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We study the generation number of massless fermions in compactifications recently found in heterotic
supergravity. The internal spaces are products of two-dimensional spaces of constant curvature, and the
standard embedding is not assumed. The generation number is constrained by the equations of motion and
the Bianchi identity. In the case that the Euler characteristics of the three internal submanifolds are
ð2;−2;−2Þ, the generation number is three or less. We also show that three-generation solutions exist for
arbitrary Euler characteristics of the negatively curved 2-manifolds, and we present some explicit solutions.
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I. INTRODUCTION

The origin of three-generation quarks and leptons is one
of the mysteries of the standard model. There may be an
answer in compactifications of the extra dimensions in the
superstring theories. Since the mid-1980s, supersymmetric
compactifications like Calabi-Yau manifolds [1] have
mainly been considered in this context. In particular,
toroidal orbifold compactifications, which are singular
limits of certain Calabi-Yau compactifications, have been
well studied to derive three-generation models; see, e.g.,
Refs. [2–15].
However, supersymmetry has not been discovered by

collider experiments, so low-energy supersymmetry may
not be a necessary condition. If supersymmetry is not
assumed, we have to solve the equations of motion to find
compact spaces (for discussions on the relation between the
supersymmetry conditions and the equations of motion, see
Refs. [16,17]). This is difficult in general since they are
second-order nonlinear partial differential equations.
Recently, nonsupersymmetric exact solutions of equa-

tions of motion in heterotic supergravity were found [18].
They are direct products of Minkowski spacetime
and 2-manifolds: S2 × T2 ×H2=Γ, S2 × S2 ×H2=Γ, and
S2 ×H2=Γ ×H2=Γ, where S2, T2, andH2=Γ denote spaces

of positive, zero, and negative constant curvature (a sphere,
a torus, and a compact hyperbolic manifold), respectively
[19–21]. These are Riemann surfaces with genus 0, 1, and
≥ 2, respectively. There are many advantages of consider-
ing such manifolds: the equations of motion are simplified
to algebraic equations, the curvatures of compact dimen-
sions are discretely fixed, the scale of compact space
volumes is determined by α0 (except T2), the standard
embedding does not need to be assumed, the 3-formH field
is naturally zero, and the Yukawa couplings may be calcu-
lated by applying previous studies on two-dimensional
compactifications (S2 was studied in Refs. [22,23] and
H2=Γ in Ref. [24]). Product spaces of 2-manifolds can
satisfy the Bianchi identity for H without the standard
embedding [25]. In this case, the generation number of
fermions Ngen is determined by gauge fluxes [26] and not
by the Euler number χ only; the well-known relation
Ngen ¼ jχ=2j does not hold.
In this paper, we study the possible Ngen in these

compactifications by considering both the equations of
motion and the Bianchi identity. In Sec. II we summarize
these equations under the assumption that the internal space
is a product of two-dimensional spaces of constant curva-
ture. In Sec. III we give the explicit relation between Ngen

and fluxes. By the relation and an equation of motion, we
obtain Ngen ¼ 0 for S2 × T2 ×H2=Γ. In Sec. IV we
consider the simplest case that the Euler characteristics
ofH2=Γ are −2. In this case, we show that Ngen ≤ 3 for the
S2 ×H2=Γ ×H2=Γ. On the other hand, a larger Ngen (in
our scope, 9) is possible for S2 × S2 ×H2=Γ. Finally, in
Sec. V we prove that the Ngen ¼ 3 solutions always exist
for both S2 × S2 ×H2=Γ and S2 ×H2=Γ ×H2=Γ with
arbitrary Euler characteristics.
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II. COMPACTIFICATION

A. Equations of motion

We review the compactification found in Ref. [18] and
summarize the conditions to be solved in the following
sections. We consider the bosonic part of the Lagrangian
for heterotic supergravity [17,27]:

L ¼ ffiffiffiffiffiffi
−g

p
e−2ϕ

�
Rþ 4ð∇ϕÞ2 − 1

12
HMNPHMNP

þ α0

8
RMNPQRMNPQ −

α0

8
trðFMNFMNÞ

�
; ð1Þ

where g is the determinant of the metric gMN and the indices
run M;N; P;Q ¼ 0;…; 9. RMNPQ is the Riemann tensor,
the Ricci scalar R and Ricci tensor RMN are defined as
R ¼ gNQRNQ ¼ gMPgNQRMNPQ, and FMN is the gauge
field strength of the gauge group E8 × E8.
The equation of motion for the 3-form field H is

∂
Mðe−2ϕHMNPÞ ¼ 0: ð2Þ

We take the dilaton ϕ as a constant and assume that H
vanishes,

∂Mϕ ¼ 0; HMNP ¼ 0; ð3Þ

and then the equation of motion for H [Eq. (2)] is satisfied.
Such a configuration with unbroken supersymmetry leads
to Ricci-flat compactification [1]. In this paper, we do not
assume low-energy supersymmetry. The other equations of
motion [17,28] become

Rþ α0

8
RMNPQRMNPQ −

α0

8
trðFMNFMNÞ ¼ 0; ð4Þ

RMN þ α0

4
RMPQRRN

PQR −
α0

4
trðFMPFN

PÞ ¼ 0; ð5Þ

∇MFMN þ ½AM; FMN � ¼ 0: ð6Þ

By multiplying Eq. (5) by gMN and comparing with Eq. (4),
the dilaton equation becomes much simpler:

R ¼ 0: ð7Þ

In addition to the above equations of motion, the
curvature 2-form R and the gauge field 2-form F have
to satisfy the Bianchi identity

0 ¼ dH ¼ α0

4
ðtrR ∧ R − trF ∧ FÞ ð8Þ

for the Green-Schwarz anomaly cancellation mecha-
nism [29].

B. Curvatures and gauge field configurations

We are going to solve Eqs. (5)–(8). We assume that
the ten-dimensional spacetime M10 is a product of four
manifolds:

M10 ¼ M0 ×M1 ×M2 ×M3; ð9Þ

where M0 is the four-dimensional Minkowski spacetime
andMi (i ¼ 1, 2, 3) are two-dimensional spaces of constant
curvature. Note that the antisymmetric tensor fieldHMNP is
naturally zero for two-dimensional Mi. The metric of M10

is block diagonal and depends only on the coordinates of

corresponding submanifolds: gðiÞmn ¼ gðiÞmnðxðiÞÞ, where the
indices m and n are tangent to Mi. The nonzero Riemann
tensor components are then

RðiÞ
mnpq ¼ λiðgðiÞmpg

ðiÞ
nq − gðiÞmqg

ðiÞ
npÞ; ð10Þ

where λi is a constant sectional curvature. The manifold
with λi > 0 is a sphere S2, λi ¼ 0 is a torus T2, and λi < 0 is
a compact hyperbolic manifold H2=Γ [19–21].
For the gauge field strength FMN ¼ FAMNTA (TA are

generators of E8 × E8), we assume that it is also block
diagonal for M and N and nonzero only for Uð1ÞA
components ðA ¼ 1; 2;…; 11Þ. The range of A is
set to leave the gauge group SOð10Þ in E8 × E8 ⊃
SOð10Þ ×Uð1Þ1 ×… ×Uð1Þ11. For each block of
FAMN , we assume the Freund-Rubin configuration [30]

FAi;mn ¼
ffiffiffiffi
gi

p
fAiϵ

ðiÞ
mn; ð11Þ

where gi ¼ detðgðiÞmnÞ, fAi is a constant (sometimes called a

flux density [31]), and ϵðiÞmn is a Levi-Civita symbol for Mi

(for example, ϵð1Þ45 ¼ −ϵð1Þ54 ¼ 1).
The configuration of Eq. (11) satisfies the equation of

motion for FMN [Eq. (6)]. The other equations of motion
[Eqs. (5) and (7)] and the Bianchi identity (8) are much
simplified (we take α0 ¼ 2 for simplicity) [18]:

λ1 þ λ2 þ λ3 ¼ 0; ð12Þ

λi þ λ2i −
X11
A¼1

f2Ai ¼ 0; ð13Þ

X11
A¼1

fAifAj ¼ 0 ði ≠ jÞ: ð14Þ

The first equation of motion (12) does not allow curvatures
λi to be all positive or all negative. If λi ¼ 0, the second
equation of motion (13) necessitates fAi ¼ 0 for all A. In
this case, the generation number is zero, as we will see in
the following section. We consider the cases with λi ≠ 0.
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We set λ1 ≥ λ2 ≥ λ3 without loss of generality, and then
M1 ¼ S2 and M3 ¼ H2=Γ. For the second submanifold
M2, both S2 and H2=Γ are possible.

C. Euler characteristics and flux quantization

Equations (12), (13), and (14) are actually integer
equations, as we will see below. The sphere S2 and the
compact hyperbolic manifold H2=Γ are compact, boun-
daryless surfaces. Their genera g are 0 and g ≥ 2, respec-
tively.1 The Euler characteristics χ and genera are related by
χ ¼ 2 − 2g. By the Gauss-Bonnet formula for compact and
boundaryless surfaces, we obtain

Z
Mi

RðiÞ

2

ffiffiffiffi
gi

p
d2x ¼ volðMiÞλi ¼ 2πχi; ð15Þ

where RðiÞ is the Ricci scalar of Mi and χi is its Euler
characteristic. In addition, the gauge field strength satisfies
the flux quantization condition [25]

Z
Mi

FAi ¼ volðMiÞfAi ¼ 2πnAi; ð16Þ

where nAi is an integer. For χi ≠ 0, from Eqs. (15) and (16)
we find

fAi ¼
nAi
χi

λi: ð17Þ

By substituting Eqs. (16) and (17) into Eqs. (13) and (14),
the equations of motion and the Bianchi identity become

X11
A¼1

n2Ai ¼ χ2i

�
1þ 1

λi

�
; ð18Þ

X11
A¼1

nAinAj ¼ 0 ði ≠ jÞ: ð19Þ

The equations to be solved in this paper are Eqs. (12), (18),
and (19).

III. NUMBER OF GENERATIONS

In this section, we obtain an expression for the gen-
eration number Ngen from the fluxes nAi by applying the
general formula in Ref. [26].
We consider the decomposition of E8 and a gaugino in

the 248 representation [32]:

E8 ⊃ SOð10Þ × SUð4Þ; ð20Þ

248 ¼ ð45; 1Þ þ ð1; 15Þ þ ð10; 6Þ þ ð16; 4Þ þ ð16; 4̄Þ:
ð21Þ

One generation of the standard model fermions can be
in a 16 representation. In general, the number of gener-
ations depends on two terms proportional to trðF3Þ and
trðFÞc2ðRÞ, where c2 denotes the second Chern class [26].
We consider fluxes in SUð4Þ, and thus trðFÞ ¼ 0; the
second term vanishes. Thus, the number of generations is

Ngen ¼
1

ð2πÞ3
1

6

����
Z

trðF3Þ
����: ð22Þ

To be concrete, we take the basis of the Cartan subalgebra
of suð4Þ as

T1 ¼ diag½−1; 0; 0; 1�;
T2 ¼ diag½0;−1; 0; 1�;
T3 ¼ diag½0; 0;−1; 1�: ð23Þ

We consider that Uð1ÞA ðA ¼ 1; 2; 3Þ fluxes are in SUð4Þ.
The other fluxes Uð1ÞA ðA ¼ 4;…; 11Þ in another E8 are
not relevant for Ngen. Then, by using F ¼ P

3
A¼1 FATA, the

generation number is

Ngen ¼
1

ð2πÞ3
1

6

����
Z

trfðdiag½−F1;−F2;−F3; F1 þ F2 þ F3�Þ3g
����

¼ 1

ð2πÞ3
1

6

����
Z ��X3

A¼1

FA

�3

−
X3
A¼1

F3
A

�����: ð24Þ

As an example, we calculate one of the second terms in
Eq. (24) explicitly:

1

ð2πÞ3
1

6

Z
F3
A ¼ 1

ð2πÞ3
Z
M1

FA1

Z
M2

FA2

Z
M3

FA3

¼
Y3
i¼1

nAi: ð25Þ

We have used the flux quantization condition (16). The
other terms can be obtained similarly. The result is

1Any Riemann surface of genus g ≥ 2 can be expressed as a
quotientH2=Γ. For example, the surface of g ¼ 2 is obtained by a
discrete group Γ that has an octagonal fundamental region in the
hyperbolic plane H2. See Refs. [19–21] for more details.
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Ngen ¼
����
Y3
i¼1

X3
A¼1

nAi −
X3
A¼1

Y3
i¼1

nAi

����: ð26Þ

We calculate Ngen using this formula in this paper.
If one of the submanifolds Mi is T2, λi ¼ 0 and Eq. (13)

implies nAi ¼ 0 for all A, then Ngen ¼ 0. Thus, nonzero
generation numbers are possible only for the compactifi-
cations with S2 ×H2=Γ ×H2=Γ or S2 × S2 ×H2=Γ, and
we consider these manifolds below.

IV. RANGES OF GENERATION NUMBERS

The generation number Ngen depends on nAi, and nAi are
constrained by the equations of motion (12), (18), and (19).
In this section, we discuss the possible ranges of Ngen that
satisfy these constraints.

A. S2 ×H2=Γ ×H2=Γ case

First, we show that the curvature λ1 is uniquely deter-
mined in this case. For the sphere S2, λ1 > 0 and χ1 ¼ 2.
By substituting it into Eq. (18), nA1 have to satisfy

X11
A¼1

n2A1 > 4: ð27Þ

To obtain nonzero Ngen, at least one of fnAigA¼1;2;3 for
every i has to be nonzero;

P
3
i¼1 n

2
Ai ≥ 1. To satisfy this

condition in the hyperbolic regions λ2 < 0, λ3 < 0, Eq. (18)
necessitates λ2 < −1, λ3 < −1. By these inequality and
Eq. (12), we obtain λ1 ¼ −λ2 − λ3 > 2. By applying it to
Eq. (18), nA1 also need to satisfy

X11
A¼1

n2A1 < 6: ð28Þ

Thus, there is only one possibility,

X11
A¼1

n2A1 ¼ 5; ð29Þ

and it corresponds to λ1 ¼ 4. On the other hand, the
conditions λ2 < 0, λ3 < 0 mean that

X11
A¼1

n2Ai < χ2i ði ¼ 2; 3Þ: ð30Þ

In general, jχij (i ¼ 2, 3) and the fluxes can be arbitrarily
large. The generation number can be (almost) any integer in
our compactifications. However, it would be natural that
the Euler characteristics and fluxes are not so large.
To be concrete, we consider the simplest case χ2 ¼ χ3 ¼

−2 in this section. We can show that Ngen ≤ 3 in this case.
From Eq. (30), there are three possibilities:

P
A n

2
Ai ¼ 1, 2,

3 (i ¼ 2, 3). These correspond to λ2; λ3 ¼ −4=3;−2;−4.
Only one pattern of curvatures can satisfy the equation of
motion (12):

λ1 ¼ 4; λ2 ¼ λ3 ¼ −2: ð31Þ

Equivalently, the fluxes need to satisfy

X11
A¼1

n2A1 ¼ 5;
X11
A¼1

n2A2 ¼
X11
A¼1

n2A3 ¼ 2: ð32Þ

Then, nA1 ¼ ð2; 1; 0⃗Þ or ð1; 1; 1; 1; 1; 0⃗Þ, nA2 ¼ ð1; 1; 0⃗Þ,
nA3 ¼ ð1; 1; 0⃗Þ or their permutations and the signs of each
component can be changed. The fluxes that contribute to
Ngen are A ¼ 1, 2, 3, and these fluxes satisfy

����
X3
A¼1

nA1

���� ≤ 3;

����
X3
A¼1

nAi

���� ≤ 2 ði ¼ 2; 3Þ: ð33Þ

The Bianchi identity (19) restricts Ngen further. It
requires each column of nAi to be orthogonal to the others.
Since only two components of columns i ¼ 2, 3 are
nonzero, nA1nA2nA3 ¼ 0 for every A. Thus, the second
term of Ngen in Eq. (26) vanishes.
The latter inequality of Eq. (33) is satisfied in three

cases: jP3
A¼1 nAij ¼ 0 or 2 for one of i ∈ f2; 3g,

or jP3
A¼1 nA2j ¼ jP3

A¼1 nA3j ¼ 1. In the first case,
Ngen ¼ 0. In the second case, jP3

A¼1 nAij cannot
be 2 for both i ¼ 2, 3 by the Bianchi identity. For
example, if ðnA3Þ ¼ ð1; 1; 0;…Þ, the Bianchi identity
necessitates ðnA2Þ ¼ ð0; 0; 1;…Þ and ðnA1Þ ¼ ð0; 0; 1;…Þ
or ð�1;∓ 1; 1;…Þ, and then Ngen ≤ 2. In the last case,

Ngen ¼
����
X3
A¼1

nA1

���� · 1 · 1 ≤ 3: ð34Þ

The equalityNgen ¼ 3 can hold and an example is shown in
Solution 1 of Table I. Thus, the maximal generation number
is three when χ2 ¼ χ3 ¼ −2.

B. S2 × S2 ×H2=Γ case

Next, in the M2 ¼ S2 case the sectional curvatures
are not uniquely determined, and larger Ngen are possible.
The curvatures satisfying the equations of motion (12) and
(18) are

ðλ1; λ2; λ3Þ ¼ ð2; 2;−4Þ; ð1; 1;−2Þ;
�
4

3
;
2

3
;−2

�
;

�
1;
1

3
;−

4

3

�
;

�
2

3
;
2

3
;−

4

3

�
: ð35Þ

For example, let us consider the case ðλ1; λ2; λ3Þ ¼
ð2
3
; 2
3
;− 4

3
Þ and χ3 ¼ −2. In this case, the fluxes are
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X11
A¼1

n2A1 ¼
X11
A¼1

n2A2 ¼ 10;
X11
A¼1

n2A3 ¼ 1: ð36Þ

These equations constrain the fluxes nA1 and nA2 to be
permutations of ð3;1; 0⃗Þ, ð2;2;1;1; 0⃗Þ, ð2; 1; 1; 1; 1; 1; 1; 0⃗Þ,
or (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) and nA3 to be a permutation
of ð1; 0⃗Þ (the signs of each component can be changed). We
have checked all the cases that also satisfy the Bianchi
identity (19). We found that Ngen ≤ 9 and Ngen ≠ 5, 7. The
fluxes that give Ngen ¼ 9 are, for example,

ðnAiÞ ¼

0
BBBBBBBBB@

3 0 0

0 3 0

0 0 1

1 0 0

0 1 0

0⃗ 0⃗ 0⃗

1
CCCCCCCCCA
; ð37Þ

where 0⃗ is a six-component zero vector. The fluxes that give
Ngen ¼ 3 are shown in Solution 4 of Table I.

V. THREE-GENERATION SOLUTIONS

In this section, we show that three-generation solutions
exist for arbitrary Euler characteristics of H2=Γ, in both the
M2 ¼ S2 and H2=Γ cases. Samples of the solutions are
summarized in Table I.

A. S2 ×H2=Γ ×H2=Γ case

In this case, we search for the solution with λ1 ¼ 4,
λ2 ¼ λ3 ¼ −2. In a special case with χ2 ¼ χ3 ¼ −2, we can
find a solution as shown in Table I (Solution 1). In the other

cases, we can set χ3 ≤ −4 without loss of generality, and
we can choose

ðnAiÞ ¼

0
BBBBBBBB@

2 0 −1
1 0 2

0 1 0

0⃗ n⃗02 0⃗

0⃗ 0⃗ n⃗03

1
CCCCCCCCA
; ð38Þ

where n⃗02 ¼ ðn42;…; n72Þ and n⃗03 ¼ ðn83;…; n11;3Þ are
four-component vectors. Such fluxes satisfy the Bianchi
identity (19) and the three-generation condition. From
Eq. (18), the curvatures λ2 ¼ λ3 ¼ −2 can be obtained
from the fluxes satisfying

X7
A¼4

n2A2 ¼
χ22
2
− 1; ð39Þ

X11
A¼8

n2A3 ¼
χ23
2
− 5: ð40Þ

Since χ2 ≤ −2, χ3 ≤ −4 and both are even numbers, the
right-hand sides are positive integers. According to
Lagrange’s four-square theorem (see Ref. [33] for a recent
discussion), every positive integer can be written as the sum
of at most four squares. Interestingly, we have four integer
parameters on the left-hand sides, so the solutions of
λ2 ¼ λ3 ¼ −2 always exist. For example, if χ3 ¼ −4, then
n⃗03 ¼ ð1; 1; 1; 0Þ. In Table I, we show three explicit sol-
utions with ðχ2; χ3Þ ¼ ð−2;−2Þ; ð−2;−4Þ; ð−4;−4Þ.

TABLE I. Samples of three-generation solutions. These Euler characteristics χi and fluxes ðnAiÞ satisfy the equations of motion (12)
and (18), the Bianchi identity (19), and Ngen ¼ 3 [Ngen is given in Eq. (26)]. Solutions 1–3 are for S2 ×H2=Γ ×H2=Γ cases, and
Solutions 4–6 are for S2 × S2 ×H2=Γ cases.

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

χ2 −2 −2 −4 2 2 2
χ3 −2 −4 −4 −2 −4 −6
ðnAiÞ 0

BBBBBBBBBBBBBBBB@

2 0 0

1 0 0

0 1 1

0 1 −1
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBB@

2 0 −1
1 0 2

0 1 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 1

0 0 1

0 0 0

1
CCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBB@

2 0 −1
1 0 2

0 1 0

0 2 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

0 0 0

1
CCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBB@

3 0 0

0 1 0

0 0 1

1 0 0

0 3 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBB@

3 0 0

0 1 0

0 0 1

1 0 0

0 3 0

0 0 1

0 0 1

0 0 1

0 0 0

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBB@

3 0 0

0 1 0

0 0 1

1 0 0

0 3 0

0 0 2

0 0 2

0 0 0

0 0 0

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCA
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B. S2 × S2 ×H2=Γ case

To satisfy the equation of motion (12), we search for the
solution with λ1 ¼ λ2 ¼ 2=3, λ3 ¼ −4=3. The curvatures
λ1 ¼ λ2 ¼ 2=3 can be obtained from the fluxes satisfying

X11
A¼1

n2A1 ¼
X11
A¼1

n2A2 ¼ 10: ð41Þ

Then, we choose

ðnAiÞ ¼

0
BBBBBBBB@

3 0 0

0 1 0

0 0 1

1 0 0

0 3 0

0⃗ 0⃗ n⃗003

1
CCCCCCCCA
; ð42Þ

where n⃗003 ¼ ðn63;…; n11;3Þ is a six-component vector. The
Bianchi identity (19) and the three-generation condition are
satisfied. From Eq. (18), the condition λ3 ¼ − 4

3
becomes

X11
A¼6

n2A3 ¼
χ23
4
− 1: ð43Þ

If χ3 ¼ −2, the right-hand side is 0, and thus n⃗003 ¼ 0⃗.
If χ3 ≤ −4, the right-hand side is a positive integer,
so there is a n⃗003 that satisfies this equation by Lagrange’s
four-square theorem. Thus, the solutions of Ngen ¼ 3

always exist.
For example, if χ3 ¼ −6, then n⃗003 ¼ ð2; 2; 0; 0; 0; 0Þ.

Three sample solutions with χ3 ¼ −2;−4;−6 are shown
in Table I.

VI. CONCLUSION

In this paper we have discussed how the generation
number Ngen is restricted by both the equations of motion
and the Bianchi identity in S2 ×H2=Γ ×H2=Γ and
S2 × S2 ×H2=Γ. In Sec. II we reviewed the compactifica-
tion and summarized the equation of motion (12) and (18),
and the Bianchi identity (19). These equations constrain the
Euler characteristics χi and the flux quantization numbers
nAi. We saw in Sec. III that the generation number Ngen is
calculated from the flux quantization numbers nAiðA ¼
1; 2; 3Þ [Eq. (26)]. In Sec. IV we studied how the generation
numbers Ngen satisfying the equations of motion (12) and
(18) and the Bianchi identity (19) can be obtained when the
Euler characteristics χi ofH2=Γ are −2. We obtained three-
generation solutions in both the S2 ×H2=Γ ×H2=Γ and
S2 × S2 ×H2=Γ cases. In particular, in the case of
S2 ×H2=Γ ×H2=Γ, the generation number Ngen is at most
three. In Sec. V we showed that three-generation solutions
exist for arbitrary Euler characteristics of H2=Γ.
These results are interesting for two reasons. One is that,

in general, flux quantization numbers nAi can take arbitrary
integers, but they can be restricted considerably by the
equations of motion and the Bianchi identity. The second is
that we have obtained three-generation solutions in com-
pactifications without supersymmetry. To derive four-
dimensional realistic models, we will study fermion mass
hierarchy and flavor mixings as well as CP violation in
these compactifications.
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