Following the general definition (54), the EF polarization

and magnetization distributions are given by

PEFðb⊥;PzÞ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ 1

2P0
ePEFðΔ⊥;PzÞ;

MEFðb⊥;PzÞ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ 1

2P0
eMEFðΔ⊥;PzÞ; ð62Þ

which coincide at Pz ¼ 0 with the projections of the BF
polarization and magnetization distributions (39) onto the
transverse plane, respectively. The longitudinal compo-
nents assume a particularly simple form

Pz;EFðb⊥;PzÞ¼0;

Mz;EFðb⊥;PzÞ¼
e
2M

σz

Z
d2Δ⊥
ð2πÞ2e

−iΔ⊥·b⊥ M
P0

GMðΔ2⊥Þ; ð63Þ

because they do not mix with other components under a
Lorentz boost. Since the polarization distribution vanishes
in the BF (39), so does Pz;EF.
In Fig. 5, we show the EF spatial distributions of

transverse polarization and magnetization in the transverse
plane from Eq. (62) for a nucleon polarized along the x-axis
and moving with average momentum Pz ¼ 1 GeV. Note
that the vector fields point toward slightly different direc-
tions at different positions in the transverse plane as a result
of the Wigner rotation, see Appendix C. In addition, the
momentum dependence of the axially symmetric longi-
tudinal magnetization distribution inside the longitudinally
polarized nucleon is sketched in Fig. 6. As Pz increases, the
magnitude of the longitudinal magnetization decreases as a
consequence of the relativistic factor M=P0 in Eq. (63).
A comparison of these results with the EF distributions

of the electromagnetic four-current studied in Ref. [100]

J0EFðb⊥;PzÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�
cos θ þ ðσ × iΔÞz

jΔ⊥j
sin θ

�
GEðΔ2⊥Þffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p

þ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ Pz

P0

�
− sin θ þ ðσ × iΔÞz

jΔ⊥j
cos θ

� ffiffiffi
τ

p
GMðΔ2⊥Þffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ;

Jz;EFðb⊥;PzÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ Pz

P0

�
cos θ þ ðσ × iΔÞz

jΔ⊥j
sin θ

�
GEðΔ2⊥Þffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p

þ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�
− sin θ þ ðσ × iΔÞz

jΔ⊥j
cos θ

� ffiffiffi
τ

p
GMðΔ2⊥Þffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ;

J⊥;EFðb⊥;PzÞ ¼ eσz

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ ðez × iΔÞ⊥
2P0

GMðΔ2⊥Þ; ð64Þ

6This would have been less clear if we had written the transverse magnetization amplitudes as

eM⊥;EF ¼ eγ

�
σ⊥ cos θ −

ðez × iΔÞ⊥
jΔ⊥j

sin θ −
Δ⊥ðΔ⊥ · σ⊥Þ

4M
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ðP0 þMÞ

�
GMðQ2Þ:
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indicates that the EF polarization four-current distributions
(given by the GM-dependent terms) can be expressed as7

ρP;EFðb⊥;PzÞ ¼ −∇ ·PEFðb⊥;PzÞ;
JP;EFðb⊥;PzÞ ¼ ∇ ×MEFðb⊥;PzÞ: ð65Þ

By analogy with the 3D case (42), we can also define a
2D effective magnetic charge distribution as follows

ρM;EFðb⊥;PzÞ≡ −∇ ·MEFðb⊥;PzÞ

¼ e
2M

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ðiΔ⊥ · σ⊥Þ
GMðΔ2⊥Þ
1þ τ

:

ð66Þ

Interestingly, it does not depend on Pz (remember that
Δ⊥ · σ is invariant under the Wigner rotation) and coincides
with the projection of the BF effective magnetic charge
distribution (42) onto the transverse plane. In Fig. 7, we show
the Pz-independent spatial distribution of the 2D relativistic
effective magnetic charge distribution from Eq. (66) inside a
transversely polarized nucleon. Likewise, we show in Fig. 8
the Pz-dependent spatial distributions of the 2D relativistic
polarization charge distribution from Eq. (65)

ρP;EFðb⊥;PzÞ

¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ Pz

P0

�
− sin θ þ ðσ × iΔÞz

jΔ⊥j
cos θ

�

×
ffiffiffi
τ

p
GMðΔ2⊥Þffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ð67Þ

inside a transversely polarized nucleon.

FIG. 5. Elastic frame transverse polarization and magnetization distributions P⊥;EFðb⊥;PzÞ and M⊥;EFðb⊥;PzÞ in the transverse
plane, see Eq. (62), inside a proton (left panels) or a neutron (right panels) polarized along the x-direction and with momentum
Pz ¼ 1 GeV. Based on the parametrization for the nucleon electromagnetic form factors given in Ref. [132].

7Note that acting with∇z on any 2D EF distribution gives zero.
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B. Elastic frame electric and magnetic dipole moments

The EF MDM is obtained by integrating the EF
magnetization distribution over the transverse plane,

μEFðPzÞ¼
Z

d2b⊥MEFðb⊥;PzÞ¼
1

2EP

eMEFð0⊥;PzÞ; ð68Þ

where we remind that EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

p
. By analogy with

the 3D BF expressions, we can alternatively define the
longitudinal EF MDM as

μz;EFðPzÞ ¼
Z

d2b⊥
½b⊥ × JEFðb⊥;PzÞ�z

2

¼ σz
M
EP

GMð0Þ
e
2M

; ð69Þ

which agrees with the longitudinal component in Eq. (68).
A similar expression for the transverse MDM would

require a 3D definition of the EF current, which is beyond
the scope of the present work. We can however use the 2D
effective magnetic charge distribution (66) and alternatively
define the transverse EF MDM as

μ⊥;EFðPzÞ ¼
Z

d2b⊥b⊥ρM;EFðb⊥;PzÞ ¼ σ⊥GMð0Þ
e
2M

;

ð70Þ

which agrees with the transverse components in Eq. (68).
A similar expression for the longitudinal MDM would
require a 3D definition of the EF effective magnetic charge
distribution, which is also beyond the scope of the
present work.
From the familiar Lorentz transformation of the mag-

netic field, one might naively think that a global Lorentz
factor γP ¼ EP=M is missing in the expressions for
μEFðPzÞ. It is in fact compensated by the Lorentz contrac-
tion factor 1=γP associated with the volume element.

FIG. 6. Elastic frame longitudinal magnetization distribution Mz;EFðb⊥;PzÞ, see Eq. (63), inside a longitudinally polarized proton
(left panel) or neutron (right panel) for different values of average momentum Pz. Based on the parametrization of nucleon
electromagnetic form factors given in Ref. [132].

FIG. 7. Elastic frame effective magnetic charge distribution ρM;EF ¼ −∇ ·MEF, see Eq. (66), at by ¼ 0 inside a proton (left panel) or a
neutron (right panel) polarized along the x-direction. Based on the parametrization for the nucleon electromagnetic form factors given in
Ref. [132].
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We expect that similar expressions should hold for spin-j
targets, namely

μðjÞz;EFðPzÞ ¼ Σz
M
EP

GM1ð0Þ
e
2M

;

μðjÞ⊥;EFðPzÞ ¼ Σ⊥GM1ð0Þ
e
2M

; ð71Þ

where GM1ðQ2Þ is the BF magnetic dipole FF for a spin-j
system [128], and Σs0s are the generalization of the Pauli
matrices to higher spin.8

Let us now discuss the (transverse) EF EDM. It is
defined as

d⊥;EFðPzÞ ¼
Z

d2b⊥b⊥J0EFðb⊥;PzÞ: ð72Þ

For a spin-1
2
target, we find that it is explicitly given by

d⊥;EFðPzÞ ¼ ðez × σÞ⊥
Pz

EP

�
GMð0Þ −

EP

EP þM
GEð0Þ

�
e
2M

:

ð73Þ

This analytic expression agrees with the numerical results
for the nucleon obtained in Ref. [80]. The first contribution
corresponds to the longitudinal boost of a rest-frame
transverse MDM and has the expected form P

EP
× μEFð0Þ.

The second contribution comes from the Wigner rotation
and can be understood in terms of a sideways shift of the

center of spin,9 defining the origin of our coordinate
system, with respect to the relativistic center of mass in
a moving frame [94,97]. Its magnitude is precisely the
relative distance between these two points, see Appendix B,
multiplied by the total charge of the system as if the latter
were concentrated at the relativistic center of mass. Since
the sideways shift is proportional to the spin value, we
expect the induced EDM for a spin-j target to read

dðjÞ⊥;EFðPzÞ¼ðez×ΣÞ⊥
Pz

EP

�
GM1ð0Þ−

EP

EPþM
2jGE0ð0Þ

�
e
2M

;

ð74Þ

where GE0ðQ2Þ is the BF electric monopole FF for a spin-j
system. This generic expression agrees with the result found
for spin-1 targets [98]. In Fig. 9, we show the momentum
dependence of the transverse EDM in a transversely polar-
ized nucleon and of the longitudinal MDM in a longitudi-
nally polarized nucleon. The maximum transverse EDM

for a proton is reached for Pz ¼ M
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4η

p
Þ2 − 4

q
with η ¼ Gp

Mð0Þ=Gp
Eð0Þ ¼ 1þ κp ≈ 2.793.

VI. LIGHT-FRONT DISTRIBUTIONS

For completeness, we finally study the polarization-
magnetization distributions within the LF formalism, where
LF components are defined as xμ ¼ ½xþ; x−; x⊥� with
x�≡ðx0�x3Þ= ffiffiffi

2
p

. As a result, scalar products read p ·x¼
pþx−þp−xþ−p⊥ ·x⊥ and the constrained momentum
component is then given by p− ¼ ðp2⊥ þM2Þ=ð2pþÞ.

FIG. 8. Elastic frame polarization charge distribution ρP;EF ¼ −∇ ·PEF, see Eq. (67), at bx ¼ 0 inside a proton (left panel) or a neutron
(right panel) polarized along the x-direction for different values of the average momentum Pz. Based on the parametrization for the
nucleon electromagnetic form factors given in Ref. [132].

8The spin matrices for a spin-j target are generically given by
Ss0s ¼ jΣs0s.

9The center of spin is given by the expectation value of the
Newton-Wigner operator [120]. The angular momentum referring
to this point coincides with spin in an arbitrary frame.
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It is possible to define xþ-independent LF distributions
[69,76,93] by considering the so-called symmetric LF
frame specified by the conditions10 P⊥¼0⊥ and Δþ¼0,
which ensure that the LF energy transfer Δ− ¼ ðP⊥ · Δ⊥ −
P−ΔþÞ=Pþ vanishes. Similarly to Eq. (54), the LF dis-
tributions are defined as

OLFðb⊥;PþÞ

≡
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ LFhp0; λ0jÔð0Þjp; λiLF
2Pþ

				
Δþ¼jP⊥j¼0

;

ð75Þ

where the LF helicity states are related to the canonical spin
states via the Melosh rotation jp; λiLF ¼

P
s jp; siMsλ

with

Msλ ¼
ð ffiffiffi

2
p

pþ þMÞδsλ − iðp⊥ × σsλÞzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
pþðp0 þMÞ

q ð76Þ

in the case of a spin-1
2
system [135]. As already discussed

in Sec. III, a key feature of the LF formalism is that the
symmetry subgroup associated with the transverse LF
plane is Galilean. As a result, LF distributions can in
some cases be interpreted as probabilistic densities. The
pictures provided by these LF densities cannot however be
considered as realistic representations of the system at rest,

even when P− ¼ Pþ ¼ M
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
=

ffiffiffi
2

p
, because they are

distorted by relativistic artefacts caused by the Melosh
rotation [96,98,100].

A. Light-front polarization and magnetization

We have seen in Eq. (10) that polarization and mag-
netization correspond to the following components of the
antisymmetric polarization-magnetization tensor Pμν

Pμ ¼ P0μ; Mμ ¼ −
1

2
ϵμαβ0Pαβ: ð77Þ

Note that despite what the notation suggests,Pμ andMμ are
not Lorentz four-vectors. In particular, we have by con-
struction P0 ¼ M0 ¼ 0 in any frame. In the LF formalism,
it is therefore natural to define LF polarization and
magnetization components as follows

Pμ
LF ¼ Pþμ; Mμ

LF ¼ −
1

2
ϵμαβ−Pαβ: ð78Þ

More explicitly, we have

Pþ
LF¼0; Pi⊥;LF¼Pþi¼Pi⊥−ϵij⊥M

j
⊥ffiffiffi

2
p ; P−

LF¼Pþ−¼−Pz;

ð79Þ

and

Mþ
LF¼−

1

2
ϵij⊥Pij¼Mz; Mi⊥;LF¼−ϵij⊥P−j¼Mi⊥−ϵij⊥P

j
⊥ffiffiffi

2
p ;

M−
LF¼0; ð80Þ

FIG. 9. Transverse electric dipole moment dyðPzÞ, see Eq. (73), inside a nucleon polarized along the x-axis (left panel) and
longitudinal magnetic dipole moment μzðPzÞ, see Eq. (69), inside a longitudinally polarized nucleon (right panel), as functions of the
nucleon average momentum Pz. κp;n ≡ Gp;n

M ð0Þ −Gp;n
E ð0Þ stand for the proton and neutron anomalous magnetic dipole moments. At

Pz ≈ 3.22 GeV, the proton transverse electric dipole moment reaches its maximum value dpy;max ≈ 0.203 e · fm.

10One can relax the condition P⊥ ¼ 0⊥ provided that LF
distributions are restricted to xþ ¼ 0, as stressed recently in
Refs. [86,134]. Note however that LF boosts are kinematical
operations and so the description at P⊥ ≠ 0⊥ can be related in a
straightforward way to the description at P⊥ ¼ 0⊥, just like in the
nonrelativistic theory.
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which is similar to the decomposition of the generalized
angular momentum tensor into LF boost and angular
momentum operators11 [123,125].
For the LF polarization and magnetization amplitudes,

the evaluation of Eq. (15) in the symmetric LF frame with
LF helicity states gives

eMþ
LF ¼ eðσzÞλ0λGMðQ2Þ;

eM⊥;LF ¼ e
P−

Mð1þ τÞ
�
ðσ⊥Þλ0λ þ δλ0λ

ðez × iΔÞ⊥
2M

�
GMðQ2Þ;

eP−
LF ¼ 0;

ePi⊥;LF ¼ −
Pþ

P− ϵij⊥ eMj
⊥;LF: ð81Þ

Similarly to Eq. (62), the LF polarization and magneti-
zation distributions are then obtained by following 2D
Fourier transforms

Pμ
LFðb⊥;PþÞ¼

Z
d2Δ⊥
ð2πÞ2e

−iΔ⊥·b⊥ 1

2Pþ ePμ
LFðΔ⊥;PþÞ;

Mμ
LFðb⊥;PþÞ¼

Z
d2Δ⊥
ð2πÞ2e

−iΔ⊥·b⊥ 1

2Pþ eMμ
LFðΔ⊥;PþÞ: ð82Þ

Based on the expressions in Eq. (81), we observe that the
LF polarization distributions do not depend on Pþ, while
the longitudinal (transverse) LF magnetization distribution
will be suppressed by one power (two powers) of 1=Pþ. In
Fig. 10, we show the 2D LF transverse polarization and
(scaled) magnetization distributions in the transverse plane
for transversely polarized nucleons. To make the transverse
magnetization distributions Pþ-independent, a dimension-
less factor ðPþ=MÞ2 has been introduced. While the BF
polarization distribution vanishes, the transverse LF polari-
zation distribution is nonzero even for Pz ¼ 0. This
demonstrates once again that LF distributions provide
distorted pictures of the system. Amultipole decomposition
of these distributions is discussed in Appendix C.
Let us now compare the EF and LF distributions in the

IMF. For the polarization distributions, we find that both
sets coincide in that limit

lim
Pþ→∞

Pμ
LFðb⊥;PþÞ ¼ lim

Pz→∞
Pμ

EFðb⊥;PzÞ: ð83Þ

Interestingly, while the longitudinal magnetization distri-
bution vanishes in both cases

lim
Pþ→∞

Mþ
LFðb⊥;PþÞ ¼ lim

Pz→∞
Mz;EFðb⊥;PzÞ ¼ 0; ð84Þ

it turns out that the scaled distributions do also coincide

lim
Pþ→∞

Pþ

M
Mþ

LFðb⊥;PþÞ ¼ lim
Pz→∞

Pz

M
Mz;EFðb⊥;PzÞ

¼ e
2M

σz

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥GMðΔ2⊥Þ:

ð85Þ
For the transverse magnetization, we find a relation for the
scaled momentum amplitudes

lim
Pþ→∞

M
P−

eM⊥;LFðΔ⊥;PþÞ¼ lim
Pz→∞

M
Pz

eM⊥;EFðΔ⊥;PzÞ

¼e

�
σ⊥þ

ðez× iΔÞ⊥
2M

�
GMðΔ2⊥Þ
1þτ

:

ð86Þ
Unfortunately, P− depends on the momentum transfer and
therefore cannot be factored out of the Fourier transform,
implying that the above relation does not hold in
position space. A similar problem was observed for the
J−-component of the electromagnetic four-current in
Ref. [100]. This is of course not too surprising since
the longitudinal LF polarization current reads J−P;LF ¼
−ð∇⊥ ×M⊥;LFÞz.

B. Light-front electric and magnetic dipole moments

Similarly to Eq. (72), the (transverse) LF EDM is
defined as

d⊥;LFðPþÞ ¼
Z

d2b⊥b⊥JþLFðb⊥;PþÞ; ð87Þ

and is given for a spin-1
2
target by [69,136]

d⊥;LFðPþÞ ¼ ðez × σÞ⊥F2ð0Þ
e
2M

: ð88Þ

This quantity does not depend on Pþ and is proportional to
the anomalous MDM κ ¼ F2ð0Þ.
Since it is well known that objects with MDM in the

rest frame display an EDM when viewed from a moving
frame [137], LF magnetization distributions were defined
in Refs. [76,138,139] directly in terms of 2D Fourier
transforms of F2ðQ2Þ, as suggested by Eq. (88). To explain
why in the LF formalism F2ðQ2Þ appears instead of
GMðQ2Þ, the authors invoked “relativistic corrections
caused by the transverse localization of the wave packet”
and referred to [140] for more explanations. In the latter
paper, it is argued that Melosh rotations (76) cause a
transverse shift12 of the center of Pþ (identified with the

11In the literature, the LF angular momentum operators are
unfortunately often defined without the transverse Levi-Civita
symbol, missing therefore the axial-vector nature of angular
momentum.

12This shift is crucial for understanding the relation between
transverse angular momentum and the dipole moment of the
longitudinal LF momentum distributions [94,140].
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origin within the LF formalism) relative to the center of
mass of the system. The expression in Eq. (88) represents
therefore the EDM defined relative to the center of Pþ. It
coincides with the IMF limit of the EF EDM (73)

d⊥;LFðPþÞ ¼ lim
Pz→∞

d⊥;EFðPzÞ

¼ ðez × σÞ⊥½GMð0Þ − GEð0Þ�
e
2M

; ð89Þ

since GMð0Þ −GEð0Þ ¼ F2ð0Þ. We have seen in Sec. V B
that the first term corresponds to the contribution associated
with the rest-frame MDM. The second term arises from the
sideways shift of the center of spin relative to the center of
mass. In the IMF, the center of spin coincides with the
center of Pþ [94], see Fig. 12 in Appendix B, and we can
identify the second term with the shift pointed out in
Ref. [140] (equal to one half of the reduced Compton

wavelength when the spin-1
2
system is transversely polar-

ized) multiplied by the total charge GEð0Þe of the system.
Contrary to Refs. [76,138,139], we interpret this contribu-
tion as a relativistic artifact rather than a “relativistic
correction.”Genuine LF magnetization distributions should
therefore be defined in terms of Fourier transforms of
GMðQ2Þ rather than F2ðQ2Þ.
For a spin-j target, the EF EDM (74) reduces in the IMF

limit to

lim
Pz→∞

dðjÞ⊥;EFðPzÞ¼ðez×ΣÞ⊥½GM1ð0Þ−2jGE0ð0Þ�
e
2M

ð90Þ

and coincides with the spin-j LF EDM derived in Ref. [128].
Interestingly, this EDM vanishes when GM1ð0Þ¼2jGE0ð0Þ,
i.e. when the Landé factor assumes the universal value
g ¼ 2. The combination κ ≡GM1ð0Þ − 2jGE0ð0Þ is then

FIG. 10. Light-front transverse polarization and (scaled) magnetization distributions P⊥;LFðb⊥;PþÞ and ðPþÞ2
M2 M⊥;LFðb⊥;PþÞ in the

transverse plane, see Eq. (82), inside a proton (left panels) or a neutron (right panels) polarized along the x-direction. Based on the
parametrization for the nucleon electromagnetic form factors given in Ref. [132].
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interpreted in general as the anomalous MDM for a spin-j
system. For j ¼ 1

2
, we recover naturally κ ¼ F2ð0Þ.

If we integrate the transverse LF polarization distribution
(82) over the impact-parameter space, we will findZ

d2b⊥P⊥;LFðb⊥;PþÞ ¼ 1

2Pþ eP⊥;LFð0⊥;PþÞ

¼ ðez × σÞ⊥GMð0Þ
e
2M

: ð91Þ

This quantity corresponds to the first term in Eq. (89) since
it is simply the LF EDM arising from the polarization part
of the LF charge distribution JþLFðb⊥;PþÞ [100]

dP;⊥;LFðPþÞ ¼
Z

d2b⊥b⊥ρP;LFðb⊥;PþÞ

¼
Z

d2b⊥P⊥;LFðb⊥;PþÞ; ð92Þ

where the LF polarization charge distribution ρP;LFðb⊥;PþÞ
coincides with the infinite-momentum limit of the corre-
sponding EF polarization charge distribution (67), namely

ρP;LFðb⊥;PþÞ
¼−∇⊥ ·PLFðb⊥;PþÞ
¼ lim

Pz→∞
ρP;EFðb⊥;PzÞ

¼e
Z

d2Δ⊥
ð2πÞ2e

−iΔ⊥·b⊥
�
τþðσ× iΔ⊥Þz

2M

�
GMðΔ2⊥Þ
1þτ

: ð93Þ

The LF magnetization distributions studied in the present
work are directly defined in terms of the matrix elements of
a polarization-magnetization tensor operator, see Eqs. (78)
and (82). These distributions therefore exclude from the
beginning any contribution from the convective part of
the electromagnetic four-current, and are naturally given
by 2D Fourier transforms of GMðQ2Þ rather than F2ðQ2Þ.
In particular, longitudinal and transverse LF MDMs are
respectively defined as

μz;LFðPþÞ ¼ 1ffiffiffi
2

p
Z

d2b⊥Mþ
LFðb⊥;PþÞ

¼ σz
Mffiffiffi
2

p
PþGMð0Þ

e
2M

;

μ⊥;LFðPþÞ ¼
Z

d2b⊥M⊥;LFðb⊥;PþÞ

¼ σ⊥
M2

2ðPþÞ2GMð0Þ
e
2M

; ð94Þ

which agree in the rest frame (i.e. when Pþ ¼ M=
ffiffiffi
2

p
with

Δ⊥ ¼ 0⊥ resulting from the integration over the impact-
parameter space) with the BF results (44). It may seem

a priori surprising that μ⊥;LFð∞Þ ¼ 0 whereas μ⊥;EFð∞Þ ¼
σ⊥GMð0Þe=ð2MÞ. This can however be understood by the
fact that diP;⊥;EFð∞Þ ¼ −ϵij⊥μ

j
⊥;EFð∞Þ, where dP;⊥;EFðPzÞ ¼R

d2b⊥PEFðb⊥;PzÞ is the polarization part of the transverse
EF EDM. Using Eq. (80) we then find that μi⊥;LFð∞Þ ∝
μi⊥;EFð∞Þ − ϵij⊥d

j
P;⊥;EFð∞Þ ¼ 0.

Following the spirit of the LF polarization charge
distribution (93), we can likewise define the LF effective
magnetic charge distribution via

ρM;LFðb⊥;PþÞ
¼ −∇⊥ ·MLFðb⊥;PþÞ

¼ e
2M

M2

2ðPþÞ2
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ðiΔ⊥ · σ⊥ÞGMðΔ2⊥Þ;

ð95Þ
and hence equivalently rewrite the transverse LF MDM as
follows

μ⊥;LFðPþÞ ¼
Z

d2b⊥b⊥ρM;LFðb⊥;PþÞ: ð96Þ

VII. SUMMARY

In this paper, we extended our study of the relativistic
electromagnetic four-current distributions inside a spin-1

2

system and applied the quantum phase-space formalism to
the polarization-magnetization tensor operator. In doing so,
relativistic polarization and magnetization distributions
were for the first time systematically studied in the Breit
frame, the elastic frame and on the light-front.
In the literature, the polarization-magnetization tensor is

usually motivated by the Gordon decomposition of the
electromagnetic four-current and is accordingly defined in
terms of the tensor Dirac bilinear. However, we pointed
out that a Sachs decomposition of the electromagnetic
four-current suggests instead a definition in terms of the
axial-vector Dirac bilinear. Axial-vector and tensor Dirac
bilinears simply correspond to two natural ways of describ-
ing spin in a relativistic theory, differing by the reference
point used in the definition of the internal angular momen-
tum. Through our analysis of the polarization and mag-
netization distributions in the Breit frame (where the spin
structure assumes its simplest form), we observed that the
axial-vector description leads to the simplest and physically
most natural picture of the polarization and magnetization
content of the system.
Relativistic polarization and magnetization distributions

are in general frame-dependent. We studied in detail their
frame-dependence and compared them in the infinite-
momentum frame with the corresponding light-front dis-
tributions. We explicitly showed that the genuine light-front
magnetization distributions are defined in terms of 2D
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Fourier transforms of the Sachs magnetic form factor,
rather than the Pauli form factor (as suggested earlier in
the literature). We explained that the difference results from
the transverse shift of the center of light-front momentum
relative to the center of mass.
For illustration, we finally applied our results to the

case of a nucleon using the corresponding electromagnetic
form factors extracted from experimental data. Our analytic
expressions and physical interpretations of relativistic
polarization and magnetization distributions hold in fact
for any physical spin-1

2
targets and can be easily generalized

to higher-spin targets. All that is required from the
experimental side is an extraction of the corresponding
electromagnetic form factors.
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APPENDIX A: CHARGE RADII

In this appendix, we review the concept of relativistic
mean square radii for spatial distributions, apply it to the
case of the relativistic charge distribution for a spin-1

2

system, and study in particular the momentum dependence
in the 2D case.

1. In the 3D Breit frame

The mean square radius of a 3D spatial distribution OðrÞ
is defined as

hr2Oi≡
R
d3r r2OðrÞR
d3rOðrÞ : ðA1Þ

Applying this definition to the 3D BF charge distribution
leads to [6,63]

hr2chi ¼
R
d3r r2J0BðrÞR
d3rJ0BðrÞ

¼ hr2Ei þ
3

4M2
; ðA2Þ

where the first term is the conventional Sachs mean square
radius defined as [1,141]13

hr2Ei≡ −
6

GEð0Þ
dGEðQ2Þ

dQ2

				
Q¼0

¼ 1

GEð0Þ
½−∇2

ΔGEðΔ2Þ�Δ¼0; ðA3Þ

and the second term is known as the Darwin-Foldy term
[121,142,143]. For purely historical reasons, the Darwin-
Foldy term is kept separate in the literature, and so the
charge radius of a spin-1

2
system is traditionally defined

by rE ≡ ffiffiffiffiffiffiffiffi
hr2Ei

p
[77,131]. Similarly, one can consider the

mean square radius of the effective magnetic charge
distribution, but the result is trivial, viz.

R
d3r r2ρM;BðrÞ ¼R

d3rρM;BðrÞ ¼ 0, because the expression for ρM;B in
momentum space is odd in Δ, see Eq. (42). In the literature,
the conventional magnetic mean square radius is in fact
simply defined by analogy with Eq. (A3)

hr2Mi≡ −
6

GMð0Þ
dGMðQ2Þ

dQ2

				
Q¼0

¼ 1

GMð0Þ
½−∇2

ΔGMðΔ2Þ�Δ¼0: ðA4Þ

If one adopts a T-type decomposition of the charge
density (48), the mean square charge radius can be split as
follows

hr2chi ¼ hr2ch;c0 i þ hr2ch;P0 i; ðA5Þ

where the convection and polarization contributions are
respectively given by

hr2ch;c0 i ¼ hr2Di −
3

4M2
;

hr2ch;P0 i ¼ 3

2M2

GMð0Þ
GEð0Þ

: ðA6Þ

Beside the Dirac mean square radius

hr2Di≡ −
6

F1ð0Þ
dF1ðQ2Þ
dQ2

				
Q¼0

; ðA7Þ

we observe in the convection contribution a negative
Darwin-Foldy term coming from the factor P0

B=M in
Eq. (49), analogous to the positive Darwin-Foldy term in
Eq. (A2) coming from the factor M=P0

B in Eq. (37).
Interestingly, even if the T-type polarization does not
contribute to the total charge of the system, it does contribute
to the charge radius. This is reflected in momentum space by
the global factor of τ ¼ Q2=ð4M2Þ in Eq. (50).

13Since Gn
Eð0Þ ¼ 0, the neutron Sachs mean square radius is

defined with Gp
Eð0Þ ¼ 1 in the denominator.
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2. In the 2D elastic and light-front frames

The mean square transverse radius of a 2D spatial
distribution Oðb⊥Þ is defined similarly to its 3D
counterpart (A1)

hb2⊥;Oi≡
R
d2b⊥b2⊥Oðb⊥ÞR
d2b⊥Oðb⊥Þ

: ðA8Þ

Applying this definition to the 2D EF charge distribution
J0EFðb⊥;PzÞ in Eq. (64) leads to

hb2⊥;chiEFðPzÞ ¼
R
d2b⊥b2⊥J0EFðb⊥;PzÞR
d2b⊥J0EFðb⊥;PzÞ

¼ 2

3
hr2Ei þ

1

M2

�
EP

EP þM
−
EP −M

EP

GMð0Þ
GEð0Þ

�
ðA9Þ

with EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þM2

p
. In particular, in the BF we have

lim
Pz→0

hb2⊥;chiEFðPzÞ ¼
2

3
hr2Ei þ

1

2M2
; ðA10Þ

which is consistent with our expectation hb2⊥;chiEFð0Þ ¼
2
3
hr2chi for a spherically symmetric BF charge distribution.

In the IMF, we find

lim
Pz→∞

hb2⊥;chiEFðPzÞ ¼
2

3
hr2Di; ðA11Þ

where we used the relation

hr2Ei ¼ hr2Di þ
3

2M2

F2ð0Þ
F1ð0Þ

ðA12Þ

between the Sachs and Dirac mean square radii.
In Fig. 11, we show the EF mean square transverse

charge radii hb2⊥;chiðPzÞ of the nucleon as a function of
the average momentum Pz. The proton and neutron Sachs
mean square radii

hr2Eip ¼ ð0.831� 0.007stat � 0.012systÞ2 fm2;

hr2Ein ¼ ð−0.1161� 0.0022Þ fm2; ðA13Þ

are taken from recent measurements by the PRad
Collaboration [27,30] and from the Particle Data
Group [144], respectively. Interestingly, we observe that
hb2⊥;chinðPzÞ switches sign from negative to positive
around Pz ≈ 1.893 GeV.
Applying now the definition (A8) to the 2D LF charge

distribution JþLFðb⊥;PþÞ leads to [77]

hb2⊥;chiLFðPþÞ ¼
R
d2b⊥b2⊥JþLFðb⊥;PþÞR
d2b⊥JþLFðb⊥;PþÞ

¼ 2

3
hr2Di ¼ hb2⊥;chiEFð∞Þ; ðA14Þ

which is consistent with the fact that JþLFðb⊥;PþÞ ¼
J0EFðb⊥;∞Þ [100].

APPENDIX B: RELATIVISTIC CENTERS
OF THE NUCLEON

In this appendix, we remind the relations between the
positions of the various possible centers of a relativistic
spin-1

2
system [94,97]. For a spin-j system, it suffices to

replace 1
2
S by jS in the following expressions.

The position of the center of canonical spin Rc (the point
about which the internal angular momentum takes the
same value as in the rest frame) coincides with the
average position R appearing in the quantum phase-space
formalism, namely

Rc ¼ R ¼ 1

2
ðrþ r0Þ: ðB1Þ

Since in the literature one is usually interested only in the
internal structure of the target, one often sets R ¼ 0 for
convenience.
The positions of the center of energy (or inertia) RE and

the center of mass RM are respectively given by

RE ¼ Rþ P × S
2EPðEP þMÞ ;

RM ¼ R −
P × S

2MðEP þMÞ ; ðB2Þ

FIG. 11. Mean-square transverse charge radii hb2⊥;chiEFðPzÞ of
the nucleon in the elastic frame, see Eq. (A9), as functions of the
nucleon average momentum Pz. The proton and neutron Sachs
mean square radii hr2Ei are taken from the recent measurements by
the PRad Collaboration [27,30] and the data tables by the Particle
Data Group [144], respectively.

NUCLEON RELATIVISTIC POLARIZATION AND … PHYS. REV. D 107, 096003 (2023)

096003-21



where S is the unit polarization vector. For a system at rest
(P ¼ 0) or longitudinally polarized (P × S ¼ 0), all these
relativistic centers coincide

RM ¼ RE ¼ Rc ¼ R: ðB3Þ

The center of mass is the only one transforming as the
spatial part of a Lorentz four-vector, and corresponds
therefore to the true center of the system. The shifts

Rc − RM ¼ P × S
2MðEP þMÞ ;

RE − RM ¼ P × S
2MEP

; ðB4Þ

are a pure relativistic effect. The set of all possible centers
of energy forms a disk centered at RM and orthogonal to S,
known as Møller’s disk [145,146]. Its radius is equal to half
the reduced Compton wavelength

RMøller ¼
1

2M
; ðB5Þ

and corresponds to the maximum value of jRc;E − RMj
in Eq. (B4), reached in the IMF for a purely transverse
polarization.
In the LF formalism one identifies the center of the target

with the center of Pþ [69], whose transverse position is
given by [94,140]

RPþ;⊥ ¼ RM;⊥ þ ðez × SÞ⊥
2M

: ðB6Þ

The center of Pþ can therefore be identified with the IMF
center of energy (or equivalently the IMF center of spin).

The relative positions of the various relativistic centers
are illustrated in Fig. 12. The left panel shows a repre-
sentation of the proton viewed from different Lorentz
frames. The right panel shows the momentum dependence
of the transverse position of the center of energy, spin
and Pþ relative to the center of mass. The EF situation
represented in the left panel corresponds to the Lorentz
factor γP ¼ 2 (i.e. Pz ¼

ffiffiffi
3

p
M ≈ 1.625 GeV for a proton)

and is represented by the vertical dashed line in the
right panel.

APPENDIX C: MULTIPOLE DECOMPOSITION
OF THE RELATIVISTIC POLARIZATION AND

MAGNETIZATION DISTRIBUTIONS

In this appendix, we discuss the multipole decomposi-
tion of the relativistic polarization and magnetization
distributions in both 3D and 2D cases. Since polarization
and magnetization transform as vectors under rotations,
their matrix elements for a spin-1

2
system can only consist in

monopole, dipole and quadrupole contributions.

1. In the 3D Breit frame

In the nD Euclidean space, the Fourier transform
of a quadrupole in Δ can conveniently be expressed as
followsZ

dnΔ
ð2πÞn e

−iΔ·r
�
ΔiΔj −

1

n
δijΔ2

�
fðΔ2Þ

¼ rirj − 1
n δ

ijr2

r2

�
1

r
d
dr

−
d2

dr2

�Z
dnΔ
ð2πÞn e

−iΔ·rfðΔ2Þ

ðC1Þ

FIG. 12. Left panel: Illustration of the relative positions in the rx ¼ 0 plane of the relativistic centers of mass RM , energy RE and
canonical spin Rc inside a transversely polarized proton viewed in the Breit, elastic and infinite-momentum frames. The light-blue
arrows represent the local momentum density. The proton charge radius rpE ≈ 0.831 fm is taken from recent precision measurements
by the PRad Collaboration [27,30]. The horizontal gray-dashed line corresponds to the maximum shift given by the Møller
radius (B5). Right panel: Momentum dependence of sideways shifts along the y-axis of the relativistic centers inside a proton. As an
example, the vertical dashed red line at Pz ¼

ffiffiffi
3

p
M ≈ 1.625 GeV corresponds to the elastic frame case (with Lorentz factor γP ¼ 2)

in the left panel.
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with r ¼ jrj. In the 3D Euclidean space, we have in
particular

Z
d3Δ
ð2πÞ3 e

−iΔ·r
�
ΔiΔj −

1

3
δijΔ2

�
fðΔ2Þ

¼ −
rirj − 1

3
δijr2

r2

Z
dQ
2π2

Q4j2ðQrÞfðQ2Þ; ðC2Þ

where the nth order spherical Bessel function jnðxÞ is
given by

jnðxÞ ¼ ð−1Þnxn
�
1

x
d
dx

�
n
j0ðxÞ ðC3Þ

with j0ðxÞ ¼ sin x=x the zeroth order spherical Bessel
function.
It is then straightforward to decompose the BF mag-

netization distribution in Eq. (39) into two terms MB ¼
MðMÞ

B þMðQÞ
B , whereMðMÞ

B ðrÞ corresponds to the monopole
contribution

MðMÞ
B ðrÞ ¼ e

2M
σ
Z

dQ
2π2

Q2j0ðQrÞ 1
3

�
2þ M

P0
B

�
M
P0
B
GMðQ2Þ;

ðC4Þ

and MðQÞ
B ðrÞ corresponds to the quadrupole contribution

MðQÞ
B ðrÞ ¼ e

2M

�
r̂ðr̂ · σÞ − 1

3
σ

� Z
dQ
2π2

Q4j2ðQrÞ

×
1

4P0
BðP0

B þMÞ
M
P0
B
GMðQ2Þ ðC5Þ

with r̂≡ r=jrj the unit vector along r.
In Fig. 13, we show the monopole and quadrupole

contributions to the BF magnetization distribution of a
proton presented in the upper left panel of Fig. 2. The
quadrupole contributions have an interesting structure
which we highlighted with streamlines. These contribu-
tions are however small, explaining why the BF magneti-
zation distributions presented in the first row of Fig. 2 look
essentially like monopoles.

2. In the 2D elastic and light-front frames

In the 2D transverse Euclidean plane, the relation (C1)
for the Fourier transform of a quadrupole in Δ reduces toZ

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�
Δi⊥Δ

j
⊥ −

1

2
δij⊥Δ2⊥

�
fðΔ2⊥Þ

¼ −
bi⊥b

j
⊥ − 1

2
δij⊥b2⊥

b2

Z
dQ
2π

Q3J2ðQbÞfðQ2Þ; ðC6Þ

where b ¼ jb⊥j and the nth order cylindrical Bessel
function JnðxÞ is given by

JnðxÞ ¼ ð−1Þnxn
�
1

x
d
dx

�
n
J0ðxÞ; ðC7Þ

with J0ðxÞ ¼ 1
2π

R
π
−π dθ e

−ix cos θ the zeroth order cylindrical
Bessel function.

FIG. 13. Monopole (left panel) and quadrupole (right panel) contributions, see Eqs. (C4) and (C5), to the Breit frame magnetization
distribution inside a proton polarized along the z-direction in the ry ¼ 0 plane. Based on the parametrization for the nucleon
electromagnetic form factors given in Ref. [132].
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It is then straightforward to decompose the transverse EF magnetization distribution in Eq. (62) into three termsM⊥;EF ¼
MðMÞ

⊥;EF þMðDÞ
⊥;EF þMðQÞ

⊥;EF, where the monopole, dipole and quadrupole contributions are respectively given by

MðMÞ
⊥;EFðb⊥;PzÞ ¼

e
2M

σ⊥
Z

dQ
2π

QJ0ðQbÞP
0 þMð1þ τ=2Þ

ðP0 þMÞð1þ τÞ GMðQ2Þ;

MðDÞ
⊥;EFðb⊥;PzÞ ¼

e
2M

Pz

2M
ðez × b̂⊥Þ

Z
dQ
2π

Q2J1ðQbÞ GMðQ2Þ
ðP0 þMÞð1þ τÞ ;

MðQÞ
⊥;EFðb⊥;PzÞ ¼

e
2M

�
b̂⊥ðb̂⊥ · σ⊥Þ −

1

2
σ⊥

� Z
dQ
2π

Q3J2ðQbÞ GMðQ2Þ
4MðP0 þMÞð1þ τÞ ðC8Þ

with b̂⊥ ≡ b⊥=jb⊥j the unit vector along b⊥. Similarly, the transverse EF polarization distribution can also be decomposed

into three terms P⊥;EF ¼ PðMÞ
⊥;EF þPðDÞ

⊥;EF þPðQÞ
⊥;EF, where the monopole, dipole and quadrupole contributions are

respectively given by

PðMÞ
⊥;EFðb⊥;PzÞ ¼

e
2M

ðez × σ⊥Þ
Z

dQ
2π

QJ0ðQbÞPz

P0

P0 þMð1þ τ=2Þ
ðP0 þMÞð1þ τÞ GMðQ2Þ;

PðDÞ
⊥;EFðb⊥;PzÞ ¼ −

e
2M

Pz

2M
b̂⊥

Z
dQ
2π

Q2J1ðQbÞPz

P0

GMðQ2Þ
ðP0 þMÞð1þ τÞ ;

PðQÞ
⊥;EFðb⊥;PzÞ ¼

e
2M

�
ðez × b̂⊥Þðb̂⊥ · σ⊥Þ −

1

2
ðez × σ⊥Þ

� Z
dQ
2π

Q3J2ðQbÞPz

P0

GMðQ2Þ
4MðP0 þMÞð1þ τÞ : ðC9Þ

Expressions in Eqs. (C8) and (C9) are very similar and follow simply from the relation between the momentum-space
amplitudes ePEF ¼ β × eMEF in Eq. (61), which obviously holds also for the individual multipole contributions. In Fig. 14,
we show the multipole decomposition of the transverse EF magnetization and polarization distributions inside a
transversely polarized proton with average momentum Pz ¼ 1 GeV. As the result of the nonvanishing average momentum
which breaks the z ↦ −z symmetry, Wigner rotations generate a dipole contribution on top of the quadrupole contribution.
However, discrete spacetime symmetries prevent the appearance of σ⊥ in the dipole contribution, explaining why the latter
does not depend on the target polarization.
According to the LF expressions in Eqs. (79)–(81),

Pþ
LFðb⊥;PþÞ ¼ P−

LFðb⊥;PþÞ ¼ M−
LFðb⊥;PþÞ ¼ 0: ðC10Þ

For the transverse LF magnetization distribution in Eq. (82), we apply the same procedure as in the EF and decompose it

into two terms M⊥;LF ¼ MðMÞ
⊥;LF þMðDÞ

⊥;LF, where the monopole and dipole contributions are respectively given by

MðMÞ
⊥;LFðb⊥;PþÞ ¼ e

2M
M2

2ðPþÞ2 σ⊥
Z

dQ
2π

QJ0ðQbÞGMðQ2Þ;

MðDÞ
⊥;LFðb⊥;PþÞ ¼ e

2M
M2

2ðPþÞ2 ðez × b̂⊥Þ
Z

dQ
2π

Q2

2M
J1ðQbÞGMðQ2Þ: ðC11Þ

Likewise, the transverse LF polarization distributions from Eq. (82) can be decomposed into two terms

P⊥;LF ¼ PðMÞ
⊥;LF þPðDÞ

⊥;LF, where the monopole and dipole contributions are respectively given by

PðMÞ
⊥;LFðb⊥;PþÞ ¼ e

2M
ðez × σ⊥Þ

Z
dQ
2π

QJ0ðQbÞGMðQ2Þ
1þ τ

;

PðDÞ
⊥;LFðb⊥;PþÞ ¼ −

e
2M

b̂⊥
Z

dQ
2π

Q2

2M
J1ðQbÞGMðQ2Þ

1þ τ
: ðC12Þ

Like in the EF case, we observe similar structures in the LF magnetization and polarization distributions which follow this
time from ePi⊥;LF ¼ − Pþ

P− ϵ
ij
⊥ eMj

⊥;LF in Eq. (81). The multipole contributions to the transverse LF polarization distribution
in Eq. (C12) are Pþ-independent and coincide with the IMF limit of the corresponding EF contributions in Eq. (C9).
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FIG. 14. Monopole (upper panels), dipole (middle panels) and quadrupole (lower panels) contributions, see Eqs. (C8) and (C9), to
the elastic frame magnetization (left panels) and polarization (right panels) distributions inside a proton polarized along the
x-direction and with average momentum Pz ¼ 1 GeV. Based on the parametrization for the nucleon electromagnetic form factors
given in Ref. [132].
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In particular, the EF quadrupole contribution vanishes in
the IMF in agreement with the absence of LF quadrupole
contribution. By contrast, the multipole contributions to the
transverse LF magnetization distribution in Eq. (C11) differ
from the IMF limit of the corresponding EF contributions
in Eq. (C8) by a factor P−=Pþ. In Fig. 15, we show the

multipole contributions to the transverse LF (scaled)
magnetization and polarization distributions inside a trans-
versely polarized proton. As expected, they look similar
to the corresponding EF distributions in Fig. 14, albeit with
differences in magnitude.
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[93] C. Lorcé, L. Mantovani, and B. Pasquini, Phys. Lett. B

776, 38 (2018).
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