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The analytic continuation of the gluon propagator is revised in the light of recent findings on the possible
existence of complex conjugated poles. The contribution of the anomalous pole must be added when Wick
rotating, leading to an effective Minkowskian propagator which is not given by the trivial analytic
continuation of the Euclidean function. The effective propagator has an integral representation in terms
of a spectral function which is naturally related to a set of elementary (complex) eigenvalues of the
Hamiltonian, thus generalizing the usual Källén-Lehmann description. A simple toy model shows how
the elementary eigenvalues might be related to actual physical quasiparticles of the nonperturbative
vacuum.

DOI: 10.1103/PhysRevD.107.096001

I. INTRODUCTION

The gluon and quark propagators play a very important
role in the study of strong interactions and a detailed
knowledge of the real-time correlators would provide the
basic blocks for a study of heavy-ion collisions from first
principles. However, in the low-energy nonperturbative
regime of strong interactions, our knowledge of the propa-
gators is very limited and usually based on numerical
calculations in the Euclidean space, including lattice sim-
ulations [1–13] and continuum studies [14–36]. Thus, the
problem of analytic continuation from Euclidean to
Minkowski space is still under intense debate [37–48].
For a generic field theory which describes physical

particles, many exact results have been developed in the
past and some of them have been even extended to N-point
functions [49–53]. If we did not know about confinement,
then the non-Abelian gauge theory would be expected to
satisfy the same general conditions which hold for all
physical particles: the propagators should be characterized
by the usual analytic properties and could be written by the
standard Källén-Lehmann integral representation in terms
of a positive defined spectral function. Then, the knowl-
edge of the spectral function would allow a trivial analytic
continuation from Euclidean to Minkowski space. Actually,
from the formal point of view, there is nothing in the

Lagrangian which might foreshadow a different behavior
for the correlators of QCD in comparison to, for instance,
QED. For the same reason, we still miss a full under-
standing of confinement. On the other hand, the interacting
compact QED seems to follow the same anomalous
features of Yang-Mills theory [54].
Because of color confinement, gluon and quarks are

usually regarded as internal degrees of freedom of the
theory. More precisely, they do not occur in the asymptotic
states, but they do exist as quasiparticles in a very hot
quark-gluon plasma above the deconfinement transition.
Thus, they cannot be regarded as totally unphysical
mathematical degrees of freedom like a ghost. But, since
we cannot detect a free gluon or a free quark, some unitarity
constraints might be relaxed for these particles and there is
no reason to believe that the same positivity conditions
should still hold for their spectral functions. Moreover, we
do not have any formal proof that there is any spectral
representation at all, so that the usual analytic properties of
the propagators might be questioned. That explains why
the problem of analytic continuation is still so strongly
debated.
On the other hand, we believe by now that QCD is a

complete consistent theory which generates its IR cutoff
dynamically [55] and we expect that the confinement must
arise from the same Lagrangian, as it actually happens in
the lattice, without adding spurious effects by hand. Thus, it
is also very reasonable to expect that the exact propagators
of the theory should be substantially different than the other
propagators of the standard model. Somehow, some sign of
confinement must appear dynamically in the structure of
the propagators and must be buried in their analytic
properties, in the complex plane. But, since our most
accurate information on the propagators is found
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numerically in the Euclidean space, we have no direct
knowledge of the analytic properties in the complex plane,
and the continuation has the nature of a guessing work.
Moreover, there are many clues that the analytic structure is
untrivial. For instance, from lattice and continuous calcu-
lations we know that the curvature of the propagator
changes sign and the Schwinger function crosses the zero,
becoming negative at a length of some Fermi units [56,57].
These are all signs of a spectral functionwhich is not positive
defined, if there is a spectral function. What is even more
disturbing, there are independent predictions of complex
conjugated poles which invalidate the Källén-Lehmann
spectral representation, even if the spectral density were
negative [46,47]. Complex poles were predicted by effective
models [58–60] for the gluon propagator in the past. From
first principles, their existence arises from a one-loop
screened expansion of the exact Lagrangian [57,61–69].
But they also occur in one-loop approximations [47] of
effective models like Curci-Ferrari [70–77].
Many numerical attempts at reconstructing the gluon

propagator and its spectral function have shown a better
agreement with the data if a pole part, with complex conju-
gated poles, is added to the usual spectral integral [44,78].
Even the outcome of Schwinger-Dyson equations in the
complex plane seems to suggest the existence of singular-
ities outside the real axis [79]. The quark propagator has also
been reported to show complex conjugated poles by the one-
loop screened expansion [80] and a general study of the pole
structure in one-loop approximations has been discussed
in Ref. [47].
While there are reconstruction methods which describe

the lattice data without requiring the existence of complex
poles [42,43], the quality of the reconstruction seems to
improve when the poles are added [78]. Then the issue of
the existence and dynamical meaning of the complex poles
becomes of paramount importance.
In this paper, we discuss how a consistent quantum

theory can be recovered when there are complex poles
in the Euclidean propagator. Assuming that complex
conjugated poles do exist in the exact propagator and that
they might play a physical role in the confinement
mechanism [81], we show how well-defined propagators
can be actually derived in real time by a modified Wick
rotation. Then, we see how a modified Källén-Lehmann
spectral representation, including the anomalous pole part,
can be derived from first principles in the presence of zero-
norm states, with complex energies. Finally we speculate
on a direct relation between the complex energies and a set
of observable glueball physical states.
While we cannot say if the complex poles are genuine

and if they do exist at all in the exact gluon propagator, here
we show how their existence would lead to untrivial
consequences in the analytic continuation to real time.
The paper is organized as follows: the problem of

analytic continuation is discussed in Sec. II and the

standard Wick rotation is recovered in Sec. III in order
to fix the notation; in Sec. IV a modified analytic continu-
ation is derived by two different methods, by residue
subtraction and by convergence arguments, yielding an
interesting spectral representation; in Sec. V the same
anomalous spectral density is derived from first principles
as a modified Källén-Lehmann representation in the pres-
ence of complex eigenvalues; in Sec. VI a Hermitian toy
model is discussed which leads to a speculative physical
interpretation of the anomalous spectral density in terms of
physical states; finally, in Sec. VII, the main results are
summarized and discussed.

II. ANALYTIC CONTINUATION
OF THE GLUON PROPAGATOR

While most of the rigorous results in quantum field
theory have been established in the Euclidean space, the
physical content of a theory is usually extracted in
Minkowski space. However, if there are complex con-
jugated poles, a general rigorous connection between
amplitudes in Euclidean and Minkowski spaces is missing
because the singularities do not allow the usual Wick
rotation and the standard Källén-Lehmann spectral rep-
resentation does not hold [46–48]. Thus, the extraction
of the physical content from the theory might be quite
tricky and might rely on some guess work. Moreover,
the numerical knowledge of an amplitude on the real
axis of the Euclidean space is usually not enough for
reconstructing its analytic continuation to Minkowski
space [42–45,53].
In perturbation theory, it is assumed and generally found

that the Fourier transform (FT) of the physical amplitudes
have poles in the second and fourth quadrants of the
complex-energy plane and a branch cut on the real axis.
Then, Wick rotation is allowed and gives a well-defined
connection between the physics which occurs in
Minkowski space and the amplitudes which are evaluated
in the Euclidean space. In that case, we find a circular path
going: (i) from real time to real energy (by a FT); (ii) to the
Euclidean space through Wick rotation in the complex-
energy plane; (iii) to imaginary time by an inverse FT; and
as shown in the following line,

t⇔
F:T:

p0 ⇔
Wick

ip4⇔
F:T:

− ix4 ⇔
τ order

t; ð1Þ

(iv) the circle closes if a well-defined prescription is given
for the analytic continuation from imaginary time to real
time. Time-ordered functions are not analytic in time,
because of the functions θð�tÞ, then the relation between
real time and imaginary time is not unique, in principle.
The position t ¼ −iτ, where t ¼ x0 in Minkowski space
and τ ¼ x4 in the Euclidean space, can be explained
by the physical motivation of mapping the time-evolution
operator UðtÞ ¼ expð−iHtÞ on a thermal average by
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Uð−iτÞ ¼ expð−τHÞ where 0 ≤ τ ≤ β. If we look at the
general structure of a time-ordered correlator

h0jT½AðtÞBð0Þj0i ¼ θðtÞ
X
n

ρn e−iEnt þ θð−tÞ
X
n

ρ0n eiEnt

ð2Þ

we find positive frequencies for t > 0 and negative
frequencies for t < 0, which can be seen as antiparticle
states going backwards in time. The position t ¼ −iτ gives
a weight expð−EnτÞ for positive frequencies and a weight
expðEnτÞ for negative frequencies. The correct thermal
weight expð−EnjτjÞ is obtained in all cases if τ < 0 when
t < 0 and vice versa. Thus, we generally assume that the
generic time-ordered average transforms according to

θðtÞhAðtÞBð0Þi þ θð−tÞhBð0ÞAðtÞi
⇒ θðτÞhAð−iτÞBð0Þi þ θð−τÞhBð0ÞAð−iτÞi ð3Þ

when going to the Euclidean space. Then, if the functions
hAðtÞBð0Þi are analytic functions, there is a well-defined
and unique way to connect real-time amplitudes and
imaginary-time averages. With the imaginary-time order
understood in the analytic continuation, the circle is closed
and we have a well-defined connection among the different
representations of the same theory as shown in Eq. (1).
For a physical particle, which is present in the asymptotic
states, causality and unitarity determine the Källén-
Lehmann spectral representation, giving a formal proof
of the relation between time order and imaginary-time
order. Thus our physical motivation is based on a solid
formal background [49–52].
While everything works fine in perturbation theory, in

nonperturbative studies the analytic properties of the
amplitudes might not allow the usual Wick rotation. It
happens for the gluon propagator which has been reported
to show pairs of complex-conjugated poles by very differ-
ent approaches [44,47,57–59,61–65,78,79]. Moreover,
even the analytic continuation from real time to imaginary
time can be questioned on general grounds. The generic
time-ordered average in Eq. (2) might contain different
parts which can be written as

θðtÞh0jAðtÞBð0Þj0i ¼ θðtÞh0jA1ðtÞB1ð0Þj0i
þ θðtÞh0jA2ðtÞB2ð0Þj0i � � � ð4Þ

Assuming that the single averages on the right-hand side
are analytic functions of time, the analytic continuation
would give

t ¼ −iτ ⇒ θð�τÞh0jA1ðtÞB1ð0Þj0i
þ θð�τÞh0jA2ðtÞB2ð0Þj0i � � � ð5Þ

where, in principle, each � sign can depend on the
properties of the specific operators in the average. Some
anomalous θð−τÞ function, with the wrong sign, could be
present in anomalous terms which might arise from an
untrivial vacuum structure. For instance, when states with
negative norm are present, we might find a superposition
of zero-norm complex-conjugated states in the vacuum.
The existence of eigenstates with a complex energy
E ¼ −ω − iη, with ω, η > 0, only makes sense if
t > 0 and τ < 0 since expð−iEtÞ ¼ expð−ηtÞ expðiωtÞ ¼
expðωτÞ expðiητÞ. Thus, the existence of complex-
conjugated poles might jeopardize the plain analytic
continuation to imaginary time, with a correspondence
between time ordering and imaginary-time ordering which
depends on the behavior of the single operators. On the
other hand, from a formal point of view, the Källén-
Lehmann spectral representation is not valid in these
anomalous cases [46], and no general prescription is known
for the analytic continuation.
The circle in Eq. (1) would be broken in two points:

t ⇔
F:T:

p0 ↔
?
ip4 ⇔

F:T:
− ix4 ↔

?
t: ð6Þ

We end up with two different theories: one of them is
defined in real-time Minkowski space, the other one in
imaginary-time Euclidean space. Thus, it is not obvious
what the physical content of the Euclidean theory is.
A perturbative-minded approach would be to assume

that the plain analytic continuation can be used from real to
imaginary energy even when Wick rotation is not allowed:
i.e. assume that the amplitude ΔEðp4Þ in the Euclidean
space is related to the amplitude in Minkowski space
ΔMðp0Þ by the same analytic continuation

ΔEðp4Þ ¼ ΔMðip4Þ ð7Þ

which holds in perturbation theory (as discussed by
Stingl [59]). For instance, in the screened massive expan-
sion [57,61–69,82], plain perturbation theory is used for
evaluating a gluon propagator which turns out to have
complex-conjugated poles in all quadrants of the complex-
energy plane. The same expansion can be developed in the
Euclidean or in the Minkowskian formalism yielding the
same identical results up to the analytic continuation of
Eq. (7). However, since the Wick rotation is not allowed,
the physical content in the two formalisms would be
different. If the propagator is integrated together with other
functions, in the calculation of some observable quantities,
the result would be different in Euclidean and Minkowski
space, because the Wick rotation would encounter the
“wrong” poles, adding new contributions from the residues.
By the same argument, going to real time on one side of
Eq. (6) and to imaginary time on the other side, the
resulting amplitudes would not be related by any analytic
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continuation in time. Yet, we could just assume that the
usual analytic continuation is not valid in the direct space.
In fact, by this approach, the FT of the gluon propagator
gives reasonable results even when complex poles are
present. The two-point correlator turns out to be exponen-
tially damped in imaginary time (Schwinger function) and
in the real time (propagator) when the energy is integrated
by Jordan lemma and the contribution of the complex
residues is correctly taken. It is quite obvious that the two
functions are not related by the usual analytic continuation
in time, which would transform an oscillating function in a
divergent function. In principle, there is nothing wrong
since the dynamics of a physical system in the Minkowski
space might be different from the imaginary-time behavior
of the corresponding Euclidean system. But we have still
two different theories, depending on the space where they
are defined.
According to a more formal approach to quantum field

theory, the physical content of the theory should be
reconstructed starting from the Euclidean formalism. As
discussed in Ref. [48], one could assume, as a starting
point, that the time ordered amplitudes are the analytic
continuation of the imaginary-time amplitudes according to
the standard ordering in imaginary time

h0jTfAðt1ÞBðt2Þ � � �gj0i ¼ h0jTτfAð−iτ1ÞBð−iτ2Þ � � �gj0i
ð8Þ

where t ¼ −iτ and Tτ denotes an ordering in the imaginary-
time τ. Having closed the chain on the right-hand side of
Eq. (6) we can determine a unique way for connecting the
Fourier transforms going through the direct space. It turns
out that the Euclidean and Minkowskian amplitudes are not
connected by a plain analytic continuation in the energy
plane, which is the point where the circle breaks. The
analysis of Ref. [48] leads to an unphysical gluon with a
diverging correlator in the real time. As expected, the
oscillating Schwinger function gives diverging exponen-
tials in real time, for t → ∞ and t → −∞. The complex-
conjugated poles are then considered as unphysical features
of a gluon state which does not belong to the physical
Hilbert space. Of course, if we started from the Minkowski
space we would find a reasonable damped propagator (as
discussed by Stingl [59]) and an unphysical Schwinger
function in the Euclidean space by the standard analytic
continuation to imaginary time. The result is unsatisfactory
for several reasons, as it looks like we threw the baby out
with the bath water. Since the gluon has real effects in the
phenomenology, giving rise to real physical jets and
quasiparticles in the hot matter, it is not satisfactory that
the confinement might be explained by downgrading the
gluon to a totally unphysical degree of freedom of the
theory. Moreover, some mathematical degrees of freedom
which do not exist in the real world, like the longitudinal
photon or a ghost, are not confined by any dynamical

mechanism. On the other hand, the complex poles and
residues of the gluon propagator seem to be even gauge-
parameter independent [57,83], pointing to some physical
role of the pole part of the propagator [81]. We also mention
that complex-conjugated poles have been found in the
propagator of the quark [80], which is another physical
(confined) particle.
We observe that Eq. (8) is the opposite assumption of

Eq. (7), but neither of them might be valid in a general
context. Here, we would like to explore a third assumption,
physicallymotivated, which can be regarded as an improved
version of the perturbative-minded plain continuation in the
energy plane of Eq. (7). Assuming that the physical content
should be reconstructed starting from the Euclidean formal-
ism, we look for a connection of the chain in the complex-
energy plane in order to leave unchanged the content of the
theory even when the Wick rotation cannot be used. It turns
out that when complex-conjugated poles are present, the
analytic continuation of Eq. (7) must be supplemented by
adding the residues of the poles which are encountered by
theWick rotation. The sameprocedurewas used inRef. [84],
and found successful for extracting the physical content of
the amplitude when a pole does not allow the usual Wick
rotation. Themethod ensures that the physical content of the
theory does not change when going from the Euclidean to
theMinkowskian space, where the dynamical properties can
be extracted. It is not a general procedurewhich can be easily
generalized to any amplitude, but it works fine for a simple
correlator which has well-defined complex poles. It is a
pragmatic approachwhich can be used to explore and clarify
the physical meaning of the complex-conjugated poles
of the gluon propagator. As argued above, according to
Refs. [57,81,83], the whole principal part of the gluon
propagator seems to be gauge-parameter independent in a
covariant gauge, pointing to a physical role played by poles
and residues. The present analysis aims to clarify that role
and might connect somehow the principal part to physical
objects like condensates and observable two-particle gluon
spectra.

III. WICK ROTATION AND STANDARD
ANALYTIC CONTINUATION

Before going to the description of the anomalous case, it
is useful to recover some known results in order to fix the
notation. Moreover, we can show how the usual relation
between time orderings, in the Euclidean and Minkowski
spaces, emerges naturally as the unique choice which can
be made.
As usual, the time-ordered gluon propagator is defined as

iΔμνðx − yÞ ¼ h0jTfAμðxÞAνðyÞgj0i
¼ θðx0 − y0Þh0jAμðxÞAνðyÞj0i
þ θðy0 − x0Þh0jAνðyÞAμðxÞj0i ð9Þ
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and its Fourier transform is given by

ΔμνðxÞ ¼
Z

d4p
ð2πÞ4Δ

μνðpÞe−ip·x; ð10Þ

ΔμνðpÞ ¼
Z

d4xΔμνðxÞeip·x: ð11Þ

The propagator can also be written in terms of two scalar
functions, the transverse and longitudinal propagators,

ΔμνðpÞ ¼ tμνðpÞΔTðp2Þ þ lμνðpÞΔLðp2Þ ð12Þ

where tμν, lμν are the transverse and longitudinal projec-
tors, respectively. In the Landau gauge the propagator
is purely transversal and given by the function
Δðp2Þ ¼ ΔTðp2Þ.
Quite generally, the Euclidean function is usually

obtained by Wick rotation, setting p0 ¼ ip4 so that
p2 ¼ −p2

E. If the propagator has no poles in the first
and third quadrants, then the Euclidean function is
obtained by

ΔEðp2
EÞ ¼ �Δð−p2

EÞ; ð13Þ

where the sign is negative for a scalar field and positive for
a vector field, because of the extra minus which arises when
the vectors Aμ are replaced by the Euclidean vector fields.
For instance, for a scalar field, replacing Aμ by Φ in

Eq. (9), the free particle Feynman propagator is

Δðp2Þ ¼ 1

p2 −m2 þ iϵ
ð14Þ

and the Euclidean function is

ΔEðp2
EÞ ¼ −Δð−p2

EÞ ¼
1

p2
E þm2

: ð15Þ

For the gluon, in the Landau gauge, the free particle
Feynman propagator is

ΔμνðpÞ ¼ −tμνðpÞ
p2 þ iϵ

ð16Þ

where

tμνðpÞ ¼ gμν −
pμpν

p2
: ð17Þ

Replacing Aμ and pμ by the Euclidean vectors

AμAν

�
gμν −

pμpν

p2

�
¼ −Aμ

EA
ν
E

�
δμν −

pμ
Ep

ν
E

p2
E

�
ð18Þ

(notice the presence of the extra minus sign) so that
replacing tμν by the Euclidean projector

tμνE ¼ δμν −
pμ
Ep

ν
E

p2
E

ð19Þ

we obtain

Δμν
E ðpEÞ ¼

tμνE ðpEÞ
p2
E

ð20Þ

and for the transverse function

ΔEðp2
EÞ ¼ Δð−p2

EÞ ¼
1

p2
E
: ð21Þ

For later use, we would like to discuss the same results in
more detail, using the standard relations between correla-
tors in Minkowski and Euclidean space, which hold in
perturbation theory, according to Eq. (1). By the standard
analytic continuation from real time to imaginary time, the
Euclidean correlators follow by setting x0 ¼ t ¼ −iτ ¼
−ix4 in Eq. (10) and Wick rotating the path of integration
in the Fourier transform, using p0 ¼ ip4, yielding the
Euclidean Fourier transform ΔE. More explicitly, the
Fourier transform provides an integral representation of
the real time propagator which can be continued to
imaginary time. For a scalar field

Z þ∞

−∞
ΔðpÞe−ip0x0

dp0

2π
¼

Z þ∞

−∞
ΔðpÞe−ip4x4

idp4

2π
ð22Þ

where the equality follows by rotating the integration path
on the right-hand side, while the extra i factor ensures that
the integrand function iΔð−p2

EÞ is the Euclidean Fourier
transform of the function

Δðx; x0 ¼ −ix4Þ ¼ −ih0jTτfΦðx;−ix4ÞΦð0Þgj0i ð23Þ

so that ΔEðp2
EÞ ¼ −Δð−p2

EÞ is the Euclidean Fourier
transform of the imaginary time correlator

ΔEðxÞ ¼ h0jTτfΦðxÞΦð0Þgj0i ð24Þ

where the time ordering is on the imaginary time τ ¼ x4.
We observe that the integration path has been modified in

the Wick rotation, but the integral does not change if there
are no poles in the first and third quadrants of the complex
p0 plane. Of course, Jordan’s lemma ensures that the
contour integrals vanish. Actually, for x0 > 0 the expo-
nential factor expð−ip0x0Þ requires that the contour is
closed in the lower half-plane (third and fourth quadrants),
while for x4 > 0 the exponential factor expð−ip4x4Þ
requires that the contour is closed in the right half-plane
(for Imp4 < 0), including first and fourth quadrants of the
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complex p0 plane, as shown on the left side of Fig. 1. Thus,
if we replace time ordering by imaginary-time ordering,
and if there are no poles in the first and third quadrants,
the integral does not change and is given by the residues of
the fourth quadrant. The same argument works for x0 < 0
(x4 < 0). For instance, the free particle propagator in
Eq. (14) has poles in the second and fourth quadrants of
the complex p0 plane, so that the Euclidean propagator
is trivially obtained by Eq. (13). The same result is found
for the vector fields, with an extra minus sign from the
Euclidean vectors Aμ

EA
ν
E, in agreement with Eq. (21).

We would like to stress that both, the rotation and the
analytic continuation, must be taken together when the
Fourier transform is used as an integral representation of
the real-time propagator, otherwise the integral would not
be defined.Moreover, the imaginary time order is enforced
by the analytic continuation.
In order to make the point clear, let us discuss the case

of the free scalar field, Eq. (14), and write the integral
representation

ΔðtÞ ¼
Z þ∞

−∞

dp0

2π
e−ip0t

1

p2
0 − ðΩ − iηÞ2 ð25Þ

where ðΩ − iηÞ2 ¼ p2 þm2 − iϵ with Ω > 0, i.e.
Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 þ η2

p
. More generally, the imaginary part

η > 0 is not required to be small for the following
discussion. Let us assume that t > 0 and evaluate the
integral in the lower half-plane where it gives the finite
result

ΔðtÞ ¼ −i
e−iΩt

2ðΩ − iηÞ e
−ηt ð26Þ

which arises from the pole at p0 ¼ Ω − iη in the fourth
quadrant. From the positive half-line t > 0, the
function ΔðtÞ can be continued to the lower half-plane
according to

t ¼ jtje−iθ ¼ a − ib ð27Þ

where θ can be increased continuously from zero to π=2, so
that a, b > 0. The analytic continuation reads

Δða − ibÞ ¼ −i
e−iΩða−ibÞ

2ðΩ − iηÞ e
−ηða−ibÞ: ð28Þ

It is immediately obvious that if the same continuation is
taken in the integral representation of Eq. (25) the integral
diverges: the exponential factor becomes expð−ip0a−p0bÞ
and diverges in the lower limit p0 → −∞. The analytic
continuation of the integral can only be a representation of
the continued function, Eq. (28), if the integration path is
rotated anticlockwise by the same angle

p0 ¼ p4eiθ ð29Þ

where p4 is a generic real variable which will become the
fourth Euclidean component in the limit θ → π=2. We
obtain the modified integral representation

FIG. 1. Left: usual anticlockwise Wick rotation, for a regular pole (R) which is in the fourth quadrant. Right: clockwise Wick rotation
is required for an anomalous pole (A) which is in the third quadrant. In both cases x0 > 0. The shaded areas are the contours which must
be chosen for t > 0 in the Fourier transform, according to Jordan lemma.

FABIO SIRINGO and GIORGIO COMITINI PHYS. REV. D 107, 096001 (2023)

096001-6



Δ̃ða − ibÞ ¼
Z þ∞

−∞

dp4eiθ

2π
e−ip4jtj 1

p2
4 expð2iθÞ − ðΩ − iηÞ2

¼ e−iθ
Z þ∞

−∞

dp4

2π
e−ip4jtj

�
1

p4 − ðΩ − iηÞ expð−iθÞ
��

1

p4 þ ðΩ − iηÞ expð−iθÞ
�
: ð30Þ

The integral is finite and, since jtj > 0, it can be evaluated
in the lower half-plane of the complex variable p4 where
the pole is at p4 ¼ ðΩ − iηÞ expð−iθÞ. Since Ω > 0 and
θ < π=2 the pole is rotated by an angle −θ but is still in the
lower half-plane. By the same argument, the other pole
remains in the upper half-plane. Taking the contribution of
the pole, the integral yields

Δ̃ða − ibÞ ¼ −ie−iθ
e−iðΩ−iηÞ expð−iθÞjtj

2ðΩ − iηÞ expð−iθÞ

¼ −i
e−iðΩ−iηÞða−ibÞ

2ðΩ − iηÞ ¼ Δða − ibÞ: ð31Þ

Thus, the modified representation gives the correct analytic
continuation of the propagator for any θ up to π=2. The
simultaneous rotations are necessary, at any value of θ, in
order to maintain the integral finite. Moreover, denoting
t ¼ −iτ, we observe that τ ¼ bþ ia and since b > 0 then
Re τ > 0 in the present analytic continuation. Should we
have chosen t < 0, the same argument would lead to
Re τ < 0.
Of course, in the special case θ ¼ π=2 we recover the

standard Wick rotation with a → 0, b ¼ τ > 0 and Δð−iτÞ
which agrees with Eqs. (22) and (23),

Δð−iτÞ ¼
Z þ∞

−∞

dp4

2π
e−ip4τ½iΔð−p2

EÞ� ð32Þ

where p2
E ¼ p2

4 þ p2. More generally, the same result, with
the same imaginary-time ordering, is found whenever the
poles of the propagator are all in the second and fourth
quadrants, allowing the Wick rotation in the first and third
quadrants, without encountering singularities. The argu-
ment is invalidated if there are anomalous singularities in
the first and third quadrants.

IV. ANOMALOUS POLES AND MODIFIED
ANALYTIC CONTINUATION

When complex conjugated poles are present, Eq. (13)
does not hold in general and the Wick rotation is not well
defined. The Euclidean (transverse) gluon propagator has
been reported to have complex conjugated poles with a
gauge-parameter independent principal part [57,83]

ΔEðp2
EÞ ¼

R
p2
E þM2

þ R⋆
p2
E þM⋆2 þ Δfinite ð33Þ

with complex mass M2 and residue R, and with real and
imaginary parts which have the same sign: ImM2 > 0,
ImR > 0, ReR > 0, ReM2 > 0 [57].
Even if the poles and residues seem to be gauge-

parameter independent [57,83], it is not easy to understand
their physical meaning. In fact, the analytic continuation to
Minkowski space is not trivial because there are poles in all
quadrants. With the notation M2 ¼ m2 þ iγ2 and denoting
by ω2 ¼ p2 þm2, neglecting the finite part, the Euclidean
propagator reads

ΔEðp2
EÞ ¼

R
p2
4 þ ω2 þ iγ2

þ R⋆
p2
4 þ ω2 − iγ2

: ð34Þ

In the complex p0 plane, denoting p0 ¼ ip4 as usual, the
propagator reads

ΔEðp2
EÞ ¼ −

R
p2
0 − ω2 − iγ2

−
R⋆

p2
0 − ω2 þ iγ2

ð35Þ

and there are poles at p2
0 ¼ ω2 � iγ2. At variance with the

free particle propagators of Eqs. (14) and (16) the poles are
in all quadrants and the analytic continuation requires
more care.

A. Residue subtraction

The problem of extracting the physical content in
Minkowski space was addressed by Ref. [84]. In that
work, the residue of the anomalous pole was added to the
calculation in Minkowski space if the trivially continued
propagator was used. Here, we show that the procedure is
equivalent to the definition of a new effective propagator in
Minkowski space with a modified principal part.
Let us take the view that the propagator can be regarded

as a distribution acting on physical well-behaved functions
f which ensure convergence

I ¼
Z þ∞

−∞
ΔEðp4Þfðp4Þdp4 ¼

Z þ∞

−∞
ΔEðx4Þfð−x4Þdx4:

ð36Þ

Here, we describe the scalar case and use a shorthand
notation, omitting the integrals over p and over x in order to
focus on the fourth component. An integral of that kind is
encountered in the calculation of Feynman graphs and
cross sections. One usually assumes that all functions have
no poles in the first and third quadrants, so that the integral
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does not change when Wick rotating. The same physical
observable can then be evaluated in Minkowski space by
the change of variable p4 ¼ −ip0

I ¼
Z þ∞

−∞
ΔEðp4Þfðp4Þdp4

¼
Z þi∞

−i∞
ΔEð−ip0Þfð−ip0Þð−idp0Þ ð37Þ

followed by the usual clockwise rotation of the integration
path, yielding

I ¼
Z þ∞

−∞
½−iΔEð−ip0Þ�fð−ip0Þdp0: ð38Þ

Thus, the same physical content is obtained in Minkowski
space if the function iΔðp0Þ is used in the graph, with the
Minkowskian propagator Δðp0Þ ¼ −ΔEðp4 ¼ −ip0Þ,
recovering the same rule of Eq. (13). An obvious extra
minus sign occurs for the vector fields.
The same argument does not work if the propagator

happens to have poles in the first and third quadrants. In that
case, the poles give contributionswhichmust be added to the
integral I when the path of integration is modified [84].
In more detail, let us enforce the conditions on the

function f and assume that the function has no poles in the
first and third quadrants, as it is often the case. We can split
the principal part of the propagator in Eq. (35), denoting by
ΔA the part which has anomalous poles at p2

0 ¼ ω2 þ iγ2

(first and third quadrants) and by ΔR the regular part which
has the usual poles at p2

0 ¼ ω2 − iγ2 (second and fourth
quadrants)

ΔAðp0Þ ¼ −
R

p2
0 − ω2 − iγ2

;

ΔRðp0Þ ¼ −
R⋆

p2
0 − ω2 þ iγ2

: ð39Þ

The anomalous term ΔA is the only part in the whole
propagator which does not allow the usual Wick rotation.
We observe that ΔAðp0Þ and ΔRðp0Þ, despite the depend-
ence on p0, are here the Euclidean propagators, with the
mere substitution p4 ¼ −ip0.
Let us see what happens to the anomalous case and take

the Euclidean propagator ΔEðp4Þ equal to the anomalous
term of Eq. (39),

ΔEð−ip0Þ ¼ ΔAðp0Þ ¼ −
R

p2
0 − ω2 − iγ2

; ð40Þ

which has poles in the first and third quadrants, at
p0 ¼ �z0, where z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ iγ2

p
with Im z0 > 0, and

residues ∓ R=ð2z0Þ, respectively. By insertion in
Eq. (37) we can write

I ¼
Z þ∞

−∞
ΔEðp4Þfðp4Þdp4

¼
Z þi∞

−i∞

�
−

R
p2
0 − ω2 − iγ2

�
fð−ip0Þð−idp0Þ: ð41Þ

In order to rotate (clockwise) the path of integration, we
observe that the integrals along the imaginary and real axis
differ by 2πi times the residue of the integrand function,
taken with opposite signs in the first and third quadrants,
since the poles must be encircled in the opposite direction
when deforming the path

I ¼
Z þi∞

−i∞

�
−

R
p2
0 − ω2 − iγ2

�
fð−ip0Þð−idp0Þ

¼
Z þ∞

−∞

�
−

R
p2
0 − ω2 − iγ2

�
fð−ip0Þð−idp0Þ

þ 2π

�
Rfð−iz0Þ

2z0
þ Rfðiz0Þ

2z0

�
: ð42Þ

Quite generally, the function f can be assumed to be even,
since its odd part would give no contribution in the integral
with an even function ΔEðp4Þ. Thus, the difference of the
integrals is just 2πRfðiz0Þ=z0. However, the integral on the
real axis, on the right-hand side of Eq. (42), can be
evaluated by closing the contour in the upper half-plane,
yielding

Z þ∞

−∞

�
−

R
p2
0 − ω2 − iγ2

�
fð−ip0Þð−idp0Þ

¼ 2π

�
−Rfð−iz0Þ

2z0

�
þ C½f� ð43Þ

where C½f� is the contribution coming from the poles of f
in the second quadrant. If we can neglect the extra term
C½f�, the integral on the right-hand side of Eq. (42) would
be just one half of the added term, but with the opposite
sign. Thus the added term would reverse the sign of the
integral and we could write

I ¼
Z þi∞

−i∞

�
−

R
p2
0 − ω2 − iγ2

�
fð−ip0Þð−idp0Þ

¼
Z þ∞

−∞

�
R

p2
0 − ω2 − iγ2

�
fð−ip0Þð−idp0Þ ð44Þ

or, using Eq. (40)

I ¼
Z þ∞

−∞
½iΔEð−ip0Þ�fð−ip0Þdp0 ð45Þ

which has the opposite sign of Eq. (38). We would
conclude that the effective Minkowskian propagator has
the opposite sign, Δðp0Þ ¼ ΔEðp4 ¼ −ip0Þ, compared
with Eq. (13), while the regular part of the propagator
would maintain the same sign. This result would be exact if
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the function f had no poles at all, but then some
convergence problems would arise. Actually, as we are
going to show below, the argument can be made more
rigorous if the function f is just the Fourier exponential,
with some limits on convergence which can be used to
establish the correct analytic continuation from real to
imaginary time. In the general case, in the presence of other
poles, the correct residues must be added by hand when
going from the Euclidean to the Minkowski formalism,
according to Eq. (42), as discussed in Ref. [84].

B. Analytic continuation in time: Clockwise
and anticlockwise rotation

A reversing of sign in the anomalous part of the effective
Minkowskian propagator can be recovered by going back
to real time and imposing that the analytic continuation to
imaginary time satisfies a more general time ordering,
as in Eq. (5)

θðtÞ ⇔ θð�τÞ ð46Þ

where the sign might depend on the operators in
the average. When fðp4Þ ¼ expð−ip4x4Þ the integral in
the previous Sec. III A becomes the FT which defines the
correlator in imaginary time. The function f has no poles
and the argument becomes exact if the convergence can be
guaranteed by the Jordan lemma.
In the regular case, we can derive the Minkowskian

propagator as the usual analytic continuation in time, by
just replacing x4 ¼ ix0 in the Euclidean correlator of
Eq. (24), inserting an extra minus sign because of the
vector fields and reversing the same steps of Eq. (22),
yielding

ΔμνðxÞ¼ iΔμν
E ðx;x4¼ ix0Þ

¼
Z

d3p
ð2πÞ3e

ip·x

Z þ∞

−∞
Δμν

E ðp;p4¼−ip0Þe−ip0x0
dp0

2π

ð47Þ

where the usual anticlockwise Wick rotation, p0 ¼ ip4,
must be taken together with the analytic continuation, in
order to maintain a meaningful integral representation, as
discussed in detail through Eqs. (25)–(31) and shown on
the left side of Fig. 1.

Next, let us examine what happens to the anomalous
term ΔA. If there are poles in the first and third quadrants,
the path of integration can only be clockwise rotated in
order to reach the real axis without encountering singu-
larities. Thewhole discussion of Sec. II still holds, provided
that the angle θ is replaced by −θ, since η must be replaced
by −η in the integral representation of the anomalous
part, according to Eq. (25). Let us follow the same steps
in detail: reversing the imaginary part of the poles,
Eq. (25) reads

ΔðtÞ ¼
Z þ∞

−∞

dp0

2π
e−ip0t

1

p2
0 − ðΩþ iηÞ2 ð48Þ

where η > 0. We have anomalous poles in the first and third
quadrants, at p0 ¼ �ðΩþ iηÞ. As before, let us assume
that t > 0 and evaluate the integral in the lower half-plane
where it gives the finite result

ΔðtÞ ¼ i
eiΩt

2ðΩþ iηÞ e
−ηt ð49Þ

which arises from the pole at p0 ¼ −ðΩþ iηÞ in the third
quadrant, as shown on the right side of Fig. 1.
The function ΔðtÞ can be continued to the upper half-

plane according to

t ¼ jtjeiθ ¼ aþ ib ð50Þ

where θ can be increased continuously from zero to π=2, so
that a, b > 0. The analytic continuation reads

Δðaþ ibÞ ¼ i
eiΩðaþibÞ

2ðΩþ iηÞ e
−ηðaþibÞ: ð51Þ

Again, the integral representation of Eq. (48) can only be
meaningful if the integration path is rotated, together with
the analytic continuation, by the clockwise rotation

p0 ¼ p4e−iθ; ð52Þ

as shown on the right side of Fig. 1, yielding the modified
integral representation

Δ̃ðaþ ibÞ ¼
Z þ∞

−∞

dp4e−iθ

2π
e−ip4jtj 1

p2
4 expð−2iθÞ − ðΩþ iηÞ2

¼ eiθ
Z þ∞

−∞

dp4

2π
e−ip4jtj

�
1

p4 − ðΩþ iηÞ expðiθÞ
��

1

p4 þ ðΩþ iηÞ expðiθÞ
�
: ð53Þ
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The integral is finite and, since jtj > 0, it can be again
evaluated in the lower half-plane of the complex variable p4

where the pole is now at p4 ¼ −ðΩþ iηÞ expðiθÞ. Since
Ω > 0 and θ < π=2 the pole is rotated by a positive angle θ
but is still in the lower half-plane. By the same argument,
the other pole remains in the upper half-plane. Taking the
contribution of the pole, the integral yields

Δ̃ðaþ ibÞ ¼ −ieiθ
eiðΩþiηÞ expðiθÞjtj

−2ðΩþ iηÞ expðiθÞ

¼ i
eiðΩþiηÞðaþibÞ

2ðΩþ iηÞ ¼ Δðaþ ibÞ: ð54Þ

Thus, even in the anomalous case, the modified represen-
tation still gives the correct analytic continuation of the
propagator for any θ up to π=2. However, denoting t ¼ −iτ,
this time we find τ ¼ −bþ ia and since b > 0 then
Re τ < 0 in the analytic continuation, which is the opposite
of the regular term. Should we have chosen t < 0, the same
argument would lead to Re τ > 0.
Finally, in the special case θ ¼ π=2 we find a → 0,

τ ¼ −b < 0 and Eq. (53) reads

Δð−iτÞ ¼
Z þ∞

−∞

dp4

2π
eip4τ½−iΔð−p2

EÞ� ð55Þ

where p2
E ¼ p2

4 þ p2 and the minus sign, inside the square
brackets, arises from the opposite phase expð−iθÞ → −i. In
simple words, as shown on the right side of Fig. 1, the
clockwise rotation leads to an integral on the real axis going
from þ∞ to −∞, so that a change of sign occurs.
Reversing the steps, the anomalous term of the gluon

propagator, ΔA in Eq. (39), satisfies

ΔμνðxÞ¼
Z

d3p
ð2πÞ3e

ip·x

Z
−∞

þ∞
Δμν

E ðp;p4¼−ip0Þe−ip0x0
dp0

2π

ð56Þ

which has the opposite sign of Eq. (47) because of the
inversion of the extremes. The sign of Eq. (13) is reversed
for the anomalous part

ΔμνðpÞ ¼ −Δμν
E ðp; p4 ¼ −ip0Þ: ð57Þ

Moreover, the analytic continuation of the anomalous term
is only valid if τ < 0 when t > 0, reversing the relation
between time orderings.
We have seen that the convergence of the integrals

enforces a strict relation between real and imaginary time
ordering. Actually, the integrals are not convergent if
x4 ¼ x0 ¼ 0 which means that the propagator is not
analytic at t ¼ τ ¼ 0. In the regular case, the analytic
continuation works only if a θðtÞ corresponds to a θðτÞ,
ensuring that the same pole is encircled in the integral

representations, in the Euclidean and Minkowski space, say
Eq. (32) and Eq. (25), which give the same finite content
because of the Jordan lemma. More generally, the integrals
are equivalent only if τt > 0. In the anomalous case, the
time ordering is reversed: we still encircle the same pole in
the integral representations, say Eq. (55) and Eq. (48),
which give the same finite content, provided that a θðtÞ
corresponds to a θð−τÞ, or in other words, τt < 0.
We conclude that, if the analytic continuation is enforced

in time, then the anomalous term ΔA changes sign going
from Euclidean to Minkowski space while the normal term
ΔR does not. With the notation of Eq. (39) the principal part
of the effective Minkowskian propagator then reads

Δðp2Þ ¼ −ΔAðp0Þ þ ΔRðp0Þ

¼ R
p2
0 − ω2 − iγ2

−
R⋆

p2
0 − ω2 þ iγ2

ð58Þ

and using the definition of ω2

Δðp2Þ ¼ R
p2 −M2

−
R⋆

p2 −M⋆2 : ð59Þ

Then, when complex poles are present in the Euclidean
propagator, the residue of the anomalous pole changes sign
in Minkowski space, before taking the FT which gives the
real time correlator, with important consequences on the
spectral properties.
For later reference, we observe that neglecting the first

(anomalous) term, and taking ImR ¼ 0, ReR ¼ Z, γ2 → 0,
the propagator becomes the usual massive gluon propagator
in Minkowski space,

Δðp2Þ ¼ Z
−p2 þm2 − iγ2

: ð60Þ

C. Spectral properties

Comparing Eq. (33) and Eq. (59), we observe that while
the Euclidean principal part is real on the real axis, the new
Minkowskian principal part is a pure imaginary number.
We are tempted to see the pure imaginary principal part as a
spectral density

ρðp2Þ ¼ 1

i
Δðp2Þ ¼ 1

i
½ΔRðp2Þ − ΔAðp2Þ�

¼ 1

i

�
R

p2 −M2
−

R⋆
p2 −M⋆2

�
ð61Þ

where we are using the same notation of Eq. (39):
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ΔAðp2Þ ¼ −
R

p2 −M2
;

ΔRðp2Þ ¼ −
R⋆

p2 −M⋆2 : ð62Þ

Actually, the spectral density ρðp2Þ has very interesting
properties. In fact, the regular part has no poles in the upper
half-plane of the complex variable p2, then satisfies the
usual Kramers-Kronig dispersion relation,

ReΔRðp2Þ ¼ 1

π
P
Z þ∞

−∞

ImΔRðμ2Þ
μ2 − p2

dμ2 ð63Þ

as can be easily confirmed by a direct calculation. Here, the
imaginary part of ΔR is just the spectral weight ρ since, on
the real axis

ΔAðp2Þ ¼ ½ΔRðp2Þ�⋆;

ImΔRðp2Þ ¼ 1

2
ρðp2Þ;

ΔEð−p2Þ ¼ ΔRðp2Þ þ ΔAðp2Þ ¼ 2ReΔRðp2Þ; ð64Þ

where by ΔEð−p2Þ we mean the original Euclidean version
of the principal part. Thus, we can write

ΔEð−p2Þ ¼ 1

π
P
Z þ∞

−∞

ρðμ2Þ
μ2 − p2

dμ2 ð65Þ

which holds on the real axis, strictly.
On the other hand, denoting by Δf

Eð−p2Þ the finite part
Δfinite of the propagator in Eq. (33), it satisfies the usual
Källén-Lehmann relation [46]:

Δtot
E ð−p2Þ ¼ ΔAð−p2Þ þ ΔRð−p2Þ þ Δf

Eð−p2Þ;

Δf
Eð−p2Þ ¼ 1

π

Z
∞

0

ImΔf
Eð−μ2Þ

μ2 − p2 − iϵ
dμ2 ð66Þ

where the spectral weight ImΔf
Eð−μ2Þ ¼ 0 if μ2 < 0. Then,

we can write in the Euclidean space (p2
E ¼ −p2 > 0)

Δtot
E ðp2

EÞ ¼
1

π
P
Z þ∞

−∞

ρðμ2Þ þ ImΔf
Eð−μ2Þ

μ2 þ p2
E

dμ2 ð67Þ

where the spectral weight ρðμ2Þ adds the content of the
principal part. The weight ρ turns out to be the most
relevant contribution to the gluon propagator in actual
calculations [46,57].
The integral representation of the principal partΔEð−p2Þ

in Eq. (65) holds strictly on the real axis. For p2 > 0 it gives
the standard “Minkowskian” propagator which is obtained
by a direct analytic continuation. However, this object is
defined on the real axis. We might define the same integral
representation in the complex plane as

Gðp2Þ ¼ 1

π

Z þ∞

−∞

ρðμ2Þ
μ2 − p2

dμ2 ð68Þ

where p2 is a generic complex variable. We can easily see
that

Gðp2Þ ¼

8>><
>>:

2ΔRðp2Þ if Imp2 > 0

ΔRðp2Þ þ ΔAðp2Þ if Imp2 ¼ 0

2ΔAðp2Þ if Imp2 < 0:

ð69Þ

The function Gðp2Þ has no poles in the whole complex
plane, but has a cut on the real axis where it jumps from ΔR
to ΔA. The difference on the cut gives the spectral function
ρ. The function can be analytically continued across the cut
on different Riemann sheets where the poles are found. We
argue that, if a function like that could be used in the
Schwinger-Dyson equations, the proliferating of singular-
ities and cuts which has been recently reported in that
formalism [78] could be somehow avoided or reduced.
Finally, the FT in Eqs. (56) and (47) can be explicitly

evaluated yielding the following terms (omitting the indi-
cation of the three-vector integration on p):

−iΔAðtÞ ¼ −
R
2E

½θðtÞeiEt þ θð−tÞe−iEt�;

−iΔRðtÞ ¼
R�

2E� ½θðtÞe−iE
�t þ θð−tÞeiE�t� ð70Þ

having introduced the complex energies E2 ¼ p2 þM2

with ImE > 0, ReE > 0. We observe that all the terms are
well behaved and strongly damped in the limit t → �∞, as
expected for a confined particle [59,64]. In imaginary time,
we find from the first integral in Eq. (47)

ΔAðτÞ ¼
R
2E

½θð−τÞeEτ þ θðτÞe−Eτ�;

ΔRðtÞ ¼
R�

2E� ½θðτÞe−E
�τ þ θð−τÞeE�τ�: ð71Þ

Again, all terms are well behaved in the limit τ → �∞. We
observe that the regular part −iΔRðtÞ is obtained by the
analytic continuation of the imaginary-time function ΔRðτÞ
with t ¼ −iτ and with θðτÞ replaced by θðtÞ. The same
analytic continuation, by t ¼ −iτ, also works for the
anomalous function ΔAðτÞ provided that the sign of
ΔAðtÞ is changed and θðτÞ is replaced by θð−tÞ. Thus
the circle in Eq. (1) is closed again having closed the chain
by analytic continuations in time and energy.
The Schwinger function behaves like expð−jτjReEÞ,

where ReE > 0. In fact, we can write
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ΔEðτÞ ¼ ΔRðτÞ þΔAðτÞ

¼
�
θðτÞ

�
R
2E

e−Eτ þ R�

2E� e
−E�τ

�
þ ðτ↔ −τÞ

�
ð72Þ

and taking E ¼ M in the limit p ¼ 0, we obtain for τ > 0

½ΔEðτÞ�p¼0 ∼ expð−τReMÞ cosðϕ − τImMÞ ð73Þ

where ReM > 0 and the phase ϕ is the difference between
the arguments of R and M, i.e. ϕ ¼ arctan ðImR=ReRÞ −
arctan ðImM=ReMÞ ≈ 0.69 according to the data of
Ref. [57]. The Schwinger function becomes negative at
τ ¼ ðπ=2þ ϕÞ=ImM ≈ 2.26=ð0.375 GeVÞ ¼ 6.0 GeV−1≈
1.2 fm, where again, the data of Ref. [57] have been used.
This length scale is consistent with the expected confine-
ment radius of a gluon. We observe that this prediction is
gauge-parameter independent, as previously conjectured in
Ref. [56] if, and only if, the phase of the residues and the
poles are also invariant.
The real-time propagator is

−iΔðtÞ ¼ −i½ΔRðtÞ − ΔAðtÞ�

¼ −i
�
θðtÞ

�
R
2E

eiEt þ R�

2E� e
−iE�t

�
þ ðt ↔ −tÞ

�

ð74Þ

and behaves like expð−jtjImEÞ, where ImE > 0. The two
functions, ΔðtÞ and ΔEðτÞ, are not related by a trivial
analytic continuation. It is important to observe that the
reversed sign in the anomalous part gives a natural aspect
to the real-time propagator which can be written in terms
of intermediate-state amplitudes, as discussed in the next
section.

V. ANOMALOUS SPECTRAL REPRESENTATION

In the presence of complex conjugated poles, the Källén-
Lehmann representation does not hold. The principal
part must be added to the usual dispersion relation [46,47].
The added part has been seen in Eq. (67) as deriving from
the spectral weight ρðp2Þ which is the Minkowskian
principal part of the propagator, according to our procedure
for going from Euclidean to Minkowski space.
The gauge-parameter independence of the principal

part [57,83] and the relevance of the weight ρ (which is
the larger term in the total spectral function [46]) suggest
that the residues and the poles might be related to a
phenomenologically relevant sector of the single-particle
spectrum. For a confined gluon, the principal part could
have the same role which is usually played by a real pole for
an observable particle.
If the principal part arises from an anomalous sector of

the spectrum, we can extract some properties of that sector
by a more detailed study of the Minkowskian principal part.

Moreover, Eq. (74) suggests that the effective propagator,
with its anomalous sign, could be naturally related to a set
of intermediate states, even if, at variance with the usual
single-particle pole of Eq. (60), the principal part is a purely
imaginary number on the real axis. We are assuming
that, according to several studies [57,58], the constraints
ImM2 > 0, ImR > 0, ReR > 0, and ReM2 > 0 are
satisfied.
On general grounds, the propagator is defined as in

Eq. (9) which can be written as

iΔμνðx; tÞ ¼ θðtÞh0jAμð0ÞeiP·xUðtÞAνð0Þj0i
þ θð−tÞh0jAνð0Þe−iP·xUð−tÞAμð0Þj0i ð75Þ

where P is the momentum operator and UðtÞ is the time-
evolution operator. Without any special hypothesis on time
evolution, we can always write the elements of the group in
terms of a generator H which we call Hamiltonian,

UðtÞ ¼ e−iHt: ð76Þ

If the space of states is a pseudo-Euclidean space, with
negative-norm states, then the definition of Hermitian
conjugation might require some extra care. Here, we take
the usual definition and say that B† is the adjoint of the
operator B if

hΨjB†jΦi ¼ hΦjBjΨi� ð77Þ

for any pair of states jΦi, jΨi, irrespective of their norm. In
order to find a real expectationvalue of theHamiltonian, one
usually requires it to be a self-adjoint (Hermitian) operator,
so that the set of operators UðtÞ gives a unitary representa-
tion of the time-evolution group. However, in the presence
of negative-norm states, the eigenvalues of the Hermitian
operatorHmight not be real, and nonunitary representations
ofUðtÞmight exist. A simple example is provided in the next
section. Denoting by fPng a set of projectors on eigenstates
of H with eigenvalues En, without any special assumption
on the nature of the numbers En, we can write

UðtÞPn ¼ PnUðtÞ ¼ Pne−iEnt ð78Þ

and the propagator reads

iΔμνðx; tÞ ¼ θðtÞ
X
n

ρμνn eipn·xe−iEnt

þ θð−tÞ
X
n

ρνμn e−ipn·xeiEnt ð79Þ

where

ρμνn ¼ h0jAμð0ÞPnAνð0Þj0i: ð80Þ
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We observe that since, in general, P†
n ≠ Pn, the spectral

weight ρμνn might even be a complex number.
Since we limit the study to the principal part, then the

sum over the intermediate states can be regarded as a partial
sum over a limited subset which is not required to be
complete. We argue that the principal part must arise from
an anomalous subset and yet share the same structure of
Eq. (79). In fact, any regular subset would give a term
which satisfies the standard Källén-Lehmann representa-
tion. As discussed in Ref. [46], the principal part must be
added by hand to the usual dispersion relations, so that its
contribution in Eq. (79) must arise from a special set of
states which are not present in the standard spectral
representation. Thus, we only need to consider that special
subset for the study of the principal part, which we denote
by Δμν from now on.
The Fourier transform gives

iΔμνðp; p0Þ ¼
X
n

ð2πÞ3δ3ðp − pnÞρμνn
Z

∞

0

eiðp0−EnÞtdt

þ
X
n

ð2πÞ3δ3ðpþ pnÞρνμn
Z

0

−∞
eiðp0þEnÞtdt

ð81Þ

and introducing a transverse projection

ρnðpÞ ¼ ρnð−pÞ ¼
1

d − 1
tμνðpÞρμνn ð82Þ

we can write the principal part of the transverse propagator
as

iΔðp; p0Þ ¼
X
n

ð2πÞ3δ3ðp− pnÞρnðpÞ
Z

∞

0

eip0te−iEntdt

þ
X
n

ð2πÞ3δ3ðpþpnÞρnðpÞ
Z

∞

0

e−ip0te−iEntdt:

ð83Þ

Because of parity, we can assume the existence of degen-
erate pairs of states with En ¼ En0 and ρnðp; p0Þ ¼
ρn0 ð−p; p0Þ and write

iΔðp; p0Þ ¼
X
n

ð2πÞ3δ3ðp − pnÞρnðpÞ

×
Z

∞

0

½eip0t þ e−ip0t�e−iEntdt ð84Þ

where the symmetry Δðp; p0Þ ¼ Δðp;−p0Þ, which follows
from the Lorentz invariance of the principal part ΔðpÞ in
Eq. (59), is made manifest yielding an even function of p0

and p.
Complex conjugated poles can only arise if the energies

En are complex numbers. Thus, the first problem we must

face is the origin of complex eigenvalues for the Hermitian
Hamiltonian H. Moreover, denoting by χnðxÞ the wave
functions in Eq. (79),

χnðxÞ ¼ eipn·xe−iEnt; ð85Þ
we observe that, because of Lorentz invariance, the quantity
∂μ∂

μχnðxÞ must be a scalar and then, the wave functions
satisfy the Klein-Gordon (KG) equation on complex mass
shell

∂μ∂
μχnðxÞ ¼ ðpn

2 − E2
nÞχnðxÞ ¼ −M2

nχnðxÞ;
∂μ∂

μχ�nðxÞ ¼ ðpn
2 − E�2

n Þχ�nðxÞ ¼ −M�2
n χ�nðxÞ; ð86Þ

where the complex conjugated masses M2
n, M�2

n must be
Lorentz scalars. Then, the complex eigenvalues can take the
four different values:

En ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn

2 þM2
n

q
; E�

n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn

2 þM�2
n

q
: ð87Þ

Denoting by

ωn þ iγn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn

2 þM2
n

q
ð88Þ

with ωn > 0, γn > 0 and ImM2
n > 0, the four energies can

be written as the two pairs

En ¼ �ωn þ iγn;

En ¼ �ωn − iγn; ð89Þ
but only the second pair can be accepted in Eq. (84), since
the first pair would give a divergent integral over time.
Thus, a second problem to be faced is the origin of
intermediate states with energies En ¼ −ωn − iγn and
−E�

n ¼ ωn − iγn, with negative imaginary parts. Actually,
these energies are precisely the pair of frequencies −E, E�
that we have found in Eq. (74) for t > 0. In the next section,
a quite speculative toy model is discussed, where such
eigenvalues arise from a mixing of positive- and negative-
norm states.
Here, in order to make sense of Eq. (84), we just assume

that a subset of such intermediate states does exist,
with energies En, −E�

n sharing the same (real) spectral
weight ρn and the same negative imaginary part
ImEn ¼ −γn. Under such assumptions the explicit integral
in Eq. (84) yields

ΔðpÞ ¼ ð2πÞ3
X
n

ρnðpÞδ3ðp − pnÞ

×

�
1

p0 − En
−

1

p0 þ En
þ 1

p0 þ E�
n
−

1

p0 − E�
n

�
:

ð90Þ
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Adding the terms and using the complex mass shell
Eq. (87), we get

ΔðpÞ ¼
X
n

ð2πÞ3½2ρnðpÞEn�δ3ðp − pnÞ
p2 −M2

n

−
X
n

ð2πÞ3½2ρnðpÞE�
n�δ3ðp − pnÞ

p2 −M�2
n

: ð91Þ

The propagator is a purely imaginary number on the real
axis and has the same structure of the principal part
discussed in the previous section.
Restricting the sum to a single set of states with

M2
n ¼ M2, by Lorentz invariance we can write the result as

ΔðpÞ ¼ Rðp2Þ
p2 −M2

−
R�ðp2Þ
p2 −M�2 ð92Þ

where the phase of the complex function Rðp2Þ arises from
the sum over the complex spectrum in Eq. (91) and must be
gauge invariant if the spectrum is assumed to be invariant.
If the function Rðp2Þ is regular at the complex point
p2 ¼ M2, then R ¼ RðM2Þ is the residue and the principal
part reads

ΔðpÞ ¼ R
p2 −M2

−
R�

p2 −M2
ð93Þ

which is precisely the Minkowskian principal part which
we found in Eq. (59) by the anomalous analytic
continuation.
From our knowledge of the gluon propagator [12,57], the

real and imaginary parts of R are positive (ReR > 0,
ImR > 0) and we assumed that En ¼ −ωn − iγn, so that
ReEn < 0 and ImEn < 0. Thus, the spectral coefficient ρn
is expected to be negative.
We observe that a negative ρn < 0 is usually found for

physical transversal states with a positive norm. In fact,
denoting by bμ the vector

bμ ¼ tμνh0jAνð0Þjni ð94Þ

we can write

ρn ¼
1

d − 1
bμb�μ: ð95Þ

Because of its transversality, bμ is a spacelike vector if
p2 > 0. For instance, in a frame where pμ ¼ ðp0; 0; 0; p3Þ
with ðp0Þ2 > ðp3Þ2, the vanishing of pμbμ gives b0 ¼
b3ðp3=p0Þ and jb0j2 < jb3j2, so that bμb�μ < 0.
We conclude that the Minkowskian principal part of the

gluon propagator is compatible with the existence of a
subset of anomalous intermediate states with a positive
norm, but with complex eigenvalues �ω − iγ, sharing the

same negative imaginary part. Having a positive norm, the
intermediate states might have a physical relevance, as
prompted by the gauge-parameter independence of the
principal part. Of course, we are far from having reached a
valid microscopic proof of existence for such states. A
speculative toy model which might predict the existence of
such scenario is discussed in the next section.

VI. A BASIC HERMITIAN MODEL
WITH COMPLEX EIGENVALUES

Negative-norm states appear in the Gupta-Bleuler
approach to the quantization of the electromagnetic field.
While the unphysical intermediate states should be can-
celed by the ghost fields in the perturbative approach to
QCD, the cancellation might not be as effective in the
nonperturbative limit, where the gluon acquires a dynami-
cal mass while the ghost seems to be massless.
In this section, by a very basic model, we show that if

states with positive and negative norm are somehow
coupled, in a pseudo-Euclidean space, a Hermitian
Hamiltonian can have complex eigenvalues without affect-
ing the unitarity of the time evolution. While a more
detailed discussion can be found in Ref. [48], here we
explore the consequences of a coupling between a physical
state and a state with a negative norm. The discussion is
quite general and could describe the coupling between
different polarizations of a gluon and ghosts or even
different fields. We assume that a physical, positive-norm
state, and an unphysical degree of freedom, with a negative
norm, can mix because of the interactions in the non-
perturbative vacuum.
As a simple toy model, let us study the space spanned by

just two one-particle states, sharing the same momentum k
and other quantum numbers. We assume that the other
polarizations can be regarded as decoupled. Omitting the
label k and all other quantum numbers, by appropriate
normalization, we denote the states by

jΦ0i ¼ a†0j0i;
jΦ1i ¼ a†1j0i; ð96Þ

where j0i is the vacuum and we assume the following
commutation relations:

½a0; a†0� ¼ −1; ½a1; a†1� ¼ þ1;

½a1; a†0� ¼ ½a0; a†1� ¼ 0; ð97Þ

while the normal-ordered Hamiltonian reads (without
interactions)

H ¼ ωða†1a1 − a†0a0Þ ð98Þ

which is the standard result for the free-particle
Hamiltonian of a gauge field when projected in the
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subspace. Despite the minus sign, the states jΦ0i, jΦ1i are
eigenstates of H with equal and positive eigenvalue ω. The
eigenvalues might be even different (e.g. different masses)
without affecting the main results. While the diagonal
matrix element of H is negative,

hΦ0jHjΦ0i ¼ −ωhΦ0ja†0a0jΦ0i
¼ −ωh0ja0a†0a0a†0j0i ¼ ωh0ja0a†0j0i ¼ −ω;

ð99Þ

the average of H is positive because of the negative norm
of jΦ0i,

hΦ0jΦ0i ¼ h0ja0a†0j0i ¼ −1;

hΦ1jΦ1i ¼ h0ja1a†1j0i ¼ þ1; ð100Þ

and then

hΦ0jHjΦ0i
hΦ0jΦ0i

¼ hΦ1jHjΦ1i
hΦ1jΦ1i

¼ ω: ð101Þ

We can also work out the time evolution of the operators by
the Heisenberg equation:

i
∂

∂t
a0¼½a0;H�¼−ω½a0;a†0�a0¼ωa0→a0ðtÞ¼a0ð0Þe−iωt;

i
∂

∂t
a1¼½a1;H�¼ω½a1;a†1�a1¼ωa1→a1ðtÞ¼a1ð0Þe−iωt:

ð102Þ

We can introduce a matrix formalism for the two-
dimensional pseudo-Euclidean subspace spanned by the
set jΦii denoting by the vector Xμ the generic state

jXi ¼ X1jΦ1i þ X0jΦ0i ¼
�
X1

X0

�
ð103Þ

and by gμν the two-dimensional pseudo-Euclidean metric
g10 ¼ g01 ¼ 0, g00 ¼ −1, g11 ¼ 1, i.e.

gμν ¼ hΦμjΦνi ¼
�
1 0

0 −1

�
: ð104Þ

The scalar product between two states reads

hXjYi ¼ Xμ�gμνYν ¼ X�
νYν ð105Þ

where the matrix gμν is used for raising and lowering
indices. In this formalism the Hamiltonian reads

Hμν ¼
�
ω 0

0 −ω

�
: ð106Þ

Of course, the matrix must be Hermitian in order to ensure
the reality of the expectation value,

hXjHjXi ¼ Xμ�HμνXν ¼ hXjHjXi�: ð107Þ

It is important to observe that the eigenvalues are not the
diagonal elements of Hμν but can be found on the diagonal
of Hμ

ν. In fact, the eigenvalue problem reads

Hμ
νXν ¼ λXμ → ðHμ

ν − λδμνÞXν ¼ 0 ð108Þ

or

HμνXν ¼ λXμ → ðHμν − λgμνÞXν ¼ 0: ð109Þ

Actually, raising an index by gμν we find

Hμ
ν ¼

�
ω 0

0 ω

�
ð110Þ

and ω is the correct eigenvalue for both states.

A. Complex eigenvalues from interactions

Because of the interactions, in the nonperturbative
regime, the Hamiltonian might acquire an off-diagonal
term that couples the two states. We mimic such interaction
by adding an Hermitian off-diagional term to the free-
particle Hamiltonian

Hint ¼ γ½e−iθa†0a1 þ eiθa†1a0� ð111Þ

where γ > 0 depends on the coupling strength and γ → 0 in
the perturbative asymptotic limit. We observe that γ ¼ 0 in
the Gupta-Bleuler approach to QED, since there is no
interaction between photons and the free-particle states are
decoupled asymptotic states. In the Lagrangian formalism,
the ghosts are decoupled in QED and there is no mixing
with the other degrees of freedom. On the other hand, QCD
is an intrinsically coupled theory with no free-particle
asymptotic states, then the eigenstates of the fully interact-
ing theory are expected to be given by a superposition of
the free-particle states, or in other words, an off-diagonal
term γ ≠ 0 must be present in the Hamiltonian. In the
Lagrangian formalism, there are ghosts which do not
decouple in a covariant gauge. Their interaction with the
gluon also contributes to determine a set of unknown
nonperturbative states which are hardly written as
decoupled free-particle states. Then, some off-diagonal
term must be added to the Hamiltonian of the toy model
in order to mimic the behavior of the interacting QCD, at
variance with QED. Here, we do not investigate further the
origin of the mixing, but just assume that the off-diagonal
term (111) is present in the model Hamiltonian. The total
Hamiltonian matrix then reads
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Hμν ¼
�

ω γeiθ

γe−iθ −ω

�
: ð112Þ

While this Hamiltonian is Hermitian, the matrix Hμ
ν is not

Hμ
ν ¼

�
ω γeiθ

−γe−iθ ω

�
: ð113Þ

The eigenvalues are

λ� ¼ ω� iγ ð114Þ

and the eigenvectors can be written as

ϵ�μ ¼ 1ffiffiffi
2

p
�
eiθ

�i

�
: ð115Þ

It is remarkable that complex conjugated eigenvalues
emerge from the mixing with negative-norm states even
if the Hamiltonian is Hermitian [48]. The eigenvectors
satisfy the properties

Hμ
νϵ

�ν ¼ λ�ϵ�μ;

ϵ��
μHμ

ν ¼ λ∓ϵ��
ν; ð116Þ

i.e. they are eigenvectors on the left with the complex
conjugated eigenvalue λ∓ ¼ λ��. Their norm is zero

ϵ��
μϵ

�μ ¼ 0 ð117Þ

but their mixed product is

ϵ��
μϵ

∓μ ¼ 1 ð118Þ

so that two projectors can be built and the identity can be
written as

δμν ¼ ϵ−μϵþ�
ν þ ϵþμϵ−�ν: ð119Þ

Finally, the Hamiltonian has the spectral representation

Hμ
ν ¼ λ−ϵ

−μϵþ�
ν þ λþϵþμϵ−�ν ð120Þ

and we can check that Hμν is Hermitian

Hμν ¼ λ−ϵ
−
μϵ

þ�
ν þ λþϵþμϵ

−�
ν: ð121Þ

Denoting by j�i the eigenvectors ϵ�μ and by h�j their
conjugate ϵ��

μ, all previous results can be written as

Hj�i ¼ λ�j�i;
h�jH ¼ λ∓h�j; ð122Þ

hþjþi ¼ h−j−i ¼ 0;

hþj−i ¼ h−jþi ¼ 1; ð123Þ

I ¼ j−ihþj þ jþih−j;
H ¼ j−iλ−hþj þ jþiλþh−j: ð124Þ

It is useful to define the creation operators a†� as

a†� ¼ 1ffiffiffi
2

p ½eiθa†1 � ia†0� ð125Þ

so that

a†�j0i ¼
1ffiffiffi
2

p ½eiθa†1 � ia†0�j0i ¼ j�i: ð126Þ

It is easy to see that they satisfy the commutation relations

½aþ; a†þ� ¼ ½a−; a†−� ¼ 0;

½a−; a†þ� ¼ ½aþ; a†−� ¼ 1; ð127Þ

and the Hamiltonian reads

H ¼ λ−a†−aþ þ λþa
†
þa− ð128Þ

and is obviously Hermitian, while retaining complex
conjugated eigenvalues. The result can be recovered by
inverting the definition of a†� in Eq. (125) and inserting
in Eq. (98).
For further reference, we can check the time dependence

of the operators, as we did for the diagonal case:

i
∂

∂t
aþ ¼ ½aþ; H� ¼ λ−½aþ; a†−�aþ

¼ λ−aþ → aþðtÞ ¼ aþð0Þe−iλ−t;

i
∂

∂t
a− ¼ ½a−; H� ¼ λþ½a−; a†þ�a−

¼ λþa− → a−ðtÞ ¼ a−ð0Þe−iλþt ð129Þ

so that, denoting by UðtÞ the time evolution operator,

Uð−tÞa�UðtÞ ¼ a�e−iλ∓t;

Uð−tÞa†�UðtÞ ¼ a†�e
iλ�t; ð130Þ

we find for the projectors

Uð−tÞj�ih∓ j¼Uð−tÞa†�UðtÞUð−tÞj0ih∓ j¼eiλ�tj�ih∓ j;
j�ih∓ jUð−tÞ¼j�ih0jUð−tÞUðtÞa∓Uð−tÞ¼j�ih∓ jeiλ�t:

ð131Þ
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We observe that quite naturally, a damping and anti-
damping effect arises from the imaginary parts of the
eigenvalues. The two projectors have a time dependence
factor expð∓ γtÞ, with γ > 0. However, the antidamping
term expðþγtÞ might give problems in the forward time
evolution of zero-norm states. Actually, despite the non-
unitary representation of the time evolution operator, the
scalar product is conserved since, using Eq. (131),

j�it ¼ UðtÞj�i ¼ e−iλ�tj�i ð132Þ

and then

thþj−it ¼ hþj−i;
th−jþit ¼ h−jþi; ð133Þ

ensuring that all nonzero scalar products are invariant.
Thus, in that sense, time evolution is unitary.
Quite interestingly, it can be easily checked that the two-

particle state j þ −i ¼ a†þa†−j0i has a positive norm hþ −
j þ −i ¼ 1 and is an eigenvector of the Hamiltonian with a
real eigenvalue 2ω and no damping. In a more realistic
model this two-particle state could be interpreted as a
glueball. Here, in this basic model, there is no explicit
correlation between single-particle states, and the two-
particle state appears as the product of single-particle states.
In a more refined approach, it was argued that i particles,
with complex conjugated energies, might give rise to well-
behaved two-particle propagators and a real spectrum of
physical vacuum excitations [85].

B. Propagator and complex poles

For a real field, we would like to recover the principal
part of the Minkowskian propagator by the anomalous set
of intermediate states that emerges when the positive- and
negative-norm states are coupled in the nonperturbative
limit. Because of the reported [57] gauge-parameter inde-
pendence of the principal part, we would like to focus on
positive-norm intermediate states that might emerge in the
spectrum by the action of the pair of creation operators a†�
for the zero-norm states. In the previous sections, the need
for a pair of eigenvalues E ¼ ω − iγ and −E� ¼ −ω − iγ
emerged rather than a pair of complex conjugated eigen-
values λ�. Taking E ¼ λ− we are tempted to assume that
−E� ¼ −λþ, which can be seen as the opposite of the
energy of a particle. It is suggestive to interpret such state
as the missing of a particle, as in the Dirac-sea language.
The hypothesis is corroborated by the observation that
the vacuum might be defined modulo an arbitrary set of
zero-norm states, as it happens in the Gupta-Bleuler
formalism. For instance, we can define a new vacuum
jΩi as

jΩi ¼ j0i þ c−j−i ¼ ½1þ c−a†−�j0i ð134Þ

where c− is a constant, without affecting the norm hΩjΩi ¼
h0j0i and the expectation value of the observables, e.g.
hΩjHjΩi ¼ h0jHj0i ¼ 0. The new vacuum is not annihi-
lated by aþ which removes a particle yielding a physical
(positive-norm) eigenstate

jΨ0i ¼ aþjΩi ¼ c−j0i ð135Þ

with eigenvalue E0 ¼ 0. On the other hand, a†þ adds a
particle yielding another physical (positive-norm) state

jΨ2i ¼ a†þjΩi ¼ jþi þ c−jþ;−i: ð136Þ

The original operators a0, a1 have nonzero matrix elements
between the vacuum jΩi and the physical intermediate
states jΨ0i, jΨ2i and could give rise to an anomalous
principal part in the propagator.
However, the new vacuum jΩi acquires a time depend-

ence and is not invariant by time evolution. In the Gupta-
Bleuler formalism, the vacuum is not gauge invariant, since
the added zero-norm states depend on the gauge. However,
no measurable effect arises by such dependence. Here, the
new definition of vacuum would depend on time evolution
which is supposed to be an other symmetry transformation
for the physical vacuum. In fact, denoting by jΩ�i the
following definitions of vacuum

jΩ�i ¼ j0i þ c�j�i ¼
h
1þ c�a

†
�
i
j0i ð137Þ

we can write

jΩ�ðtÞi ¼ UðtÞjΩ�i ¼
h
1þ c�ðtÞa†�

i
j0i ð138Þ

where

c�ðtÞ ¼ c�ð0Þe−iλ�t ∼ e�γt ð139Þ

yielding, asymptotically,

lim
t→þ∞

jΩ−ðtÞi ¼ j0i;
lim
t→−∞

jΩþðtÞi ¼ j0i: ð140Þ

Thus the states jΩþðtÞi, jΩ−ðtÞi can be regarded as IN and
OUT states, respectively, at a finite time when the inter-
action is still on

jΩ−ðtÞi ¼ Uðt;∞Þj0iOUT
jΩþðtÞi ¼ Uðt;−∞Þj0iIN: ð141Þ

Asymptotically, if the interaction is switched off adiabati-
cally, the IN and OUT vacuum tend to the same vacuum
j0i. Accordingly, the vacuum-to-vacuum fluctuation ampli-
tude reads
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Z ¼ OUTh0jUðþ∞;−∞Þj0iIN ¼ hΩ−ðtÞjΩþðtÞi ð142Þ

but does not depend on t since

c�−ðtÞcþðtÞ ¼ c�−ð0Þcþð0Þ ð143Þ

so that time homogeneity is satisfied. More generally,
inserting two fields Aðt1Þ, Aðt2Þ, at times t1 > t2, the time
ordered correlator is

Δðt1; t2Þ ¼ OUTh0jAðt1ÞAðt2Þj0iIN
¼ hΩ−ðt1ÞjAUðt1ÞUð−t2ÞAjΩþðt2Þi ð144Þ

and by insertion of a set of positive-norm physical
intermediate eigenstates fjnig, with energies En,

Δðt1; t2Þ ¼
X
n

hΩ−ðt1ÞjAjnie−iEnðt1−t2ÞhnjAjΩþðt2Þi

¼
X
n

h0jAjnihnjAj0ie−iEnðt1−t2Þ

þ
X
n

h−jAjnihnjAjþie−iEnðt1−t2Þc�−ðt1Þcþðt2Þ

ð145Þ

where we assumed that h�jAjni ¼ 0 if h0jAjni ≠ 0 and
vice versa. By Eq. (139), the last factor reads

c�−ðt1Þcþðt2Þ ¼ c�−ð0Þcþð0Þeiλþðt1−t2Þ ð146Þ

so that Δðt1; t2Þ ¼ Δðt1 − t2Þ and, again, the homogeneity
of time is satisfied.
Quite interestingly, if we take the real (physical) field

A ¼ a1 þ a†1

A¼a1þa†1¼
1ffiffiffi
2

p
h
ða†þþa†−Þe−iθþðaþþa−Þeiθ

i
ð147Þ

and limit the sum to physical (positive-norm) intermediate
eigenstates, the correlator is

Δðt1; t2Þ ¼
X
n

h−jAjnihnjAjþie−iðEn−λþÞðt1−t2Þc�−ð0Þcþð0Þ

þ… ð148Þ

where the dots refer to a regular part which arises from real
energies in the first sum of Eq. (145). The remaining sum
over n can only include the positive-norm eigenstates j0i
and jþ;−i, with eigenvalues 0 and 2ω, respectively. In fact,
acting with A over j�i can only give the further states
j þ þi and j − −i which have zero norm. The matrix
elements read

h0jAjþi¼h0jAa†þj0i¼
eiθffiffiffi
2

p h0ja−a†þj0i¼
eiθffiffiffi
2

p ;

h0jAj−i¼h0jAa†−j0i¼
eiθffiffiffi
2

p h0jaþa†−j0i¼
eiθffiffiffi
2

p ;

hþ;−jAjþi¼e−iθffiffiffi
2

p hþ;−ja†−a†þj0i¼
e−iθffiffiffi
2

p hþ;−jþ;−i¼e−iθffiffiffi
2

p ;

hþ;−jAj−i¼e−iθffiffiffi
2

p hþ;−ja†þa†−j0i¼
e−iθffiffiffi
2

p hþ;−jþ;−i¼e−iθffiffiffi
2

p :

ð149Þ

Assuming that cþð0Þ ¼ c−ð0Þ ¼ cð0Þ in Eq. (138), the
time ordered correlator, for t1 > t2, can be written as

Δðt1 − t2Þ ¼
jcð0Þj2ffiffiffi

2
p ½eiλþðt1−t2Þ þ e−iλ−ðt1−t2Þ� ð150Þ

with frequencies −λþ ¼ −ω − iγ and λ− ¼ ω − iγ. The
correlator has precisely the same structure of the effective
propagator in Eq. (74), containing the same pair of complex
frequencies which led to the Minkowskian principal part of
Eq. (91) and a positive weight emerging from the positive-
norm states. The result is consistent with the structure
of the effective gluon propagator in Minkowski space, as
described in Sec. IV.
In Yang-Mills theory, a nonperturbative composite vac-

uum like that might be related to the existence of a
condensate hA2i ≠ 0 containing zero-norm states. Thus,
we can speculate that a similar mechanism might link the
principal part of the gluon propagator with physical excited
states, glueballs, produced by the binding of a single-particle
zero-norm excited statewith a second zero-norm statewhich
was in the condensate. Because of the interaction with the
condensate, that statewould be damped andwould appear as
a confined quasiparticle. On the other hand, the state jþ;−i
would also appear as a two-particle excitation of the vacuum
with an energy δE ¼ Eþ E⋆ ¼ 2ReM ≈ 2ð0.581Þ GeV,
according to the data of Ref. [57]. That energy would be
compatible with a glueball resonance which would overlap
with light mesons.

VII. DISCUSSION

We have shown that the analytic continuation of the
anomalous part of the gluon propagator leads to the
definition of an effective propagator in Minkowski space,
which seems to be directly related to the eigenvalue
spectrum of the Hamiltonian. The change of sign in the
anomalous part, containing the “wrong” pole, provides a
physical function which has the same identical structure
which would arise from first principles if complex eigen-
values were present in the spectrum. Moreover, the princi-
pal part of the effective propagator becomes imaginary in
Minkowski space and defines a real spectral density which
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provides a generalized Källén-Lehmann representation,
including the principal part which had to be added by
hand in the standard formulation [46]. We argue that the
modified spectral representation might reconcile some
inconsistencies which emerge in the spectral Schwinger-
Dyson formalism [86] when the usual definition of the
spectral function is used [78].
It is remarkable that the definition of the anomalous

spectral density and its direct link to the eigenvalues can
only emerge because of the change of sign which is found
going from the Euclidean to Minkowski space through the
clockwise Wick rotation. Of course, the present analysis
does not explain the origin and nature of the very peculiar
pair of complex energies, with a negative imaginary part,
which must be selected for convergence reasons. But their
existence is predicted by the structure of the effective
propagator and seems to be the only way to give a physical
interpretation to the gluon correlator from first principles.
While the existence of complex poles has been reported

by many different approaches, ranging from the Gribov-
Zwanziger effective model [58] to one-loop calculations by
the screened expansion [57,61,63], to truncations of
Schwinger-Dyson equations in the complex plane [79],
and has been even proven formally in loop expansions [47],
the genuine nature and role of these complex poles is
currently under debate. The reported gauge invariance of
poles and residues [57] seems to favor a genuine physi-
cal role.
In Ref. [48], from a formal point of view, taking for

granted the usual analytic continuation in time, it is shown
that a gluon propagator with complex poles cannot even be
defined in the Minkowski direct space and the related gluon
degrees of freedom should be regarded as unphysical. That
is quite disappointing, since complex poles have bee found
even in quark propagators [80].
We take the opposite view that a confined gluon is still a

physical object and that the gluon correlator must be
defined somehow in the Minkowski space. From that
physical argument and from the necessity of an anomalous
clockwise rotation, a finite result can be found only if that
selected pair of complex energies is taken, with negative

imaginary part. The nature of these energies remains
obscure.
Complex eigenvalues of an Hermitian Hamiltonian

emerge in a pseudo-Euclidean space where negative-norm
states are present. The complex energies are associated with
zero-norm states which are usually regarded as unphysical
[48]. Thus, the intermediate states which give rise to the
main contribution to the gluon propagator might be just
unphysical.
However, an untrivial vacuum structure might contain a

superposition of zero-norm states like a sort of condensate.
In that case, as suggested by a toy model at the end of the
previous section, the intermediate states might be physical
states, with a positive norm, and yet be characterized by the
occurrence of complex frequencies in the real-time propa-
gator. In simple words, an excited zero-norm state might be
correlated with an other zero-norm state which already
is in the vacuum, but has an opposite imaginary part of
the energy, yielding a physical pair with a real total energy.
The real-time and imaginary-time correlators predict that
the quasiparticle would be anyway damped at the scale of
1 fm, providing a dynamical mechanism of confinement.
Thus, in that case, behind the complex frequencies there
would be physical states which would appear as damped
single-particle confined quasiparticles. On the other hand,
the two-particle states would also appear as glueball
excitations of the vacuum with an energy δE ¼ Eþ E⋆ ¼
2ReM ≈ 1 GeV and could easily mix with known meson
resonances.
In any case, any further analysis should take in due

account the existence of an untrivial, anomalous analytic
continuation when going to Minkowski space, with impor-
tant consequences on the physical interpretation of the
theory.
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