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Traditional dark matter models, e.g., weakly interacting massive particles (WIMPs), assume dark matter
(DM) is weakly coupled to the standard model so that elastic scattering between dark matter and baryons
can be described perturbatively by the Born approximation; most direct detection experiments are analyzed
according to that assumption. We show that when the fundamental DM-baryon interaction is attractive,
dark matter-nucleus scattering is nonperturbative in much of the relevant parameter range. The cross
section exhibits rich resonant behavior with a highly nontrivial dependence on atomic mass; furthermore,
the extended rather than pointlike nature of nuclei significantly impacts the cross sections and must
therefore be properly taken into account. The repulsive case also shows significant departures from
perturbative predictions and also requires full numerical calculation. These nonperturbative effects change
the boundaries of exclusion regions from existing direct detection, astrophysical and CMB constraints.
Near a resonance value of the parameters the typical velocity-independent Yukawa behavior, σ ∼ v0, does
not apply. We take the nontrivial velocity dependence into account in our analysis, however it turns out that
this more accurate treatment has little impact on limits given current constraints. Correctly treating the
extended size of the nucleus and doing an exact integration of the Schrödinger equation does have a major
impact relative to past analyses based on the Born approximation and naive form factors, so those
improvements are essential for interpreting observational constraints. We report the corrected exclusion
regions superseding previous limits from XQC, CRESST Surface Run, CMB power spectrum and
extensions with Lyman-α and Milky Way satellites, and Milky Way gas clouds. Some limits become
weaker, by an order of magnitude or more, than previous bounds in the literature which were based on
perturbation theory and pointlike sources, while others become stronger. Gaps which open by correct
treatment of some particular constraint can sometimes be closed using a different constraint. We also
discuss the dependence on mediator mass and give approximate expressions for the velocity dependence
near a resonance. Sexaquark (uuddss) DM with mass around 2 GeV, which exchanges QCD mesons with
baryons, remains unconstrained for most of the parameter space of interest. A statement in the literature that
a DM-nucleus cross section larger than 10−25 cm2 implies dark matter is composite, is corrected.
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I. INTRODUCTION

A possible nongravitational interaction between dark
matter and standard model particles is important both
theoretically and experimentally. Such an interaction, if it
exists, will have direct consequences for cosmology, astro-
physics and direct detection experiments. For direct detec-
tion experiments and many astrophysical and cosmological

applications the dark matter (DM) has nonrelativistic (NR)
velocity v ∼ 10−3c, and this is the focus of this paper.
A nonrelativistic effective field theory was developed in

Ref. [1] to generalize the commonly used spin-independent
contact interaction to include nontrivial spin and momen-
tum dependence in a systematic way, while staying within
the framework of the Born approximation. If the Born
approximation is applicable, the scaling with target nuclear
mass A is simple [2] and the effects of a spatially extended
source can be encoded by a form factor, as discussed in
Sec. II C 1.
In this paper, we address the important but hitherto-not-

properly-treated case when the interaction is strong enough
that Born approximation does not apply. As we shall see,
the correct treatment can dramatically change the interpre-
tation of experiments—invalidating theBorn approximation
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scaling with A, invalidating the standard form factor treat-
ment of nuclear size, and exhibiting, in general, strong
resonance and antiresonance behavior of cross sections as a
function of coupling and nuclear mass.
To expose these issues, we take the fundamental inter-

action to have a Yukawa form,

VðrÞ ¼ −
α

r
e−mϕr; ð1Þ

sourced by an extended nucleon or nucleus.1 When
mϕ → ∞ this reduces to the widely used contact inter-
action, e.g., [2,3], having amplitude in the Born approxi-
mation

M ∼ gϕχ̄χN̄N; ð2Þ

where gϕ is independent of momentum transfer q. The
Yukawa potential is appropriate for any interaction
described by a massive mediator and in the limit mϕ → 0

it becomes a Coulomb interaction.2 Thus, while our choice
of the form of the potential is not the most general
conceivable, it is versatile and describes a large range of
spin-independent interactions of interest.
In particular, the form of the potential we adopt is

applicable to sexaquark dark matter (SDM) [4–6]. Our
analysis is however general and the constraints we derive
are applicable to beyond the Standard Model scenarios
for a wide range of DM and mediator masses. In the
SDM model, the dark matter is a scalar particle consis-
ting of six standard model quarks (uuddss), with low
enough mass that its lifetime is sufficiently greater than
the age of the Universe. The upper limit on mass is
mS ≲mΛ þmn ≈ 2.05 GeV, to ensure that its decay is
doubly weak and the lifetime is longer than the age of the
Universe, while a mass less than ≈1.7 GeV would be very
difficult to reconcile with deuteron stability [6]. We adopt
mS ∼ 2mp as a fiducial mass choice.
The interaction between sexaquark and baryon is medi-

ated by the flavor singlet combination of ω and ϕ vector
mesons. Thus the mediator mass mϕ is around the GeV
scale for the sexaquark model, while for a hidden sector
DM model mϕ could be quite different. The coupling
strength α can naturally be as large as Oð1Þ, typical for a
strong interaction process, although it could be much

smaller depending on how ϕ couples to the DM. We will
focus on the spin-independent (SI) cross section for
simplicity here; for scalar DM including sexaquark DM,
this is the only case.
Exact analytic solutions for the Yukawa potential scat-

tering problem do not exist, and the Born approximation
does not apply for the parameter space we are interested in.
Moreover, the extended nature of the nucleon or nucleus
sourcing the Yukawa potential means that the overall
potential seen by the DM is not a Yukawa, even for a
proton target. Therefore a full numerical solution of the
Schrödinger equation is necessary. As we will see below,
the typical cross section for the sexaquark model is around
mb or 10−27 cm2, if the DM and mediator masses are
around a GeVand α ∼Oð1Þ. Such a large cross section can
be constrained by cosmological limits [7–9] and surface
detectors [10–12], while deep underground detectors are
mostly insensitive due to a thick overburden shading the
DM flux [13].
Figure 1 shows the main current limits on the cross

section as derived assuming the Born approxima-
tion. However, this parameter region is actually largely
in the nonperturbative regime and the cross section has

FIG. 1. Born-approximation-based DM-nucleon spin-
independent cross section limits from XQC [12] (blue); CMB
(green) and CMBþ Lyman-α (gray) [9]; and CRESST surface
detector (red) [12,16]. The dashed line is the limit on the DM-Si
cross section, σ28, which is the actual constraint from XQC. For
XQC and CRESST we display the limit corresponding to a
thermalization efficiency of 0.01; simple estimates suggest a
higher efficiency is questionable so to obtain a robust and
conservative upper bound a higher efficiency should not be
adopted [6,12]. A measurement of the thermalization efficiency is
critically needed. To reiterate, the limits shown in this plot are
generally invalid and must be replaced by those in Fig. 14
obtained using a fully nonperturbative treatment.

1The minus sign in Eq. (1) is for convenience so that α > 0
corresponds to an attractive potential; in Sec. V B and associated
figures dealing with the repulsive case, we use Eq. (1) without the
minus sign to keep α positive. In this paper we devote greatest
attention to the attractive case because of its rich and sometimes
dramatic phenomenology; the repulsive case is treated as well.

2Were constraints on dark photon and millicharged DM
models not already so strong, our analysis would be relevant
for those models as well. As is, due to the weak coupling strength,
the Born approximation is adequate and our more general
treatment is not needed.

XINGCHEN XU and GLENNYS FARRAR PHYS. REV. D 107, 095028 (2023)

095028-2



a nontrivial dependence on all of the parameters
(mX;mA; rA;mϕ; α), where A is the atomic mass number
and fmA; rAg are the target nucleus mass and radius.
Without the Born approximation, there is no a priori
relationship between the cross section on nucleus A and
that on a proton. This makes it nontrivial to translate
from the actual experiment measuring the interaction
between DM and detector material, to the coupling strength
parameter α or the DM-nucleon cross section (A ¼ 1).3

Here we provide this linkage, for the key constraining
experiments and observations.
In our analysis for the attractive interaction, resonant

scattering plays an important role. The resonance we are
talking about in this context should not be confused with
the Breit-Wigner resonance typically seen in high-energy
physics. A Breit-Wigner resonance generally appears as a
peak at certain center of mass energy in the function σðvÞ or
σðEÞ and is usually associated with excitation of some
intermediate state, see Ref. [17] for example. Rather, the
resonance we encounter here is the low-energy elastic
scattering s-wave resonance, which corresponds to a zero-
energy bound state of the scattering potential. As a result
the resonance appears as a peak of the cross section at some
particular parameter values (α; mϕ; mX; A) which do not
depend on velocity. For low-energy scattering, σ ∼ v−2 on
the resonance while σ ∼ v0 off the resonance. The fact that
dark matter has a velocity distribution does not smooth out
the resonance as a function of the model parameters,
contrary to what is perceived in [15]. For certain parameter
choices it is possible to have a p-wave or higher wave
Breit-Wigner resonance in σðvÞ, which is associated with a
quasibound state of the effective potential including the
angular term. Such higher partial-wave resonances are less
relevant for us as they require higher energy and are usually
subdominant to the s-wave contribution. The transition to
the classical regime entails an arbitrarily large number of
partial waves. If one wants to make an analogy, the
nonperturbative cross section and s-wave resonance here
are closely related to the Sommerfield enhancement of DM
annihilation and freeze out [18–20]. In fact, resumming all
box diagrams responsible for the Sommerfield enhance-
ment has been shown to approximately recover the numeri-
cal solution of the Schrödinger equation in the appropriate
regime.
Although motivated in large part by the sexaquark, our

results are more general and applicable to any interaction
described by a Yukawa potential as results from CP-even

scalar or vector mediator in the nonrelativistic quantum
regime, sourced by an extended nuclear distribution. The
experimental constraints obtained here can be directly
applied to any DM model with mediator mass above a
few hundred MeV, using a scaling law we derive. For lower
mediator mass the methodology is applicable but the
numerical experimental limits need to be recalculated as
we do for several illustrative cases. Our results can be
applied to interactions within a complex hidden sector as
well. We take the dark matter particle to be pointlike, but
our techniques are applicable to extended dark matter case
and general features of our results apply there as well.
This paper is organized as follows. In Sec. II we show

some general results on nonperturbative effects and their
application to experimental results, especially the resonant
behavior, the nontrivial atomic mass (A) scaling of the cross
section, and the special behavior of nuclear form factor in
resonant regime. In Secs. III and IV we present how to
reinterpret the result of direct detection experiments and
astrophysical and cosmological constraints in this non-
perturbative regime. We give the combined constraints on
parameter space in Sec. VA for attractive interaction and
Sec. V B for repulsive, discuss dependence on mediator
mass in Sec. V C and conclude in Sec. VI. Our numerical
methods for calculating the DM-baryon scattering cross
sections are described in the Appendix A, where an
approximate expression for the velocity dependence near
a resonance is also derived.

II. YUKAWA INTERACTION
WITH EXTENDED SOURCE

A. Source model

In a realistic model where a nucleus is the source for the
potential scattering of a DM particle, the source has a
specified matter distribution rather than being a singular
point as in the simple Yukawa of Eq. (1). The Yukawa
charge is then smeared out with some charge density and
the potential becomes

Vðr⃗Þ ¼
Z

−
αρðr⃗0Þ
jr⃗ − r⃗0j e

−mϕjr⃗−r⃗0jd3r⃗0; ð3Þ

where ρðr⃗0Þ is the normalized Yukawa-charge distribution
of the source with normalizationZ

ρðr⃗0Þd3r0 ¼ 1: ð4Þ

For example a point source has ρðr⃗0Þ ¼ δðr⃗0Þ. The finite
size of the source regulates the Yukawa potential at the
origin and thus influences the cross section.
We adopt in this paper a simple model for the nuclear

density distribution as being a uniform ball with radius r0,
which we identify as the radius of the nucleus,

3We presented our results on the generic failure of the Born
approximation scaling relation for DM scattering on nuclei
through a Yukawa potential in [14]. Subsequently, Ref. [15]
considered a repulsive square-well potential and contact interaction
for massive dark matter, showing that the Born approximation
applies for DM-proton scattering only if σp ≪ 10−25 cm2, and that
for xenon (A ¼ 131) Born scaling fails when σp ≳ 10−32 cm2. See
Sec. V D regarding an inaccurate assertion in that paper [15].
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ρðr⃗0Þ ¼
(

3
4πr3

0

ðr0 < r0Þ
0 ðr0 ≥ r0Þ

: ð5Þ

The corresponding rms radius is 0.77 r0, so given that the
proton charge radius is 0.8 fm, we take r0 ¼ 1 fm for the
proton. We take r0 ¼ R0A

1
3 ≡ fm for nucleus of mass

number A with R0 ¼ 1.0 fm. This is a common description
of the nucleus and was adopted previously for the binding
of sexaquark with nuclei [21]. It suffices for displaying the
features of the extended distribution, which is our aim in
this paper. We check the sensitivity of results to R0 by also
calculating for R0 ¼ 1.2 fm and find that the detailed
position of resonance and antiresonance features are
sensitive to R0 and the profile of the density distribution,
so limits would vary somewhat if a smoother nuclear wave
function or different R0 were adopted.
Integrating Eq. (3) to get the potential, we find

VðrÞ ¼−
3α

m2
ϕr

3
0

×

(
1− ð1þmϕr0Þe−mϕr0 sinhðmϕrÞ

mϕr
ðr < r0Þ

½mϕr0 coshðmϕr0Þ− sinhðmϕr0Þ� e
−mϕr

mϕr
ðr≥ r0Þ:

ð6Þ

Now, a new length scale r0 has been introduced in addition
to the Yukawa screening length λ ¼ 1=mϕ. In the limit
r0 ≪ λ we recover the point Yukawa potential (1). When
r0 ≫ λ, inside the ball, the potential is essentially constant,

VðrÞ⟶r0≫λ
−

3α

m2
ϕr

3
0

ðr < r0Þ: ð7Þ

So the potential is a square well with radius r0, with a soft
transition region at the boundary whose width is λ. The
range of the potential is now primarily determined by r0
instead of λ, when r0 ≫ λ—as is the case for λ−1 ≈ GeV as
relevant for flavor singlet hadronic interactions, especially
for heavy nuclei.

B. General results in the nonperturbative regime

As discussed in the Appendix A, it is useful to write
everything in dimensionless language. For the simple
Yukawa of Eq. (1) and in the nonrelativistic limit, two
parameters suffice [22],

a≡ v
2α

; b≡ 2μα

mϕ
; ð8Þ

with μ the reduced mass and v the relative velocity. To
describe the extended nucleus we introduce a third dimen-
sionless parameter c, with

c
b
≡ r0

λ
¼ mϕr0; ð9Þ

so the dimensionless potential ṼðxÞ in the Schrödinger
equation (A7) becomes, with x≡ 2μαr,

ṼðxÞ ¼ −3
�
b
c

�
3

×

(
1
b − ð1þ c

bÞe−
c
b 1
x sinhðxbÞ ðx < cÞ

½cb coshðcbÞ − sinhðcbÞ� 1x e−
x
b ðx ≥ cÞ : ð10Þ

We then use the methods described in the Appendix A to
solve for the cross section.
Figures 2 and 3 show σm2

ϕ as a function of the
dimensionless parameters ða; bÞ for the point source
potential. It is obvious that the cross section is not a
smooth function of the underlying parameters. For the
extended potential the behaviors are similar, with shifted
locations of the resonances and antiresonances. Figure 16

FIG. 2. 2D plot of σm2
ϕ as a function of ða; bÞ for a point source,

with σm2
ϕ shown by colors. The cutoff in the upper-right corner is

where ab ≥ 10, which is the classical regime.

FIG. 3. 3D plot of σm2
ϕ as a function of ða; bÞ for a point source,

with σm2
ϕ along the z-axis. The “crenellated” appearance is

merely a sampling artifact due to the resolution of the figure.
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in the Appendix B shows the profile for several values of
c=b in comparison to a square well.

1. Distinct regimes of parameter space

(a) Classical regime (ab ≫ 1): The upper right corner in
Fig. 2 (which is the lower-left corner in Fig. 3) is cut
out beyond ab ¼ μv=mϕ ≥ 10. In this regime the
de Broglie wavelength of the particle is much smaller
than the typical scale of the potential and classical
mechanics is sufficient to describe the scattering. In this
regime there are already some nonperturbative effects
relevant in plasma physics where a screened Coulomb
potential is used [23]. Reference [24] considered this
regime in trying to solve astrophysical problems with
self-interacting dark matter (SIDM) models. Outside
this region, when ab ≲ 1, a classical treatment fails and
quantum effects need to be included.

(b) Born regime (b ≪ 1): The blue region with relatively
small cross section and b ≪ 1 is the Born regime
where perturbative calculation is reliable.

(c) Quantum resonant regime (ab ≲ 1 and b ≳ 1): The
region between the classical and the Born regime is the
quantum-resonant regimewhere the scattering problem
is entirely quantum mechanical and nonperturbative.
The resonant behavior of the cross section is clear in
Figs. 2 and 3. We are mostly interested in this regime
where analytic description is absent and numerical
calculation is a must. One model which falls in this
regime is sexaquark dark matter, which has mX ∼
2 GeV and a mediator mϕ ∼ 1 GeV with coupling
possibly as large as α ∼ 1 to nucleon. For a sexaquark
colliding with silicon (mA ≈ 28mp ≈ 26.3 GeV) at
v ¼ 300 km=s, the corresponding parameters are
a ¼ 0.0005, b ¼ 3.71, and ab ¼ 0.0019.

For the extended potential we can almost draw the same
conclusions, except that when c ≫ b, the range of the
potential is determined by r0 rather than 1=mϕ, and the
quantum resonant regime is determined by ac ≪ 1. Taking
the same sexaquark-silicon collision as an example and
using ∼A1

3 fm to approximate the silicon nucleus radius,
we find c=b ∼ 15 and ac ∼ 0.03, which falls well in the
quantum-resonant regime.

2. Resonance and antiresonance

The strong enhancement or diminution of cross section
in the resonant regime can be understood from the phase
shift. In the parameter regime that the Born approximation
is valid, the cross section is

σBorn ¼ 4πb2

m2
ϕð1þ 4a2b2Þ ; ð11Þ

but this cannot be applied to the resonant regime. The
general result at low energy when s-wave (l ¼ 0) scattering

is dominant (which is usually true for us, as we will see
later) is, from Eq. (A11),

σs-wave ¼
4π

a2b2m2
ϕ

sin2ðδ0Þ; ð12Þ

where δ0 depends on a, b, c; δ0 must be calculated
numerically in the resonant regime. When δ0 → π

2
the cross

section is on resonance and reaches its maximum value,
resulting in the peaks in Figs. 2 and 3. The position of the
peaks is in one-to-one correspondence with the zero-energy
bound states of the Yukawa potential. In the pointlike
source problem (c ¼ 0), the potential is e−

x
b, with b setting

its range. When b ≪ 1 the potential is too narrow and weak
to accommodate any bound states. As b increases, the
potential becomes wider and stronger up to the point where
a bound state with E0 → 0− emerges, in which case the
scattering cross section reaches its maximum. As b con-
tinues to increase, the ground state binding energy gets
more and more negative, up to some point where another
bound state with E1 → 0− emerges and the scattering cross
section hits another peak. The position of these zero-energy
bound states are easily calculated to be at b ¼ 1.68, 6.45,
14.34, etc., which are exactly the locations of the peaks in
Figs. 2 and 3. On the other hand when δ0 → nπ the cross
section σs-wave → 0, which is an antiresonance and corre-
sponds to the valleys in Figs. 2 and 3. The reduced cross
section at antiresonances in the parameter space is respon-
sible for evading some experimental limits on the DM-
baryon scattering cross section. The antiresonances are not
associated with any bound state. For an extended potential
we have similar resonances and antiresonances, they just
appear at different b values. In general, the location of the
(anti)resonance is a function of c=b.

3. S-wave dominance

It is usually the case that at low energy, s-wave scattering
is dominant. In terms of ða; bÞ this means small a. Figure 4
shows lmax, such that the contribution to the total cross
section of partial waves from l ¼ 0 to l ¼ lmax is more than

FIG. 4. lmax in the ða; bÞ plane.

RESONANT SCATTERING BETWEEN DARK MATTER AND … PHYS. REV. D 107, 095028 (2023)

095028-5



99%. We see that for a pure Yukawa interaction with
ab ≪ 1, the scattering is always s-wave dominated and
quantum mechanical. For an extended potential, s-wave
dominance also requires ac ≪ 1. This is however also the
condition for quantum resonant scattering, so the cross
section for the extended potential in the resonant regime is
automatically s-wave dominated and hence isotropic in the
center-of-mass frame. This simplifies the expressions for
the event rate of DM direct detection experiments.

4. Born approximation validity

The Born approximation applies when b ≪ 1. To quan-
tify this, Fig. 5 shows the ratio of cross sections calculated
by the Born approximation and by numerical solution.
The Born approximation is within�10% of the exact result
for b ≲ 0.1. This is also generally true for the extended
potential.

5. Velocity dependence

Another feature in the quantum resonant regime is that
the cross section may have nontrivial velocity dependence,
whereas the Born approximation generally has no velocity
dependence at small velocity. Figure 6 shows σmϕðvÞ for
some illustrative values of b. At small velocity we have
several different behaviors:

(i) On resonance (b ¼ 1.68), σ ∼ v−2, i.e., greatly
enhanced at small v. Here, s-wave unitarity fixes
the cross section at the peak of the resonance. Using
(12), with sin2ðδ0Þ ¼ 1 gives

σres ¼
4π

μ2v2
¼ 4.9×10−21 cm2

�
GeV
μ

10−3c
v

�
2

ð13Þ

with negligible contribution from other partial
waves. Note the cross section becomes independent
of A, coupling, and source size.

(ii) At antiresonance (b ¼ 4.52), the s-wave contribu-
tion to σ vanishes and only the very small higher
partial waves contribute. The antiresonances are in

general away from any resonance for a different A or
l and are therefore independent of velocity.

(iii) For b values well-separated from resonance and
antiresonance, σ ∼ v0 (independent of velocity) up
to a large velocity whose value depends on param-
eters. At such large velocities there is no simple
expression for a general source distribution, but for a
point Yukawa the scattering becomes Coulomb-like,
so at sufficiently high v, σ ∼ v−4 for all b.

Near but not on a resonance, there is a transition in
behavior around v ∼ v� with σ ∼ v−2 for v ≫ v� and σ ∼
constant for v ≪ v�. In Appendix B a useful approximate
expression for the velocity dependence near resonant
values of α is derived, valid when the radius r0 of the
extended Yukawa is large enough that it can be approxi-
mated as a square well. Near the first resonance,

σ → 4π=ðμvÞ2 v ≫ v� ð14Þ

and

σ →
8m2

ϕr
3
0

3πμð ffiffiffi
α

p
− ffiffiffiffiffiffiffi

αres
p Þ2 v ≪ v� ð15Þ

with

v� ≡ πj ffiffiffi
α

p
− ffiffiffiffiffiffiffi

αres
p j

mϕr0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μr0=3

p ; ð16Þ

and

αres ≡
�
π

2

�
2 m2

ϕr0
6μ

: ð17Þ

A standard way to characterize the cross section and its
velocity dependence at low energy (k → 0) is by introduc-
ing the scattering length in an effective range expansionFIG. 5. Ratio of σBorn over σExact.

FIG. 6. Velocity dependence of the cross section for four values
of b≡ 2μα=mϕ; b ¼ 1.68 (tan) is on resonance and b ¼ 4.52
(red) is on antiresonance.
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(see, e.g., Ref. [25] Chapter 6.6). In the low-energy limit the
total cross section is dominated by s-wave scattering and
can be expressed in terms of the s-wave phase shift δ0 and
momentum k ¼ μv for small k,

σ ≈ σl¼0 ¼
4π

k2
sin2 δ0 ¼

4π

k2 þ k2 cot2 δ0
: ð18Þ

In the effective range expansion, k cot δ0 is expanded as a
series in k,

k cot δ0 ≡ −
1

a
þ 1

2
reffk2 þOðk4Þ: ð19Þ

The coefficients of the first two terms are given special
names: a is called the “scattering length” and reff the
“effective range.”4 Near a resonance, the effective range
expansion (19) is a good approximation with jaj ≫ reff and
the cross section can be expressed as

σ ≈
4π

1
a2 þ ð1 − reff

a Þk2
: ð20Þ

In the denominator of Eq. (20) we have neglected terms of
order Oðk4Þ, including the term 1=4r2effk

4. While much
smaller than the ones we kept, this term is required to keep
the cross section smaller than the unitarity limit, 4π=k2, as
pointed out by Schwinger [26].
Exactly on resonance, the scattering length is infinite and

we have σ ≈ 4π=k2 down to arbitrarily low velocities, as in
Eq. (13). When the scattering is near but not on resonance,
a is finite and Eq. (20) tells us the velocity dependence is
σ ∼ constant for small k and σ ∼ v−2 for large k,

σ ≈
�
4πa2 ¼ 4π

k2 ðkjaj ≪ 1 or v ≪ v�Þ
4π
k2 ðkjaj ≫ 1 or v ≫ v�Þ: ð21Þ

The transition happens at k�jaj ≈ 1 or

v� ≈
2

μ

ffiffiffiffiffi
π

σ0

r
; ð22Þ

where σ0 ≡ limv→0 σ and k� ≡ μv�. The cross section at low
velocity v < v� approximately saturates at the unitarity
bound at the transition velocity v ¼ v�. Far from the
resonance, the reffk2 and higher-order terms are important,
so Eq. (20) is not accurate and the velocity dependence
must be determined including those higher-order terms.
Examples of these behaviors are shown in Fig. 6 for different
parameters; the antiresonance case is an example where the
effective range expansion (19) is insufficient [27,28].

Figure 6 and Eqs. (20) and (21) provide guidance for
when the cross section’s velocity dependence needs to be
taken into account in an analysis. Figure 6 shows that except
near an antiresonance, the cross section is generically
velocity independent at low velocity, but falls as v−2 above
some velocity we designate as v�. As long as the velocity
of most of the DM with respect to the detector is below v�,
the cross section can be taken as constant, σ0; otherwise,
the velocity dependence needs to be incorporated into the
analysis. But the magnitude of σ0 is related to the break
velocity v�, through Eq. (22). Thus, if a cross section value
under investigation satisfies

σ ≲ σmax ≡ 4π

ðμvmaxÞ2
; ð23Þ

where vmax is the maximum relative velocity of the DM and
detector and μ is the reduced mass, then the cross section is
effectively velocity independent. For reference, for GeV
darkmatter with a typical velocity of 300 km=s and a silicon
detector like XQC, σ300 ¼ 5.25 × 10−21 cm2.
We reiterate in closing this subsection, that while the

effective range parametrization can be used to characterize
the cross section for any nuclear target A, there is no
a priori relationship between the scattering length and
effective range for different A values except if the Born
approximation is valid.

C. Implication for experimental constraints

In the general spin-independent problem, the event rate
per unit recoil energy is proportional to the differential
cross section and one is interested in

dR
dEr

∼
dσA
dΩ

: ð24Þ

Here dσA=dΩ is the spin-independent DM-nucleus differ-
ential cross section for atomic mass A, Er ¼ q2=2mA is
the recoil energy and q ¼ 2μ v sin θ

2
is the momentum

transfer, with θ being the center-of-mass scattering angle.
Up until now, the Born approximation has been almost
universally assumed for analyzing experimental limits.5

When the Born approximation is valid, there are three
distinct simplifications:

1. Form factor and size of nucleus

The difference between an extended source and a point-
like source can be encoded in the form factor FðqÞ,
defined by

4The standard notation “a” for scattering length used in this
section should not be confused with the dimensionless parameter
of the Schrödinger equation a introduced in Eq. (8).

5An exception is [17], which considered the possibility that
DM resonant scattering could reconcile the DAMA and CDMS
limits.
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dσ
dΩext

≡ dσ
dΩpt

F2ðqÞ; ð25Þ

where q⃗ is the momentum transfer with magnitude q.
The form factor carries the information about the charge
distribution of the source. In a potential scattering problem,
given the point source potential VptðrÞ and the charge
distribution ρðrÞ normalized as in Eq. (4), the potential of
an extended source is determined by

Vextðr⃗Þ ¼
Z

Vptðr⃗ − r⃗0Þρðr⃗0Þd3r0: ð26Þ

Given the potentials VextðrÞ and VptðrÞ one can calculate
the cross sections (at least numerically) and obtain the form
factor FðqÞ as the ratio of the two cross sections.
When first the Born approximation is valid, FðqÞ is

simply the Fourier transform of the charge distribution and
is independent of the pointlike potential. Moreover, FðqÞ
goes to unity when the momentum transfer goes to zero:
Fð0Þ ¼ 1. To see these properties, notice that the cross
section in the first Born approximation is proportional to
the Fourier transform of the potential,

dσ
dΩ

Born
¼

���� μ

2π

Z
eiq⃗·r⃗Vðr⃗Þd3r

����2: ð27Þ

Combining Eqs. (26) and (27), it is straightforward to show

dσ
dΩ

Born

ext
¼ dσ

dΩ
Born

pt

����
Z

ρðr⃗Þeiq·r⃗d3r
����2; ð28Þ

leading to the analytic expression for the form factor in the
Born approximation,

FðqÞBorn ¼
Z

ρðr⃗Þeiq⃗·r⃗d3r: ð29Þ

In practice, one measures the differential cross section
experimentally as a function of q, divides it by the pointlike
cross section in the Born approximation to obtain the form
factor, and then does an inverse Fourier transform to get the
charge distribution ρðrÞ. This is how the charge distribution
of the proton and some other light nuclei are determined
from high-energy electron scattering [29]. For small
momentum transfer q → 0 or qr0 ≪ 1 where r0 is the
characteristic nuclear radius, the form factor is just unity,

Fð0ÞBorn ¼
Z

ρðr⃗Þd3r ¼ 1; ð30Þ

and the finite size of the nucleus does not influence the
cross section,

dσ
dΩ

Born

ext
≈
dσ
dΩ

Born

pt
ðqr0 ≪ 1Þ: ð31Þ

When the scattering is nonperturbative and the Born
approximation is not valid, the form factor FðqÞ cannot

simply be determined by the charge distribution ρðrÞ as in
Eq. (29). Furthermore, the form factor depends on the
point-particle potential. In this case the form factor is not
particularly useful and it is more straightforward to
calculate the potential of an extended source based on
an assumed charge distribution ρðrÞ as in Eq. (26), then
calculate the cross section numerically by summing all
partial waves we we do in this paper. If the point source
potential is known, the calculated differential cross section
can be compared to experimental results to see if ρðrÞ is a
good model of charge distribution. Historically this method
has been used to determine the charge distribution of heavy
nuclei from high-energy electron scattering [30], where
ZαEM ∼ 1 and the Born approximation is inaccurate.
Modern methods also share the same spirit [31].
For small momentum transfer, we have to distinguish

two cases in the nonperturbative regime. For a long range
interaction like the Coulomb interaction, Fð0Þ ¼ 1 is still
true even when the Born approximation is inaccurate. This
follows from Gauss’s law and is discussed in Ref. [31] for
electron-Pb scattering both theoretically and experimen-
tally. Measuring the form factor enabled the structure of
the nucleus to be accurately determined once high-energy
electrons (∼100 MeV) became available in the 1950s; see
Ref. [32] for a review. For a short range interaction with a
massive mediator, Fð0Þ ≠ 1 in the nonperturbative regime,
as can be seen in Fig. 7, where we have shown the exact
form factor varies over nearly ten orders of magnitude for
different atomic mass A. The difference of FðqÞ in the low-
energy limit for long range and short range interaction
reflects the fact that Gauss’s law is broken by a massive
mediator. In classical electromagnetism with 1=r potential,

FIG. 7. σextendedA =σpointA , as a function of A, comparing to the
Helm form factor F2

AðqÞ used, e.g., in [11], for the mean value of
q given the scattering parameters. The Helm form factor is
essentially 1 and incapable of accounting for the overall scaling
of the cross section coming from the finite size of the nucleus.
Additionally, for a heavier DM particle, q can be large and the
corresponding wavelength can be smaller than the size of the
nucleus, even in the low-energy regime, yet FAðqÞ is still
inaccurate compared to the numerical calculation.
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a extended charge distribution with total charge Q looks
like a point chargeQ from far away. This is not the case for
a Yukawa potential.
The fact that Fð0Þ can differ from 1 contradicts a widely-

held intuition from quantum mechanics that “when the
de Broglie wavelength (1=q) is much larger than the nuclear
radius, the finite size of the nucleus does not matter.”As our
explicit calculations show, this intuition is not valid for a
short range interaction in the nonperturbative regime.
One way to understand this seeming paradox is through
considering the attractive s-wave resonance described in
Sec. II B 2. When the potential is strong enough to hold a
negative-zero-energy s-wave bound state (E ¼ 0−), low-
energy scattering has a resonance with positive-zero energy
(E ¼ 0þ). The wave functions of the loosely-bound E ¼ 0−

state and the soft scattering state (E ¼ 0þ) are actually
indistinguishable [25]. Physically, this means that a low-
energy incident particle with an infinitely long de Broglie
wavelength nevertheless probes the inside of the potential
well through the resonance and the zero-energy bound state.
Since a pointlike Yukawa potential has a different bound
state spectrum from the spectrum of an extended source, for
the same α andmϕ, the structure of the source is reflected in
the value of Fð0Þ ≠ 1.
This does not mean we can measure the nuclear structure

with an arbitrarily low-energy incident particle (e.g., dark
matter) when the de Broglie wavelength is much larger than
the nuclear radius. At low energy, the differential cross
section is isotropic and has no q dependence. All that can
be measured is the magnitude of the cross section,

dσ
dΩext

ð0Þ ∝ α2F2ð0Þ: ð32Þ

Unless the fundamental coupling α has been determined
from other measurements, the degeneracy between α and
Fð0Þ cannot be eliminated and one cannot tell if Fð0Þ
equals unity or not. Even if α is known and a low-energy
scattering cross section is measured so that Fð0Þ is known
and nonunity, we cannot determine the exact shape of the
nuclear wave function from low-energy scattering alone,
because different mass distribution may result in the same
low-energy cross section and Fð0Þ. All we can say is that
the nucleus is not pointlike. More detailed information on
the nuclear wave function requires a high-energy scattering
experiment which can measure FðqÞ as a function of q for
some finite range of q.
In the analysis of weakly interacting massive particle

(WIMP) direct detection in the literature (see [33] for
example), dark matter is assumed to be weakly coupled so
the Born approximation is valid. Then, the Born form factor
Eq. (29) can be used. The nuclear charge distribution ρðrÞ
can be measured through electron scattering experiments
and the form factor obtained by Fourier transform.
Among many different parametrizations, the Helm form

factor [33,34] is most widely used; it satisfies Fð0ÞHelm ¼ 1
since it is derived from the Born approximation. Figure 7
shows that Fð0ÞHelm is extremely inaccurate for the non-
perturbative scattering considered in this paper.
While our attention in this work is focused on small q

where scattering is isotropic, we stress that even for the
large q’s encountered for massive DM and massive target
nuclei, the Helm form factor is a poor approximation except
for such weak coupling that the Born approximation is
reliable. In general, the q dependence or angular depend-
ence of the cross section must be determined by numerical
calculation including higher partial waves.

2. Scaling of σA with A

The commonly-assumed Born approximation relation-
ship between the DM-nucleus cross section in the Born
approximation, σBornA , and the DM-nucleon cross section,
σp, is

σBornA ¼ σp

�
μA
μp

�
2

A2: ð33Þ

This can be obtained from Eq. (11) with ab ≪ 1 or
μv ≪ mϕ, i.e., in the low-energy regime compared to
mϕ. When Eq. (33) is valid, as is the case for WIMP
experiments [33], the final result of an experiment can be
reported as a limit for σp. It is for this reason that different
experiments and observations can put universal limits on σp
to compare with each other, despite the fact that they are
using different target nuclei. However the scaling relation-
ship (33) between σBornA and σp does not work in the
resonant regime, as is shown in Fig. 8. In fact, the ratio
σA=σp becomes highly parameter dependent. As a conse-
quence, there is no universal rule to convert an experi-
mental limit on σA to a single parameter σp, and it is

FIG. 8. σA=σp as a function of A. The green line is the Born
approximation prediction (33), while blue and tan lines are the
result of numerical calculation for point source and extended
source, respectively. For an extended potential we take the nucleus
radius as rA ¼ A

1
3 fm; in all cases the coupling is αA ¼ Aα.
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nontrivial to compare the results of different experiments.
An additional complication is that experiments involving
multiple materials with different A require an even more
subtle study. In the following we provide the needed
analysis, and obtain the correct inferences from the experi-
ments and observations.

3. Connection to σp
In the absence of the Born approximation scaling

relationship embodied in Eq. (33), the only way to relate
σA to σp is to solve for both, under a given assumption for
(α; mX;mϕ). Neither σA nor σp are in general calculable
perturbatively, and even for a pointlike proton, σp is not
given by the simple Born approximation expression for it.
In Fig. 9 we compare both pointlike and extended solutions
of the Schrödinger equation to Born approximation for
DM-proton scattering. Our extended model of the proton
takes it to be a sphere of radius 1 fm (rms charge radius
0.77 fm) sourcing the Yukawa potential.
We have shown in Figs. 7–9 that the Born approximation

fails badly in the quantum resonant regime, in all three
respects—sensitivity to size, A dependence, and depend-
ence of σp on fundamental parameters—so we must change
the way the experiments are interpreted. We discard the
form factor in our analysis and model the finite size of the
nucleus with full numerical calculation for the extended
Yukawa potential. We have already shown that in the
quantum-resonant regime we are considering, the scattering
is s-wave dominated and isotropic.

III. REINTERPRETING DIRECT
DETECTION EXPERIMENTS

In this and the following section we derive the limits
from various experiments and observations, focusing on the
case of an attractive DM-nucleon interaction except where
noted, for which the analysis is generally more subtle.

A. The x-ray quantum calorimeter experiment

The x-ray quantum calorimeter (XQC) [35] was an
experiment intended to measure the diffuse x-ray back-
ground using microcalorimeters on board a rocket sent to
about 100 km altitude in the atmosphere. The results can
also be used to put limits on the DM-nucleon cross section
and extensive studies have been performed [10–12,36,37].
However these analyses uniformly used the nonvalid Born
approximation to extract limits on σp, so in this section we
reinterpret the latest analyses of XQC limits [11,12] as
required to obtain reliable limits in the quantum resonant
regime. The procedure is as follows:

(i) Rescale the limits reported for σp, back to the
limits on the actual cross section that XQC is
constraining—σ28—undoing the assumed Born
approximation scaling, (33). The XQC detector is
actually made of silicon and a thin HgTe film, but the
latter makes an insignificant contribution and we
ignore it for simplicity. For DM mass ∼ few GeV, of
special interest in connection with sexaquarks, the
maximum momentum transfer is very small and the
form factor FðqÞ applied in [11,12] is essentially
one. The dashed curve XQC (σ28) in Fig. 1 shows
the resultant limits on σ28.

(ii) Using the numerical solution to the Yukawa poten-
tial model for extended nuclei, calculate σ28 every-
where in the parameter space ðα; mX;mϕÞ. We

adopt ¼ R0A
1
3, and calculate for R0 ¼ 1.0 and

1.2 fm to assess the sensitivity to the exact size of
the nucleus. Comparing to the observational limit on
σ28, we then obtain the excluded region in
ðα; mX;mϕÞ shown in Fig. 10. Due to the resonant

FIG. 9. σp as a function of α for the Born approximation, point
source, and extended source. The Born approximation only holds
for α ≲ 0.3, where the size of the nucleus and the sign of the
potential do not matter.

FIG. 10. Exclusion region in the (α,mX) plane from XQC, for
attractive point source (gray) and attractive extended source
(blue) taking R0 ¼ 1.0 fm and mϕ ¼ 1 GeV.

XINGCHEN XU and GLENNYS FARRAR PHYS. REV. D 107, 095028 (2023)

095028-10



behavior, the excluded/allowed regions of the
parameter space has islands and holes whose exact
positions depend on R0.

(iii) Calculate σp for the allowed values of ðα; mXÞ to
find the allowed region in the ðσp;mXÞ plane, for a
given choice of mϕ. This enables a standardized
comparison to other limits.

The procedure and its nontrivial character are illustrated
in Fig. 11, which shows the exact and the Born predictions
for σ28 and σp as a function of α, for mX ¼ 2.9 GeV and
10 GeV. Focusing first on the top panel, one sees how the
nonperturbative cross section exceeds the Born approxi-
mation in some regions of α but is below it in others, and
how important it is to take into account the extended
nucleus properly. We return in Sec. V below to how these
changes impact the XQC exclusion region in σp.
As noted in Sec. II B and illustrated in Fig. 6, the full,

nonperturbative cross section has a nontrivial velocity
dependence near a resonance, behaving as v−2 until
saturating at some minimum velocity determined by the
distance from resonance. We treat this nontrivial velocity
dependence as follows. For XQC, we obtain a preliminary
exclusion region evaluating σ28 at the characteristic DM

velocity of v ¼ 300 km=s and then check near the reso-
nances whether a more accurate treatment is required. The
maximum (escape) velocity for DM particles in the
Milky Way halo is roughly v ∼ 600 km=s. Thus near a
resonance, the v−2 behavior of the cross section can result
in a cross section as small as one-fourth of the value at
300 km=s. For mX ≳ 3 GeV, this smaller cross section is
still excluded by XQC because the basic XQC limit on the
number of DM scattering events is so stringent. (For details,
see [12].) This can be seen directly from the right panel of
Fig. 11 for mX ¼ 10 GeV, where the XQC limit is usually
more than three orders of magnitude smaller than the
predicted cross section near the resonance. At still larger
mass, DM can trigger the detector at velocities below
300 km=s with a equal or larger cross section than that at
300 km=s, so the spectrum-weighted event rate can poten-
tially actually be higher than calculated using a constant
v ¼ 300 km=s value. In that case, the limits presented are
conservative, as desired.
For smaller DM mass, mX ≲ 3 GeV, as shown in the left

panel of Fig. 11, the XQC limit on σ28 is closer to the
calculated cross section near or on resonance, and a factor-4
smaller cross section at v ∼ 600 km=s could potentially

FIG. 11. The top panel shows σ28 versus α in the attractive case, formX ¼ 2.9 GeV (left) and 10 GeV (right). The red/black lines show
the exact treatment with extended nucleus, while cyan/gray and orange/gray show the results for point nucleus and the Born
approximation. The gray horizontal line is the XQC limit on σ28, so regions of α in which the predicted σ28 exceeds this limit are
excluded and the curves are correspondingly shown in black or gray. The lower panels show, in the same color scheme, the
corresponding σp predictions. The black regions are excluded; the gray regions would be excluded if the point Yukawa or Born
approximations were applicable. This shows how an XQC upper limit on σ28 maps into excluded regions of σp, and illustrates how there
can be “islands” of allowed and excluded parameters, unlike in the Born approximation or to a limited extent for the point Yukawa
shown in the lower two rows.
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evade the XQC limit. This would shrink the small
blue peninsulas in Figs. 10, 12 (left), and 14 (left) for
mX ≲ 3 GeV. However the peninsula is an uncertain region
anyway due to its sensitivity to details of the nuclear wave
function, which is not perfectly well-determined. Therefore
we do not attempt a more refined analysis and simply leave
the peninsula region unfilled in the cross section plots, to
indicate the limit is uncertain.

B. The CRESST surface run experiment

TheCRESST2017 surface run tookdata using a cryogenic
detector operated by the CRESST Collaboration [16,41,42]
near ground level. The detector is made of Al2O3 and
observed a total of 511 nuclear recoil events. It is shielded
by ∼30 cm of concrete in addition to the atmosphere of
Earth. As a result, DM with large cross section in the
overburden will loose too much energy to register in the
detector. Roughly speaking, this places a maximum value on

the cross section σp which can be probed in the CRESST
surface run. Since the detector, the concrete and the atmos-
phere contain nuclei with different A, we modified the
analysis done in [12], calculating each of the cross sections
required in the analysis for any given set of parameters
(α; mϕ; mX). We thereby obtain the limits on the (α; mX)
parameter space shown in Fig. 12. The nontrivial character of
the new exclusion limits is already evident in the emergence
of a (narrow) excluded island which appears at large α for
attractive interaction, from about α ≈ 1 at mX ≈ 3 GeV to
α ≈ 0.2 at mX ¼ 100 GeV. This excluded band arises
because even though the fundamental coupling is large,
in this parameter regime the relevant nuclear scattering
cross sections are small due to the existence of an anti-
resonance. In this region, DM can reach the CRESST
detector with sufficient energy to be detected, while for
larger and smaller parameter values it loses too much energy
in the overburden.

FIG. 12. Exclusion region in the (α,mX) plane for mϕ ¼ 1 GeV, from XQC (blue) and CRESST (red), for attractive (left panel) and
repulsive (right panel) interactions; the boundaries should be considered blurry because of their sensitivity to the details of the nuclear
wave function. Note the narrow island of large α excluded by CRESST for mX ≳ 3 GeV in the attractive case, thanks to antiresonance
behavior in this regime. The secure limit from the CMB in the attractive case is shown in green, and the nearly-identical limit from gas
clouds in purple. In each pair, the upper wider bands show the limit including only H, while the lower narrower stripes labeled “þHe”
are excluded due to the contribution of He. There are no corresponding CMB and gas cloud limits in the repulsive case, because there is
no value of α giving a cross section large enough to saturate the bounds. If the limits based on combining CMB with Ly-α are
trustworthy (see [38,39] for cautions), then the gray regions can be excluded using the results from [14], where the upper darker region
includes H only and the lower lighter gray region is excluded by He in our nonperturbative analysis. In the left panel, for an attractive
interaction, the unconstrained gap region above mX ≈ 15 GeV is due to an antiresonance in DM-He scattering. The gray solid line
indicates the upper limits of α if the recent constraints based on Milky Way satellites [40] are validated. For each experiment or
observation, the dashed line in the same color indicates the parameter values such that the dimensionless parameter b equals one; for
A ¼ 4 relevant for He in CMB, gas cloud, and Ly-α; A ¼ 16 for O in CRESST; A ¼ 28 (XQC). When b ≲ 1 the Born approximation is
reliable for the pointlike and extended Yukawa model, however unless b ≪ 1 the extent of the nucleus still matters. If the interaction is
repulsive (right panel), the boundary of XQC exclusion region is smooth due to the lack of resonance and there is no antiresonance
contribution to the CRESST limit.

XINGCHEN XU and GLENNYS FARRAR PHYS. REV. D 107, 095028 (2023)

095028-12



For CRESST, the lower exclusion region is close to
the Born regime while the upper island for the attractive
interaction is on antiresonance for most elements involved.
Both regions are far from any resonance so that our
treatment ignoring the velocity dependence near resonance
is accurate.

IV. CMB AND ASTROPHYSICAL
CONSTRAINTS

Another class of constraints, which extend to lower DM
mass but are less powerful in terms of cross section limits
than the direct detection experiments discussed in the
previous section, derive from limits on heat exchange
and friction between baryons and DM. The pioneering
work of [7] showed that these effects from DM-baryon
interactions suppress the cosmological growth of density
contrast on small scales, so that precision data on the CMB
power-spectrum constrains the DM-baryon cross section.
A related but independent constraint comes from limits on
heating of cold, dense and long-lived gas clouds in the
Milky Way [43].
The CMB and gas clouds constraints have two features

in common: (i) H and He are present in the cosmological
abundance ratio, and (ii) the cross section values which can
be constrained are in the nonperturbative regime, where
Born scaling with A is not valid and finite size effects are
important. As we shall see, the correct treatment signifi-
cantly changes the derived limits. Two other systems have
been proposed to probe structure growth on still smaller
scales than accessed by the CMB power spectrum: Ly-α
forest and dwarf satellites in the Milky Way. Using the
reported Born approximation limits from [9,40], we pro-
vide the corresponding exact limits; if the constraints
of [9,40] are established as robust, these will be stronger
than the CMB and gas clouds limits.6

The observational constraints considered in this section
bound a linear combination of σH and σHe, weighted by
the H and He abundances and the energy- or momentum-
transfer efficiency in a DM-nucleus collision. In the case
of Milky Way gas clouds, higher-mass nuclei contribute
as well. Analyzing using the Born approximation, as
was done in previous analyses, implies assuming the
fixed cross section ratio σBornA ¼ σpðμAμpÞ2A2. For instance

for mX ¼ f2; 10g GeV, σHe ¼ 16
μ2He
μ2H

σH ¼ f66; 197gσH
[Eq. (33)]. Thus in the Born approximation He plays an
important role, even though the He abundance is only
≈10% that of H, due to the large ratio of the Born cross
sections. For high DM mass, the importance of heavier

nuclei relative to protons is further enhanced by the higher-
energy transfer efficiency in collisions of more nearly equal
masses, with the average fraction of energy transferred to a
slow-moving nucleus being 2mAmX=ðmA þmXÞ2.
However in reality, for much of parameter space in the

nonperturbative regime, σHe is actually much smaller than
the Born approximation estimate. The essential point is that
to get cross sections at the barn level requires both strong
coupling (α ≈Oð1Þ) and being near a resonance value of α.
But the resonances of H and He are at quite different values
of α, so the H and He cross sections do not scale together as
they do in the Born approximation. This is demonstrated in
detail below.

A. Constraints from the CMB

DM interacting with baryons in the early Universe
leaves an imprint on CMB observations, allowing limits
on the cross section to be obtained [7–9]. We investigate
the most recent results from [9] (Fig. 1) where both
DM-hydrogen and DM-helium scattering are included.
However [9] uses the Born approximation and assumes
that only the proton interacts with DM in the initial cal-
culation. It is clear now that any probes of the interaction
of DM and baryons, with A > 1 in the nonperturbative
regime, suffer from the problem of breaking down of the
Born scaling (33). So a reinterpretation as done above for
the XQC and CRESST experiments is necessary. Since
the Yukawa cross section is velocity independent except
near a resonant value of α, we begin by examining the
n ¼ 0 case treated in Sec. VII of [9]; in their nota-
tion σðvÞ ¼ σ0ðv=cÞn¼0.
In the early universe both DM-H (A ¼ 1) and DM-He

(A ¼ 4) interactions are significant. What governs the
limits on the cross section is the momentum transfer rate
between DM and baryon fluids. Following the notation
of [9] and starting from their Eq. (13),

RX ¼ ac0
X
i

ρiσivi
mX þmi

¼ ac0ρbvH
mX þmH

σHð1 − YHeÞ

×

�
1þ YHe

1 − YHe

σHe
σH

vHe
vH

mX þmH

mX þmHe

�
; ð34Þ

where a and c0 are constants not relevant for us, the sum on
i is the sum over all baryon species (here H and He),
mi is the nuclear mass, ρi is the density of nucleus i, and vi
and σi are, respectively, the average relative velocity and
the scattering cross section between DM and baryon i;
YHe ¼ 0.24 is the helium mass fraction used by [9].
Defining σ0 as the conservative limit on σH when
σHe ¼ 0, Ref. [9] reports σ0 as a function ofmX. To include
DM-He scattering, noticing that vHe=vH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μH=μHe
p

≥ 1
2
,

we can write RX as

6In a preliminary posting of this paper (arXiv:2101.00142v1
[44]) we only analyzed the CMBþ Ly-α limits and did not
consider the more robust but difficult-to-treat pure CMB limit.
Here they are both given and shown separately in the figures, now
also treating the repulsive case.
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RX ¼ ac0ρbvH
mX þmH

σ0ð1 − YHeÞ

¼ ac0ρbvH
mX þmH

σHð1 − YHeÞ

×

�
1þ YHe

1 − YHe

σHe
σH

vHe
vH

mX þmH

mX þmHe

�

≥
ac0ρbvH
mX þmH

σHð1 − YHeÞ

×

�
1þ YHe

1 − YHe

σHe
σH

mX þmH

2ðmX þmHeÞ
�

ð35Þ

which gives

σH þ
�

YHe

1 − YHe

mX þmH

2ðmX þmHeÞ
�
σHe ≤ σ0: ð36Þ

Depending on the assumed σHe=σH one gets different limits
on σH from σ0, when σHe is nonzero. The results of Ref. [9]
were obtained using

σHe ¼ 4
μ2He
μ2H

σH; ð37Þ

corresponding to assuming DM only scatters on protons
and not the neutrons in the helium, which is not appropriate
if DM is an isoscalar as is the case for sexaquark DM
and other nonphoton-mediated DM. Equation (37) also
assumes the validity of Born approximation and thus breaks
down in the quantum-resonant regime.
To place constraints on the Yukawa potential parameter

space, we calculate (σHe, σH) for a given choice of
parameters (α; mϕ; mX), then check whether the inequality
Eq. (36) is violated.7 We again model the proton as a solid
sphere of radius 1 fm, since its rms charge radius ≈0.8 fm.
Figure 12 shows the resultant exclusion region in
(α; mϕ; mX) in green, based on the mX-dependent limit
of [9] from the CMB temperature and polarization power
spectra; e.g., σ0 < 6.3 × 10−25 cm2 for mX ¼ 2 GeV. For
an attractive interaction, the narrow green band at lower α is

where He is near resonance and the upper green exclusion
region is where H is near resonance. There are also
excluded “islands” at large α which are not shown.
It is instructive to identify the origin of the various

excluded and allowed α ranges seen in Fig. 12 (left). Their
origin can be understood by considering a parametric plot
of σH − σHe as a function of α, shown in Fig. 13 for the case
of mX ¼ 2 GeV. The colored regions in Fig. 13 show the
allowed regions from various constraints. Following
the thick black line from low α, He passes through a
resonance for 0.6 < α < 0.8, producing the lower excluded
band in Fig. 12 (left). For future reference, in this region
σH ≈ 10−26.5 cm2. As α increases further, neither cross
section is large enough to violate the bound until H is
close enough to resonance for α ≈ 3–5, that the gas clouds
and CMB constraints are violated. Figure 13 also reveals
an excluded region due to He for α ≈ 15. Importantly,
for α ≈ 25 (the region of the antiresonance in H),
σH ≈ 10−26.5 cm2. This means that the lower excluded band
in Fig. 12 (left) around 0.6<α<0.8 for mX ¼ 2 GeV,
does not imply that the corresponding band around σH ≈
10−26.5 cm2 is excluded, because that same range of σH can
be produced by an allowed (albeit large) α.

B. Potential constraints from Lyman-α forest
and satellite dwarf galaxies

If the CMBþ Lyman-α constraint of [9] is valid
(questioned in [38]), the allowed region in Fig. 13 (appli-
cable for an attractive interaction) is reduced to the gray
domain; σ0 < 1.7 × 10−26 cm2 for mX ¼ 2 GeV. For small
α, σHe=σH is larger than given by the Born approximation,
so the correct nonperturbative limit on σp is stronger than
deduced using the Born approximation. At larger mass,

FIG. 13. The black line is the parametric curve of fσH; σHeg for
an attractive interaction andmX ¼ 2mp, as a function of α, starting
at the lower left (heavy line) α increases from 0.1 to 1; the medium
line is for 1 < α < 10 and the dashed line for 10 < α < 30. The

red line is the Born approximation relationship, σHe ¼ 16
μ2He
μ2H

σH,

and the solid regions show the allowed domain from the CMB, gas
clouds and CMB-Lyα.

7Since the true DM-baryon cross section is velocity dependent
near a resonance value of α for an attractive interaction, as
discussed in Sec. II B, we evaluate (σHe, σH) at the typical relative
velocity in the most constraining epoch for the CMB and CMB-
Ly-α limits: vCMB ≈ 40 km=s and vLyα ≈ 110 km=s, respectively.
These values can be inferred from the last two columns of
Table I of [9], by solving for the velocities such that the n ¼ 0 and
n ¼ −2 cross section limits are equal using the mX ¼ 1 GeV
limits in that table. The v−2 velocity dependence only matters
near the first resonance of σHe, which are the “+He” regions in
Fig. 12 (left). However, even for the maximum relative velocity
∼2vCMB (or 2vLyα ≈ 110 km=s) is used, σHe would only be four
times smaller, which is still well excluded. This can be seen from
Fig. 13, where the σHe peak is more than 103 times above the
allowed region. Thus, our exclusion region is not modified by the
velocity dependence, as a result of the strength of the constraints.
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when mX ≳ 10–15 GeV, another nonperturbative effect
gives rise to a gap appearing in the CMBþ Lyman-α limit
for relatively large α due to He antiresonance regions in
(α; mϕ; mX), akin to those encountered in the XQC and
CRESST analyses. We also note that stronger limit on
DM-proton scattering cross section from Lyman-α forest
was reported in Ref. [45]. If they are robust, the allowed
cross section will be σ0 ≲ 10−28 cm2 for mX ¼ 2 GeV.
Interactions between DM and baryons which give rise to

the cosmological CMB limits can also reveal themselves
through suppression of low-mass dwarf galaxies [46]. This
type of constraint must be considered less robust for now
than the CMB constraints, since it relies on modeling
nonlinear regime processes and is subject to uncertainties in
interpreting dwarf galaxy observations. However since
these limits may be put on a firmer footing in the future,
we include the limits on (α; mϕ; mX) using the constraints
of [40] in Fig. 12, for reference.

C. Milky Way gas clouds

The limits on DM-baryon interactions from Milky Way
gas clouds given in [43]—based on demanding that the
heating/cooling rate of robust gas clouds due to scattering
with DM particles not exceed the observed value—were
derived assuming the Born approximation. However the
Born approximation exaggerates the DM-nucleus cross
sections for nuclei heavier than H even more than for
He, and thus the analysis of [43] needs to be redone. The
procedure to find σ0 is similar to that discussed above for
the CMB constraints and a relationship analogous to
Eq. (36) can be obtained, now including contributions of
nuclei heavier than He on the LHS of the inequality. In the
nonperturbative regime we are considering, only H and
He scattering make a significant contribution to heating/
cooling, unlike in the analysis of [43] based on the Born
approximation. For an attractive interaction, the exact
nonperturbative treatment leads to the allowed region
shown in Fig. 13, and the limits in the α −mX plane
shown in Fig. 12 (left).

V. COMBINED LIMITS ON THE DARK
MATTER-NUCLEON INTERACTION

A. Attractive interaction

Combining the results from the previous section, we
present our final limits on ðα; mXÞ and ðσp;mXÞ for
mϕ ¼ 1 GeV and R0 ¼ 1 fm attractive interaction. The
method of reinterpretation and analysis of experiments for
repulsive interaction is the same and will be discussed
second.

1. Limits on Yukawa parameter α

Figure 12 (left panel) shows the allowed and excluded
regions of (α; mX), for mϕ ¼ 1 GeV and R0 ¼ 1 fm, for an
attractive interaction, applying constraints from XQC,

CRESST, CMB, Lyman-α, and Milky Way satellites,
and the astrophysical limits from gas cloud heating. The
dashed lines indicate where b ¼ 1, above which the
interaction is strong enough that the Born approximation
breaks down. Evidently, in much of the parameter space of
interest we cannot trust the Born approximation, and in
particular we cannot use the Born scaling (33) to draw our
exclusion region, especially in the large coupling region
probed by XQC and the CMB. The CRESST limit is almost
always in the b ≲ 1 region so we expect less deviation from
the Born approximation and no resonances, except for the
narrow antiresonance region in which CRESST has sensi-
tivity for α ≳ 0.1 for an attractive interaction.
There can be gaps in the exclusion from a single

experiment due to resonant behavior of the cross section,
such as for the CMBþ Lyman-α constraints in Fig. 12 left.
Moreover the exact positions of the gaps and boundaries
move as the nuclear wave function and range of the Yukawa
potential m−1

ϕ are changed, so the positions of the bounda-
ries should be considered blurry. Such gaps are generally
better overcome by considering multiple experiments with
different target mass numberA, rather than trying to improve
the sensitivity for the same experiment, since due to the
nontrivial A-scaling in the resonant regime, different targets
leave different gaps in the parameter space and the allowed
region for one may be excluded for another.

2. Limits on σp
Figure 14 (left) shows the updated DM-proton cross sec-

tion limits from our analysis of XQC, CRESST, and
gas clouds, as well as the cosmology-based constraints.
The previous state-of-the-art limits are shown as dashed
lines from XQC [11,12], CRESST [12], CMB, and
CMBþ Lyα [9], and gas clouds [43]. The derivation of
our limits are discussed below in turn.
Starting with XQC, in [11,12] it was assessed based on

the Born approximation that XQC had sensitivity to proton
cross sections ≳1 mb for mX ≤ 3 GeV, via multiple scat-
tering of a single DM particle in the detector allowing
sufficient total energy deposit to meet the threshold con-
dition. (The relevance of multiple scattering for low masses
was first pointed out in [10].) However this apparent
sensitivity disappears in our more accurate treatment, as
can be understood from Fig. 11. The salient points are that:
(1) The XQC upper limit on σ28 becomes weaker and

weaker for lighter DM, because a larger and larger
number of multiple scatterings in the detector are
needed to produce a total energy deposit above
threshold.

(2) For light DM requiring multiple scattering, e.g.,
mX ¼ 2.9 GeV shown in the left panel of Fig. 11,
σBorn28 > σExact28 for α > 0.2. Therefore, in this regime
the Born approximation exaggerates the ability to
exclude. In the narrow region around α ≈ 0.1, the
opposite is true, resulting in an actually-excluded
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“peninsula” around σp ≈ 10−28 cm2, which is not
evident from the Born approximation. If we calcu-
late to a larger α > 10, allowed α for σ28 near a DM-
proton antiresonance could potentially produce σp
values in the “peninsula,” reducing its size. However
the position and extent of this excluded peninsula is
not in any case well-determined, due to nuclear wave
function sensitivity and our crude treatment of the
velocity dependence for that part of the analysis, as
discussed in Sec. III A.

(3) At higher mass, e.g., mX ¼ 10 GeV shown in the
right panel of Fig. 11, the more stringent limit on σ28
requires α to be so small it is barely out of the Born
regime and the treatment of [11,12] is fairly accu-
rate. However, since the exact σ28 is larger than the
Born value for α in this regime, the XQC limit is
strengthened when the exact treatment is used.
Allowing higher α > 10 will not make any differ-
ence because all α > 10 are excluded due to the
strong constraint on σ28: no antiresonance can make
σ28 small enough to evade the limit.

For CRESST, comparing the new limits given by the
shaded regions to the old dashed limits in Fig. 14,we see that
the true sensitivity region is generally reduced compared to
what the perturbative analysis indicated, except for a sliver
which appears at higher cross section. The loss inCRESST’s
sensitivity to cross-sections ∼10−29 cm2 falls in the XQC-
excluded region, except for 2 GeV < mX < 3 GeV.
According to our exact results, the limits from CMB

alone (green solid in Fig. 14) are considerably weaker than
given by [9] (green dashed in Fig. 14). This is because [9]
assumes a 4ðμHe=μHÞ2 times larger cross section on He than
on H, whereas in fact the He cross section is negligible for α
large enough to produce a σp at the limit. The green dotted
“þHe” region appears to exclude a range of cross sections
allowed by the Born approximation analysis (the old
dashed limit). In this region, the Born approximation
underestimates the true He contribution which is larger
than Born due to a DM-He resonance. However, allowing a
larger α up to ∼30 enables σp to take these values due to an
allowed H antiresonance as shown in Fig. 13. The gap
between the confidently excluded solid region and the

FIG. 14. Exclusion region in (σp,mX) space from various constraints for attractive (left panel) and repulsive (right panel) interactions,
for mϕ ¼ 1 GeV. Above mX ≈ 3 GeV the strongest limits come from direct detection experiments, XQC in blue and CRESST in red.
For low masses, the strongest unambiguous limit is from CMB constraints on structure formation, shown as the green region labeled
“CMB.” Astrophysical limits from gas cloud cooling, shown in purple, provide the strongest constraint in the 1–3 GeV range. For
anattractive interaction, the green and purple bands surrounded by dotted lines and labeled “+He” are actually not fully excluded in the
nonperturbative treatment if larger coupling α is allowed as discussed in Sec. IVA, but if a theoretical limit of α < Oð1Þ is imposed these
bands are excluded. For repulsive interaction, the CMB (green) and gas cloud (purple) limits cannot place any constraint on the (α; mX)
parameter space, including DM-He scattering or not. So we only plot the unambiguous DM-proton scattering limits without
reinterpretation. The gray regions labeled “CMBþ Lyα,” “þHe” and gray line for “MW Satellites” are based on constraints which may
not be robust and are included just for reference, as discussed in Sec. IV B. The heavy dashed lines in the corresponding color show the
previous Born-approximation-based limits. [The original CMB and Lyman-α limits (green and gray, dashed) have been modified
slightly by changing the numerical factor in Eq. (37) for He from 4 to 16 to include both proton and neutron scattering, as appropriate for
isoscalar DM.].
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ambiguous dotted region is where the DM-He cross section
is small and He contribution is negligible. The situation is
the same for the gas cloud limit as the CMB limits, with just
minor differences in the shapes of the exclusion regions and
similar potential for large-α antiresonance to produce
nonexcluded σp in this range.
If the CMBþ Lyα limits can be used, the light gray

region due to He scattering will only shrink a bit and not
disappear completely if larger α are allowed, simply
because the limit from Ly-α is stronger and the allowed
α range is much smaller in the ðα; mXÞ plane. A large gap in
the limits appears for mX ≥ 10 GeV due to He antireso-
nance, which is, however, closed by XQC. Comparing to
the limit obtained with only proton scattering, including
helium results in a stronger limit in general except in the
gap caused by the small DM-He cross section near He
antiresonance, and allowing a larger α could reduce or
eliminate the contribution of He.
If reliable, the Milky Way satellites limit for DM-proton

scattering [40] would be stronger than the CMBþ Lyα
limit, for mX ≲ 10 GeV. It is weaker for heavier DM when
He scattering is included, although it would close part of
the gap in the CMBþ Lyα limit. The underlying source of
the satellites limit is inhibition of small-scale structure
formation from DM-baryon interactions, similarly to the
CMB limits. The limit relies on the validity of the mapping
from linear-regime structure to as-observed dwarf galaxies
used in [40], based on LCDM simulations which may not
adequately describe interacting DM among other issues so
its robustness needs further investigation.

B. Repulsive interaction

Since the sign of the DM-ϕ coupling is unknown, in
this subsection we repeat the analysis for a repulsive
interaction with α → −α in Eq. (1). A repulsive potential
does not allow the formation of bound states, so there is no
resonance or antiresonance for the cross section. At low
energy the scattering is still s-wave dominated, and σ ∼ v0,
i.e., no special velocity dependence. However, as for the
attractive interaction, the Born approximation breaks down
when α (or the dimensionless parameter b) is large. This is
clearly shown in Fig. 9. Most of the nonperturbative effects
appearing in the analysis for attractive interaction still apply
for the repulsive case. In particular, the nontrivial A
dependence still persists and reinterpretation of constraints
involving A > 1 is needed.
The maximum value of the cross section that can be

achieved with a repulsive interaction is also different from
the attractive case. For an attractive interaction, the maxi-
mum cross section is achieved at the s-wave resonance,
where the phase shift is close to π=2 and the cross section
saturates the unitarity bound given in Eq. (13),

σ ¼ 4π=ðμvÞ2: ð38Þ

For Galactic dark matter with v ≳ 100 km=s and GeV-scale
mass, σ ≲ 10−21 cm3 on resonance. The CMB limit as
shown in Fig. 1 is strong enough to constrain such resonant
values. However, for the repulsive case, without the
resonance, the cross section is bounded by the range of
the interaction. When the radius of the nucleus is much
larger than the Compton wavelength of the mediator,
rA ≫ 1=mϕ, the limit is given by the geometrical size of
the nucleus, σA ≲ 4πr2A. This is seen in Ref. [15], where a
repulsive finite square well potential is used. The corre-
sponding limit in the extended Yukawa potential (6) is
rAmϕ → ∞. For a proton, rH ∼ fm and the cross section
caps at σH ∼ 10−25 cm2. With the maximum possible σH
being smaller than the CMB limits, the repulsive parameter
space is unconstrained by these limits. This roughly applies
for our benchmark mϕ ∼ GeV. For a lighter mediator, the
cross section is determined by 1=mϕ rather than rA and
could be greater than the CMB limit. Reference [15] also
discussed another possibility for the cross section to exceed
the size of nucleus, so that the CMB limit can be relevant;
when the dark matter particle itself is not pointlike, in
which case the cross section can be as large as the size of
the DM particle instead of the nucleus. A followup
experimental analysis [47] places corresponding limits
on nonpointlike dark matter.

1. Limits on Yukawa parameter α

Figure 12 (right) shows the constraints in the ðα; mXÞ
plane for a repulsive interaction. There are several dif-
ferences from its attractive counterpart. The XQC boundary
gets smoothed out and no gap is formed, because of the lack
of (anti)resonance. The cross section depends monotoni-
cally on the underlying parameters so no gaps appear in the
excluded domain. The upper reach of CRESST is increased
because the repulsive interaction has a generally smaller
cross section so the overburden produces less shielding
the antiresonance excluded band at large alpha also dis-
appears. The CMB limit disappears entirely due to the
inability to saturate the cross section limit for the repulsive
interaction, as discussed previously. Actually, detailed
calculation shows that for mϕ ¼ 1 GeV, the CMB limit
is only sensitive in the repulsive case to α ≳ 103 for mX ¼
1 GeV and α ≳ 108 formX ¼ 10 GeV, and the contribution
from DM-He scattering is ignorable. The gas cloud limit
is similar to the CMB one and also does not contribute to
the constraint on (α; mX). The CMBþ Lyman-α limit, if
reliable, would be much stronger than the CMB-only limit
and including DM-He scattering would improve the bound;
however there is no gap like the one seen in the left panel
for the attractive case.

2. Limits on σp
Figure 14 (right) shows the exclusion region for ðσp;mXÞ

for a repulsive interaction. The boundary of the XQC
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excluded region is smoothed and the upper reach of
CRESST is increased. The green CMB limit and cyan
gas cloud limit are the original constraints including
only proton scattering and are what we can safely trust
without reinterpretation. In general, the repulsive interac-
tion cannot achieve these cross sections, or even if it
does, with extremely large α, the contribution of He and
heavier nuclei can be ignored because they have similar
geometrical size as the proton but are significantly less
abundant. If the CMBþ Lyman-α limit can be used,
including He does improve the constraint, albeit not as
much as with the (invalid) Born approximation prescrip-
tion, because σHe=σH is much smaller than the Born
scaling [Eq. (33)].

C. Dependence on mediator mass

We adoptedmϕ ¼ 1 GeV for our analysis, to be concrete
and because for sexaquark DM the dominant interaction
with nucleons is through exchange of the flavor-singlet
combination of ω − ϕ vector mesons, whose mass is in this
range. For heavier-than-GeV mϕ, and for heavy target
nuclei such as Si in XQC and the majority of nuclei in
CRESST, the condition rA ≫ 1=mϕ is well-satisfied and
the scattering potential can be approximated by a uniform
spherical well with radius rA and depth V0 ∝ α=m2

ϕ, as
indicated in Eq. (7). In this case, the scattering cross section
for a given nucleus is only a function of α=m2

ϕ. As a result,
our exclusion region in Fig. 12 is the same for a different
mϕ, except for a rescaling of the α-axis by the factor
α ∼m2

ϕ. Returning to the limits on the scattering cross
section for a given nucleus undoes this rescaling, with the
result that the limits in Fig. 14 remain the same for
any mϕ > 1 GeV.
For lighter nuclei such as H and He and for lighter

mϕ ≲ 100 MeV, we have rA ≲ 1=mϕ and the potential
deviates from being a spherical well. The cross sections
cannot be obtained by any simple rescaling of the mϕ ∼
GeV result and need to be re-calculated. However, there are
still some simplifications for light mϕ:
(1) Formϕ ≲ 10 MeV, we have rA ≪ 1=mϕ or c=b ≪ 1

and the point Yukawa potential Eq. (1) is enough.
The size of the nucleus does not matter.

(2) For mϕ ∼ ð0.1–1Þ MeV the Born approximation
Eq. (11) turns out to be quite accurate for
σp ≲ 10−21 cm2. However the oft-used “Born scal-
ing” to trivially relate cross sections for different A
using Eq. (33) is still wrong in this case, since we do
not have μv ≪ mϕ or ab ≪ 1 now. The full Born
approximation Eq. (11) should be used.

(3) For mϕ ≲ 0.1 MeV, we have ab ≫ 1 which enters
into the classical regime and there is no resonance
(see Fig. 2). The classical problem has been solved
and a fitting function was given in Ref. [24,48],

σT ≈

8>>><
>>>:

4π
m2

ϕ
β2 lnð1þ β−1Þ; β≲ 0.1

8π
m2

ϕ
β2=ð1þ 1.5β1.65Þ; 0.1≲ β≲ 103;

π
m2

ϕ
ðlnβþ 1− 1

2
ln−1βÞ2 β ≥ 103

ð39Þ

where β ¼ αmϕ=ðμv2Þ. Notice here many partial
waves contribute and the momentum transfer cross
section has to be used to ensure convergence.

We include Fig. 18 in the Appendix C to show the limits on
(σp, mX) for mϕ ¼ ð1; 10; 100Þ MeV for completeness.
Cross sections for mϕ ≲ 1 MeV can be calculated analyti-
cally using the Born approximation or classical fitting
function as described above.

D. The interpretation of a DM-baryon cross
section exceeding 10− 25 cm2

Regardless of whether the DM is pointlike or composite,
the DM-baryon cross section can exceed 10−25 cm2,
contrary to statements in the literature.8 This can be seen
both in our explicit calculations and from partial wave
unitarity. Unitarity gives the maximum s-wave cross
section [cf. Eqs. (13) and (A4)]

σpeak ¼
4π

μ2v2
¼ 4.9 × 10−21 cm2

�
GeV
μ

10−3c
v

�
2

; ð40Þ

where μ is the reduced mass and v is the relative
velocity. The unitarity-limit cross section is reached when
the parameters of the DM-nucleus or DM-nucleon potential
are such that the system has a zero-energy bound state; this
can occur whether or not the DM particle is pointlike.
Note that the s-wave unitarity limit is the same whether the
particles scattering are pointlike or extended [Eq. (A4)].
Figure 9 shows σp for a pointlike DM particle and both
a point and extended nucleon as a function of α, for
ðmX;mϕÞ ¼ ð2mp; 1 GeVÞ and relative velocity 300 km=s.
The peak cross sections occur at different values of α for the
pointlike and extended nucleon cases, but in both instances
they reach the same unitarity limit value given above;
10−20.3 cm2 for v ¼ 300 km=s. (The apparent difference in

8E.g., Ref. [15] in the conclusion; “(3) For σχN > 10−25 cm2,
dark matter cannot be pointlike. Contact interactions cannot
achieve cross sections larger than the geometric cross section
σχA ¼ 4πr2A, and simple light mediators are strongly ruled out.
Dark matter with cross sections in this range must be composite.”
See also Ref. [47], e.g., in the abstract; “Recently, it was shown
theoretically that the scattering cross section for mχ ≳ 1 GeV
pointlike dark matter with a nucleus cannot be significantly larger
than the geometric cross section of the nucleus. This realization
closes the parameter space for pointlike strongly interacting
dark matter.” Note added, September 2022: We understand that
an erratum is being prepared for Ref. [15] to correct this
misstatement ([49]).
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peak heights in Fig. 9 is due to the discretization of the
plotting function.)
Whether or not the unitarity bound can be saturated

depends on whether the interaction is repulsive or attrac-
tive. The existence of resonances and the possibility of near
saturation of unitarity is a very general feature of attractive
potentials. In the case of a Yukawa sourced by a nucleus,
the particular coupling strength giving rise to a resonance
depends on the mass of the mediator and the size and shape
of the source. For a fixed coupling strength and mediator
mass, how close the cross section comes to saturating
unitarity depends on the nuclear size A. Using another
nuclear wave function than a simple sphere would also shift
the parameter values of the resonance. However the
existence of a near-resonance is generic, as long as a
near-zero-energy bound state exists for some A given the
fundamental parameters. This leads to large cross sections
with the velocity dependence discussed in Sec. B. However
if the potential is repulsive it does not admit zero-energy
bound states and unitarity is not saturated. The maximum
cross section for pointlike DM in the repulsive case is
therefore more limited, as discussed in Sec. V B. With a
mediator no lighter than a pion, the cross section can only
reach 10−24.1 cm2.
The possibility of using the magnitude of the DM-

nucleus cross section as a diagnostic of dark sector particles
having extended structure is certainly tantalizing. If the
distribution of μv for the DM were known and the cross
section were established to exceed the s-wave unitarity
limit, that would be evidence of multiple partial waves
contributing simultaneously and suggest the de Broglie
wavelength 1=μv is smaller than the length scale in the
scattering system. This scale can be the size of the nucleus,
the size of the DM particle, or the Compton wavelength of
the mediator 1=mϕ, whichever is the largest. A detailed
analysis would be required to decide. Measuring the cross
section for a variety of nuclei A would be a valuable
diagnostic. Constraints on light mediator candidates and
mϕ could also help narrow down the possibilities [15].

VI. FINAL JOINT LIMITS AND CONCLUSIONS

We have shown that the pioneering and state-of-the-art
analyses of direct detection and CMB and astrophysical
constraints are not generally valid due to inappropriate
use of the Born approximation to relate the cross sections
for nuclei of different A to that of protons. Furthermore,
earlier analyses did not properly take into account the finite
size of nuclei.
DM-baryon elastic scattering via a massive mediator in

general exhibits resonance behavior if the interaction is
attractive and can depart significantly from the Born
approximation result even for repulsive interactions.
Thus DM interactions with baryons must be analyzed
by exact numerical solution of the Schrödinger equation
in a substantial portion of interesting parameter space.

For example, GeV-range dark matter with an attractive
Yukawa interaction lies in the nonperturbative resonant
regime for the XQC experiment with A ¼ 28, even for
Yukawa coupling strength as low as α ¼ 0.02.
In the resonant regime, it is nontrivial to interpret results

of direct detection experiments and other constraints from
observations, particularly when A > 1 nuclei are used as
targets. Universal limits on the DM-nucleon cross section
cannot be directly obtained as long as it is the DM-A cross
section that is actually experimentally constrained, since
there is a nontrivial, model-dependent relationship between
σp and σA. For example, XQC using a silicon detector
leaves a large part of (σp, mX) parameter space for mX ≲
3 GeV allowed, rather than being excluded as concluded
previously based on naive use of the Born approximation.
Analyses of CMB constraints also need modification,

due to the nontrivial relation between DM-He and DM-p
cross sections. When this is taken into account, the CMB
limits are weakened because large σp does not imply large
σHe or vice-versa. If the CMBþ Ly-α constraints are valid
(which is not yet clear, given current limited understanding
of patchy reionization [38,39]), they would strengthen the
limits relative to CMB-only limits but still leave a gap in the
exclusion region for relatively large coupling, due to
antiresonance behavior which sharply reduces the DM-
He cross-section for DM mass above 10–15 GeV. At the
same time, the correct treatment strengthens CMBþ Ly-α
limits for lower masses and smaller σp, due to the non-
perturbative enhancement of σHe in this parameter regime.
A further strengthening of the limits would be possible if
the Milky Way satellites analysis proves robust, as shown
in Fig. 14.
Our summary results on the excluded regions for the

Yukawa coupling and DM-nucleon cross section are shown
in Figs. 12 and 14 for the attractive and repulsive cases
separately. Figure 15 combines these results and gives the
final constraints which can be placed today on ðσp;mXÞ
using XQC, CRESST, CMB, and Gas Clouds, if the sign
of the Yukawa coupling is unknown. Even the step of
combining the limits presents a nuance. A plot could
usefully aim to address two different questions: (1) Can
the data from a given experiment exclude a given point in
ðσp;mXÞ, independent of the sign of the interaction? or
(2) Is a given point in ðσp;mXÞ inconsistent with all
experiments sensitive to that mX? The excluded region
of type (1) for a particular experiment is the intersection of
the excluded regions in the left and right panels of Fig. 14
for the same experiment. These experiment-by-experiment
fully-excluded regions are shown using solid colors in
Fig. 15, for each of the robust constraints: CMB, gas
clouds, XQC and CRESST.
Additionally, Fig. 15 shows how the exclusion region

increases for each experiment if the sign were a priori
known, using solid for an attractive interaction and dashed
for repulsive. The intersection of the XQC and CRESST
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solid regions is even more robustly excluded than
the nonoverlapping regions, due to having independent
experiments giving the same conclusion. However the
wedge bounded by blue solid and blue dashed lines, and
red solid and red dashed lines, [containing ðσp;mXÞ≈
ð10−28 cm2; 3 GeVÞ], is not excluded by both experiments
because it is excluded by XQC only if the interaction is
attractive, and by CRESST only if it is repulsive.
The interesting parameter space for sexaquark DM

(mX ≲ 2 GeV) remains largely unconstrained, requiring
only σp ≲ 10−24.5 cm2. The constraints on the Yukawa
coupling parameter are quite limited for DM mass below
XQC sensitivity, mX ≲ 3 GeV, with only small ranges of α
being excluded. If Ly-α measurements can be used to
constrain the growth of small scale structure, α ≳ 0.3 could
be excluded for attractive interaction and mX ≈ 2 GeV,
leading to an upper limit on the cross section in the mb
range. That would be constraining but not challenging for
sexaquark DM. The constraints are stronger for heavier
DM, where the energy deposit per collision is larger and the
direct detection experiments XQC and CRESST are more

sensitive. As pointed out in [6,12], it is crucial to measure
the thermalization efficiency of semiconductors to small
nuclear recoils before experiments like XQC can be
interpreted for lower DM masses. It should also be noted
that if the thermalization efficiency is smaller than the 0.01
adopted here, as may be the case, the limits should be
weaker than indicated and those indicated in the plot would
not be conservative.
Recently, in Ref. [50] the authors performed experiments

with 27 different atomic nuclei and reported limits on
σDM−A for each of them, extending the limits of Ref. [51]
derived by consideration of the atmosphere of DM particles
surrounding the Earth and its impact on the evaporation of
cryogens and drag on the Hubble space telescope. Due to
the complexity of the analysis, we leave consideration
of [50,51] for elsewhere. However the combination of the
lower mass reach and large coverage in A of the constraints
of [50,51], offers promise that these will be a valuable
addition to the constraints on DM interactions with
hadrons, for DM in the GeV mass range.9
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APPENDIX A: NUMERICAL METHODS

To obtain the total elastic scattering cross section for
DM-baryon scattering in the nonrelativistic regime, we
need to solve the Schrödinger equation exactly with the
appropriate point or extended Yukawa potential and per-
form a partial wave analysis. Two approaches are discussed
below; which is superior depends on regime.

1. Schrödinger equation method

In the first approach, we follow the method described
in [22,53]. Although that work addresses the collision
between DM particles, the mathematical problem is
exactly the same. The radial Schrödinger equation in this
problem is�
1

r2
d
dr

�
r2

d
dr

�
þk2−

lðlþ1Þ
r2

−2μVðrÞ
	
RlðrÞ¼ 0 ðA1Þ

FIG. 15. The final exclusion regions for σp as a function of mX,
for mϕ ¼ 1 GeV, adopting the more conservative assumption on
the sign of the interaction for each parameter combination and not
including CMBþ Ly-α and Milky Way satellites constraints
which may not be robust. The XQC limits are more conservative
(weaker) for the repulsive case, while the CRESST exclusion
region is a mix. The island at large cross section which is
excluded if the interaction is attractive, due to the antiresonance in
that case, is allowed for a repulsive interaction and thus cannot be
excluded in the absence of knowledge of the sign. Similarly,
the conservative choice for the lower excluded region is for the
attractive sign since it extends to higher cross section if the
interaction is repulsive. For mX ≲ 2 GeV and σp ≲ few ×
10−25 cm2 the parameter space remains unconstrained. Measur-
ing the thermalization efficiency of XQC to determine the
accurate mX value of its lower reach is very important.

9Since the preliminary version of the present paper (arXiv:
2101.00142v1 [44]) was posted and now, we have finished
analyzing the dewar experiment results. That work is reported
in [52]. It includes a combined plot comparing with the limits
derived here.
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with r the distance between two scatterers. μ is the reduced
mass of DM and nuclues, μ ¼ mXmA=ðmX þmAÞ, and
RlðrÞ is the radial component of the wave function for
partial waves l ¼ 0; 1; 2… The phase shifts δl parametrize
the asymptotic behavior of the wave function when r goes
to infinity

lim
r→∞

RlðrÞ ∝ sinðkr − πl=2þ δlÞ; ðA2Þ

where k ¼ μv, and v is the relative velocity of the two
particles. The differential and total cross section in terms of
the phase shifts are given by

dσ
dΩ

¼ 1

k2

����X∞
l¼1

ð2lþ 1ÞeiδlPlðcos θÞ sin δl
����2; ðA3Þ

σ ¼ 4π

k2
X∞
l¼0

ð2lþ 1Þ sin2ðδlÞ: ðA4Þ

In the DM detection literature the momentum transfer cross
section σT is often used,

σT ¼ 2π

Z
dσ
dΩ

ð1 − cos θÞdθ

¼ 4π

k2
X∞
l¼0

ðlþ 1Þ sin2ðδlþ1 − δlÞ: ðA5Þ

We will see later that in the parameter space we are
interested in, s-wave (l ¼ 0) scattering is dominant. So
there is little difference between (A4) and (A5) and we will
use the total cross section (A4) throughout this paper.
Now specializing to the Yukawa potential (1) and changing
variables to the dimensionless combination

x≡ 2μαr; ulðxÞ≡ rRlðrÞ;

a≡ v
2α

; b≡ 2μα

mϕ
; ðA6Þ

the Schrödinger equation (A1) becomes�
d
dx2

þ a2 −
lðlþ 1Þ

x2
− ṼðxÞ

	
ulðxÞ ¼ 0; ðA7Þ

where the dimensionless potential is

ṼðxÞ ¼ −
1

x
e−

x
b: ðA8Þ

In this notation the phase shift is given by

lim
x→∞

ulðxÞ ∝ sinðax − πl=2þ δlÞ: ðA9Þ

The cross sections are

dσ
dΩ

¼ 1

a2b2m2
ϕ

����X∞
l¼1

ð2lþ 1ÞeiδlPlðcos θÞ sin δl
����2; ðA10Þ

σ ¼ 4π

a2b2m2
ϕ

X∞
l¼0

ð2lþ 1Þ sin2ðδlÞ; ðA11Þ

where k ¼ abmϕ. The phase shift δl and σm2
ϕ only depend

on the dimensionless parameters ða; bÞ. For reference, the
(first-order) Born approximation gives�

dσ
dΩ

�
Born

¼
�

2μα

m2
ϕ þ 4k2 sin2 θ

2

�
2

; ðA12Þ

σBorn ¼ 16πμ2α2

m2
ϕðm2

ϕ þ 4k2Þ ¼
4πb2

m2
ϕð1þ 4a2b2Þ : ðA13Þ

Equation (A7) is a second-order differential equation
together with the initial condition ulð0Þ ¼ 0; u0lð0Þ ¼ 0

(for regularity of the wave function at x ¼ 0). It needs
to be solved for ulðxÞ with x ∈ ½0;∞Þ, and δl is obtained
from ulð∞Þ as in (A9). However, numerically the best we
can do is to solve ulðxÞ for x ∈ ½xi; xm� with sufficiently
small(large) but finite xiðxmÞ, and match δl at ulðxmÞ to
achieve appropriate accuracy. The detailed numerical
method for the point Yukawa potential is described below.
For the extended Yukawa potential, a new scale “c” is
introduced and a slight modification is needed:
(1) Since we are changing the initial point from zero to

xi > 0, a different initial condition should be used.
When xi is sufficiently small, such that the Yukawa
and a2 terms in Eq. (A7) are subdominant compared
to the angular momentum term, the solution is
approximately ulðxÞ ∝ xlþ1. Ignoring the overall
normalization of uðxÞ since it is irrelevant for
determining δl, we impose the initial condition,

ulðxiÞ ¼ 1;

u0lðxiÞ ¼
lþ 1

xi
: ðA14Þ

xi should be small enough for Eq. (A14) to work,
and we choose the following condition based on trail
and error in our parameter range,

8>>>>>><
>>>>>>:

xi ≤ 1
10
min ð1; 1a ; bÞ ðl ¼ 0Þ0

BBB@
a2 ≤ 1

10

lðlþ1Þ
x2i

1
xi
e−

xi
b ≤ 1

10

lðlþ1Þ
x2i

xi ≤ 1
10
xit

1
CCCA ðl > 0Þ; ðA15Þ

where xit is the smallest classical turning point.
(Notice that for l ¼ 0 the angular-momentum term
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disappears and a different condition must be used.)
This is our initial guess for a small enough xi.

(2) We solve Eq. (A7) with the initial condition (A14)
for x ∈ ½xi; xm�. The endpoint xm is determined so
that the Yukawa term is negligible compared to the
a2 term and the angular term. For any potential
which is exactly zero for x ≥ xm, matching the
solution at xm will give the exact δl. The condition
for xm is

8>>>>>><
>>>>>>:

1
x0m
e−

x0m
b ≤ 1

10
a2; xm ≥ x0mþ5b ðl¼ 0Þ0

BB@
1
xm
e−

xm
b ≤ 1

10
a2

1
xm
e−

xm
b ≤ 1

10

lðlþ1Þ
x2i

xm ≥ xmtþ5b

1
CCA ðl > 0Þ;

ðA16Þ

where xmt is the largest classical turning point. The
condition involving xmt is critical since in practice
we find the phase shift only starts to converge to its
asymptotic value after xmt, where the wave function
starts to oscillate like a sine function. The 5b is
chosen from experience, justified by the fact that b is
the only relevant scale introduced by the Yukawa
term. This will be our initial guess for a large
enough xm.

(3) At xm we match ulðxÞ to a new asymptotic form,
different from Eq. (A9),

lim
x→∞

ulðxÞ ∝ xeiδlðcos δljlðaxÞ − sin δlnlðaxÞÞ
ðA17Þ

following [53], where jl (nl) is the spherical Bessel
(Neumann) function. The corresponding dimen-
sional condition for the original wave function is

lim
r→∞

RlðrÞ ∝ cos δljlðkrÞ − sin δlnlðkrÞ: ðA18Þ

Inverting (A17), the phase shift is given by

δl ¼ arctan

�
axmj0lðaxmÞ − βljlðaxmÞ
axmn0lðaxmÞ − βlnlðaxmÞ

�
;

where βl ≡ xmu0lðxmÞ
ulðxmÞ

− 1: ðA19Þ

(4) Based on the initial guess of (xi,xm), we calculate δl
according to (A19). To check convergence, in other
words to test if xiðxmÞ is sufficiently small(large),
we first fix xi and increase xm in units of b (by the
assumption that b is the relevant scale for conver-
gence) until δl converges at 1%, to obtain a (xi,δl)
pair. Practically, we find δl will converge within
xm þ 20b. Then we decrease xi by half each time

until δl converges at 1% with respect to xi. Our
experience shows convergence will be achieved
within 2−20xi. Finally we obtain δl for each (a,b,l).

(5) We calculate σ by summing over l in Eq. (A11). The
truncation of the series, lmax, is determined by the
requirement that lmax contributes to σ less than 1% of
the sum of all smaller l, and δlmax

< 0.01. And we
check this condition for 10 successive lmax to make
sure we arrived at sufficiently large l so that higher l
makes ignorable contribution.

2. Phase function method

An alternative way to calculate the phase shift δl instead
of solving the Schrödinger equation, is the phase func-
tion method or variable phase method. See the book by
Calogero [54] for details. In our dimensionless paramet-
rization, we define the differential equation obeyed by the
phase function δlðxÞ,

δ0lðxÞ ¼ axe−
x
b½cos δlðxÞjlðaxÞ − sin δlðxÞnlðaxÞ�2 ðA20Þ

with the boundary condition

lim
x→0

δlðxÞ →
a2lþ1x2lþ2

ð2lþ 2Þ½ð2lþ 1Þ!!�2 → 0

lim
x→∞

δlðxÞ → δl: ðA21Þ

It is clear that the phase function got it is name since
its asymptotic value gives the phase shift, δlð∞Þ ¼ δl.
The advantage of the phase-function method is that the
phase equation is first-order instead of the second-order
Schrödinger equation. The trade-off is that the equation is
now nonlinear. In the form described by Eq. (A20), the
angular momentum term is eliminated, so we need to
integrate to a larger cutoff point xm to achieve appropriate
convergence for δl. Overall, the phase function method
turns out to be more efficient and has the ability to resolve a
much smaller phase shift than the Schrödinger equation
method, in certain regions of the parameter space. In
obtaining our results for this paper, both methods have
been used depending on the parameter regime. Our pro-
gram is written in Mathematica.

APPENDIX B: APPROXIMATE TREATMENT
OF VELOCITY DEPENDENCE
OF EXTENDED YUKAWA

If the mediator is heavy (mϕr0 ≫ 1), so its Compton
wavelength is small compared to the size of the nucleus, the
extended Yukawa potential can be approximated to a finite
square well, where r0 is identified as the square well width
and Vð0Þ is set to be the same for both potentials. This
provides us with analytic expression of the cross section, its
velocity dependence and the transition velocity v� near
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resonance. The scattering length a and effective range reff
can also be easily obtained.

1. Summary of key potentials

(a) Point Yukawa: The point Yukawa potential takes the
form

VðrÞ ¼ −
α

r
e
− r
rϕ

ṼðxÞ ¼ −
1

x
e−

x
b; ðB1Þ

where we defined

b ¼ 2μαrϕ ¼ 2μα

mϕ
; ðB2Þ

x ¼ 2μαr: ðB3Þ

(b) Extended Yukawa: The extended Yukawa takes the
form

VðrÞ ¼ −
3α

m2
ϕr

3
0

(
1 − ð1þmϕr0Þe−mϕr0 sinh ðmϕrÞ

mϕr
ðr < r0Þ

½mϕr0 cosh ðmϕr0Þ − sinh ðmϕr0Þ� e
−mϕr

mϕr
ðr ≥ r0Þ;

ðB4Þ

ṼðxÞ ¼ −3
�
b
c

�
3
� 1

b − ð1þ c
bÞe−

c
b 1
x sinhðxbÞ ðx < cÞ

½cb coshðcbÞ − sinhðcbÞ� 1x e−
x
b ðx ≥ cÞ: ðB5Þ

(c) Finite square well: The finite square well takes the
form

VðrÞ ¼
�−V0 ðr < r0Þ
0 ðr ≥ r0Þ

ṼðxÞ ¼
�
−Ṽ0 ðx < cÞ
0 ðx ≥ cÞ; ðB6Þ

where we defined

Ṽ0 ¼
V0

2μα2
: ðB7Þ

Notice that for a finite square well α and hence c are
not a priori defined but are introduced in anticipation
of making the connection to the extended Yukawa
potential.

2. The finite square well as limit of extended Yukawa

Identifying the depth of a finite square well V0 with Vð0Þ
of an extended Yukawa, and keep the radius r0 as a free
parameter of either, we have

V0 ¼
3α

m2
ϕr

3
0

;

Ṽ0 ¼
3b2

c3
: ðB8Þ

The finite square well can be thought of as a limit of the
extended Yukawa when

r0
rϕ

→ ∞; V0 ¼ const;

c
b
→ ∞; Ṽ0 ¼ const: ðB9Þ

Figure 16 compares both potential for different values
of c=b.

3. Bound state and scattering state of square well

The condition for the formation a zero-energy bound
state is

Ṽ0c2 ¼ 2μr20V0 ¼
�
nþ 1

2

�
2

π2; n ¼ 0; 1; 2: ðB10Þ

The scattering state phase shift is determined at r ¼ r0 or
x ¼ c by

δl ¼ arctan

�
acj0lðacÞ − βljlðacÞ
acn0lðacÞ − βlnlðacÞ

�
;

βl ≡ Kcj0lðKcÞ
jlðKcÞ

; ðB11Þ

where j0lðKcÞ≡ j0lðzÞ evaluated at z ¼ Kc. And K ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ Ṽ0

p
). The following is also true,

δl ¼ arctan

�
aj0lðacÞjlðKcÞ − KjlðacÞj0lðKcÞ
an0lðacÞjlðKcÞ − KnlðacÞj0lðKcÞ

�
: ðB12Þ

It is also good to remember that Kc and ac are dimension-
less and they can be expressed using dimensionfull
variables,
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ac ¼ v
2α

· 2μαr0 ¼ μv · r0 ¼ kr0;

Kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ Ṽ0

q
· c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
v
2α

�
2

þ V0

2μα

s
· 2μαr0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμvÞ2 þ 2μV0

q
· r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2μV0

q
· r0 ¼ κr0; ðB13Þ

where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2μV0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

�
k2

2μ
þ V0

�s
: ðB14Þ

4. S-wave resonance and zero-energy bound state

The s-wave cross section is given by

σ0 ¼
4π

k2
sin2 δ0 ¼ 4πr20 ·

sin2 δ0
ðkr0Þ2

¼ 4πr20 ·
sin2 δ0
ðacÞ2 ðB15Þ

and the phase shift can be obtained from Eq. (B12)

δ0 ¼ arctan

�
ac cos ðacÞ sin ðKcÞ − Kc cos ðKcÞ sin ðacÞ
ac sin ðacÞ sin ðKcÞ þ Kc cos ðKcÞ cos ðacÞ

�
:

ðB16Þ

The cross section is then

σ0
4πr20

¼ 1

ðacÞ2
ðKccosðKcÞ sin ðacÞ−accosðacÞ sin ðKcÞÞ2

ðKcÞ2 cos2 ðKcÞþ ðacÞ2 sin2 ðKCÞ

¼ 1

p2

ðpcospsinQ−QcosQsinpÞ2
p2 sin2QþQ2 cos2Q

; ðB17Þ

where we defined

p≡ ac ¼ kr0;

Q≡ Kc ¼ κr0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ V2

q
;

V2 ≡ Ṽ0c2 ¼ 2μr20V0: ðB18Þ

For low-energy s-wave scattering in the resonant region we
have

p ≪ 1 ≤ V ∼Q ðB19Þ

and a zero-energy bound state appears when V ¼
ðnþ 1=2Þπ.

FIG. 16. ṼðxÞ for extended Yukawa (blue) versus square well (orange) potential for several parameter values.
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For small p the cross section goes like

σ0
4πr20

∼
1

p2

p2ðsinQ −Q cosQÞ2 þOðp4Þ
p2 sin2QþQ2 cos2Q

: ðB20Þ

There are three possibilities in the low-energy limit p → 0:
(a) Constant: (Q cosQ ≠ 0 and sinQ −Q cosQ ≠ 0) In

this case the constant term dominates the denominator
so that the cross section goes to a constant

σ0
4πr20

→
1

p2

p2ðsinQ −Q cosQÞ2
Q2 cos2Q

→
ðsinV − V cosVÞ2

V2 cos2 V
: ðB21Þ

(b) Resonance: (Q cosQ ¼ 0 and sinQ −Q cosQ ≠ 0)
In this case the p2 term dominates the denominator,
and cosQ ¼ 0 so that the cross section goes as p−2,

σ0
4πr20

→
1

p2

p2ðsinQ −Q cosQÞ2
p2 sin2Q

∼
1

p2
: ðB22Þ

Because p ≪ 1, the cross section can be much larger
than the geometrical cross section.

(c) Antiresonance: (QcosQ≠ 0 and sinQ−QcosQ¼ 0)
In this case the p2 term in the numerator vanishes, and
tanQ ¼ Q. The cross section is suppressed by p2,

σ0
4πr20

→
1

p2

Oðp4Þ
Q2 cos2Q

∼Oðp2Þ: ðB23Þ

So the p-wave contribution starts to be important.

5. Near the resonance

We expand near the resonance to study the velocity
dependence behavior of the s-wave cross section. To be
precise, we expand Eq. (B17) around V ¼ ðnþ 1=2Þπ,

V ¼
�
nþ 1

2

�
π þ Δ ðB24Þ

with jΔj ≪ 1 and p ≪ 1. We have

σ0 ¼
4πr20
p2

ðp cosp sinQ −Q cosQ sinpÞ2
p2 sin2QþQ2 cos2 Q

¼ 4πr20
½Δ2

n þOðΔ3
nÞ� þ ½1 − Δn þOðΔ2

nÞ�p2 þOðp3Þ
≈

4π

ðΔn=r0Þ2 þ ð1 − ΔnÞk2
; ðB25Þ

where we have defined Δn ≡ ðnþ 1=2Þπ and jΔnj ≪ 1.
Comparing Eq. (B25) with the effective range expansion

Eq. (20), we find that for the square well near resonance,
the scattering length a and effective range reff are

a ¼ r0
Δn

;

reff ¼ r0: ðB26Þ

This explicitly shows that near resonance, the scattering
length can be much larger than the range of the potential,
jaj ≫ r0, and how did the effective range reff get its name.
Equation (B25) also tell us the velocity dependence.
On resonance where Δn ¼ 0, we have the unitarity limit
σ0 ¼ 4π=k2. Near, but not on resonance, Δn ≠ 0 and
we have

σ0 ≈ 4π

�
r0
Δn

�
2

; kr0 ≪ Δn ≪ 1;

σ0 ≈
4π

k2
; Δn ≪ kr0 ≪ 1: ðB27Þ

Recalling the definitions,

p ¼ ac ¼ kr0 ¼ μvr0;

Δ ¼ V −
2nþ 1

2
π ¼

ffiffiffiffiffiffi
Ṽ0

q
c −

2nþ 1

2
π

¼
ffiffiffiffiffiffiffiffiffiffiffi
2μV0

p
r0 −

2nþ 1

2
π

¼
ffiffiffiffiffiffiffiffi
3b
c=b

s
−
2nþ 1

2
π ¼

ffiffiffiffiffiffiffiffiffiffiffi
6μα

m2
ϕr0

s
−
2nþ 1

2
π;

Ṽ0 ¼
V0

2μα2
ðsquare wellÞ ¼ 3b2

c3
ðYukawaÞ; ðB28Þ

FIG. 17. σ28ðvÞ on and near the first resonance. Solid lines
are exact numerical results and dashed lines are the approxima-
tion from Eq. (B29). The orange and green dots are the transi-
tion point (v�; σðv�Þ) where v� is calculated from Eq. (B33)
and σðv�Þ ¼ 2π=ðμv�Þ2. Notice there is a slight difference in the
location of the resonance; αres ¼ 0.129 for extended Yukawa
and αres ¼ 0.127 for the approximation (B30). For A ¼ 28 and
mϕ ¼ 1.0 GeV, we have c=b ¼ 15.2.
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FIG. 18. Exclusion on (σp, mX) for mϕ ¼ ð1; 10; 100Þ MeV from XQC, CMB (including 4He scattering), and CRESST. The dashed
lines indicate the reported limits assuming theBorn approximation. The exclusion regions are different fromFig. 14 due to the changedmϕ.
For example, whenmϕ ¼ 1 MeV ≪ 1=rA, the cross sections σA are all in the Born regime for σA ≲ 10−21 cm2, so the cross section does
not depend on the sign of the interaction and there is no (anti)resonance. However the commonly used “Born scaling”withA, Eq. (33) still
does not work, because it relies on the applicability of the low-energy condition, μv ≪ mϕ, which is violated with such small mϕ.
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and reexpressing Eq. (B25) in physical variables for the
case of the first resonance, we have

σ ≈
4π

μ2v2 þ 3μπ2

2m2
ϕr

3
0

ð ffiffiffi
α

p
− ffiffiffiffiffiffiffi

αres
p Þ2

; ðB29Þ

where

αres ¼
�
π

2

�
2m2

ϕr0
6μ

: ðB30Þ

Thus,

σ → 4π=ðμvÞ2 v ≫ v�; ðB31Þ

and

σ →
8m2

ϕr
3
0

3πμð ffiffiffi
α

p
− ffiffiffiffiffiffiffi

αres
p Þ2 v ≪ v�; ðB32Þ

with

v� ≡ πj ffiffiffi
α

p
− ffiffiffiffiffiffiffi

αres
p j

mϕr0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μr0=3

p : ðB33Þ

Figure 17 shows how well the approximations
Eqs. (B31)–(B33) approximate the exact velocity depend-
ence for A ¼ 28 (Si) near the first resonance.

APPENDIX C: LIMITS FOR SMALL mϕ

Figure 18 shows the constraints from smaller mediator
mass, mϕ ¼ ð1; 10; 100Þ MeV.
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