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We systematically calculate the axion-photon coupling for nonminimal Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) models. Thereby, we can classify every calculated model and study the resulting
distributions, relevant for axion experiments like haloscopes, helioscopes, or light-shining-through-a-wall
experiments. By adding more than one additional Higgs doublet, these nonminimal DFSZ models extend
the viable axion parameter space and lead to a large range of axion-photon couplings. We find couplings
almost 3 orders of magnitude larger than the ones of the minimal models. Most of the possible axion-
photon couplings, however, lie in the vicinity of the values dictated by the minimal models. We quantify
this by introducing a theoretical prior probability distribution for DFSZ-type axions and giving 68%
and 95% lower bounds as well as two-sided bands. We compare our results for the DFSZ axion-photon
coupling distributions with the Kim-Shifman-Vainshtein-Zakharov case, for which a similar analysis has
been conducted. Both display similar values as well as a very specific pattern. In order to identify preferred
models, we discuss the role of flavor changing neutral currents and the domain wall problem as possible
selection criteria. It is possible to construct a large number of nonminimal DFSZ models with a domain wall
number of unity, thereby avoiding the domain wall problem. This subset also has a significantly enhanced
axion-photon coupling compared to the minimal DFSZ models.
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I. INTRODUCTION

The strong CP problem remains one of the biggest
puzzles of particle physics. While it is usually expressed as
the inexplicable smallness of the CP violating θ parameter,
i.e., θ < 10−10 [1], it is in fact a vacuum selection problem
rooted in the nontrivial vacuum structure of QCD [2]. What
makes this “small value” problem special is that within the
Standard Model (SM), quantum corrections to θ are many
orders of magnitude below the experimental bound [3]
(unlike the Higgs mass for instance) so that it is not really
a problem for θ to be that small. In this sense, any
explanation for the smallness of θ is just theoretically
motivated.
However, in recent years, it has been pointed out that

when quantum gravity is taken into account, consistency
relations are imposed that exclude any type of (meta)stable
de Sitter vacua [4–6]. Since any theory with θ ≠ 0 is of

de Sitter-type, this reduces the number of viable vacua to
exactly one: the CP conserving vacuum at θ ¼ 0. This does
not only promote the strong CP problem to a real problem,
but it also makes a mechanism that results in θ ¼ 0 a
necessity [7,8].
Such a mechanism is given by the Peccei-Quinn (PQ)

solution, which essentially introduces a nonlinearly real-
ized Uð1ÞPQ that is anomalous with respect to QCD [9,10].
The crucial anomaly condition can be expressed as the
nonconservation of the PQ current, namely

∂μJ
μ
PQ ¼ N

αs
4π

GG̃þ E
α

4π
FF̃; ð1Þ

where the electromagnetic anomaly, which in general is also
present, is added. In this expression, G, F denote the color
and electromagnetic field strength tensors, G̃, F̃ their duals,
αs, α their associated fine-structure constants, and N, E the
corresponding anomaly coefficients. The PQ mechanism
solves the strong CP problem by making the θ parameter
unobservable as it gets relaxed to zero by the pseudo-
Goldstone boson of the PQ symmetry, the axion [11,12].
The PQ solution is special in the sense that it predicts a

new light pseudoscalar particle. However, it does not
specify the axion low-energy couplings that depend on
the UV physics [13]. The low-energy effective theory is
thus not sufficient, and UV models are needed to make
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concrete predictions about the couplings of the axion.
This is usually achieved by the two large classes of
invisible axion models, the Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ)-type [14,15] and Kim-Shifman-
Vainshtein-Zakharov (KSVZ)-type models [16,17]. The
former adds Higgs singlets and doublets to the SM, while
the latter adds Higgs singlets and heavy quarks (for a
review, see [18]). Even though the minimal models of
each type, adding only one Higgs doublet or one quark
of arbitrary representation, define benchmark models, in
principle, there is a plethora of nonminimal models. An
identification of all these models and systematic approach
that allows one to extract a prediction from all these models
at the same time would be desirable. The goal of this work
is to do exactly this for the DFSZ-type axions.
We achieve this by exploiting the unique property of the

axion-photon coupling: Its UV physics are fully encoded
in the ratio between the electromagnetic and the QCD
anomaly coefficients [13],

gaγ ¼
α

2πfa

�
E
N
− 1.92ð4Þ

�
≡ α

2πfa
Caγ; ð2Þ

where fa is the axion decay constant, and by Caγ, we denote
the dimensionless part.
Because of the nature of anomalies, this ratio does not

depend on unknown vacuum expectation values (VEVs) or
mixing angles but only on the representation of the fields.
For the DFSZ-type models, this comes down to fixing
the PQ charges of the SM fermions that are not free
but determined by consistency and phenomenology con-
ditions [18]. Systematically solving the associated linear
system of equations (LSE) allows us to calculate the
anomaly ratio and thus, the axion-photon coupling for a
large number of DFSZ-type models.
In addition to calculating the anomaly ratios for a large

number of DFSZ-type models, we are able to count how
many different models lead to the same anomaly ratio. We
then use this notion of multiplicity to allocate a certain
probability to each anomaly ratio. From analyzing the
resulting distributions, we are able to extract several
interesting conclusions for the axion experimental program.
One of our key observations is that the values dictated
by the minimal DFSZ models, namely E=N ¼ 2=3 and
E=N ¼ 8=3, are statistically favored for DFSZ-type theo-
ries, even though for a larger number of Higgs doublets,
many more possible values for the anomaly ratio can exist.
While this confirms the potential experimental importance
of these values, on the other hand, we argue that a
nonobservation at these values still leaves a significant
amount of the axion parameter space viable. We quantify
this statement by defining an axion band as well as
lower gaγ bounds.
A similar analysis has already been done for the KSVZ-

type axion: The identification and classification is

described in [19], while the statistical analysis is reported
in [20]. Furthermore, in [19], a part is dedicated to DFSZ-
type axions. There, by estimating the maximal possible
anomaly ratio, the authors argue that the majority of
realistic DFSZ-type models lie in the same window as
the preferred KSVZ-type ones. With our work, we are not
only able to give a more precise value of the maximal
possible anomaly ratio, which turns out to be higher than
the previous estimate, but to also perform a detailed
comparison between the two classes, which allows us to
better understand their relation.
The paper is organized as follows. To begin with, in

Sec. II, we review DFSZ-type models where we put the
focus on the determination of the PQ charges. Moreover,
we discuss potential phenomenological selection criteria
and give a general procedure on how to determine all
possible anomaly ratios and their multiplicities for a given
number of Higgs doublets. In Sec. III, we apply this
approach to theories with three to nine Higgs doublets.
We discuss arising problems for a high number of doublets
and compare our results with the KSVZ-type models. Next,
Sec. IV discusses experimental implications by estimating
necessary sensitivities for axion searches. Lastly, in Sec. V,
we summarize our results and give an outlook.

II. DFSZ-TYPE AXION MODELS

In the DFSZ-type of models, the fermionic fields of the
SM are charged under the PQ symmetry. This requires one
to enlarge the scalar content of the SM by one singlet and
at least one additional Higgs doublet. The additional
doublets are required for the PQ mechanism to make the
PQ symmetry anomalous with respect to QCD. The singlet
is introduced to render the axion invisible by decoupling
the PQ scale from the electroweak scale [14,15].
The anomaly of the PQ current only depends on the

difference between the PQ charges of left- and right-handed
fermions. For simplicity, we set the PQ charges of the left-
handed fermions to zero. This leaves us with the charges of
the right-handed ones, which we denote as χui , χdi , χei with
i being a generation index. Regarding the neutrinos, the
situation is somewhat special. While the left-handed
neutrino is not directly contributing to the anomaly ratio
E=N, it could be contributing indirectly if a right-handed
neutrino was present in the theory. Since it is currently
unknown if the neutrino masses are realized via the type-I
seesaw mechanism, which requires the introduction of the
right-handed neutrinos, we exclude the neutrinos in our
analysis by setting their PQ charge to zero in accordance
with the other left-handed fermions.
In the following, we denote the DFSZ-type models

as DFSZnD , where nD is the total number of doublets.
In this terminology, the original models, which represent
the minimal versions, become DFSZ2-I and DFSZ2-II with
E=N ¼ 2=3 and E=N ¼ 8=3, respectively.
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A. Identifying the axion

Let us for concreteness consider a DFSZnD model with
nD ≤ 9 and begin by fixing the Yukawa sector. In order to
exhaust the maximum freedom of the PQ charges, we
consider a Yukawa sector where each right-handed fermion
couples to only one doublet. This makes it reasonable to
denote the doublets as Hui , Hdi , Hei , and the singlet as S.
The Yukawa sector then takes the form,

L ⊃ −yuijHuiQ̄i
Lu

j
R − ydijH

diQ̄i
Ld

j
R − yeijH

ei Ēi
Le

j
R þ H.c.

ð3Þ

For nD ¼ 9, each right-handed fermion couples to a
different doublet, while for nD < 9, some fermions have
to couple to the same doublet. This form of the Yukawa
sector automatically fixes the weak hypercharge of the
doublets to be

−YHui ¼ YHdi ¼ YHei ¼ 1

2
: ð4Þ

In principle, several doublets can couple to the same right-
handed fermion. We ignore this issue for now and come
back to it in Sec. II C.
Next, the standard kinetic term for each scalar is

invariant under a Uð1ÞnDþ1 symmetry. This symmetry must
be explicitly broken down to Uð1ÞPQ × Uð1ÞY for the PQ
current to be well-defined and to avoid Goldstone bosons
with decay constants of electroweak scale order. With this
requirement in mind, we split the potential into two parts,

V ¼ Vmoduli þ Veb: ð5Þ

The first term, Vmoduli, only consists of the modulus of each
scalar or the modulus of two doublets and hence, does not
break any of the global U(1) groups explicitly. In contrast,
Veb consists of terms that all break the Uð1ÞnDþ1 symmetry
explicitly. Since this symmetry must be broken down to
Uð1ÞPQ × Uð1ÞY , the number of terms in Veb required
is nD − 1.
Being a proper scalar potential, in this basis, all scalar

fields develop VEVs vf, where the index f ¼ ui; di; ei; S is
introduced for compactness. Expanding around these
VEVs yields,

Hdi ⊃
vdiffiffiffi
2

p e
i
adi
vdi

�
0

1

�
; Hui ⊃

vuiffiffiffi
2

p e
i
aui
vui

�
1

0

�
;

Hei ⊃
veiffiffiffi
2

p e
i
aei
vei

�
0

1

�
; S ⊃

vSffiffiffi
2

p ei
aS
vS ; ð6Þ

where any angular degrees of freedom not containing the
axion are neglected. Each angular mode af transforms
under a PQ transformation as af → af þ κfχfvf, where the

χf denote the PQ charges, and the κf are constants. The
corresponding PQ current after spontaneous symmetry
breaking is then

JPQμ
���
a
⊃ −χSS†i∂μS −

X
fnS

χfH
†
fi∂

μHf þ H.c.

¼
X
f

χfvf∂μaf: ð7Þ

By requiring JPQμ ja ¼ va∂μa and a → aþ κva under the
PQ transformation, the axion field is defined as

a ¼ 1

va

X
f

χfvfaf; v2a ¼
X
f

χ2fv
2
f: ð8Þ

Thus, in the DFSZ-type models, the axion is a linear
combination of all scalar angular modes.
With the axion identified, the low-energy theory is

constructed in the standard way. By inverting Eq. (8),
the scalar angular modes can be expressed in terms of the
axion. Since we are only interested in the terms including
the axion, this comes down to the replacement,

af
vf

→ χf
a
va

: ð9Þ

The Lagrangian can then be brought to a more convenient
form by a field-dependent chiral redefinition of the
fermion fields,

f → exp

�
−iγ5χf

a
2va

�
f: ð10Þ

This redefinition removes the axion from the fermion
mass terms, but due to the invariance of the kinetic terms, it
induces derivative couplings to the fermions. In addition,
since in general, the PQ current is anomalous with respect
to QCD and electromagnetism, anomalous couplings to the
gluons and the photons are induced,

δLanomalous ¼ N
a
va

g2s
16π2

GG̃þ E
a
va

g2

16π2
FF̃

¼ a
fa

g2s
32π2

GG̃þ E
N

a
fa

g2

32π2
FF̃; ð11Þ

where the axion decay constant fa ≡ va=2N is introduced
in the second equality. The canonically normalized axion-
photon interaction is defined via

Laγ ¼
1

4
gaγFF̃; ð12Þ
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so taking into account next-to-leading-order chiral correc-
tions [21] results in the axion-photon coupling given
in Eq. (2).
Since in the models under consideration all representa-

tions except the PQ charges are known, the ratio between
the electromagnetic and color anomaly coefficients can
conveniently be written as [19]

E
N

¼
P

i
4
3
χui þ 1

3
χdi þ χej

1
2

P
i χui þ χdi

¼ 2

3
þ 2

P
i χui þ χeiP
i χui þ χdi

: ð13Þ

Hence, the determination of the anomaly ratio, and thus, the
axion-photon coupling comes down to the determination of
the PQ charges, which we turn to now. For further details
regarding the DFSZ axion and an explicit construction of
the original DFSZ models, see [18].

B. The PQ charges

The key point regarding the PQ charges is that the
explicit breaking of the Uð1ÞnDþ1 symmetry into Uð1ÞPQ ×
Uð1ÞY must respect the following conditions [18]:
(1) Orthogonality between the PQ current JPQμ and the

weak hypercharge current JYμ .
(2) Invariance under PQ symmetry.
(3) Well-definiteness of domain wall (DW) number

NDW.
Consequently, the PQ charges are not arbitrary but inter-
related by the nD þ 1 relations following from these
conditions. Solving the resulting LSE then yields a solution
for all PQ charges.
To begin with, the orthogonality requirement between

the PQ current defined in Eq. (7) and the weak hypercharge
current JYμ ja ¼

P
f Yfvf∂μaf implies

X
χfYfv2f ¼ 0: ð14Þ

From this relation, one can immediately see that, in general,
the PQ charges are not integer numbers. This can also be
concluded by the fact that Uð1ÞPQ is not compact.
For the PQ invariance, we divide the nD − 1 terms of Veb

into two kinds, namely terms consisting of two doublets
and two times the singlet, or terms with four doublets. We
denote them symbolically as HHSS and HHHH in the
following. We restrict ourselves to renormalizable terms so
that higher orders in the scalars do not appear. Since the
axion must be rendered invisible, there must be at least one
term of the formHHSS. The form of the other nD − 2 terms
is then in principle free.
It is crucial that the terms in Veb are chosen such that they

give rise to linearly independent conditions. In other words,
we require Veb to have enough terms to render the system
exactly solvable and not underdetermined nor overdeter-
mined. Underdetermined systems do not explicitly break
enough of the Uð1ÞnDþ1 symmetry, hence, giving rise to

undesired massless states. Overdetermined systems, on the
other hand, are inconsistent (we come back to systems with
linearly dependent terms in Sec. II C).
It should also briefly be mentioned that all resulting sets

of PQ charges with N ¼ 0 do not solve the strong CP
problem and should thus be discarded.
With the conditions of orthogonality and PQ invariance,

it is reasonable to solve for all PQ charges in terms of χS,
which is otherwise unconstrained as a singlet. The value
of χS is irrelevant for the anomaly ratio since it cancels in
the ratio. Hence, for a set of terms chosen in Veb, we can
express all PQ charges in terms of χS and calculate the
anomaly ratio. This is the key message of this subsection.
However, there are quantities in which χS does not

cancel. One of these quantities is the DW number. Since
there is a potential cosmological problem associated with
higher DW numbers that we discuss in Sec. II D, it is useful
to fix χS as well. In particular, it turns out that in theories
where the axion is a linear combination of fields, a
consistency condition on χS follows from the DW number
NDW being integer valued.
In the low-energy regime, the QCD anomaly induces a

periodic potential to the axion. Let us for illustrative
purpose take the potential induced by instantons in the
dilute instanton gas approximation [22,23],

VðθÞ ¼ Λ4
QCD

�
1 − cos

�
2N

a
va

��
; ð15Þ

where we expressed the axion decay constant fa ¼ va=2N
in terms of va. The periodicity of the potential results in
discrete vacua, and the number of these vacua in a single
2π-loop is the DW number NDW, which can be read off to
be NDW ¼ 2N. In the language of symmetries, this poten-
tial explicitly breaks the original Uð1ÞPQ down to the
discrete group ZNDW

, under which, the axion transforms
as a → aþ 2πnfa with n ∈ Z. The DW number is
encoded in this transformation, and it is given by the n
that results in a single loop of circumference 2πva, yielding
again NDW ¼ 2N.
However, there is a caveat in theories where the axion is

a linear combination of angular modes af [24]. There, each
angular mode also has a residual cyclic symmetry from
its explicit breaking, namely af → af þ 2πnfvf, where
nf ∈ Z. To take these residual symmetries into account,
we apply them on both sides of the first equation in Eq. (8)
and read off the DW number as defined in the previous
paragraph,

NDW ¼ 2N

P
nfχfv2fP
χ2fv

2
f

: ð16Þ

For the DW number to be integer, we must demand the
fraction in this expression to be integer (as it turns out,
this can be, without loss of generality, chosen to be one).
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The simplest way is given by nf ¼ χf, which would require
the compactness of each Uð1Þ and is thus very restrictive.
A less restrictive alternative can be found by plugging in the
orthogonality condition into the numerator and the denom-
inator of the fraction to remove one of the vf and then
comparing terms with the same v2f. Let us for simplicity
perform this in DFSZ2, where f ¼ u, d, S, and require the
fraction to be one. We find

nS ¼ χS; ð17Þ

nu þ nd ¼ χu þ χd ¼ 2χS; ð18Þ

where, in the second equality, we used the PQ invariance
from the unique Veb term, i.e., HuHdSS. We see that the
residual cyclic symmetries of the underlying angular modes
result in the condition χS ∈ Z in the minimal DFSZ model.
Repeating this procedure for larger numbers of doublets,

we find that Eq. (17) is always present and that there
are more relations of the type of Eq. (18). These relations
imply that for the DW number to be integer, χS and certain
combinations of PQ charges must be integer. In particular,
2N ¼ P

i χui þ χdi and
P

i χui þ χei are such combina-
tions. The key difference for nonminimal models is that
fulfilling all appearing conditions is more restrictive than in
the minimal case, for instance, requiring the minimal value
of χS to be integer and larger than one.
To summarize, we see that in theories where the axion is

a linear combination of fields, the DW number can again be
written as NDW ¼ 2N but with the premise that the fraction
in Eq. (16) is one. This additional condition comes down to
the requirement of χS being integer but not necessarily one.
For the sake of the discussion in Sec. II D, it is useful to fix
χS to its minimal possible value. Thus, we conveniently
define the DW number as

NDW ¼ min positive integerf2Ng; ð19Þ

and use this definition for the remainder of this work.

C. Multiplicity

The way the PQ charges are fixed, as described in
the previous subsection, makes the calculation of all
possible anomaly ratios straightforward, at least in princi-
ple. However, when it comes to defining a notion of
multiplicity, further specification is needed because of
potential overcounting of models. When constructing
models, the standard mantra is to include all possible
terms compatible with the given symmetries. If for some
reason, terms are not included at tree level, without
protection from an underlying symmetry, these terms will
be generated at higher orders.
Regarding Veb, this has the implication that potentials

that give rise to the same PQ charges should not be

considered different since they can simply be added.
This can be understood in the language of conditions
and LSEs. The construction described in Sec. II B required
nD − 1 terms in the explicit breaking potential. Less terms
would result in undesired Goldstone bosons, while too
many independent terms result in overdetermined systems
that have χf ¼ 0 for all f and thus, do not solve the strong
CP problem. However, one can add more and more terms
to the potential that give rise to redundant conditions. These
are exactly the potentials that have the same solution of the
underlying LSE, i.e., that have the same PQ charges.
This reasoning also has consequences for the Yukawa

sector. The construction we described starts by coupling
a single doublet to each right-handed fermion, but, in
principle, several doublets can couple to the same right-
handed fermion. For this reason, we complete the Yukawa
sector a posteriori for each set of possible PQ charges. For
instance, such a completion of the Yukawa sector could
look as follows. If we find as a possible solution for some
LSE that χd1 ¼ χe1, then the Yukawa sector for that
solution becomes

yd1jH
d1Q̄1

Ld
j
R → ðyd1jHd1 þ ỹd1jH

e1ÞQ̄1
Ld

j
R;

ye1jH
e1Ēi

Le
j
R → ðỹe1jHd1 þ ye1jH

e1ÞĒ1
Le

j
R: ð20Þ

This guarantees that all possible Yukawa terms compatible
with a given solution are included (such as cross-couplings
where for instance up-type doublets couple to down-type
fermions). In addition, since every set of PQ charges is
unique after adding the potentials, the Yukawa sector with
all compatible couplings is uniquely determined, and no
additional multiplicities need to be taken into account.
Adding the potentials and completing the Yukawa

sectors for a specific set of PQ charges specify one model
for the counting of the multiplicity. The last step is then to
calculate the anomaly ratio for each model and count its
multiplicity, which completes the construction procedure.

D. Selection criteria

With the models specified, the question arises if it is
possible to impose (phenomenological) selection criteria in
order to extract preferred axion models.
In the KSVZ-type models, which add additional heavy

quarks and one singlet scalar to the SM, all of the selection
criteria follow from the presence of the new fermions [19].
For instance, if the new quarks are too heavy and too long
lived, they are subject to strong Big Bang nucleosynthesis
and cosmic microwave background bounds. Moreover,
since their mass is related to fa, the concrete value of
fa plays an important role. Lastly, the presence of
additional quarks dramatically affects the running of the
QCD coupling constant, potentially spoiling asymptotic
freedom and leading to Landau poles below the Planck
scale. All these bounds are not present in the DFSZ case,
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so we are not discussing them further (see [19] or [20] for a
detailed discussion).
Next, let us briefly discuss the aspects that are present in

both types of invisible axion models, starting with the DW
problem. As mentioned in Sec. II B, at temperatures of
order of the QCD scale T ∼ ΛQCD, nonperturbative QCD
effects generate an effective potential [25]. This potential
explicitly breaks the original PQ symmetry down to the
discrete group ZNDW

, which is then spontaneously broken
by one of the vacua. This leads to the formation of DWs
that attach themselves to the cosmic strings (from the
spontaneous breaking of the PQ symmetry at T ∼ fa) and
form string-wall systems. For NDW > 1, the strings stabi-
lize the DWs so that these would dominate the energy
density of the universe—this is the DW problem [26]
(see [27] for a review). Thus, one could impose NDW ¼ 1
as a selection criterion for axion models.
However, there are several ways to avoid the DW

problem. First of all, it is not present when the PQ
symmetry is broken during or before inflation since then
no DWs form inside our Hubble sphere. In the scenario
when the PQ symmetry is broken after inflation, it is
also possible that the symmetry is not restored at high T,
thus avoiding the production of strings and walls [28].
Alternatively, by embedding the discrete subgroup into a
continuous group, the different vacua become related via
symmetry transformations, which results in an effective
DW number of unity [29]. Because of these known
solutions, we do not consider NDW ¼ 1 to have a sufficient
level of generality to represent a necessary selection
criterion for our main analysis. Nevertheless, we do
calculate the DW number for DFSZ3 to DFSZ7, demon-
strate the influence of this selection criterion, and compare
with the KSVZ case in Sec. IV B.
Furthermore, staying in the same category of aspects that

are present for both types of invisible axion models, the
presence of additional Higgs doublets alters the running of
the electroweak gauge coupling. In particular, the maximal
case of nD ¼ 9 seems to improve unification with respect
to the SM, but the resulting unification scale of ΛGUT ∼
1013 GeV leads to unacceptable fast proton decay. For this
reason and for the sake of a better comparability with the
KSVZ case, we consider improvement of unification not
applicable as a selection criterion. In addition, it should also
be mentioned that for nD ∼ 50, asymptotic freedom is
spoiled, and a Landau Pole appears below the Planck scale,
providing a hard upper limit on the number of doublets [19].
Let us finally turn to an aspect that is only present in the

DFSZ-type models, namely the general feature of multi-
Higgs doublet models to include flavor-changing neutral
currents (FCNCs). Since FCNCs are subject to strong
experimental constraints [30], they could, in principle,
severely reduce the number of viable DFSZ-type models.
However, similar to the DW problem, there are known
ways to avoid these FCNC (see [31] for a review):

(i) Natural flavor conservation: The easiest way to
avoid FCNCs is to impose the Weinberg-Glashow-
Paschos condition [32,33], which requires all right-
handed fermions of a given electric charge to couple
to only one of the doublets. Imposing this condition
effectively sets several Yukawa couplings to zero,
which for nD > 3, results in nD − 3 decoupled Higgs
doublets. Hence, for DFSZ-type models as we have
defined them in the beginning of this section, natural
flavor conservation is only possible for nD ≤ 3.

(ii) Flavor alignment: A less restrictive possibility is to
impose an alignment condition, i.e., requiring the
Yukawa matrices of each right-handed fermion to
be proportional to one Yukawa matrix. All Yukawa
matrices are then simultaneously diagonalized in the
fermion mass eigenbasis, yielding no FCNC at tree
level [34–36].

(iii) Mass matrix ansätze: Another possibility is to take
the Yukawa matrices to have a specific texture in
flavor space. This allows viable SM mass and
mixing phenomenology and sufficient suppression
of the tree-level FCNCs [37].

Natural flavor conservation and mass matrix ansätze are
usually implemented by imposing (discrete) symmetries,
which also protect the flavor structure from quantum
corrections. However, imposing additional symmetries on
the scalar potential spoils the so-called decoupling prop-
erty of general multi-Higgs doublet models [38]. This
means that the new scalar cannot have arbitrary large
masses, resulting in potentially significant deviations from
the measured SM couplings. So, in order to avoid FCNC
using these solutions, it would be necessary to system-
atically determine which of our models have discrete
symmetries that avoid FCNC and, at the same time, allow
for a decoupling limit. Due to the large number of models
and the lack of a catalogue of possible symmetries for
nD > 3 [31], such an analysis goes beyond the scope of
this work.
Flavor alignment, on the other hand, is usually assumed

without an underlying symmetry protection. While this
preserves the decoupling limit of general multi-Higgs
doublet models, it leaves the flavor structure vulnerable to
quantum corrections. However, due to residual flavor sym-
metries, the induced misalignment is sufficiently small [39].
All in all, in the DFSZ case, we find desirable features for

specific models but no selection criteria with a sufficient
level of generality.
Lastly, we want to mention that, in principle, it is

possible to enlarge the definition of DFSZ-type axions
to include more singlets or more than nD ¼ 9 doublets,
which do not couple to the SM fermions. From the point of
view of possible axion-photon couplings, this does not
change Eq. (13); however, it allows one to obtain very large
PQ charges [19,40]. We do not consider these models in
this paper and stick with the more narrow definition of
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DFSZ models given in the beginning of this section. One
could also see this as a kind of selection criterion.

III. ANOMALY RATIO DISTRIBUTIONS

A. Approach

In the previous section, we reviewed how, for the DFSZ-
type axions, the calculation of the anomaly ratio reduces to
fixing a Veb and solving the resulting LSE. Hence, in order
to calculate all possible anomaly ratios, one has to do
exactly that for all possible Veb.
In addition, adding different Veb that give rise to the

same set of PQ charges, we count how many different sets
of charges lead to the same anomaly ratio. This notion of
multiplicity of each anomaly ratio allows us to allocate
a certain probability to each anomaly ratio within the
given set of models. We then use this to define lower jCaγj
bounds, above which, most of the probability mass of
DFSZ-type axion models can be found.
In the form of a cooking recipe, our procedure can be

summarized by the following steps:
(1) Specify the Yukawa sector for a fixed nD by

coupling one doublet to each right-handed fermion.
This exhausts the maximal freedom regarding the
anomaly ratio.

(2) Write down all possible Veb with nD − 1 terms.
(3) Solve all associated LSEs to find all possible sets

of PQ charges. Underdetermined systems are
discarded.

(4) Add the potentials of all equal PQ charges to get the
most general potential associated with a particular
solution. This defines one model for the sake of
counting the multiplicity.

(5) For each model, complete the Yukawa sector by
adding all Yukawa terms compatible with the PQ
and hypercharges.

(6) For each model, calculate the anomaly ratio and
count its multiplicity.

We calculate the PQ charges and anomaly ratios numeri-
cally using the programming language “Julia” [41]. The
“StaticArrays” package [42] allows us to compute the

extremely large number of LSEs very fast without heap
memory allocation. Since it is not relevant to the acquired
solutions, we skip step 5 in practice.

B. Example: nD = 3

Let us demonstrate our approach in the example of
DFSZ3 with the Weinberg-Glashow-Paschos condition
imposed, i.e., with one Higgs doublet per type of fermion.
In this example, there are three possible bilinears, namely
ðHuHdÞ, ðHuHeÞ, and ðHdH

†
eÞ, together with their com-

plex conjugates. Each bilinear can either be coupled to the
singlet, which results in six different terms of the form
HHSS, or to another bilinear, which results in 36 different
quadrilinears of the form HHHH. For the latter case,
removing terms that are related by Hermitian conjugation
and terms that result in no condition reduces the number
to nine (see Table I). For nD ¼ 3, the breaking potential
consists of either one HHSS and one HHHH term or
two HHSS terms. For the former, there are a priori 54
possibilities and for the latter, 15, totaling to 69 possibilities
for Veb (see Table II).
The resulting 3 × 3 LSEs consist of the orthogonality

relation, χuv2u − χdv2d − χev2e ¼ 0, and the two conditions
coming from the potential. Solving the LSEs yields the PQ
charges in terms of χS, which is then fixed by the well
definiteness of the DW number. We can do the following
two simplifications for the purpose of calculating the
anomaly ratio. First, we can set all VEVs equal to one
because E and N are independent of them, and secondly,
we can leave χS unfixed because it cancels in the anomaly
ratio after expressing all PQ charges in terms of χS.
Of the 69 minimal potentials found, many have no or

degenerate solutions. For example, potentials including
a bilinear and its Hermitian conjugate at the same time do
not have a solution, and the nine quadrilinears only give
six unique conditions for PQ charges. A summary of all
solutions can be found in Table II (top). In total, this leaves
only 16 different solutions for the doublet charges, for each
of which, we have to add all the terms to the potential that
give rise to this set of PQ charges.

TABLE I. Resulting PQ conditions from quadrilinears, constructed from corresponding bilinears. The lower triangle (“−”) is not to be
counted because the order of the bilinears does not matter. The terms “x” are not to be counted because they are Hermitian to a term that
has already been counted, and the potential by definition has to include all Hermitian conjugated terms. Terms with “o” produce only
trivial conditions. We are left with nine distinct quadrilinears, which produce six unique conditions.

ðHuHdÞ ðHuHeÞ ðHdH
†
eÞ ðHuHdÞ† ðHuHeÞ† ðHdH

†
eÞ†

ðHuHdÞ 2χu þ 2χd ¼ 0 2χu þ χd þ χe ¼ 0 χu þ 2χd − χe ¼ 0 o χd − χe ¼ 0 χu þ χe ¼ 0
ðHuHeÞ − 2χu þ 2χe ¼ 0 χu þ χd ¼ 0 x o χu − χd þ 2χe ¼ 0

ðHdH
†
eÞ − − 2χd − 2χe ¼ 0 x x o

ðHuHdÞ† − − − x x x
ðHuHeÞ† − − − − x x
ðHdH

†
eÞ† − − − − − x
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The Yukawa sector in this example does not need any
completion since it is already fixed by the Weinberg-
Glashow-Paschos condition. Hence, it merely remains to
plug into Eq. (13) the different sets of PQ charges, which
yields the following possible anomaly ratios (see Table II,
bottom),

DFSZ3∶
E
N

¼ −
4

3
;
2

3
;
5

3
;
8

3
;
14

3
: ð21Þ

Counting the multiplicity, we find that 2=3 and 8=3 each
appear 2 times with four terms in the potential each, and
−4=3, 5=3 as well as 14=3 each appear 4 times with three
or two terms in the potential each. A visualization of this
result, together with all other nD values, can be found in
Fig. 3. For a summary of important statistics, see Table III.
It turns out useful in the following to introduce a compact

notation that encodes which doublet couples to which of the

nine fermions. For this, we assign to the nine fermions a
position in a nine-dimensional row vector with square
brackets,

u c t d s b e μ τ

u1 u2 u3 d1 d2 d3 e1 e2 e3
½·; ·; ·; ·; ·; ·; ·; ·; ·�;

ð22Þ

and write the subscript of the doublets that couple to a
certain fermion to the corresponding position. If one doublet
couples to multiple fermions, we use the first subscript in the
order presented above. For more comprehensive notation,
we use fermion type (up-, down-, or lepton-type, short u, d,
or e) and generation (1 to 3). For DFSZ9, this row vector
would be ½u1; u2; u3; d1; d2; d3; e1; e2; e3�, while for the
original DFSZ2-I model, it would be ½u1; u1; u1; d1; d1;
d1; d1; d1; d1�.

TABLE II. All possible solutions for PQ charges of Higgs doublets in terms of χS (top) and anomaly ratios (bottom) for the nD ¼ 3
Yukawa sector under consideration. The potential should not produce the same condition twice (“x”), nor does the order of the
conditions matter (“−”). “o” denotes combinations of conditions that do not have a solution. Infinite solutions arise when N ¼ 0.

½χu; χd; χe� χu þ χd ¼ 2χS χu þ χe ¼ 2χS χd − χe ¼ 2χS −χu − χd ¼ 2χS −χu − χe ¼ 2χS −χd þ χe ¼ 2χS

χu þ χd ¼ 2χS x − − − − −
χu þ χe ¼ 2χS ½4=3; 2=3; 2=3� x − ½0;−2; 2� − −
χd − χe ¼ 2χS ½2=3; 4=3;−2=3� ½2; 2; 0� x ½−2; 0;−2� ½−2=3; 2=3;−4=3� −
−χu − χd ¼ 2χS o − − x − −
−χu − χe ¼ 2χS ½0; 2;−2� o − ½−4=3;−2=3;−2=3� x −
−χd þ χe ¼ 2χS [2, 0, 2] ½2=3;−2=3; 4=3� o ½−2=3;−4=3; 2=3� ½−2;−2; 0� x

2χu þ 2χd ¼ 0 o ½2=3;−2=3; 4=3� ½−2=3; 2=3;−4=3� o ½−2=3; 2=3;−4=3� ½2=3;−2=3; 4=3�
χu þ χd ¼ 0 o ½2=3;−2=3; 4=3� ½−2=3; 2=3;−4=3� o ½−2=3; 2=3;−4=3� ½2=3;−2=3; 4=3�
2χu þ 2χe ¼ 0 ½2=3; 4=3;−2=3� o ½2=3; 4=3;−2=3� ½−2=3;−4=3; 2=3� o ½−2=3;−4=3; 2=3�
χu þ χe ¼ 0 ½2=3; 4=3;−2=3� o ½2=3; 4=3;−2=3� ½−2=3;−4=3; 2=3� o ½−2=3;−4=3; 2=3�
2χd − 2χe ¼ 0 ½4=3; 2=3; 2=3� ½4=3; 2=3; 2=3� o ½−4=3;−2=3;−2=3� ½−4=3;−2=3;−2=3� o
χd − χe ¼ 0 ½4=3; 2=3; 2=3� ½4=3; 2=3; 2=3� o ½−4=3;−2=3;−2=3� ½−4=3;−2=3;−2=3� o
2χu þ χd þ χe ¼ 0 ½0; 2;−2� ½0;−2; 2� ½0; 1;−1� ½0;−2; 2� ½0; 2;−2� ½0;−1; 1�
χu þ 2χd − χe ¼ 0 [2, 0, 2] [1, 0, 1] ½−2; 0;−2� ½−2; 0;−2� ½−1; 0;−1� ½2; 0; 2�
χu − χd þ 2χe ¼ 0 [1, 1, 0] [2, 2, 0] [2, 2, 0] ½−1;−1; 0� ½−2;−2; 0� ½−2;−2; 0�

E=N χu þ χd ¼ 2χS χu þ χe ¼ 2χS χd − χe ¼ 2χS −χu − χd ¼ 2χS −χu − χe ¼ 2χS −χd þ χe ¼ 2χS

χu þ χd ¼ 2χS x − − − − −
χu þ χe ¼ 2χS 8=3 x − −4=3 − −
χd − χe ¼ 2χS 2=3 5=3 x 14=3 ∞ −
−χu − χd ¼ 2χS o − − x − −
−χu − χe ¼ 2χS −4=3 o − 8=3 x −
−χd þ χe ¼ 2χS 14=3 ∞ o 2=3 5=3 x

2χu þ 2χd ¼ 0 o ∞ ∞ o ∞ ∞
χu þ χd ¼ 0 o ∞ ∞ o ∞ ∞
2χu þ 2χe ¼ 0 2=3 o 2=3 2=3 o 2=3
χu þ χe ¼ 0 2=3 o 2=3 2=3 o 2=3
2χd − 2χe ¼ 0 8=3 8=3 o 8=3 8=3 o
χd − χe ¼ 0 8=3 8=3 o 8=3 8=3 o
2χu þ χd þ χe ¼ 0 −4=3 −4=3 −4=3 −4=3 −4=3 −4=3
χu þ 2χd − χe ¼ 0 14=3 14=3 14=3 14=3 14=3 14=3
χu − χd þ 2χe ¼ 0 5=3 5=3 5=3 5=3 5=3 5=3
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C. Choices for a statistical interpretation

We are considering many different solutions for the
Higgs charges. In Sec. III B, we just counted the number of
models leading to specific anomaly ratios, but in the end,
we want to translate a catalog of models with specific E=N
values to a probability distribution of anomaly ratios. To
achieve this, we require relative probabilities of the
solutions, which are subject to some sort of theoretical
prior belief. This belief manifests itself in multiple deci-
sions about:

(i) The concept of multiplicity as outlined in Sec. II C.
(ii) The relative probability of different Yukawa sectors

given a specific nD.
A reasonable choice is to demand all solutions

with a given nD to be equally probable. The same
applies to different Yukawa sectors. Unfortunately,
both cannot be true at the same time because
different Yukawa sectors can lead to different
amounts of possible solutions. We take the approach
of requiring solutions to be equal (given equal
multiplicity and same nD). This also implies not
applying any “beauty” arguments for Yukawa sec-
tors, e.g., in favor of coupling patterns that are equal
for different fermion types.

(iii) The relative probabilities of different nD.
For our total anomaly ratio distribution, we treat

the probability of all nD values 2 ≤ nD ≤ 9 as
equal. This implies at the same time that we
consider any single solution for, e.g., DFSZ3 (of
which there are 16), much more probable than any
single solution for, e.g., DFSZ5 (of which there
are 9.7 × 104). One could also consider it reason-
able to additionally penalize models with higher
nD, enhance the probability of models satisfying
symmetry arguments (DFSZ3, one Higgs doublet
per fermion-type or DFSZ9, one Higgs per right-
handed fermion), or consider all charge solutions
equally probable. In the latter case, the final
histogram would most probably be completely
dominated by DFSZ9 due to the much larger
amount of unique solutions.

The arguments above all imply a probabilistic approach
to model selection, i.e., nature “selects” one of the possible
realizations at random. This notion itself may be subject to
critique, but in absence of any decisive underlying physical
argument singling out any specific model, we deem it to be
satisfactory. In Sec. II D, we outline theoretical arguments
that might challenge this view.
Even under the assumption of probabilistic model

selection, we acknowledge that any of these choices is
to some extent a matter of taste. For this reason, it is
important to us to provide the raw catalogs and generating
code as a supplement to this paper, so the reader is not
dependent on our choice.

D. Results for nD = 4–7

Having presented our assumptions leading to a statistical
treatment explicitly, we can now proceed to higher numbers
of Higgs doublets, for which we investigate multiple
different Yukawa sectors. First, we stick to DFSZ4 to
DFSZ7, because, for these models, we are able to calculate
all possible solutions explicitly.
Figure 1 presents an overview over the anomaly ratio

distributions for DFSZ4 models grouped by the different
Yukawa sectors. Each of the histograms shows all models
of the specified coupling with the explicitly symmetry
breaking potential Veb consisting of k ≥ 1 HHSS- and
3 − k HHHH-terms. The result does not depend on
fermion generation since the construction of the Higgs
charges as well as Eq. (13) treat all generations equally.
Yukawa sectors with special coupling to a lepton have
histograms symmetric around 5=3, while the histograms
for up- and down-type special couplings are mirrored
around 5=3.
The reason for this is a symmetry in our construction as

well as in Eq. (13): For every nD, since we consider all
possible Yukawa sectors as outlined above, every solution
has a corresponding one with

χũi → −χdi
χd̃i → −χui : ð23Þ

This is due to up-type and down-type quarks being treated
equally in the construction except for the sign of their
hypercharges. In the example above, all solutions for the
Yukawa sector ½u1; u1; u3; d1; d1; d1; e1; e1; e1� have a
corresponding solution in the Yukawa sector ½u1; u1; u1;
d1; d1; d3; e1; e1; e1� under the above mentioned trans-
formation. Solutions that relate via Eq. (23) can easily be
seen to have anomaly ratios relating by

Ẽ
N

→
10

3
−
E
N
; ð24Þ

which is a mirror symmetry around 5
3
.

If we add up all nine histograms of Fig. 1, i.e., do not
treat any Yukawa sector preferentially, we obtain the
distribution shown in Fig. 3 (second row, left). Due to
the symmetries of the nine contributing Yukawa sectors, the
distribution is symmetric around 5=3 as well. The biggest
number of models coincides with the two possible values
for the DFSZ2 model: 2=3 and 8=3. Both of these state-
ments are true for nD ∈ ½4; 7�, as Fig. 3 shows (second row,
third row left).
With increasing nD, we find an increasing number

of unique anomaly ratios and more extreme E=N values.
Anomaly ratios E=N ¼ 5=3þ k with k ∈ Z are highly
favored for nD ≥ 5 compared to other E=N values,
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especially for odd k. We see this very characteristic, peaked
spectrum evolving: E=N values with high probability tend
to have their probabilities shrink with increasing nD,
whereas low probability E=N values behave in the opposite
manner. In Fig. 3, one can most easily see this evolution at
big anomaly ratios E=N ≳ 10.
Let us try to understand this trend from a purely

mathematical perspective:

E
N

¼ 2

3
þ 2

P
i χui þ χeiP
i χui þ χdi

is a function with nine variables, the values of each of
which can be thought of as being drawn from a specific
distribution. In Fig. 2, we show the effect of using different
distributions for the variables on the outcome of the

function. A continuous, flat charge distribution of arbitrary
width produces a smooth, fat-tailed E=N distribution. If the
median of the charges is 0, the median of the distribution is
at 5=3 (Fig. 2, top three rows). Allowing only positive
values for the charges shifts the distribution to higher values,
with a median of 8=3 and makes E=N < 0 impossible
(Fig. 2, bottom row). The fewer distinct input values for
the charges are used, the more peaked the anomaly ratio
structure becomes; i.e., anomaly ratios with high relative
probability see their likelihood increased and vice versa. This
also leads to fewer possible unique E=N-values.
The continuum limit with its vanishing skewness and

positive kurtosis can be approximated in analytic form via a
Pearson type VII distribution [43],

p

�
E
N

�
¼ 1

αBðm − 1
2
; 1
2
Þ
�
1þ

�E
N − λ

α

�
2
�−m

; ð25Þ

FIG. 2. Influence of drawing charges from different distribu-
tions on the resulting anomaly ratio distribution, using Eq. (13).
More unique charges lead to a smoother anomaly ratio distribu-
tion, irrespective of their distribution. Charge distributions
centered around 0 produce anomaly ratio distributions centered
around 5=3. The dashed blue line in the top right panel denotes
the fit presented in Eq. (25).

FIG. 1. Anomaly ratio distributions for DFSZ-type models with
four Higgs doublets. Two Higgs couple to the fermions specified
in the panels with the other two Higgs covering the remaining two
fermion types invariant with respect to fermion generation. For
example, the Yukawa sectors ½u1; u1; u3; d1; d1; d1; e1; e1; e1�,
½u1; u2; u1; d1; d1; d1; e1; e1; e1�, and ½u1; u2; u2; d1; d1; d1;
e1; e1; e1� are all equivalent and have anomaly ratio distributions
as shown in the top panel. Note that the up-type and down-type
cases are mirrored around 5=3.
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with reasonable fit parameters λ ¼ 5=3, α ¼ 7=4, and
m ¼ 1, and Beta function B with Bð1=2; 1=2Þ ¼ π.
Following these insights from a mathematical perspec-

tive, it can be understood that the histograms for larger nD
should be smoother, considering that there are more unique
solutions (Table III). Note, however, that this effect neglects
the influence of choosing different probabilities for differ-
ent solutions. Nonuniform probabilities reduce the effective
number of different solutions.1 Using our approach of
adding all possible potential terms for one solution of
charges leads to more comparable probabilities for the
charges than if we had separately considered all potentials
with the minimal amount of terms to fix the PQ charges
(minimal potentials). Therefore, the effect of nonuniform

charge probabilities is clearly subdominant for DFSZ5 to
DFSZ7. We expect this to still be the case even for DFSZ8

and DFSZ9.

E. Extrapolation to nD > 7

While our procedure, in principle, works for any number
of doublets, for larger nD, it requires solving an extremely
large number of LSEs. In order to see how many, let us
estimate the number of all possible terms for step 2 with
an arbitrary nD. Since the number of possible bilinears is
nB ¼ ðnD

2
Þ plus their Hermitian conjugate, there are 2nB

terms of the form HHSS. Regarding the quadrilinears, this
results in ð2nBÞ2 possible terms. Written as a matrix, this
yields

HH

ðHHÞ†
HH ðHHÞ†�

A B

C D

�
;

ð26Þ

FIG. 3. Anomaly ratio distributions for different numbers of Higgs doublets. All histograms are symmetric around 5=3. nD ≥ 5 display
a characteristic peaked structure, which becomes smoother with increasing nD. DFSZ8 and DFSZ9 could not be fully calculated; the two
semitransparent colors denote the two estimates as discussed in the text. Note that limit 2 only slightly exceeds limit 1 at big absolute
anomaly ratios for nD ¼ 8 as well as nD ¼ 9.

1Just think of the extreme case of say, a charge distribution
with 100 unique solutions, in which 10 solutions are 1000× more
probable than the other 90. The resulting E=N distribution will
behave more as if it came only from 10 unique charges than as if it
had 100.
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where A denotes the submatrix formed by all terms of the
form HHHH, B by HHðHHÞ†, and so on. However, as in
the DFSZ3 example, there are several equal terms in this
matrix that should not be counted. First of all, the whole
matrix is symmetric. Secondly, since Hermitian conjugated
terms are equal, D is completely redundant with respect
to A. Lastly, B is antisymmetric so that the number reduces
to n2B quadrilinears.
From the set of all terms, we need to pick nD − 1 terms

where at least one must be of the form HHSS. Hence,
we can pick between 1 and nD − 1 terms of the form
HHSS, then fill up with HHHH terms, and repeat this for
all possible amounts of HHSS terms (ignoring equivalen-
ces in the case of multiple HHSS terms). The total number
of possible Veb can then be estimated by

NtotðnDÞ ∼
XnD−2
j¼0

�
2nB
1þ j

��
n2B

nD − 2 − j

�
; ð27Þ

which, at the same time, is the number of LSEs that needs
to be solved.
In principle, we can again perform the simplifications

used for the DFSZ3 example, namely setting all VEVs
to one and not fixing χS, but regardless of these simpli-
fications, the computation time rises exponentially with nD.
While NtotðnD ¼ 3Þ ¼ 69 is easily manageable, for, e.g.,
nD ¼ 8, the number of possibilities becomesNtotðnD¼8Þ≈
2×1016. Thus, computing requirements for solving all
LSEs beyond DFSZ7 are prohibitive.
An easy solution to the computationally prohibitive

number of LSEs would be to sample the (minimal)
potentials. However, due to step 4 in our approach, this
is not possible without introducing a bias: A multitude of
minimal potentials can lead to the same solution. In our
approach, all of them belong to the same model, which,

for this reason, has a very long potential and is likely to be
found by any sampling algorithm. On the opposite side,
there are also models that can just be found with one or two
minimal potentials. Sampling in the space of minimal
potentials therefore leads to biased sampling in the space
of models.
An alternative estimation for the DFSZ8 and DFSZ9

distributions can come from the following considerations.
If a large enough number of theories is considered, Fig. 2
(top, right) and Fig. 2 (third row, right) can be viewed as
extremal cases for the anomaly ratio distribution. “Extremal”
in this context should not be understood in terms of an upper
or lower limit on individual E=N bins; after all, we are
considering (normalized) probability measures. Rather,
Fig. 2 (top row, right) is very smooth, whereas Fig. 2 (third
row, right) is very peaked. Before applying it, let us quantify
this criterion by looking at the cumulative sum of anomaly
ratios below a specific value. Similarly to the two sample
Kolmogorov-Smirnov-test, we define smoothness of an
anomaly ratio distribution fðE=NÞ as

maxx

���� X
E=N<x

fðE=NÞ −
X

E=N<x

cðE=NÞ
����; ð28Þ

where cðE=NÞ represents the continuous distribution as
shown in Fig. 2 (top, right). Equation (28) defines the
maximum of the difference for all anomaly ratios in the
cumulative sum of the distribution compared to the case
of continuous charges as a possible metric for this task. In
Sec. IVA, we will see the close connection of this metric to
the relevant observable. The metric runs from one to zero
(by construction for the continuous distribution). For DFSZ3,
the value is 17%, for DFSZ4 already 5.7%, and down to
1.4% for DFSZ7.

TABLE III. Important statistics of DFSZ-type models broken down by number of Higgs doublets nD. We include information on

the model with maximal photon coupling dE=N from Eq. (29) and the percentage of models that have minimal photon coupling
(photophobic, jE=N − 1.92j < 0.04). “x” denotes values that could not be estimated.

nD #Veb Unique solutions Unique E=Ns dE=N % Photophobic % NDW ¼ 1

2 2 2 2 2=3 0 0
3 54 16 5 −4=3 0 0
4 52614 996 83 −52=3 1.4 6.00
5 6.65 × 107 9.7 × 104 432 −112=3 1.52 6.64
6a ≲ 4 × 109 > 2.19 × 106 1680 −238=3 1.37 5.83
7a ≲ 7 × 1012 x 6256 −466=3 1.39 5.19
8b ≲ 2 × 1016 x > 11617 < −628=3 x x
9b ≲1 × 1020 x ≫ 14122 < −1216=3 x x

aFor nD ≥ 6, number of potentials Veb and “unique solutions” are estimates. Number of minimal potentials calculated via Eq. (27),
many of which will be unphysical and not produce valid solutions for PQ charges. The “unique solutions” column gives the number of
solution found in sample, for which data exists.

bFor nD ≥ 8, we did not calculate all possible models; therefore, we have no exact value neither for the number of unique E=N, nor for
the percentage of photophobic models or models with NDW ¼ 1. dE=N was estimated as shown in Sec. III F.
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We want to be able to roughly constrain the smoothness
of the DFSZ8 and DFSZ9 anomaly ratio distributions. From
our results for DFSZ3 to DFSZ7, we saw that the higher
the number of doublets, the smoother the anomaly ratio
distribution becomes. From investigations of the biased
sampling for nD ¼ 6 and nD ¼ 7, where the true distribu-
tions were available, we see that sampling leads to less
smooth distributions. This means that the distribution for
nD ¼ 8 or nD ¼ 9 is expected to be smoother than their
respective sampled distribution and the nD ¼ 7 distribu-
tion. In Fig. 3, we use nD ¼ 7 as one estimate, denoted
as “limit 1.”
The other estimate, overestimating the smoothness, can

come from the observation that the difference in smooth-
ness of the distributions is smaller between DFSZ6 and
DFSZ7 than between DFSZ5 and DFSZ6. Extrapolating
the histograms beyond nD ¼ 7 using the difference of the
distributions of DFSZ6 and DFSZ7 should therefore yield
anomaly ratio distributions, which are smoother than our
actual expectation. In Fig. 3, we subtract the difference
once to reach the estimate for nD ¼ 8 and twice for nD ¼ 9,
denoted as “limit 2.” For the metric described by Eq. (28),
we find 0.73% and 0.71% for DFSZ8 and DFSZ9,
respectively.
The approach presented here should not be viewed as

presenting hard limits for the anomaly ratio distributions
for eight or nine Higgs doublets, but rather a rough
estimate. The difference in probability in Fig. 3 looks
substantial only due to the logarithmic axis. Both estimates
are much closer to the continuous case of Fig. 2 (top, right)
than to the peaked one of Fig. 2 (third row, right) in the
sense that only very little of their probability mass lies at
unique E=N values and rather in a continuum.

F. Constructing extreme jgaγj
Another problem that arises by sampling potentials

as described in the previous paragraphs is that it is very
unlikely to find the anomaly ratio corresponding to the
maximum axion-photon coupling, which we denote as

dE=N ¼ argmaxE=NðjE=N − 1.92jÞ: ð29Þ

This anomaly ratio, however, is very useful for constraining
the region of DFSZ-type models. For this reason, we give a
procedure on how to construct an estimate for it. Before
turning to this procedure though, let us note that due to the
symmetry around E=N ¼ 5=3, in absence of selection

criteria, dE=N is not given by the largest possible anomaly
ratio but the smallest.
The procedure is based on observations of the LSEs that

led to dE=N for the smaller numbers of doublets. There, we

found that any of the LSEs leading to dE=N of DFSZ4 can be

extended to an LSE leading to dE=N for DFSZ5. The same
behavior can be seen from DFSZ5 to DFSZ6 and in a

slightly different form from DFSZ3 to DFSZ4. We do not
have a rigorous mathematical reason why this is the case,
so applying it to larger nD is more of an educated guess.
However, it turns out to give extreme anomaly ratios, so we

use it to systematically estimate dE=N.
The procedure goes as follows. First, we take all LSEs

that lead to dE=N for a number of doublets where all
solutions are known, say nD ¼ 6. Secondly, we add one
additional Higgs doublets by specifying the Yukawa sector
for the new doublet. Thirdly, we adjust the orthogonality
relation appearing in all LSEs depending on what type
of doublet is added. Then, we add one additional relation
to the LSEs, solve them, and calculate the anomaly ratio.
After that, we repeat this for every possible relation and
every possible Yukawa sector. Finally, we extract the LSEs
with the smallest anomaly ratio.
This results in highly negative anomaly ratios. However,

we found for DFSZ9 that taking the resulting LSEs and
systematically exchanging one (or more if the runtime is
acceptable) of the relations, new LSEs are found that give
even smaller anomaly ratios. In DFSZ9, for instance,
the smallest anomaly ratio we construct in this way is
E=N ¼ −1216=3, and it is generated by the terms,

ðH†
d2
He1ÞðH†

d2
Hd1Þ; ðHu1Hd1ÞðHu1Hd2Þ;

ðH†
u3Hu1ÞðH†

u3Hu2Þ; ðH†
e1Hd1ÞðH†

e1He2Þ;
ðH†

e2Hd1ÞðH†
e2He3Þ; ðHu2Hd3ÞðH†

u1Hu2Þ;
ðHd3Hu1ÞðH†

d1
Hd3Þ; ðHd1Hu1ÞS†S†:

G. Comparison with KSVZ-type models

In [20], the authors add all anomaly ratios of phenom-
enologically allowed KSVZ-type models, irrespective
of the number of quarks, allowing one to add or subtract
quark representations. This means that a single model with
NQ ¼ 9 quarks, of which there are > 1 × 105, is deemed
equally probable as a single model with NQ ¼ 1, of which
there are only 15. The distribution is therefore dominated
by 7≲ NQ ≲ 21. If we used a similar approach for our
DFSZ-type models, extrapolating the evolution of unique
solutions with increasing nD, the resulting distribution
would be indistinguishable from the DFSZ9 case. In
Sec. III C, we argued to instead use an approach in which
all separate values for nD are equally probable. Since raw
data was provided by [20], we are able to weight their
KSVZ data in a way that gives equal probability to all
values of NQ.

2

Using this weighting, their data can be compared with
our DFSZ results on a fair basis, and we show the result in

2So, now the 15 models with NQ ¼ 1 combined are equally
likely as all >1 × 105 models with NQ ¼ 9 combined.
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Fig. 4. Nevertheless differences remain: The authors of [20]
were able to apply strict selection criteria, significantly
reducing the number of viable models. We did not find
similar stringent selection criteria, so our catalog reflects

the full set of models rather than a preferred set. A
comparison between the two types of models or a com-
bined axion band should therefore not be seen as final,
but only as incorporating all selection criteria known so far.

FIG. 4. Comparison between anomaly ratio distributions for KSVZ-type and DFSZ-type axion models. The KSVZ-type estimate
of [20] includes all phenomenologically allowed models, adding and subtracting quark representations, and assumes every model to be
equally likely. Our DFSZ-type results include calculations for DFSZ2 to DFSZ7 and estimates for DFSZ8 and DFSZ9, giving equal
probability to each nD. For DFSZ-type, the different shades denote maximum and minimum for each bin under the two limits for DFSZ8

and DFSZ9 described above.
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Also note that in our case, a model with higher nD is always
less likely than a model with lower nD, which can be seen
as an appropriate penalty for introducing more degrees of
freedom to the model. In our weighting scheme for KSVZ
data from [20], this is not the case, since for, e.g., NQ ¼ 28,
they find only 510 preferred models, much less than for
NQ ¼ 9, making a single model with NQ ¼ 28 more likely
than a single model with NQ ¼ 9 in our approach.
One can clearly see the effect of the equal weights for all

nD in Fig. 4 in the region around E=N ¼ 5=3: The five
E=N values of the DFSZ2 and DFSZ3 models show highly
elevated probability due to their big relative probabilities
(compare Fig. 3). The effect of the two estimates for DFSZ8

and DFSZ9 only becomes substantial at low absolute
probabilities and above jE=Nj≳ 20. We find the KSVZ
results to also form a peaked structure similar to the DFSZ
case, which only becomes visible in a very finely binned
histogram. In fact, for E=N values excluding DFSZ2 and
DFSZ3, the DFSZ-type histograms are less peaked than the
KSVZ-type ones, with decreased probability at moderately
big jE=Nj and significantly increased probability for
jE=Nj≳ 40. This trend does not translate to the biggest
possible axion-photon coupling, however. We find a

maximal jgaγj at dE=N > −1216=3, which is comparable
to the KSVZ case forNQ ≤ 9 before any phenomenological

constraints (dE=N ¼ −1312=3).
Concerning models with smallest axion to photon

couplings, in the following, photophobic models are
defined the same way as in [20] by their anomaly ratio
E=N being compatible with with vanishing gaγ within one
sigma theoretical uncertainty [see Eq. (2)]. Table III shows
that there is no clear trend toward a higher or lower
percentage of photophobic models with increasing nD.
As discussed in Sec. III D, the anomaly ratio distribution
becomes smoother with increasing nD: Peaks become less
pronounced and anomaly ratios with low probability
become more likely. The absence of a clear trend hints
at the photophobic region being right in the middle between
those two extremes. Overall, the percentage of photophobic
models we find for DFSZ-type models with nD ≤ 7 is
similar to the KSVZ case.
In both, KSVZ and DFSZ type of model probability

distributions, the probability close to the highest peaks
is strongly suppressed (Fig. 4, bottom). The effect is less
severe for DFSZ-type models than for KSVZ-type ones
because as noted before, the former are less peaked if we
subtract the effect of DFSZ2 and DFSZ3.
Upon closer inspection, the distribution of KSVZ-type

models is not symmetric around 5=3 however, unlike
the DFSZ-type one. Median and mean anomaly ratios are
E=Njmean ¼ 1.43 and E=Njmedian ¼ 1.30, respectively,
whereas for DFSZ-type models both are exactly E=Njmean ¼
E=Njmedian ¼ 5=3. These values remain unchanged, even
if only considering the subset of NDW ¼ 1 models. The

deviation from 5=3 in the KSVZ-type models of [20]
may arise due to the phenomenological selection criteria
they impose.

IV. IMPLICATIONS FOR AXION SEARCHES

A. Caγ Cumulative distribution function

We have so far derived probability mass functions for the
anomaly ratio from theoretical assumptions for different
DFSZ-type theories. To be able to understand the impli-
cations for axion searches, we need to map these E=N
distributions into gaγ space via Eq. (2). In order to be
independent of the axion mass, we plot our results with
respect to the unitless quantity jCaγj defined in Eq. (2).
Traditionally two-sided axion bands centered around

the region of maximal probability are given in this case
[19,20,44–46]. However, usually an experiment is sensitive
to all axion-photon couplings above a certain threshold
jCaγjmin. We therefore deem it to be also relevant for
experiments to post a one-sided limit that has to be reached
in order to be sensitive to, e.g., 68% of all DFSZ-type models
given a specific axion mass. For this purpose, we use a
cumulative distribution function (CDF) plotted against jCaγj,
which can be understood as the combined theoretical prior
probability of models with jCaγjðmodelÞ > jCaγjmin.
Since we are treating the anomaly ratio as a random

variable coming from a distribution that we try to
determine, we have to treat the second part of Caγ , the

next-to-leading order QCD corrections Cð0Þaγγ, in the same
way. We model its uncertainty as a normal distribution
N ð1.92; 0.04Þ with mean 1.92 and standard deviation 0.04.
This smooths out steps in the CDF from high probability
E=N values, especially for anomaly ratios close to the mean

value of Cð0Þaγγ .

B. Experimental constraints

Under the assumptions outlined above, we note that the
anomaly ratios of the DFSZ2 and DFSZ3 models still are
the most notable features in the probability distribution,
even for all possible DFSZ models. However, since only
one value of the anomaly ratio is realized in nature,
reaching sensitivity to these models may be either not
necessary or not sufficient.
Figure 5 shows the resulting theoretical prior probability

of DFSZ-type axion models with jCaγj higher than a
specific value. We break the results down by possible
values of nD. Let us first discuss the “all NDW”-case, in
which the domain wall number does not present a mean-
ingful selection criterion. DFSZ3 models have zero prob-
ability above log jCaγj≳ 0.5. Should an axion be found
above this value that can be determined to be of DFSZ-
type, this would imply the existence of nD > 3 Higgs
doublets. The impact of the prominent peaks of maximal
probability between E=N ¼ −4=3 or E=N ¼ 14=3 on the
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cumulative probability is only minor for theories with
nD ≥ 5. Since the CDFs for DFSZ6 and DFSZ7 are already
almost indistinguishable, we refrain from additionally
plotting our estimates for higher nD. In fact, the relative
difference on jCaγj exclusion limits between our two ways
of estimating the smoothness of the DFSZ8 and DFSZ9

distributions is below the percent level. For the purpose
of jCaγj exclusion limits, the two estimates are therefore
virtually equivalent. In the following, we use limit 2, the
extrapolation estimate.
It is possible to obtain a reasonable analytic estimate

for the cumulative probability distribution by going back to
the analytic anomaly ratio fit from Eq. (25). For jCaγj, it
translates to

pðjCaγjÞ

¼ 1 −
tan−1

h
4
7

�
jCaγj − 19

75

	i
þ tan−1

h
4
7

�
jCaγj þ 19

75

	i
π

;

ð30Þ

which is plotted as a dotted line in Fig. 5.
Now contrast the full set of DFSZ4 to DFSZ7 models

with the respective subsets having NDW ¼ 1. The latter
models could be considered preferred in the postinfla-
tionary scenario due to cosmological energy density argu-
ments (see Sec. II D). NDW ¼ 1models display jCaγj values
almost an order of magnitude higher on average than the
full set and are therefore much easier to detect. Similarly to

the “allNDW”-case, higher nD values tend to have smoother
distributions. It therefore seems reasonable to analogously
introduce our two estimates where the difference with
respect to the jCaγj limits between the two estimates is again
below the percent level. We again use limit 2, the
extrapolation estimate, in the following.
We show Fig. 6 for a comparison of the CDFs for DFSZ-

and KSVZ-type models. In general, both types are very
similar for all jCaγj. Only for DFSZ-type models with

FIG. 6. Cumulative probability of models with jCaγj higher
than the indicated values for the complete set of DFSZ-type
and KSVZ-type models as well as for models with NDW ¼ 1
specifically (thin lines). One sided 95% and 68% limits for both
cases are given with colored vertical dotted lines. The arrows at
the top indicate the location of DFSZ2-I and DFSZ2-II.

FIG. 5. Cumulative probability of models with jCaγj higher than
the indicated values. The plot includes DFSZ-type models of
arbitrary domain wall number NDW with DFSZ3 to DFSZ7 as
well asNDW ¼ 1models for DFSZ4 to DFSZ7 (for smaller nD, no
NDW ¼ 1 models exist). The CDFs become smoother with
increasing nD, with DFSZ6 and DFSZ7 already being almost
indistinguishable. NDW ¼ 1 models have systematically larger
jCaγj, shifted by almost one order of magnitude. The dashed line
indicates the analytic fit on the continuum limit from Eq. (30).

FIG. 7. Probability density in log jCaγ j-space of the combined
DFSZ-type and KSVZ-type “all NDW”-case. Central 68% and
95% regions used for Fig. 8 are indicated in different shades of
yellow. Note that the underlying distribution is discrete, and any
illustration will, in part, depend on the binning chosen.
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FIG. 8. Top: 68%, 95%, and 99% limits for the complete preferred KSVZ case [20], our complete DFSZ case (using extrapolation
for DFSZ8 and DFSZ9) as well as the combined NDW ¼ 1 case. The highest DFSZ-type coupling found is shown in black
(E=N ¼ −1216=3). DFSZ2-I and DFSZ2-II roughly coincide with the 68% limit of the complete DFSZ case and the 95% limit of the
NDW ¼ 1 case, respectively. Bottom: Central 68% and 95% regions for the case combining all preferred KSVZ and all DFSZ models
together with a previous band from Di Luzio et al. [19] for comparison. We show helioscope limits and forecasts [47–49] in green as
well as limits and forecasts from various haloscope experiments [50–93] in purple. For reference, we also show the E=N ¼ 0 and
E=N ¼ 8=3 lines in black. All experimental limits shown here are Frequentist in nature and should therefore only be seen as a rough
comparison with respect to our Bayesian prior results. For the full cumulative probability from which the three limits shown in the top
panel are taken, see Fig. 6, and for the combined probability density from which the band in the bottom panel is derived, see Fig. 7.
(Plotted with tools by O’Hare [94].)

DINE-FISCHLER-SREDNICKI-ZHITNITSKY-TYPE AXIONS … PHYS. REV. D 107, 095020 (2023)

095020-17



NDW ¼ 1 a significant percentage of models is above
log jCaγj ≳ 1.5. The lines of E=N ¼ 2=3 and E=N ¼ 8=3
are clearly visible for DFSZ-type models, but also for
KSVZ-type models. The relative difference between the
68% limits of KSVZ3- and DFSZ-type axions is only ∼3%
and ∼19% for the 95% limits with the DFSZ limit being
higher in the latter case. Taking into account possible
effects from diverging theory assumptions, this relative
difference can be seen as negligible.
While the investigation of different theoretical assump-

tions is beyond the scope of this paper, note that other
assumptions on the full set of models only modify the
relative importance of the prominent DFSZ2 and DFSZ3

peaks. Consider, for example, a different definition of
multiplicity based on minimal potentials. This dramatically
increases their probability mass but does not shift the
overall cumulative probability to higher or lower jCaγj
values. In this sense, any variation of theoretical assump-
tions (excluding model selection criteria) should lie
between the cumulative probabilities of the nD ¼ 2 and
continuum cases.
Translating these limits to gaγ over a range of axion

masses, we obtain Fig. 8 (top). An experimental exclusion
limit touching the 68% line excludes 68% of the prob-
ability mass over the model space under the assumptions
outlined above given a specific mass range. An experi-
ment targeting sensitivity down to the 95% line will be
sensitive to 95% of the probability for all models in the
targeted mass range. We include these and the 99% limit
for DFSZ-type as well as KSVZ-type models and the
combined case of NDW ¼ 1. In black, we also include the

maximal dE=N value we found for DFSZ9. In addition
to being excluded by experiments for a large fraction of
the ma range, this model may likely also be subject to
phenomenological constraints (see Sec. II D).

With this work, it is now possible for the first time to give
values of one-sided limits or axion bands for the combined
KSVZ and DFSZ case, assuming a DFSZ-type axion to
be equally likely as a KSVZ-type one. The associated PDF
for the combined “all NDW”-case is shown in Fig. 7. In
log jCaγj-space with the relatively course binning chosen,
the distributions look roughly Gaussian with the exception
of several notable peaks, at E=N ¼ 5=3; 8=3; 2=3; 14=3,
and −4=3 (from left to right). Note, however, that the true
underlying distribution is comprised out of a multitude of
delta peaks, and thus, is fundamentally discrete. Central
68% and 95% bands from this distribution are used in
Fig. 8 (bottom) together with a previous estimate for the
same band from [19]. Previous work was either limited
to very few extensions of DFSZ-type [19] or the KSVZ
case [20]. Even now, many caveats have to be kept in mind,
like the imprecise prediction for DFSZ8 and DFSZ9 models
or the lack of selection criteria in the DFSZ case.
Acknowledging this, we nevertheless deem it useful to
provide usable data of typical limits and bands for a variety
of scenarios. An overview can be found in Table IV,
and more detailed information is hosted on the website
“zenodo” together with the model catalogs (see end of
Sec. V for links).

V. SUMMARY AND OUTLOOK

The PQ mechanism is the most commonly considered
solution to the strong CP problem, and the appearing
Goldstone boson, the axion, is one of the most promising
dark matter candidates. While the axion solves the strong
CP problem in a model independent way, its low-energy
couplings depend on UV-models. With the booming axion
experimental program, an identification of all these models
within the two large classes of invisible axion models and
the extraction of predictions for experiments are of high
importance. In this work, we have systematically calculated
the axion-photon coupling for a large number of DFSZ-
type models. We give limits that have to be reached in order
to be sensitive to a certain fraction of the probability mass
of these models.
We have started by discussing (phenomenological)

selection criteria, such as the absence of FCNCs and the
DW problem, to extract preferred DFSZ-type models. In
contrast to the KSVZ axions, where all selection criteria
follow from cosmological bounds on additional fermions,
for DFSZ-type axions we have not find criteria with a
sufficient level of generality, merely desirable features.
Next, we have put forth a recipe for calculating all

anomaly ratios and hence all axion-photon couplings.
This recipe is based on the fact that the PQ charges are
not free but fixed by linear consistency and phenomenology
relations. For the sake of calculating the anomaly ratio,
this reduces the procedure of DFSZ-type model building
to solving LSEs. Thus, systematically going through all
Yukawa sectors and solving all possible LSEs for each,

TABLE IV. jCaγj lower prior limits for selected combinations of
models. All limits shown are one sided, so a central 68% band can
be constructed with values given for 16% and 84% and similar for
95%. KSVZ denotes reweighted results from [20], DFSZ results
from this paper. Both are combined with equal probability for the
case Combined. The combination only considering models with
DW number of unity is shown as NDW ¼ 1.

jCaγj 68% band 95% band

One-sided limit 68% 95% 16% 84% 2.5% 97.5%

KSVZ 0.833 0.135 4.684 0.427 15.274 0.068
DFSZ 0.809 0.164 4.529 0.482 19.272 0.08
Combined 0.819 0.148 4.593 0.451 17.285 0.074
NDW ¼ 1 5.294 0.769 22.773 2.733 36.729 0.731

3Again, considering all preferred KSVZ-type models, see [20]
for more information.
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we have derived all possible anomaly ratios for up to seven
Higgs doublets.
In addition, by counting how many models lead to a

certain anomaly ratio and establishing relative probabil-
ities of these models, we have been able to assign
probabilities to each anomaly ratio. For this counting of
models, we have considered as a model the Lagrangian
that arises by combining different potentials that give rise
to the same set of PQ charges and by adding the Yukawa
couplings compatible with the resulting set of PQ charges.
In this way, we have taken into account the general mantra
that all terms allowed by symmetry should be included
and avoid overcounting.
The resulting anomaly ratio distributions have their

median at E=N¼5=3, their maximum values at E=N¼2=3
and E=N ¼ 8=3, and a characteristic shape that is similar
to the one of KSVZ-type models. We have explained these
observations by thinking of the resulting sets of PQ charges
as discrete charge distributions with uniform probability and
symmetry around zero.
While, in principle, our recipe works for an arbitrary

number of Higgs doublets, the necessary computational
time becomes too large for eight or more doublets. Simple
sampling of potential terms leads to a significant bias,
so that we have constructed estimates for nD > 7 based on
the expected smoothness of the distributions. Moreover,
by using an incremental construction procedure, we have
been able to find a maximal anomaly ratio that is more than
a factor of 2 higher than in previous estimates [19].
Regarding the axion experimental program, the anomaly

ratio distributions confirm the experimental importance
of the values dictated by the minimal DFSZ models,
namely E=N ¼ 2=3 and E=N ¼ 8=3, since they are also
favored for every number of Higgs doublets (except nD ¼ 3
with the Weinberg-Glashow-Paschos condition imposed).
However, it also shows that plenty of viable parameter
space lies above and below these lines. Overall, this means
that a nonobservation at these favored values is not enough
to declare the axion excluded, while an observation above
these values would be a hint for more than one additional
Higgs doublet from the DFSZ-type point of view. The
statistical interpretation also reveals that both KSVZ and
DFSZ models set very similar sensitivity requirements on
experiments.
For nD ≥ 4, we have found a subset of models with

DW number NDW ¼ 1, making DFSZ-type models theo-
retically more viable in postinflationary scenarios. This
subset even displays a significantly enhanced axion-photon
coupling compared to the minimal scenarios for both
invisible axion classes, hence making these models on
average easier to probe.
Our analysis can be extended in multiple directions.

For instance, it would be interesting to perform a similar
analysis for models with a right-handed neutrino or KSVZ
and DFSZ hybrid models, namely models with additional

Higgs singlets, Higgs doublets, and heavy quarks. From
our arguments regarding the anomaly ratio from a math-
ematical point of view, even though Eq. (13) would change,
we expect a similar shape of the resulting distributions and
axion mass versus axion-photon coupling exclusion lines.
This expectation does, however, not make an explicit
analysis dispensable. Furthermore, it would be interesting
to investigate other axion couplings, such as the axion-
electron coupling. While the other couplings depend on the
VEVs of the Higgs doublets, which makes the parameter
space higher dimensional, the perturbative range of the top
and bottom Yukawa couplings [95] or phenomenological
constraints could be used to give reasonable limits.
Additionally, it would be desirable to find a better estimate
for the anomaly distribution of eight or more doublets, or
even an unbiased way to calculate it.
Finally, it is interesting to mention that with the identi-

fication and classification of both large classes of invisible
axion models, also a comparison with other classes of axion
models is possible. For instance, there exists the two-form
implementation of the QCD axion [8,96,97]. This intrinsi-
cally is a gauge formulation of the axion, and as such, no
explicit PQ violating processes are possible. This is not true
for the ordinary invisible axion. Hence, should the axion be
detected, PQ violating processes represent an interesting
feature to not only distinguish the two-form axion from the
ordinary invisible axion but to completely eliminate it.
Lastly, it should be said that our analysis is useful for

axion searches irrespective of the statistical interpretation.
By providing all possible E=N values for up to seven
doublets and a full catalog for up to five doublets, in the
case of a detection, one can proceed to do hypothesis
testing with the compatible models. Since all E=N values
for preferred KSVZ models are also known, this could be
used for the purpose of model comparison between these
two model classes.
Hence, with or without a statistical perspective, our work

presents another step forward in the understanding and
mapping of the landscape of axion models.
Our generating code can be found at https://github.com/

jhbdiehl/DFSZforest, the model catalogs and axion limits
and bands together with usable Bayesian theory priors at
https://doi.org/10.5281/zenodo.7656939.
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