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Higgs sector phenomenology in the 3-3-1 model with an axionlike particle
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The scalar sector of the 3-3-1 model with an axionlike particle is studied in detail. In the model under
consideration, there are two kinds of scalar fields: the bilepton scalars carrying lepton number two and the
ordinary ones without lepton number. We show that there is no mixing among these two kinds of scalar
fields. We analyze in detail the CP-odd scalar sector of the model to find the physical fields of the axionlike
particle and a pseudoscalar with mass in the range 100 GeV to 1 TeV. The results are different from others
which have been published before. The CP-even scalar sector of the model is analyzed as well. The results
of our analysis of the scalar sector allow us to accommodate scalar masses in the 100 GeV—-1 TeV region.
Furthermore we analyze the implications of the model in several flavor changing neutral decays of the top
quark as well as in rare top quark decays. Besides that, the leptonic decays of the SM like Higgs boson as
well as the meson oscillations are also analyzed. Our numerical analysis show that the model under

consideration is consistent with the experimental constraints imposed by these processes.

DOI: 10.1103/PhysRevD.107.095030

I. INTRODUCTION

Nowadays, it is well known that the standard model (SM)
has to be extended. Among the extended models of the SM,
the versions based on the SU(3).x SU(3), x U(1)y
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gauge group (called 3-3-1 models in short) [1-10] are of
interest with the following intriguing features such as the
explanation on the number of fermion generations, the
electric charge quantization [11,12], source of CP viola-
tion [13,14] as well as the automatic fulfillment [15] of the
Peccei-Quinn symmetry [16,17]. The Peccei-Quinn sym-
metry for the economical 3-3-1 model [18-23] are dis-
cussed in Refs. [24,25]. The models contain self-interacting
dark matter [26,27].

The models are classified by a parameter  appearing in
the electric charge operator

QO =Ts+ T + X, (1)

where T3 and Tg are SU(3), generators, X is the U(1)y
charge. The 3-3-1 model with arbitrary beta is presented in
Ref. [28] (see also [29]). There are two main versions of
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the 3-3-1 models. The first one is the minimal model with

p = £+/3 which requires three SU(3), scalar triplets and
one SU(3), scalar sextet [1-3]. Moreover, this version has
a Landau pole around 5 TeV leading to a loss of
perturbativity around that scale. There exist efforts to solve
this puzzle [30]. In the recent work [31], the Landau pole,
in the minimal version by addition of octet leptoquarks, can
be around 100 TeV. The second one is the model with
p==x % which just requires three SU(3), scalar triplets to

provide masses for all fermions and bosons [5-9]. This
kind of model is more attractive due to its simpler scalar
content and its lack of Landau pole at the TeV scale.

About two decades ago, the axion have been introduced
in the 3-3-1 models [32-34]. The new nice property of the
3-3-1 model is found in a recent paper [35], where the
cosmological inflation, axionlike particle (ALP) and see-
saw mechanism are simultaneously addressed with a
minimal scalar content. However, the above-mentioned
paper contains some mistakes and does not address
phenomenological aspects related with flavor changing
neutral process such as the t — hu, t — hc, t — uy,
and 1 — cy decays as well as the K — K°, B} — BY, and
BY — BY meson oscillations whose explanations, analysis,
and discussions are the purpose of this work.

II. BRIEF REVIEW OF THE MODEL

A. Particle content and discrete symmetries

To provide masses for fermions and to account for the
existence of the ALP, the scalar sector of the model requires
three SU(3), scalar triplets 7, p, y as well as an electrically
neutral SU(3), scalar singlet ¢. The scalar content of the
model with their corresponding SU(3). x SU(3), x U(1)x
assignments are given by:

1
ZT = 0{?’%5’%2) ~ <1’31 _5)7

1
rlT = (’7(1)7’757’7(;) ~ <193’_§>7

2
7= i)~ (13.3),

To provide masses for the fermions and gauge bosons, the
above scalar fields have vacuum expectation values (VEVs)
as follows

1 , .
W =—750.05)% () =—5(2,,0.0)

1 , 1
)= 50500 () =50y (3)

where the VEV v, triggers the spontaneous breaking of
the SU(3), x U(1)y gauge symmetry down to the SM
electroweak gauge group. The remaining SU(3), scalar
triplets # and p break the SM electroweak gauge group.
On the other hand, the fermion spectrum of the model
and their SU(3), x SU(3), x U(1)y assignments are:

= (Varea: (VR))L~(1.3.=1/3),  eqp~(1.1.=1),
NaRN(l’l 0) 03, = (u3,d3,U) ~(3,3,1/3),
ar = (dy.=1u,.D,)[ ~(3.37.0),
uaR7UR~(37172/3)’ dag.Dyr~(3.1,-1/3), (4)

where n =1, 2 and a = {n, 3} are family indices. The U
and D are exotic quarks with ordinary electric charges,
whereas N, are right-handed Majorana neutrinos.
The typical trouble of the 3-3-1 model with f = £ \/Lg is
that there are two triplets # and y with identical quantum
numbers by SU(3), x U(1)y gauge group leading to the
term ,u,%/f x> which complicates the structure of the square
scalar mass matrices, thus making the analysis of the scalar
sector very tedious. To avoid this kind of terms, one
imposes the Z, discrete symmetry under which the
SU(3), scalar triplets # and y have opposite numbers, as
done in Ref. [33]. To provide Dirac and Majorana mass
terms for v; and Ny we have the above described particle
content, shown in Table I. The particle assignments under
the SU(3). x SU(3), x U(1)y x Z;; X Z, group are sum-
marized in Table I. Here we have used a notation

¢N(1,1,O). (2) a)kEeﬂ”ﬁ,kZO,:tl-“ﬂ:S.

TABLEL SU(3). x SU(3), x U(1)yx X Z;; X Z, charge assignments of the particle content of the model. Here
a=1,2,3anda=1, 2.

Ouw Qs upr dag U Dur Wa  er  Nar n X p b
SU(3). 3 3 3 3 3 3 1 1 1 1 1 1 1
sU(3), 3 3 1 1 1 1 3 1 1 3 3 3 1
L S R T T NN S S R
Zy ;! on s , w3 on on ;3 o' wi' w0y oy o7
Z 1 1 -1 -1 1 1 1 -1 -1 -1 1 -1 1
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From Table I, one recognizes that under Z, symmetry,
the following fields are odd

(’77,0’ Ug, anv enRsNR) - _(’7’:0’ Ug, anv enR’NR)' (5)

B. Yukawa couplings

With the above specified particle content, the following
Yukawa interactions invariant under the SU(3). x
SU3);, x U(l)y x Z;| X Z, symmetry, arise [35]:

~L" =y, 05, Uy + Z (92 Ot Dnret*

n,m=1
3 2 3
+ Z (y3)3aQ3LMaR77 + Z Z (y4)naQnLdaR’7*
a=1 n=1 a=1
3 2 3
+ Z (y5)3aQ3LdaRp + Z Z y6 naQnLuaRp*
a=1 n=1 a=1
3 3 3 3
+ Z Z GabWaLCbrRP + Z Z Y2) ab¥arIN b
a=1 b=1 a=1 b=l
3 3
+ Z Z (Y% ap®N g Nor + H.c. (6)

1

S
Il

a 1

Let us note that the above given Yukawa interactions in (6)
are invariant only under the Z, assignment given above. It
is emphasized that the transformation under the Z, in this
paper is different from than the one given in Ref. [35] where
y 1s odd.

The exotic quarks get masses from v,, top quark get
mass from v,, charged leptons get masses from v,, while
new Majorana neutrino N gets mass through vy. The
Dirac neutrino mass term arises from wv,, while the
Majorana mass term arises from v, [see last two terms
in (6)]. From the last two terms of Eq. (6), it follows that the
tiny masses for the light active neutrinos are generated from
a type I seesaw mechanism mediated by right handed
Majorana neutrinos, thus implying that the resulting light
active neutrino mass matrix has the form:

v
D __ ..D 1
My =y, —=

M, =MP My (MP)T, vl

MN = \/EyN%.
(7)

C. Gauge bosons
First of all, the model has nine electroweak gauge bosons
arising from the SU(3), x U(1)y symmetry. Their inter-
actions with the SU(3), scalar triplets are included in the
following kinetic terms:

> (D'H)'D,H. (8)

H=yn.p.¢

ﬁHiggs =

where the covariant derivative is given by

D, =0, — igT*We — igyXT°X,,, 9)
where T° = 1//615,; being I5,5 the 3 x 3 identity matrix
and g, gy are gauge couplings of the two groups SU(3),

and U(1)y, respectively. Secondly, the matrix W*T“, where

T* = A,/2 corresponds to a triplet representation, is written
as follows:

WitmWh  V2Wp o V2Y)
1
Wit =3 V2WE o Wi EWE V2X, | (10)
V2Y; V2X o =W

in which we have defined the mass eigenstates of the
charged gauge bosons as

1
WE=— (Wl Fiw?), v f—(W“ F W),
V-

1 . L | .
Xg:_ﬁ(wg—zw,z), X9 :E(W,‘:HWZ)- (11)

After spontaneous symmetry breaking, the mass spec-
trum of the gauge bosons arise from the following terms:

Lows = Y (D'(H))'(D,(H)). (12)

H=y.n.p

The charged and bilepton gauge bosons get masses
given by:

7

2
mé, :Z(v%—l—vZ), mio :%(v)%—i—v%),
P
m%,zz(v)%—l—vZ). (13)

W is identical to that of the standard model, while (X, Y)
form a new, heavy gauge vector doublet with a mass
splitting [36]

|m3 — m§0| < mb,.
From (13), it follows
v 4 v} = v, = 2467 GeV>. (14)

Finally, there is a mixing among the W5, Wg, B compo-
nents. In the basis of these elements, the mass matrix is
given by
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) U'I + UP L\/;p 3\/_ (U” T 21}”)
g 203
M2, = T % %(41}2 + 2 4 v3) %( —v2+202) |. (15)
— 2 (03 +202) V2 V24 202) 2 (024 02+ dd)
|
where Finally, this matrix is diagonalized by the following field
transformations
r= 3v2sy (16)
N T Zy = 0,2y = 50,2}
72 =59 2,4+ ¢y 2 21
Diagonalization proceeds through two steps, in the first g 0r 0 1)
step the 3 X 3 matrix reduces to one block diagonalized  \here [37]
which yields a 2 x 2 matrix in the bottom. The eigenstates
are now rewritten as follows 5o 2m2.
te, = = ——2
, 7 ¢y, miL—m}
— -V
A, _SWW3/4+CW( \/§W8ﬂ+\/1 3Bﬂ> :\/(3—tﬁv)[(t%‘,—l)v§+(t%v+l)v,ﬂ (22)
5 202y '
tw By “
Zﬂ:CWW3M_sW —%W&,—Q— 1_?3;4 R . .
m., ,
3, = [ i = (0 = 2 2 - i | 222
ZI

13 t
=/1-Pwg, + % B, 17
3 8;4+\/§ " ( )

From the analysis of the gauge sector, we found one
massless gauge boson, which corresponds to the photon A.
Furthermore, besides the bilepton gauge bosons, the neutral
gauge boson spectrum contains two massive neutral gauge
bosons Z and Z'. The elements of the neutral squared gauge
boson mass matrix in the (Z,Z’) basis is given by

92

mézﬂ(vg+vi), (18)
" _ gl = Doy + (6 + 1)@%]’ (19)
4\/§wal 1 —%t%/v
,  FlAvs+ (5, —1)20 + (3, + 1)205].

43 -13) (20)

Ng—2 U2+Uz—[(l%v_l)
g\

1
my, E[mz—l—mz,—i—\/mz m2,)* +4mZZ,]: m2,
AT
(3—4s3) ©

v+ (G + Do\ myy
41}% ~

(23)

Note that exotic quarks U and D, as well as gauge
bosons X°,Y* carry lepton number two [38—40]. The
gauge boson couplings of this model are the same in
Refs. [41,42]. Due to quark family discrimination, there are
flavor changing neutral currents mediated by Z’ at the tree
level [43-46].

III. HIGGS POTENTIAL

The model scalar potential has the form:

V=g + 1oxx + uppp + ' n + 4 (a)* + (') + 230" p)? + A0 (') + A5G ) (0Tp)
+ 26" ) (p*p) + 2 (" m) (n'x) + 25 (") (o) + Ao (1 p) (p™1) + A0 (" $)* + 241 (¢ ) (1)

+ (@ @) (P p) + Az (@ ) (1" n) +

The VEV v, is responsible for the PQ symmetry
breaking resulting in the existence of invisible ALP due
to very high scale around 10'°-10"" GeV. Then SU(3), x

U(1)y breaks to the SM group by v, and two others v,, v,

(2g€" nipjxigp +H.e.) (24)

|
are needed for the usual U(l), symmetry. Hence
vy > v, > v,,v,. The constraint conditions of such
scalar potential were analyzed in Ref. [33]. From (24), it
is reasonable to assume: A, =3, x5, Ay~ Ag,

095030-4
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Ap ® A13. According Ref. [47],
My > 4.1 TeV.
Let us expand these scalar fields around their VEVs.

v, > 10357 GeV for

1 ) 1 .
pg:ji(v/)+Rﬂ+lI/))’ ﬂ?:ﬁ(vﬂ+R%+ll}7)’

1 ) 1 .
)((3):7§(”1+R;3(+’I)3()’ ¢:\/—§(1}(/)+R,/,+ll(/)). (25)

Substitution of (25) into (24) leads to the following
constraints at the tree level as follows

W5+ A3v; +%5 +%6v,3+’1; 3’+F:0’

py + davy +/12 ;ﬂ-% +%vé+2iv’%:0,

Wy + vy +/12 ,";+% +/1; §,+2%%_0,
ﬂwww@ +%vﬁ+%v2+2%=o, (26)

where A = ,v,40,0,0,.

A. Charged scalar sector

There are four charged scalar fields: 5, p7, p3, and y;.
(1) In the basis (175, p7), the corresponding squared mass
matrix is given by:

A9 1;/2, _ A Agv,v, _ A
2 202 2 20,0,
[ »Yn
M, =
R ! 2
29Vly A oV A
2 2v,v, 2 Zyg

1 1
(A= dovyuy) (4w,
e ] (27)

) 2
v n 1)‘, v D

From this matrix, we get the massless Gft states and two

massive ones, 1.e., Hli with mass equal to

(A = Agvdv

Hy 2

%)(%;vz ) 08)

Let us note that the Gi massless charged scalar fields

correspond to the SM charged Goldstone bosons associated

with the longitudinal components of the W+ gauge bosons.
The physical fields are given by

Gt cosa —sina) [/ pf
= . : (29)
Hf sina cosa nt

where

v

tana = . (30)
Up
From (28) it follows
Vpv, A A
do > A - RNEYY
¢ vv, w2 (02, —vR)vl

From (31), one gets the condition for the perturbative
coupling as follows

Al

(’U%W - /UI%)/UH

< 1. (32)
Then, the constraint for the important coupling 4, is
given by

(v3, — v})tana

Al < (V3w — vp)vy = 1Ayl < (33)

'y

For simplicity, let us assume v, =v, =1,/ V2~174GeV,
vy =102 GeV, and v, = 10°> GeV, then |1, < 107" It
is interesting to note that such tiny couplings (Yukawa
couplings responsible for proton instability) arise also in
the supersymmetric 3-3-1 model [48].

(ii) For the charged scalars, in the basis (y3,p3), the
corresponding squared scalar mass matrix has the form:

/181;/2, _ A Agv,v, _ A
2 202 2 2v,v,
M, = ‘
2
Agv,v, _ A Agvy _ A
2 21}/,111 2 21)/2)

1 1
(A-gv3v3) [ 7 oo,
= EEAmE ) (34)

;o 12
1/11/‘, 1,/

This matrix has the massless scalar states G5 and the
massive one H3 with mass equal to

e (A—2gv303) (v5+v7) (33)
T

The physical fields are given as
(G;)_ <cos€, —sin91><)(§t> (36)
HEf) \sin6, cosé, px )
where

tan 6, = (37)

&ﬁ |§§

095030-5
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It is worth mentioning that the bilepton massless G5

correspond to the Goldstone boson associated with the

longitudinal component of the Y* bilepton gauge boson.
From (35) it follows

Vyv
g > Ay 21 (38)
Uz Y
B. Complex neutral scalar sector
There are two neutral scalars: one ¥ with mass
24 .2
RN C /7]

my = (Aqvyv; — A) o (39)

and one massless 17‘3’ which is identified with Goldstone
boson eaten by massive X°. Hence

n = Gyo. (40)

From (39), it follows

Avgvs > A. (41)
It is to be noted that in the framework of 3-3-1 model with
right-handed neutrinos, ! is bilepton scalar which can play

a role of DM [49].
|

a cosfy —sinfssind,
Gy 0 cos 05
G, | | o 0
As sinf,  sinf;cosb,

where the mixing angles in the CP odd scalar sector
take the forms:

v v v
tana = —, tan @; = T~
v 2 v
p v Uy
v, 1+vg
v v
tan 6, = e ~ L (44)

/ 2(1 1
Vg 1 +v)((v_%+v_,2,) L7

Note that the matrix in (42) depends on four
VEVs namely, v,, v,, v, and v,,. The derived mixing
matrix in (43) has three angles a, 05, 6, given in (44)
and one parameter is (i + % + # + 1%7) which is

entered to the expression of As mass in (46). It is
worth mentioning that the rotation matrix that
diagonalizes the CP odd squared mass matrix has
three mixing angles instead of four because of the

VEV hierarchy Uy, Uy L 0, K 0y,

C. CP-odd scalar sector

There are four CP-odd scalars with VEVs: (1,5, 13, 15, 1).

In the following we describe the corrections to Ref. [35].
(1) The squared mass matrix for the electrically neutral
CP odd scalars in the basis (/4,13,1,,1}) has the

oty
form:

VgV,

2 )
7 VU, Uy,

2 _
Modd_

N >
S

(42)

v,

As seen from Eq. (42), there are nontrivial
mixings among the CP odd scalars (14,13,1,.1})
in the interaction basis. Note that an element at the

first row and third columns in (42) have to be —.

V,04°
instead of —— reported in Eq. (16) of Ref. [35].

The CP odd squared mass matrix M%dd in (42) can
be exactly diagonalized by the Euler diagonalization
method. The CP odd scalar fields in the physical and
interaction basis are related through the following
transformation:

2

—sinacos@;sin@, —cosacosb;sind, 1y
—sin asin 05 —cosasinfy I

. , (43)
cosa —sina 1,
sinacosfscosfy  cosacostscosy ]%

It is worth mentioning that our result is com-
pletely different from the ones given in Ref. [33],
where the mixing matrix is not unitary.

Here the ALP is massless and is given by the
following combination of four CP odd neutral scalar
fields 1,, I3, I,, and I}:

a=1,cos0, —I;sinﬁ(/) sin@s —1,cos Oz sinasing,

— I} cosacosOysinf,, (45)
which cannot be the same expression for an a given
in Refs. [33,35].1 It is worth mentioning that due to
v, <K Uy, it follows that tan 6¢ — 0 as well as sin 9¢
then cos 0, = 1. This leads to a = 1.

"It is possible to get the mixing matrix in which ALP contains
only two components as in Refs. [33,35], but in this case both
Goldstone bosons G, and G contain a component along /.

095030-6
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Furthermore, the mass of new massive field CP
odd scalar field A5 is given by

) A 1+1+1+1
mi =——|—+—=+—=+—=
As 21}?1 11)% % 1}%

1
N — Eﬂ(/,vqwl(tana + cota)

A
¢U¢ Uﬂ( (46)

- sin2a
From (46), we can see that the value of 1, should be
negative. It is emphasized that the squared mass
matrix in Eq. (42) as well as mass of the A5 are only

available due to the last term in (24) which just
|

14,1 1},/,
(/161),71;,, + )

A

2_ A
z Uy 4y

appears because of specific discrete symmetry in this
paper (for discussion on this, the reader is referred
to Ref. [33]).

Summary: in the CP-odd sector we have 6 fields: two
Goldstone bosons for Z and Z’, one axion like particle a,
one massless field G; being eaten by one component of the
massive X and one massive pseudoscalar As.

D. CP-even scalar sector

As same as the CP-odd scalar sector, there are four fields in
the CP-even scalar sector with VEVs: (R, R}, R} and R)).

In basis (R}.R,.R;.R,), the squared mass matrix of
CP-even has form as below:

)

ApVyg
2

ApU,
% (/141),7%( + % </113U,71)¢ + (/1/1) )

Apv Ap, Ao,
i </16v,71),, + ‘MU"') A0l — ﬁ% ] (% + /1511/,15{) : ( ¢12”U* + /11221,,1)(/))
M% =2 , , , (47)
V,7, v, v,v
%(/141},7111‘1‘4)2/}"5) %(4)]4)4’/1511 ) /111))2(—& %(¢ﬂp+111111 ’U¢>
% (ﬂ.]g’l) ) + Aq}bpvl) % (/1¢L,, £ /1120 U¢) % (ﬂqﬂql/7 + ﬂ] v U¢,) /1101)3) - ﬁ
l il i
Comparing with a similar matrix in Ref. [35], we see that Mi(@'P)x'x) D vy RyR,,
the first three elements in the fourth column of CP even (@) (pip) D v40,R4R,,
mass matrix in Ref. [33] have the extra terms: gty vyt ¥ "
P . . . 2 T2 /113((15 ¢)(’7 77) ) UchanbRn'
and =%, respectively. To recognize the existence of these
terms, let us write them explicitly The matrix which is used to diagonalize M% is
|
—cosa, —sina,cosaz —sina,sinazcosa, sina,sinazsinay
U sinay  —COS@, COSa3  —COS@, SiN@3 COSay, COSa, sinaz sinay (48)
k= 0 sin a3 —COS a3 COS ay, oS a3 sin a,
0 0 sin ay, cos ay,
in which, the mixing angles in the CP even scalar sector are defined as below:
4 cos a3 v, v, (A + Asv;v;
tan 2a, = 30y %3 %) — (49)
Acos? azvl — Avs + 40203 (v — A3 cos® azv3)
4v,(A + 225020
tan 205 = 2 ok )2, (50)
© cosap(A -4 vy)
Ao
tan2a, = -~ (51)
/1107145
Changing the signs of A, hs, and H,, the physical fields are given by:
hs cosa, sinaycosaz sina,sinazcosay, —sina, sinagsinay R}7
h —sin@, COos@,Ccosaz COSa,sinazCcosq, —Cosaq,sinassinay R, (52)
H, B 0 —sina; COS @13 COS @, —cosag sinay, R}
o 0 0 sinay, cos ay, R,

09503

0-7



V.H. BINH et al.

PHYS. REV. D 107, 095030 (2023)

In the limit Vy >0, > 0,7, it follows

hs ~ R} cosa, + R, sinay, (53)
h~—Rjsina, + R, cos a,, (54)
H, ~ R} cosa,. (55)
® ~ Ry cosay, (56)

and their respective masses are shown in Appendix B.

Note that comparing to the 4 x 4 matrix of CP-odd
sector containing only four parameters with three massless
solution, the matrix in (47) having 10 parameters is not
exactly diagonalized. To solve this problem we have used
the Hartree-Fock method where some conditions such as
Vg >0, > 0,0, /1{/, <1 and sina; = 0. As a conse-
quence of the aforementioned VEV hierarchy, the derived
matrix contains three angles a,, a3 and ay and three
parameters associated with masses of new fields d),HZ
and hs.

In the limit v, > v, > v, > v,, one has

b L5 (u+hs +iAs)
e Gy- .o Hy ,
\/L—(v +H,+iGy) Gy
Gy~
pe %(U‘HH'IGZ) , —(v,,,—l—dH—la) (57)

g

H;

In the CP-even scalar sector, there are six fields. One
massless field is part of Gyo, another massive in TeV scale
is associated to )((1). One heavy field with mass in the range
of 10'! GeV and associated with singlet ¢ is identified to
inflaton @®. One SM-like Higgs boson A with mass
~125 GeV. Two remain fields include one heavy with
mass at TeV scale (H,) and another with mass at EW
scale (hs).

Combination of Table I and (57) leads to some interest-
ing consequences

(1) SM-like Higgs boson /4 has Yukawa couplings with

only SM fermions.

(2) ALP a can have Yukawa couplings with only exotic

quarks.

(3) The pseudoscalar As and H, can have Yukawa

couplings with not only exotic quarks but also
SM quarks and leptons.

IV. NUMERICAL ANALYSIS OF THE
SCALAR SECTOR

To find particle content in CP-even sector namely the
SM-like Higgs boson, and another one close to it Hs is the
aim in this section.

(1) In order to successfully reproduce the W gauge

boson mass, the VEVs of the SU(3), scalar triplets 7
and p should obey the following constraint:

v, =\/v* — vl (58)

where v = 246 GeV is the electroweak symmetry
breaking scale.
(2) Charged sector
(a) From Eq. (28), it follows that positive squared
scalar masses are obtained provided that the
following relation is fulfilled:

Aovlvy > A (59)
(b) From Eq. (35), it follows that
Agviv: > A (60)
(3) CP-odd sector
(i) From Eq. (39) it follows that the requirement of
obtaining positive squared mass for the massive
complex scalar ¢° implies:

Mvivi > A. (61)

(i) From Eq. (46), it follows

Al I 1 1 ApVgy¥

> _ A LD
Mas = 2<v§5+v}%+v%+v$> sin2a
(62)

If v, =v, in EW scale, then we may have
(mis)mm = —Ayv40,, which implies 4, <O.

m2 sin 2a

From Eq. (62), we get 4, = . With
my, ~10° GeV, vy~ 10" GeV, and v, =
10° GeV, then we get |4,4| < 10™°. Moreover,
from the condition for A9 and assuming
v, =v,~174 GeV, vy = 10" GeV,and v, =
10° GeV, then we get |d,4| < 107, The tiny
value of the quartic scalar coupling 4, can be
qualitatively understood from the requirement
of having a physical pseudoscalar As with a
mass at the TeV or subTeV scale. It is worth
mentioning that the Z;; symmetry is sponta-

neously broken at a very large scale ~10'° GeV
by the VEV of the singlet scalar field ¢, which
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also generates the mass for the physical pseu-
doscalar As. Another more formal way to justify
the smallness of 4, is by considering an
accidental Peccei-Quinn symmetry U(1)p,
under which ¢ has charge equal to —2, whereas
the right handed Majorana neutrinos, the
SU(3), leptonic triplets and the right handed
leptons will have charges equal to 1. Under that
assignment the quartic scalar interaction involv-
ing 4, will be forbidden at tree level, however
the mass of the pseudoscalar A5 can be radi-
atively generated from a box diagram involving
the one loop level exchange of the neutral
components of the SU(3), scalar triplets as
well as the exchange of the scalar singlet ¢.
That loop suppression together with the large
mass scale of the CP even component of ¢ can
be interpreted as dynamical sources for the tiny
values of the 4, coupling. Besides that, it is
worth mentioning that low energy effective
theory below the scale of breaking of the
SU(3), x U(1)y gauge symmetry corresponds

to a two Higgs doublet model, where the con-
sistency with allowed experimental ranges for the
oblique 7', S and U parameters, requires that the
masses of the non SM scalars should not differ
significantly [50]. In view of the above, it is
required that the pseudoscalar A5 should acquire
amassatthesubTeVorTeV scale, not far from the
masses of the physical scalar states arising from
the  and p scalar triplets.
(4) CP-even sector
(i) Mass of inflaton

me = \/ 2/1101J¢ ~ 10“ GeV
= Aor1l if vy~ 10'° GeV. (63)
(i) Mass of heavy scalar: The Eq. (B20) yields
2 2 A3 2
my R2A vy + 50 (64)

2% 7

(iii) Two light scalars: From the Eq. (B29) and use
the approximation 4, ~ A3 ~ A4 we have:

2

2 02
mh,h5~ﬂ3v +

In case v, = v, = ﬁ the model predicts

m: 0% — m?
m%‘hs ~ A2 —|—%:|:73 5 A (66)

Then we have:

3
m% ad 5&31}2, (67)
s 02
mj, = —32 +mj (68)

One scalar is the SM like Higgs boson & with mass of
125 GeV. One another scalar is a new one /5 with mass
takes the values of 150 GeV [51-57] or 96 GeV [58-61],
respectively. The mass value of hs5 depends on some
parameters such as /12,/13,14, and the VEVs of the scalar
fields in this model. From (67) and (68), we have the
correlation between As, i, and &5 as below:

|, = mj | = O(mj). (69)

Azmy (vt = 2vp07)

m
2/*5 + \/mjs + 3 (0* - 30202) - . . (65)

v

From Eq. (69), it follows that in the case v, = v,, the
splitting by masses of hs and As is about few hun-
dreds GeV.

V. YUKAWA COUPLINGS AND TOP
QUARK FCNC DECAYS

In the quark sector, there are two parts: exotic quarks
without mass mixing and ordinary quarks with mass
mixing. Because of having no mass mixing, the mass
eigenstates of exotic quarks are their original states. Then,
we just consider on the mass mixing of ordinary quarks.
The mass matrices of ordinary quarks are

()’6)112—’; ()’6)12% ()’6)132—:
U, U, U, Uﬂ
M, = (¥6)21 :—’ (yﬁ)zzz,—’q (yﬁ)zsz,-—f] \ﬁ
(¥3)31 (¥3)32 (¥3)33
= VuLMuVZR? (70)
with
Mu = diag(mu’ me, mt) (71)

095030-9



V.H. BINH et al.

PHYS. REV. D 107, 095030 (2023)

and
(M)n%ﬁ ()’4)12% ()’4)13%
M, = vy vy Uy Uﬂ
a= | (Va)a v, (¥4)2 v, ()’4)23 v, 75
(J’S)31 (y5)32 (J’S)33
= VMgV, (72)
with
Md = diag(md’ mg, mh)' (73)
K=V, Va. (74)

In these matrices above, all Yukawa couplings of the
form (y;),, a, b=1, 2, 3; i =3, 4, 5, 6 are real and
positive. With @« = 1, 2 and a = «a, 3, these couplings can
be defined by the following equations:

V2 5
(¥6)na = U—(VMLMMVZR)M’
p
V2 _
(y3)3a = U_ (VuLMuVZR)M (75)
n

- 1},+R)—i1,
_ﬁg/u) = Z Z (V6 naltnr, ~——7=—"tar +

1 V2

2 3 3 .
=33 0dualter (Vi) e

v, + Ry + il

v, +R,—il

V2 8
(Va)na = o (VarMaVig) e
n

(V5)3a = ? (VarM Vi), (76)

From (70) and (72), the diagonalized mass matrix of
ordinary quarks are defined as below:

~ (u,d) (u,d)

Mu,d = (VL )TMu.dVR. . (77)
In general, we get:
7 _ yt
My = (My) e = Vi MgV sr.

Sor =ViwrSwr),
faL(Mf)abbe = ]chL(V;L>ka(Mf)ab(VfR)h1flR
= ka(V}LMfoR)klsz = i (M), fir

mekkafkR, k=1,23. (78)
Here, i &) and fi; gy (k = 1,2, 3) are the SM fermionic
fields in the mass and interaction bases, respectively.
Hence, the SM up and down type quark Yukawa inter-
actions are given by:

A L

()’3>3a usg, NG

3
upg + h.c
P

=1

£ (VEQM) )abﬁbR

V2

\/z (Vgeu))abﬁbR +h.c

2 L3 E V2 v, + R, —il
~ u)\T u ~
=SSN R (VM Vi) e (VE) ) ey L (V) o

V2
v i = u)\T
+Z <VMLMMVuR)3auCL(<V5‘)) )63

3 1 -7l
- v, +R, -1l
_[’g’d) = Z Z (y4)nadandaR +

1 a=1 \/i

Il
toaMge
it
Q“’ -
I
S ~—
QU 2

QA

di Uy +RY—il)
CL((V(L)) )cnM

o v, + R+l
CL((V2>) )03#

V2
v, + Ry + il
V2

- v,+R,+il
d I 4 4
()’5)3a 3L \/§

(Ve aplipg + Hee. (79)
3
dbR + h.c

a=1

d ~
\/2 (VEQ ))abdbR

\/z (V%ﬁ)ababR +h.c
v, + Ry — il

d ~
\/§ (VEQ ))abdbR

+iii—2(v V) do (VIO m(vw) i+ He (80)
dL™d Y dRr)3a%cL L c3 R Jab¥bR -C.

V2
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Replacing Egs. (43) and (52) in (79) and (80), we found
that the Yukawa couplings of &, hs, and As with up and
down -type SM quarks are given by:

2

(Fh _ cosm Z Z

n=1 a=1

sma Z

uLM VuR) (V%M))aj

MLM VuR)’ja (Vgi ))aj

(81)

w

5 u)\T - u
(T0),; = (VI ) (Var M,V ) (V)i

sin 2% Z
v

P n=1 a=

=
—_

3

S VN ) (Vi ViR) 3 (Vi)

nm a=1

cos a,
+

v

(82)

nm  n=1 a=1
3
cos ap d
o 2 VDV bV i) (Vi o
(84)
n COS Uy o ()
(Fds)zj v Z VL )ln(VdLMdVdR)ng(V )aj
n n=I a=1
. 3
sin a, )N ~ d
+ s, Z:l((V(L))T)B(VdLMdeiR)M(VE?))aj
(85)
cosa d d
(ng)i,:_’ v Z((VL ) )m(VdLMdVdR)na(VSQ))uj
n n=1 a=1
sina Dot
== (V) (ValaVi)sa (Vi s
P a=1

(86)

Rewriting the couplings (81) and (84) in another form,
one gets:

~ 2% (ana + tana) (1Y), (87)

Un

The first term in (87) is a flavor conserving. The second
term in (87) is a flavor changing. In order to have flavor
conservation for SM-Higgs interactions, the second
term should be vanished. Then, one gets the condition
below:

tana = —tana, (88)
The Eq. (88) gives the condition among v, and
Vs Uy Ags A2, 43, Ag Which guarantees the flavor conserva-
tion of SM-Higgs at tree level. In the SM, the resulting top
quark FCNCs are strongly suppressed. But in this model,

the FCNCs of top quark appear and can be used to look
for new physics The Yukawa couplings of up-type

quarks I7,; jt allow some decays at tree-level such as:
t — hu or t — hc. These processes get the branching ratios
limited by ATLAS [62]: at 95% C.L. upper limits on the
Br(t = hc) = 1.1 x 1073(8.3 x 107*) and Br(r — hu) =
1.2 x 1073(8.3 x 107™*), respectively. The corresponding
combined observed (expected) upper limits on the
couplings |T'%.| = 0.064(0.055) and [T',| = 0.066(0.055),
respectively.

Considering the process ¢ — hc, its branching ratio is
given by:

e (mi—m})?

4 2m,my,
=—, 89

Br(t — hc)
with T, = 1.32 GeV is the decay width for top quark
(m, = 172.5 GeV) predicted by SM. And g, is the
coupling defined by [63]:

cos o W T - u
gr2hc = < » ((V(L)) )23(VuLMuVZR)32(V§?))23
P

_sina

(W)Mmmme%f

Uy

cosa Wt o y

+ (U—z((‘/(L)) )BQ(VMLMMVILR)23(V5€))32
P

2

sin a W T - u
%Mmemmm%%)@m

Uy

We can also get the branching ratio for the process t — hu
as follows:
Go (m7=m3)?

_ 4z 2m,my, , (91)

Br(t — hu) T
t
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with g,;,, is the coupling that is similarly defined by:

cos a W\t _ "
= (2 sV Y L) (V)
P

sin a,

T o u 2
((Vl(r‘u)) )13(VuLMuVZR)31(V§e))13>

Un

COS o NG u
+ < v 2 ((V<L>) ) (VuLMuVuR)B(V( ))3]
P

sina,

-
f

(v

MﬂmMﬂhMWPM> 92)

Uy

With m;, = 125 GeV, m;, = 172.9 GeV and the branching
ratios limited by ATLAS that we mentioned above, we plot
the correlation between the mixing angle in range (-5, —%)
and the branching ratios of ¢t — hg decay with ¢ = u, c.
Moreover, in this model, we have a light non SM CP even
scalar field such as &5 then the decays t — ghs (¢ = ¢, u)
can be under the consideration as well as the decays
t — hq. The couplings of the decays t — ghs (¢ = ¢, u)
are defined by:

—sina u)\ T u
= (I o VitV (V)
P

cosa - 2
S () ) Vi VL) (V) )
n
—sina WA N "
(T ) VBV VS
P
_cosay

«n)%mme;mw?mf,@a

Un

with ¢, = u,q, = c¢,i = 1, 2. Hence, the branching ratios
of t - ghs (g = c, u) are
Tigu (M7 =3, )
4n 2m,m,,5
I, '
gfhst‘ (mfz_’nis)z

4n 2m,mh5

[

Br(t —» hsu) =

Br(t — hsc) = (94)

Considering a benchmark scenario where the /5 non-SM
scalar has a mass around 150 GeV, we have numerically
checked that the branching ratios for the t — hsq decays
(with ¢ = u, ¢) can acquire values of the order of 1073,
which are within of the future experimental sensitivities.

In this section, we discuss the implications of the
model in meson oscillations, in the & — bb, h — 1] decays
as well as in the rare top decays t — ¢y and t — uy.
Furthermore, we also determine the couplings of the ALP a
and pseudoscalar A5 and we provide the corresponding
discussion.

A. SM-like Higgs decays

1. SM-like Higgs decays into two down-type
quarks h — bb

Use (C10), the decay rate of the process h — bb is

B 2 4m? 3
F(h—)bb)—/dF—géﬂm;( _1;)2 (95)
m

n h
with
COS d)N\t crov ot d
Gnvb = 0 ((V(L)) )33(VdLMdVdR>33(V§Q))33
P
sin a, d)\ T =t d
- ((V(L)) )33(VdLMdeiR)33(V§€))33
n
cosa, sina, cosa, sina,\ my
= _ nm; = _—— —_—
v, v, b cosa sina /) v
2
:C(?S% (tana —tan ) — My _ 2COS% My
sina cosa v
= ahlébgf,l;%- (96)

where a,,; is the deviation factor from the SM Higgs
bottom quark coupling (in the SM this factor is unity).
The experimental data constraint on the a,j, parameter is
given by:

ay® =0. 9117 (97)

2. SM-like Higgs decays into two charged
leptons h — 1l

Concerning the lepton sector, the Yukawa interaction for
charged leptons are given by:

Replacing Eqgs. (43) and (52) in Eq. (98), we get the
Yukawa couplings of & with leptons as below:

D iigabcosaz thbR

a=1 b=1

(M) 4 cOS 2

§%

lathaR

v,

Q
I
-

veosa, (M)

]

) “ 7athaR' (99)
a=1 U/’ v
3
veosay (M),
Inu = ZU—T = ahng%[ . (100)
a=1 P
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where a,j; is the deviation of the All coupling with respect
to the SM prediction (in the SM this factor is unity).

Using (C10), the decay rate of the process & — pu and
h — 7 are

2 2
Yih ) 4m

veosay\ 2 my my, | 4m
U 2 81 _W
4 h

n
cosa, m my 4mﬁ
- TR (F P 101
(cosa> 2 87 ( > (101)
m2
['(h — 1) /dF ( 2’)
my
~ [(vcosay\2mZmy, | 4m2\3
N v, v? 87 m?
2 .2 4 2\ 32
_ (cosa2> m_zﬂ (l B mzf>z (102)
cosa ) v°8m my

From (101) and (102), one can get the constraints of the
mixing angle @, in this model. Using the following
experimental allowed values of the parameters [64]:

exp +0.50 exp _
Appy = 0.72Z57, Apee =

0937013, (103)
we can obtain plots where the allowed range of the mixing
angle in the CP even scalar sector is shown. Furthermore,
we have found the our obtained values for the ay,, ..
parameters range from about 0.6 up to about 1.2, which is
consistent with their current experimental bounds. This is
shown in Fig. 1, which displays a linear correlation
between the a;,, and a;,, parameters.

0.6 0.8 1.0 1.2
Ahyy

FIG. 1. Correlation between the a;,, and a,,, parameters.

Requiring the consistency of the rates for the h — jiu,
h— %t and h — bb decays with their corresponding
experimentally allowed ranges, we display in Fig. 2 the
correlation between the mixing angles a and a,.

From the Fig. 2, with a in range 38° < a < 707, we get
the following constraints for the mixing angle a,:

02 <ap, <75% or 280° < a, <360°. (104)

We will use this constraint to analyze the meson
oscillations of this model in the subsection below.

B. Meson oscillations

In this section, we analyze the consequences of the
model under consideration in the K — K°, B) — BY and
BY — BY meson oscillations. These meson oscillations are
caused by flavor violating scalar and Z’ interactions in
the down type quark sector. The K° — K°, BY — BY and
BY — B? meson mixings are described by the following
effective Hamiltonians:

G2m?, 3 i
K°— KO KU KO KO—KO
My =T C (KK )
i=1
4 2Gpcm’ (KO_R0
ﬁ“vm)n(vm)ﬂ 0 g
w
(105)
_ 3 ~ .
(BO_BO) G%m%‘/ (BO—BO) (BO—BO)
Hffd [ C[ d d( )OI d (/«l)
¢ 1672 P
4v2Gpctm3 (B0-B0)
(?)TMKVDL)M(VDL)S%P )
(106)
70 ;;%-
65 P |
60
5755
]
50
45
40} $55

0 50 100 150 200 250 300 350
(]
FIG. 2. Correlation between the mixing angles a and

consistent with the experimental values of the h — ju, h — 77
and 1 — bb decay rates.
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3

(BY-BY) GFmW B“ B)
Heff - 1677: ; C (ﬂ)
4\/_GFchZ B BO)
AL it Vor)sul08 ),
(107)

where Vp; is the rotation matrix that diagonalizes M M I)

according to V5, MpM}Vp, = diag(m2, m?, m}) being

Mp the SM down type quark mass matrix. Furthermore,
the operators appearing in Egs. (105), (106), and (107) are
given by:

0\K'K) — (5P a) (5P, d).
0" = (5Prd)(5Pd), (108)
0" = (3P, d)(5Pyd).
(KO-K%) _ .
0y = (SY/APLd)(s},ﬂPLd)’ (109)
0_po - -
o\"P) — (ap,b)(ap,b),
(BO_BO) - -
0P %) — (aPgb)(dPgb), (110)
0__ RO - -
0% %) = (ap,b)(apPgb).
(BO_BO) - -
0, " = (dy,P.b)(dy"P.b), (111)
O\B=5) — (5P, b)(5P,b),
0L ™) — (5Pyb)(sPyb), (112)
O =E) — (3P, b) (5P, b),
(B9-BY) _ /= -
0, = (57, PLD) (57" PLb), (113)
and the Wilson coefficients read:
(K°-K°) 167° g%lﬁRdL gisfde giSSRdL
C\ Sk ) (114)
GFmW mj, my, my,
Céko—l‘(o) 1672 <9%15LdR +g%l5§LdR _gmedR) (115)
GFmW m%z mi mzzas
CgKO_kU) _ 1672 <gh§RdLgh§LdR 9hsspdy Ihss, dp
Grmiy mj, mj,,
9Assrd; YAS5 dy
_ GAssdi Issidn | 116
o ) (116)
_ 2_ _ 2 _
C(lBg_BO) _16x? <9hdeL Ihsdnb, gAstbL> (117)
GFmW m% m%s mis

i 2 2 -
Cng_BO) 1677 <ghdLbR +9h5dLbR _gidebR>, (118)

2 2 2
GFmW my, my, my,
cB-my) _ 167 <9h8RbL9haLbR hsdub, Insdy b
3 2 2
GFmW my .
9asdpb, 9Asd, b
_ JAsdg L2 SOk ) (119)
ny,
2 2 2
(B-BY) _ 167° (ghERbL + Gnsseb, _ gASSRbL> (120)
1 2 2 2 )
GFmW ny, i, o
) > 2 2 2
C(BQ—B.?) _ 16z (ghbeR + Ins5,bx _ gA53LbR> (121)
2 = 2,2 2 2 2 )
Grmy, \ mj, i, my,
C(B-BY) _ 1677 (ghERbLghELbR Ghssub, Ihss, by
3 ) 2 2
Grmy, mj, nj,
_ gA53Rb1_ ngSELbR . (122)
4

5

with g,;,. are the couplings between the scalar a = h, hs, As
and down-type quarks b =d} p, c =dj p, i, j=1, 2, 3,

i # j. On the other hand, the K — K, B} — B and B —
mass splittings are given by:

Amg = (Amg)gy + Amg ",

Amp, = (Amg,)g + Amgp),

Amp = (Amp )y + A", (123)
where (Amg)sy, (Amp,)qy and (Amg )g,, are the SM
contributions, whereas Amg( Amgvp) and (Amp ), are

new physics contributions.
In the model under consideration, the new physics
contributions to the meson differences are given by:

NP 4\/—G C m
Amg( ) = WKV )32(VDL)31| fKBKWKmk
w
62 0_7%0 0_7%0
2 W g Fm B [P )
K"-K° K'-K° K'-K°
+ P+ )

VP _ 4\/—GFCWmZ
Ba (3 — 4s3,)m>

G m (B°-B%) _(B°-BY)
g 2W def%ﬂBdBBd[Pz S R

+ PP

|(V )31(VDL)33| deBBd”lede

( CgBB_BS) (BY-BY)

+Cy )],
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(NP) _ 4\/§GFC%Vm%

AmBJ. = —(3 _ 4s%v)m%, |(VBL)32(VDL)33|2sz_YBB,.773,.mB\.
Gam? 0_B0) (BY-B0
+ —gﬂzw my, f3, 15, By [PY 2
BY-BY) ¢ ~(BY-BY BY-BY
+ PP 1 )
Using the following parameters [65]:
(Amg)exp = (3.484 £ 0.006) x 107" MeV,
(Amg)gy = 3483 x 10712 MeV
fx = 1557 MeV, By =0.85, ng = 0.57,
PEED — 93 pIED — 306,
mg = (497.611 £+ 0.013) MeV, (124)

(Amy,).., = (3.334+0.013) x 1071 MeV,

exp

(Amy, )y = (3.653 +0.037 +0.019) x 10710 MeV,

de = 188 MCV, BBd = 126, ﬂBd = 055,
0_ R0 0_ R0
PP — 050, PP 88,
mp, = (5279.65 % 0.12) MeV, (125)

(Amy).., = (1.1683 £ 0.0013) x 108 MeV,

exp

Amp = (1.1577 £ 0.022 £ 0.051) x 10~% MeV,
( BJ)SM (

st = 225 MCV, BB). = 133, an — 055’
PE) — 052, P — 088,
mp = (5366.9 £0.12) MeV, (126)

We plot in Fig. 3 the correlation between of the Amy
meson mass splitting with the non-SM CP even scalar mass
my,,, whereas in Fig. 5 we display the allowed region in the
my, — my, plane consistent with the constraints on Amy,
Ampg, and Amp meson mass splittings, whose obtained
values are within the experimentally allowed range. As seen
from Figs. 3 and 5, if one keeps the other parameters fixed,
an increase of the non-SM CP even scalar mass m,, yields
a decrease of the Amg meson mass difference. Besides that,
Fig. 3 indicates that the number of solutions consistent with
the meson oscillation constraints is increased when the
mass my, of the non SM CP even scalar hs acquires larger
values close to the TeV scale. This is due to the fact that the
scalar contributions to the meson mass splittings are
inversely proportional to the square of the scalar and
pseudoscalar masses m;,. and m,_, then making easier to
find more solutions consistent with the meson oscillation
constraints in the large mass region than in the low mass

3.500F

w
S
©
[$)]

Amgx10'2[MeV]
w
S
S

3.485¢

200 400 600 800 1000
My [GeV]

FIG. 3. Correlation of the Amyg meson mass splitting with the
heavy CP even scalar mass m,s.

region of the non SM scalars. Here the CP even and CP
odd scalar masses have been varied in the ranges
200 GeV <m;,, <1 TeV and 100 GeV <my, <1 TeV,
respectively. In our numerical analysis we have varied the
mixing angles a, a, in a range of values consistent with the
experimental constraints of the A7, huji, and hbb cou-
plings (being % is the 126 SM like Higgs boson) as well as
with the meson oscillation constraints. Besides that, the
VEV v, of the neutral component of the SU(3), scalar
triplet have been varied in window around 200 GeV, which
is consistent with the experimental constraints on meson
mass splittings. Moreover, we have considered a simplified
benchmark scenario of real down type quark sector
parameters so that the CP violation in the quark sector
entirely arises from the up type quark sector. Furthermore,
we have set the Z' mass to be equal to 6 TeV, which is

1.3

1.2

Amg_ x108[MeV]

1.0

26 28 30 32 34 36 38 40
Amg x10"[MeV]

FIG. 4. Correlation between Amp, and Amp meson mass
splittings.
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=
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300f---- 3.4855
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FIG. 5. Allowed region in the m,, — my, plane consistent with

the constraints on Amg, Amg,, and Amg meson mass splittings.

consistent with the constraints arising from collider
searches [66,67]. Moreover, a linear correlation between
Ampg, and Ampg meson mass splittings is displayed in
Fig. 4. As seen from Figs. 3 and 5, the model under
consideration successfully fulfills the constraints arising
from the meson oscillation experimental data and the
obtained meson mass differences K — K, BY— BY, and
BY — BY reach values within the reach of experimental
sensitivity. Given that we are considering the case of
real down type quark sector parameters, the constraints
that are usually imposed on any possible new contributions
to the K® — K9, BY — BY, and BY — BY meson oscillations
arising from CP-violating processes are not relevant for
our case.

C. Rare top decays ¢ — cy and ¢ — uy with flavor
changing neutral scalar interactions

In this section we discuss about the implications of the
model under consideration in the rare top quark decays
t — uy and t — cy. In the SM these decays have very tiny
branching ratios, however in extensions of the SM, like the
331 model considered in this paper, the branching ratios of
these decays can be significantly enhanced with respect to
the SM prediction. This is due to the flavor changing
neutral scalar interactions in the quark sector, which
provide the dominant contributions to the are top quark
decays t — uy and t — cy.

The one loop Feynman diagram is with a neutral Higgs
boson in the internal line. This diagram shows the flavor
changing neutral scalar contribution [68]. The rare top
quark decays t — uy and t — cy also receive contributions
from electrically charged scalars and down type quarks,
however those contributions are subleading. Thus, the
decay rate for the + — ¢y and ¢t — uy processes have the
form [68]:

aGFm,
(¢ A,B
(t—cy)= 1924 <f1< )‘f’f( )) nbp
() +fz< ))Ahs%
aGFmt |yhut| mh
I'(t A,B
(t—=uy) = 1924° m, WPn
m 2
( ( )+f2< ”5>>Ah53h5 (127)
m;
where:
N sma2 _COSC¥2
P sing s sing
sina, Ccosa, cosa, sina,
fry N B = - N . 128
g sinff ~ cosf s sinf§ + cosf} (128)
and the loop integrals are given by:
1- x
/ dx/ rty-1)
e —|—xy 2-2)+1
1=x x—1
2(2) = dx d 129
()= / / y2+xy—(2—zz)+1 (129)

It is worth mentioning that, in order to simplify our analysis,
we have considered a simplified benchmark scenario where
the neutral CP odd scalar A5 has a mass close to the TeV
scale, whereas the CP even neutral scalar /15 has amass in the
range 100 GeV < m;,, <200 GeV. Then, in this scenario,
the leading contributions to the t — uy and ¢ — ¢y decays
will arise from the virtual exchange of the top quark and
neutral CP even scalars & and /s, being h the 126 GeV SM
like Higgs boson. Furthermore, we have varied the flavor
changing top quark Yukawa couplings y., and y;,,, in the
range 1072 GeV < Y., Vi < 1.2 x 1072, The branching
ratio for the rare top quark decays t — cy and t — uy are
given by:

[(t—cy)
Iﬂlop

[(1— uy)

Br(t—cy)= r
top

, Br(t—uy)= , (130)

where I',, = 1.42:()):1159 GeV is the total top quark decay
width. We have numerically checked that the branching
ratios for the  — cy and t — uy decays acquire values of the
order of 10719, several orders of magnitude lower than their
corresponding experimental upper bounds of 2.2 x 10~ and
6.1 x 107>, respectively. On the other hand, our obtained
values forthe t — ¢y and ¢t — uy decay branching ratios are 4
and 6 orders of magnitude larger than their corresponding
SM values of 4.6 x 10~'* and 3.7 x 107!, respectively.
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D. Couplings of ALP a and pseudoscalar A5

1. Coupings with exotic quarks

Due to Z, symmetry, all terms containing the Yukawa
interactions of ordinary quarks with ALP a are forbidden.
The ALP a just interact with exotic quarks. Hence, one has

2
_ mp -
LY =+\/2iasin 0, sin 65 <—mU UysU — E —Da Da75Da) .
v v
X a=1 "X

(131)

About the interactions between the pseudoscalar As with
quarks in the model, this A interacts with not only exotic
quarks but also ordinary quarks. The Yukawa interaction
between As with exotic quarks can be defined by the
equation below:

2
: . my - mp. -
Ly, ~V/2iA5c080,5in6; <_y_;/ UysU+ i . Day5Da>.

a=1 "X

(132)

So, the ALP interacts only with exotic quarks with tiny
strength (cx sin 6, sin 3). This property is suitable with one
of properties of dark matter. This is the reason why ALP a
can be regarded as a candidate of dark matter. Remember
that sin 65 is also very small, so the strength of interactions
between the pseudoscalar As and exotic quarks are also
tiny (o< sin 63). From Egs. (131) and (132), one gets the
couplings of ALP a and pseudoscalar A5 with exotic quarks
as below:

g2 = iys\/2sin 0, sin 05 L (133)
v
x
m,,
g% = iys\/2 cos 0, sin 0, 1, (134)
5 1]){
with i=a,3, a=1, 2, Q,=D,, Q;=U. From
Egs. (133) and (134), we have:
g < g, (135)

2. Coupings with SM-like Higgs h and new
light Higgs hs

The coupling of & and two ALP a is defined from (C4) as
below:

v,V

Ghaa ™ pYn ( /16/112
aa ~
2v2 \/ Vi + (4305 — 2207)Vase

—113\/\/236“31)% —,121],3), (136)

with Va3 = \/(/121),% — A3v3)? + 22kl

We also get the coupling of & and two pseudoscalar As
from (C5):

1 V236 —/13 ’Uz, +/12’U2
Gnaa, zﬁ (vp(2/13v$ —|—/16v/2,)\/ V23/6 i

Vase + 302 — 02
—11,1(2/121),2,+/I611,%)\/ 2% \/323; 2”). (137)

Similarly with the new light Higgs hs, use (C6) and (C7)
one gets:

1
Ghsaa W) v, (/112 \/V236 + B, = by

A A3 02
+ i > (138)
\/V%:’)ﬁ + V236 (lgﬂ% - 12 ’U%)
g ~ Ui;
hsAsAs N
T 2V2(02 4 02) (V2 4-202)?
Vs + A 02— 302
X <v,7(21)/2,+/16v,%)\/ 236 ‘/223Z Sh
5 ) V236 +)/; U% —)Q U%
+v,(2430; +460;) V‘Bﬁ . (139)

From Eq. (136) to Eq. (139), we can see that couplings
Ghaas IhasAss Ghsaa> Insasa; depend on v,, v, in EW scale.

VI. CONCLUSIONS

We have analyzed in detail the scalar sector of the 3-3-1
model with ALP. In the model under consideration, there
are two kinds of scalar fields: the bilepton scalars carrying
lepton number two and ordinary ones without lepton
number. We show that there is no mixing among these
two kinds of scalar fields. Moreover, relations among
VEVs are related to the self-interactions of scalar fields.
The physical fields of ALP a and pseudoscalar As are
defined exactly to help us show that they just interact with
exotic quarks in this model with very tiny strength. As a
result, ALP is regarded as a candidate of dark matter. Our
numerical analysis of the scalar sector allows to success-
fully accommodate a pseudoscalar A5 with a mass ranging
from 100 GeV to 1 TeV. The results are different from the
others which have been published before. The CP-even
scalar sector of the model was analyzed as well. Its results
allow the existence of a non SM scalar boson with mass in a
similar range as the pseudoscalar field As. Numerical
analysis has shown the constraints on the couplings
Ao, A3, Ay with tana = Z—; and VEVs of scalar fields

¢,x.n,p to raise the new CP even scalar hs and CP
odd scalar A5 with masses in the TeV or subTeV scale.
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Furthermore, we analyzed the consequences of the model
in several flavor changing top quark decays, in rare top
quark decays, in the leptonic decays of the SM like Higgs
boson as well as in the K — K%, B — BY and BY — BY
meson oscillations. We have found that the model under
consideration is consistent with the experimental con-
straints arising from these processes.
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APPENDIX A: DIAGONALIZATION OF CP-ODD
MASS MIXING MATRIX IN BASIS (1,,3.1}.1,)

Step by step, the matrix M2, in (42) can be exactly
diagonalized by the Euler method.
(1) In the basis (1,17,1,)), the squared mass matrix has

form:
_A __A
4v} 4v,v
2 il nVp
M = (_ A 4 ) (A1)
4v,v, 471/2,

The matrix in (A1) has 2 eigenvalues which are 0
—A(v%«(»v/z,)
4vpv;
matrix below:

and

. This matrix is diagonalized by the

Y% 1
2 2
v v
) L 2
Upq [t 1 -+ 1
i n
- vy 1
2 2
v »
. /s
Upr [ 22 +1 = +1
] 7

Then we receive the 4 x 4 matrix which is used to
diagonalize the matrix M2, as following:

1, (A2)

1 0 0 0
0 1 0 0
00 —— ’
Ul = o[ B[S (A3)
n n
0 0 ’1},, ]
”/’”2_,2-"_1 ;—’-&-1
P P

where the mixing angle « is defined by:

tana = 2. (A4)
Up

Under the effect of the matrix U; in (A3), the
matrix M2, becomes:

M?fjﬂs = U}-Mgdm(U})T

Ay [H+1
>
A __A _ 7
4vfb dv,vy 4v,vy
2
Ay [t
v
=| __4a_ _A g V7 (AS)
4v,vy vy 4v,v,
0 0 0 0
2 2
Ay [S+1 Ay [+
_ b _ p 0 _A(vg+7)
dv,v, 4v,v, 41/‘51/',%

(2) Continuously, we consider the 3 x 3 mixing matrix
in (A5):

Ay [ 3+
_A A __ V7
402 4v,v4 4v,vy
M? Ay [ A6
]33 - _ A _A _ 7'yli ( )
4v,v, 402 40,0,
2 v2
Ay B+ Ay [
b b A(vi402)
4v,v, dv,v, 4v3v3

The matrix M%ﬂ in (A6) has got 3 eigenvalues:
0,0, (715 + L_lfz) + 713, + é) We use the second eigen-
state that corresponds to the basis Az, I,%.

In the basis Az, [ }(, the squared mass matrix has

the form:
2
Ay [H+1
-
_A — ’
402 4v,v
¥ Uy
M% = (A7)
Asy P
Ay [H+1
b A(v2402)
4v,v, 41/%1;3,
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The matrix M7 in (A7) has 2 eigenvalues: 0 and JA(—-5 — - — ). This matrix is diagonalized by the matrix
37 n » ¥
below:
1)%
v, P—2+1
— ’ 1
) 2(Ly L 2(Ly L
Un, - b,,\/bl(”%Jr,%)Jrl \/v),<1%+1%)+1

v,
2 2.2 2.2
v 12 v20
) i n'p n'p
v —+1 1 F1
A2 202 42) Z2+2)
» AR Wyt

As a result, we receive the 4 x 4 matrix which is used to diagonalize M?diag as follows:

¢
1 0 0 0
3
v, E-H
0o - 0
v v (L+5)+1

U% — n x (1:% :{2))

0 0

0 1/'" 0

1,'3] ”'2’ 1)/2)
vyq [t +1
z 1'12, v/% (1.3,+7,/%)

The mixing angle 65 is defined by:

Under the effect of the matrix U, in (A9), the matrix M ?dmg changes into:
n

" vl
. VAR Y i
- % 00 - 4v,v,
0 0 0
2 _ 2 2 2NT _
M,diag = UI-M,diag(Ul) =
np » 0 0O 0
)2 2,2
Ay [ty 55t
L‘p vl(z:”Jrhﬂ) 1 | | |

4v,v,

Next, we consider the matrix 2 x 2 in (A11) corresponding to the basis (A4, 1)

z’% v%v%
A 17+1 1:2(1,2+1’2)+1
A P xnop

o 4@’5] dv,v,
In —
I,'2 1'2’1,'2
Ay [ 314 | 5541
v ';(1)W+1’f)) A | |
T TGty
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The matrix in (A12) is a squared mass matrix in basis (A4,7,) and has got 2 eigenvalues which are 0 and
A (Ul% + 1}1—2 + % + %) The matrix M, is diagonalized by the matrix below:

A (A13)

2,2,2
Ll it ]
p? 5)( 3,(0/)+12)+L212)

Hence, we receive the 4 x 4 matrix which is used to diagonalized M? g in the following form:

Ly

w/:“ /2)+ 2< ,]+1/, |
0 0

UA4¢ =

\/ 2+ 2+ )+1 v ()41
nor X
U? = 0 1 0 0 (A14)
0 0 0
Uy 0 0 1
lel 1:3, 1% L?, L% 1)2(
Yo EH ,,ﬁ(l-gﬁ:},)”\/i( (22 +2id) ol
As the mixing angle 0, is defined as below:
v
tanf, = Xz e (A15)
> 1 S+
/U¢\/ /’ + 1\/171 U'I?Hibp U(/) + /UX(WIZ’ + 1/3)
Under the effect of the matrix Us in (A14), the matrix M? s becomes:
0 0 O 0
, X 0 0 O 0
M]‘*Ms = UI dma (UI)T 1o o o 0 (A16)
A(_ 1 _ 1 _1_1
000 3t-5-5-3%
(3) Finally, the matrix which is used to diagonalize the matrix Mgdd is
U, = U;.U3.U}, (A17)
and gets the trigonometric form as below:
cosf,  —sinf;sinf, sina(—cosds)sing, —cosacosb;sind,
0 cos 63 —sin arsin 03 —cosasinfs
Uy, = . . (A18)
0 0 cosa —sina

—sinf, sinf;(—cosd,) sina(—cosbs)cosh, —cosacosb;cosb,
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The CP odd squared mass matrix M(Z)dcl in (42) can be exactly diagonalized by the Euler diagonalization method. Then the
physical CP odd scalar fields are related with the CP odd scalars in the interaction basis via the following transformation:

a cos 6, —sinf, 0 0 1y
Gy _ cos 65 sin 6, cos 63 cos 6 —sin 6, 0 I, (A19)
As sinf3cos,sin@,  sinfzcos@ycosdy  cosdscosb, sin 0, I, ’
G, —sinf;sin@,sinfy —sinOssind,cosd;, —cosbzsinf, +cosb, 1,

Note that the mixing matrix has three angles and one parameter which is entered in expression of the pseudoscalar As
mass given in (46).
APPENDIX B: DIAGONALIZATION OF CP-EVEN MASS MIXING MATRIX IN BASIS (R,11 R, ,R;,Rd,)

The matrix M% in (47) is diagonalized by the Hartree-Fock method. It is split into two matrices: M%,—the main
contribution and M%Qp—the perturbation. Those are satisfied the below equation:

2 __ 2 2
MR _MR0+MR1)’ (Bl)
with
A 1
0 0 0 m—l—zlnvn%
A 1
M2 ) 0 0 0 4—%% + 5/1121]/)1}45 0
v 0 0 0 A1y (B2)
41;)(% 2M1 Y Y
4v,v, +§/113U,71)¢ —4%% +§/1121}p7)¢ W+§’111”;(”¢ /1101}(/) _%
and
2 A A 1 A 1
121}” - W 4v,v, + 5/167)771}/) W + 5241),71)){ 0
A 1 > A A |
M2 ) 4v,v, + 5/161),1’[)/, /131)}0 — m To,7, + EASUpU)( 0 (B3)
Rp —
A 1 A 1 5 A
4v,v, + 5/141),77])( 4—%”1 + 5/15 Upl))( ﬂl”;( — m 0

In the limits v,,v, < v, < vy, both of v, and v, can be considered approximately as zero. This makes the main

contribution (B2) change into the below matrix:

0 0 0 0
5 0 0 0 0
Miw®10 0 0 A1,y (B4)
0 O /11111)(’[](/, 2/1101]5)
The matrix (B4) is diagonalized by the matrix:
1 0 0
0 1 0

0
N/ A2 0222 0 Ao
117270 10%¢
0O 0 — ¢ 1
( 2 2
2 02442 2 +A10v ) < 22 v:')Jrlz 242100,
1177"10% [ \ 0 g T0%
Uy = ﬂ“vl\/ Fl F1 (BS)

P
%

o)
%

_ 2 2,72 2
Aovg /111”1+/110”(/, |

2 2
2 2.2 2 5, 2 2.2 2 5,
A1y 1 1

2 2 T 2 2 !
% 1%

0 0 -
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and the diagonalized matrix of main contribution has form as below:

0 0
0 0

U¢ (l]ol]lﬁ — A /j’ll Y + /1107J¢) 0 . (B6)
00 0 v (/03 + Bgv + Aoy

From (B6), the squared mass of inflaton is defined by:

m3, = vg (2103 + Bov3, + hovy ) & 2o}, (B7)

On the other hand, the matrix Uy, in (B5) can be presented by another form such as:

o
]

2 2 T __
M}, = Uy My.UL, =

I 0 0 0
0 1 0 0
Ul = . (B8)
0 0 —cosa, sinay,
0 0 sina;, cosay
with
Anv
tan 2a, = Shea) (B9)
10V¢
The perturbation M%p is effected by the diagonal matrix U} in (B8) so that it has form:
24,02 — A, + A6, v —cosay( 5+ Aavyv sinay (52— 4 40,0
n 21;% 21/,717/, 6 ¢ 4 ¢ 20,0, 4%y
, ﬁ+ﬂ6vnvp 20502 —ﬁ —cosa¢< + Asv,0 ) s1na¢( + Asv,v )
Rp. = _ . _
44 _ cos a¢( i /141} ) — oS a¢( i /15U ) __cos a¢(2/22 42, v}) sin ay cos(azq;)(A 42, v7)
X X
. _ 4 22 _
sin (1¢ (m + 141),]7})() sin a¢ (m + /15 Dp”x) sinay, COSZZZEA 4111%1) __sin (a(ﬁ)z(:% 4111);)
(B10)

Because ay, is defined by (B9), then sin @, — 0 when v, < v and 4,y > 0. This helps the matrix M 2 »,, feduce an order and
can be rewritten like the form after:

2_ A
24,0 — 2 21) " + AeVy0, —Cos a4,< + Agv,v ) 0
2_ A
s 20 o + Agv,yv, 2430, ~22 —cosa¢( +4sv,0 ) 0 (B11)
R (A )
COS Q, — v
_cosa¢(m+ﬂ4qu){) —cosa¢(2;:—%+/15vpvl> _W 0
0 0 0 0
From (B11), one gets a 3 x 3 matrix below:
M%m = M2 o, + MRP,, , (B12)

with
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0 0

2
MRP% = 0 0

—cosa¢(2M+/14v ) —cosa,ﬁ(ﬁﬁ-isvpvl)

is considered as the main contribution and

2]'21} __ 21) v, +/16’U ’1}/,
2 —
My, = erﬂé”n”p 20505 = 5,2
0 0

is a perturbation of M?% Rpss

—Cos a(/) (21/ v, + /141]’7 )()

—Cosay (WJF’IS%”;() (B13)
_ cosay(A=44,0})
2z
0
0 (B14)
0

Consider the main contribution M, 2 R, in the limit v, > v,, v,, we get — %W — 0 then M 12on approximately has
form: X 33
0 0 0
0 —cosa, ( + Asv, )
Mfepgg ~ @ 2v,v, 5 (BIS)
0 —cosaqﬁ(z“ +4sv,0 ) —W
The matrix Mipoo in (B15) is diagonalized by the following matrix:
33
1 0 0
U3 =| 0 —cosaz sinaz |, (B16)
0 sinay cosoy
in which a3 is defined by:
4v, (A + 225020
tan 2a3 = i che ){)2. (B17)
cos agp(A — 42, vy)
After being diagonalized, M> Rp has the form:
0 o0 0
M? diag — 0 m%{){ 0 s (BIS)
Rpy3~ : 5
0 0 m i,
with
—cosa,
m%’n = ¢ (Avp cos ay — 4 v, vy cos ay £ \/411)2{(A + 2450302)% + (Av, cos a,, — 44,0, vy cos a¢)2) . (B19)
: v,0;
Because of the condition m%,y >0, vy > v, and 4 is very tiny then one gets:
/12
my, = (M2 + v/ 2203 + Ae2) ~ 2403 t (B20)
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With Us;, we get the 4 x 4 diagonal matrix below:

1 0 0 0
0 —cosaz sinay O
U3 = o ’ (B21)
0 sinay cosay O
0 0 0 1
Under the effect of Uss, the perturbation Mfzepp changes into the following form:
33
24,0} —2% —cos a <2U - —|—/16v,71;p) sin a3 <ﬁ+/16”;7”p>
) - cos?az(A—443v%) sin a3 cos a3 (A—4A3v%)
MRpg’; = | —cosas ( -+ A6 v,,v,,) B T L — L . (B22)
i s az(A—4d3v! sinZaz (A—42 v
sin a5 ( + /167);10/;) sina cos;z;é 50 __sin a3(21}/2, )
With the limit v, > v,, v,, we get sina; — 0. So that M2 , approximately has form:
Rp3;
20,0} _%‘3 —cos a3 <2v - +/161)nvp) 0
2 cosaz(A—41 . B23
RP330 —Cosa <2b v, + /16 Uﬂ”l’) - (13(21/",2, 3%) 0 ( )
0 0 0
From (B23), one get the 2 x 2 matrix below:
2/12v% - 2% —Cos a3 (ﬁ + /161),711,,)
A : (B24)
P2 cos’az (A—42;v))
— COS a3 + /16 ’U” p) —_ T

Assuming that cos a3 ~ 1, the matrix M%pzz in (B24) can be diagonalized by the 2 x 2 matrix below:

—cosa, Ssina
Un =< o ? ) (B25)
NYes) COS

in which we have

4 cos az v, v, (A + Aev;v3)

tan 2o . B26
27 Acos’ a3v; — Ava + 4v2v3 (A, 02 — A3 cos® azv2) (B26)
After being diagonalized, the matrix M% »,, has form:
mi 0
M2 PRES 5 , (B27)
Rpy 0 mﬁ

with

A cosaz(A —4430))
42 402

P

2 4 .2
My = /lzv,? -

(A(v} cos2az + v3 + 202) — 8A3v2v5c0s’ay — 8L, vy v3)?
640, v;

\//16005 a3(A + Asv3v3) + Aavp (A — 42505) + 3 Av) +

(B28)
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With the approximations cos a3 = 1, one gets:

Av?
mﬁ’hszizvf,—f—/kvlz, 40 I 2
Untp
202 (A —A303)* + 22v2v3) + 4> 02 U¢(U,7+1)/,) + 840, 1,0, 04 (A v — V302 (A + A3 —26) + A3 03)
(B29)
With U,,, we get the 4 X 4 matrix below:
—cosa, sina, 0 O
sin o cosa, 0 O
U3 = : : (B30)
0 0 1 0
0 0 0 1
Finally, the matrix which is used to diagonalize M?% is
—cosa, —sina,cosaz —sina,sinazcosa,  sina, sinag sinay,
sin —COS@, COS@A3 —COSM, SIN3COSA, COS A, Sinaz Sina,
Ug = U UR.UL = ? 2 T P (B31)
0 sin az —COos 3 Cos ay cos az sinay
0 0 sinay, cos ay,

Note that comparing to the 4 x 4 matrix of CP-odd sector containing only four parameters with three massless solutions,
the matrix in (47) having 10 parameters are not exactly diagonalized. To solve this problem we have used the Hartree-Fock
method where some conditions such as v, > v, > v,,v,, 4, <1 and sinaz = 0. As a consequence, derived matrix
contains three angles a,, a3 and @, and three parameters associated with masses of new fields ®, H,, and hs.

APPENDIX C: DECAY RATE OF THE SM-LIKE HIGGS BOSON INTO A PAIR OF FERMIONS
1. SM-like Higgs couplings
We focus on the coupling of SM-like boson /& with two ALP a which is a part of V in (24):

V2o V(h,a,a), (C1)
where
2V(h,a,a 20v ) . AsVy . . . ) ) .
( ) __ 3 " cos® a sin a, cos® 6 sin® 0, — 62 _sin® a sin a, cos? 65 sin® 6, — A4v, sin a, sin? 65 sin* 6,
haa cos” 2a cos” 2a

2

— A13(v, sina, cos? O + v, cos” asec? 2a cos a, sin a3 sin a,, cos” O3 sin? ,,)
3Up )

21 2 I 61},0
5 Sin” a cos a, cos a3 cos 03 sin” 0, + 5
cos” 2a cos” 2a

2

cos? a cos a, cos ag cos® 5 sin 6,

+ A5v, cOs @y cos a3 sin® 05 sin? 6, + 41,0, COs @, €Os a3 cos” O
A4v,
cos? 2a

2 2

COS~ a COS @ Sin a3 COS Ay, cos? 05 sin’ 0y +

U,
2

% sin” a cos a, sin a3 cos  cos~ O3 sin 0¢

+ 2A1v, cos a, sin az cos a,, sin? 65 sin? (0¢h) + A1 v, cos a, sin az cos a,, cos* 6,

vy ., . . 2 .9 . . . o . o
sin” @ Cos @, Sin a3 sin @ cos” 03 sin” 6, — ;v COs a, sin a3 sin y sin~ 03 sin” 0,

" cos?2a
— 24190, cOS @, Sin a sin a,, cos® 6. (C2)

095030-25



V.H. BINH et al. PHYS. REV. D 107, 095030 (2023)

In the limits vy > v, > v,, v, and 44 ~ 0, the mixing angles in (B17), (B26) approximately get:

Asv Ag COS a3V, U
tan a3 &~ ——-—, tan 2a, & U

cos a,v, Av} = Azc08%azv

5 - (C3)
Since sinf, ~ 0 and sinaz = 0, hence we neglect the terms associated with them. Then

haa .
V(h,a,a) ~ Tcos2 04(A12v, cos ay cosaz — Aj3v, sina,)

haa /16/112
~ UPU,,
2v2 \/ Vise + (305 — 4,07 ) Vase

— i3 \/V236 + v — L} |, (C4)

in which, V36 = \/(/121)% = 3v3)? + Avivl.
Similarly about the coupling of SM-like boson & with two pseudscalar As, with the limits vy > v, > v
one has:

1 Uy and 4y ~ 0,

—2/12U

cos®2a

1 cos?

hA
V(h,As, As) ~ cos?6,, { acos?8s sin ay — A4v, sin a,sin6s

2
A6COS~03 ) 9

(v,cos

3 . . . .
+v, cos a, cos a3 5=—cos?Ossin’a + Assin’d; | + ——; ,COS7Q COS @y COS a3 — U, sin*asinay)
cos2a cos2a

hA5A5 V236 - /13 ’Uz, + /12’1)2 V236 + /13 ’Uz) - 22 ’U2
~—>2 | v,(24302 + A2 £ 1 v, (22,02 + Agv? ! 1. C5
2\/5 < /( 3Un 6 /J) V236 n( 2Yp 6 n) V236 ( )

The new light boson /5 also has couplings with ALP a and pseudoscalar As. The potential of (s, a, a) coupling is

a

]’lSCZ .
V(hs,a,a) = cos? (4120, cOs a3 sin a + 4430, COs @)

_ hsaa

X—=1,
22 !

A3 02
</112\/V235 + /1%1)/2, - /127}% + 6713 ) (C6)
\/V%% + Vase(3v5 = ovp)

The coupling (hs,As, As) is given by:

hsAsAs Asy

0s22a

2

2/12 ’U” b
2

V(hs,As, As) ~ wos20g "0

cos®0, [ a cos a,cos’0; + sin®a cos a,c0s%6; + A4v, COs apsin®6;

2/1'; v /,{61)
52~ sin*a sin a, cos a3cos?0; + —-"
cos 2a cos 2a

hsAsA U4 V236+/12l)2—j.31}2
~ 544545 n )2 </U,7<21)%+A6U%)\/ n /4

cos?a sin a, cos a;cos* 65 + Asv,, sin a, cos a;sin’d;

2\/§ (U% + yg)(v% + 2”12) V236

(€7)

Vazg + A302 — 02
+vp(2/1311%+26y[2))\/ 236 3V, — MUy
Vase

095030-26



HIGGS SECTOR PHENOMENOLOGY IN THE 3-3-1 MODEL ...

PHYS. REV. D 107, 095030 (2023)

2. SM-like boson & decays to two fermions
Let us consider the decay:
h(ﬁ) _)f(kl)—'—]?(kZ)’ f:M,d,C,S,T,ﬂ,e. (Cg)

Amplitude of the above process is given by

My(h - ff) = g(h.f,f)ﬁ(lzhﬁ)v(’zz, s2).  (C9)

Then, the decay rate of & — ff process is

2 2\ 3
2 Iinsp) amy\ 2

h

Hence

cos? a, cos? a3 7% am2\ 2
—v»mh(l_ ’"> (1)

['(h— ee) =
8 m?

[1] F. Pisano and V. Pleitez, Phys. Rev. D 46, 410 (1992).
[2] P. H. Frampton, Phys. Rev. Lett. 69, 2889 (1992).
[3] R. Foot, O.F. Herndndez, F. Pisano, and V. Pleitez, Phys.
Rev. D 47, 4158 (1993).
[4] Daniel Ng, Phys. Rev. D 49, 4805 (1994).
[5] M. Singer, J. W. F. Valle, and J. Schechter, Phys. Rev. D 22,
738 (1980).
[6] R. Foot, H. N. Long, and Tuan A. Tran, Phys. Rev. D 50,
R34 (1994).
[7]1 J. C. Montero, F. Pisano, and V. Pleitez, Phys. Rev. D 47,
2918 (1993).
[8] H.N. Long, Phys. Rev. D 54, 4691 (1996).
[9] H.N. Long, Phys. Rev. D 53, 437 (1996).
[10] M. Ozer, Phys. Rev. D 54, 1143 (1996).
[11] de S. Pires, Carlos Antonio, and O. P. Ravinez, Phys. Rev. D
58, 03500 (1998).
[12] P. V. Dong and H. N. Long, Int. J. Mod. Phys. A 21, 6677
(20006).
[13] J. C. Montero, V. Pleitez, and O. Ravinez, Phys. Rev. D 60,
076003 (1999).
[14] J. C. Montero, C. C. Nishi, V. Pleitez, O. Ravinez, and M. C.
Rodriguez, Phys. Rev. D 73, 016003 (2006).
[15] P.B. Pal, Phys. Rev. D 52, 1659 (1995).
[16] R.D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440
(1977).
[17] R.D. Peccei and H. Quinn, Phys. Rev. D 16, 1791 (1977).
[18] W. A. Ponce, Y. Giraldo, and L. A. Sanchez, Phys. Rev. D
67, 075001 (2003).
[19] P. V. Dong, H. N. Long, D. T. Nhung, and D. V. Soa, Phys.
Rev. D 73, 035004 (2006).
[20] P. V. Dong, H. N. Long, and D. V. Soa, Phys. Rev. D 73,
075005 (2006).
[21] P. V. Dong, H. N. Long, and D. V. Soa, Phys. Rev. D 75,
073006 (2007).
[22] P. V. Dong, D.T. Huong, Tr. T. Huong, and H. N. Long,
Phys. Rev. D 74, 053003 (2006).
[23] P. V. Dong and H. N. Long, Adv. High Energy Phys. 2008,
739492 (2008).
[24] P. V. Dong, H. T. Hung, and H. N. Long, Phys. Rev. D 86,
033002 (2012).
[25] J.C. Montero and B. L. Sanchez-Vega, Phys. Rev. D 84,
055019 (2011).

[26] D. Fregolente and M. D. Tonasse, Phys. Lett. B 555, 7
(2003).

[27] H.N. Long and N.Q. Lan, Europhys. Lett. 64, 571
(2003).

[28] A.E. Carcamo Herndndez, R. Martinez, and F. Ochoa, Phys.
Rev. D 73, 035007 (2006).

[29] H.N. Long, N. V. Hop, L. T. Hue, and N. T. T. Van, Nucl.
Phys. B943, 114629 (2019).

[30] A.G. Dias, Phys. Rev. D 71, 015009 (2005).

[31] A. Doff and C. A. de S. Pires, arXiv:2302.08578.

[32] A.G. Dias, V. Pleitez, and M. D. Tonasse, Phys. Rev. D 67,
095008 (2003).

[33] A.G. Dias, C. A. de S. Pires, and P. S. Rodrigues da Silva,
Phys. Rev. D 68, 115009 (2003).

[34] A.G. Dias and V. Pleitez, Phys. Rev. D 69, 077702 (2004).

[35] J. G. Ferreira, C. A. de S. Pires, J. G. Rodrigues, and P. S.
Rodrigues da Silva, Phys. Lett. B 771, 199 (2017).

[36] H.N. Long and T. Inami, Phys. Rev. D 61, 075002
(2000).

[37] D. V. Loi and P. V. Dong, Eur. Phys. J. C 83, 56 (2023).

[38] M. B. Tully and G. C. Joshi, Phys. Rev. D 64, 011301(R)
(2001).

[39] D. Chang and H. N. Long, Phys. Rev. D 73, 053006 (2006).

[40] A.E. Carcamo Hernidndez, Sergey Kovalenko, H. N. Long,
and Ivan Schmidt, J. High Energy Phys. 07 (2018) 144.

[41] H.N. Long and D. V. Soa, Nucl. Phys. B601, 361 (2001).

[42] D.T. Binh, D. T. Huong, Tr. T. Huong, H.N. Long, and
D. V. Soa, J. Phys. G 29, 1213 (2003).

[43] J.T. Liu, Phys. Rev. D 50, 542 (1994).

[44] D. G. Dumm, F. Pisano, and V. Pleitez, Mod. Phys. Lett. A
09, 1609 (1994).

[45] T.H. Lee and D. S. Hwang, Int. J. Mod. Phys. A 12, 4411
(1997).

[46] H.N. Long and V. T. Van, J. Phys. G 25, 2319 (1999).

[47] V. Oliveira and C. A. de S. Pires, Phys. Rev. D 106, 015031
(2022).

[48] H.N. Long and P.B. Pal, Mod. Phys. Lett. A 13, 2355
(1998).

[49] C. A. de S. Pires and P. S. Rodrigues da Silva, J. Cosmol.
Astropart. Phys. 12 (2007) 012.

[50] A.E. Carcamo Herndndez, Sergey Kovalenko, and Ivan
Schmidt, Phys. Rev. D 91, 095014 (2015).

095030-27


https://doi.org/10.1103/PhysRevD.46.410
https://doi.org/10.1103/PhysRevLett.69.2889
https://doi.org/10.1103/PhysRevD.47.4158
https://doi.org/10.1103/PhysRevD.47.4158
https://doi.org/10.1103/PhysRevD.49.4805
https://doi.org/10.1103/PhysRevD.22.738
https://doi.org/10.1103/PhysRevD.22.738
https://doi.org/10.1103/PhysRevD.50.R34
https://doi.org/10.1103/PhysRevD.50.R34
https://doi.org/10.1103/PhysRevD.47.2918
https://doi.org/10.1103/PhysRevD.47.2918
https://doi.org/10.1103/PhysRevD.54.4691
https://doi.org/10.1103/PhysRevD.53.437
https://doi.org/10.1103/PhysRevD.54.1143
https://doi.org/10.1103/PhysRevD.58.035008
https://doi.org/10.1103/PhysRevD.58.035008
https://doi.org/10.1142/S0217751X06035191
https://doi.org/10.1142/S0217751X06035191
https://doi.org/10.1103/PhysRevD.60.076003
https://doi.org/10.1103/PhysRevD.60.076003
https://doi.org/10.1103/PhysRevD.73.016003
https://doi.org/10.1103/PhysRevD.52.1659
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.67.075001
https://doi.org/10.1103/PhysRevD.67.075001
https://doi.org/10.1103/PhysRevD.73.035004
https://doi.org/10.1103/PhysRevD.73.035004
https://doi.org/10.1103/PhysRevD.73.075005
https://doi.org/10.1103/PhysRevD.73.075005
https://doi.org/10.1103/PhysRevD.75.073006
https://doi.org/10.1103/PhysRevD.75.073006
https://doi.org/10.1103/PhysRevD.74.053003
https://doi.org/10.1155/2008/739492
https://doi.org/10.1155/2008/739492
https://doi.org/10.1103/PhysRevD.86.033002
https://doi.org/10.1103/PhysRevD.86.033002
https://doi.org/10.1103/PhysRevD.84.055019
https://doi.org/10.1103/PhysRevD.84.055019
https://doi.org/10.1016/S0370-2693(03)00037-6
https://doi.org/10.1016/S0370-2693(03)00037-6
https://doi.org/10.1209/epl/i2003-00267-5
https://doi.org/10.1209/epl/i2003-00267-5
https://doi.org/10.1103/PhysRevD.73.035007
https://doi.org/10.1103/PhysRevD.73.035007
https://doi.org/10.1016/j.nuclphysb.2019.114629
https://doi.org/10.1016/j.nuclphysb.2019.114629
https://doi.org/10.1103/PhysRevD.71.015009
https://arXiv.org/abs/2302.08578
https://doi.org/10.1103/PhysRevD.67.095008
https://doi.org/10.1103/PhysRevD.67.095008
https://doi.org/10.1103/PhysRevD.68.115009
https://doi.org/10.1103/PhysRevD.69.077702
https://doi.org/10.1016/j.physletb.2017.05.034
https://doi.org/10.1103/PhysRevD.61.075002
https://doi.org/10.1103/PhysRevD.61.075002
https://doi.org/10.1140/epjc/s10052-023-11203-9
https://doi.org/10.1103/PhysRevD.64.011301
https://doi.org/10.1103/PhysRevD.64.011301
https://doi.org/10.1103/PhysRevD.73.053006
https://doi.org/10.1007/JHEP07(2018)144
https://doi.org/10.1016/S0550-3213(01)00088-8
https://doi.org/10.1088/0954-3899/29/6/319
https://doi.org/10.1103/PhysRevD.50.542
https://doi.org/10.1142/S0217732394001441
https://doi.org/10.1142/S0217732394001441
https://doi.org/10.1142/S0217751X97002401
https://doi.org/10.1142/S0217751X97002401
https://doi.org/10.1088/0954-3899/25/12/302
https://doi.org/10.1103/PhysRevD.106.015031
https://doi.org/10.1103/PhysRevD.106.015031
https://doi.org/10.1142/S0217732398002503
https://doi.org/10.1142/S0217732398002503
https://doi.org/10.1088/1475-7516/2007/12/012
https://doi.org/10.1088/1475-7516/2007/12/012
https://doi.org/10.1103/PhysRevD.91.095014

V.H. BINH et al.

PHYS. REV. D 107, 095030 (2023)

[51] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett.
110, 081803 (2013).

[52] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 726,
120 (2013).

[53] S. von Buddenbrock, A. S. Cornell, A. Fadol, M. Kumar, B.
Mellado, and X. Ruan, J. Phys. G 45, 115003 (2018).

[54] S. Buddenbrock, A.S. Cornell, Y. Fang, A. Fadol
Mohammed, M. Kumar, B. Mellado, and K. G. Tomiwa,
J. High Energy Phys. 10 (2019) 157.

[55] S. von Buddenbrock, R. Ruiz, and B. Mellado, Phys. Lett. B
811, 135964 (2020).

[56] Y. Hernandez, M. Kumar, A.S. Cornell, S.-E. Dahbi, Y.
Fang, B. Lieberman, B. Mellado, K. Monnakgotla, X. Ruan,
and S. Xin, Eur. Phys. J. C 81, 365 (2021).

[57] A. Crivellin, Y. Fang, O. Fischer, Abhaya Kumar,
Mukesh Kumar, Elias Malwa, Bruce Mellado, Ntsoko
Rapheeha, Xifeng Ruan, and Qiyu Sha, Accumulating
evidence for the associate production of a neutral scalar
with mass around 151 GeV, Report No. ICPP-057, PSI-PR-
21-21, ZU-TH 38/21, CERN-TH-2021-129, LTH 1267,
arXiv:2109.02650.

[58] S. Heinemeyer, C. Li, F. Lika, G. Moortgat-Pick, and S.
Paasch, Phys. Rev. D 106, 075003 (2022).

[59] T. Biekotter, M. Chakraborti, and S. Heinemeyer, Int. J.
Mod. Phys. A 36, 2142018 (2021).

[60] T. Biekotter, M. Chakraborti, and S. Heinemeyer, Eur. Phys.
J. C 80, 2 (2020).

[61] S. Heinemeyer, Int. J. Mod. Phys. A 33, 1844006 (2018).

[62] The ATLAS Collaboration, J. High Energy Phys. 05 (2019)
123.

[63] A.E. Carcamo Hernandez, I. de Mederios Varzielas, and E.
Schumacher, Phys. Rev. D 93, 016003 (2016).

[64] A.E. Carcamo Hernandez, C.O. Dib, and U.J. Saldana-
Salazar, Phys. Lett. B 809, 135750 (2020).

[65] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.
Phys. 2020, 083C01 (2020).

[66] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 796, 68
(2019).

[67] A.M. Sirunyan et al. (CMS Collaboration), J. High Energy
Phys. 07 (2021) 208.

[68] R. Gaitan, J.H. Montes de Oca, E.A. Garcés, and R.
Martinez, Phys. Rev. D 94, 094038 (2016).

095030-28


https://doi.org/10.1103/PhysRevLett.110.081803
https://doi.org/10.1103/PhysRevLett.110.081803
https://doi.org/10.1016/j.physletb.2013.08.026
https://doi.org/10.1016/j.physletb.2013.08.026
https://doi.org/10.1088/1361-6471/aae3d6
https://doi.org/10.1007/JHEP10(2019)157
https://doi.org/10.1016/j.physletb.2020.135964
https://doi.org/10.1016/j.physletb.2020.135964
https://doi.org/10.1140/epjc/s10052-021-09137-1
https://arXiv.org/abs/2109.02650
https://doi.org/10.1103/PhysRevD.106.075003
https://doi.org/10.1142/S0217751X21420185
https://doi.org/10.1142/S0217751X21420185
https://doi.org/10.1140/epjc/s10052-019-7561-2
https://doi.org/10.1140/epjc/s10052-019-7561-2
https://doi.org/10.1142/S0217751X18440062
https://doi.org/10.1007/JHEP05(2019)123
https://doi.org/10.1007/JHEP05(2019)123
https://doi.org/10.1103/PhysRevD.93.016003
https://doi.org/10.1016/j.physletb.2020.135750
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1016/j.physletb.2019.07.016
https://doi.org/10.1016/j.physletb.2019.07.016
https://doi.org/10.1007/JHEP07(2021)208
https://doi.org/10.1007/JHEP07(2021)208
https://doi.org/10.1103/PhysRevD.94.094038

