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The kinetic mixing (KM) of a dark photon (DP) with the familiar one of the Standard Model (SM)
requires the existence of a new set of fields, called portal matter (PM), which carry both SM and dark sector
quantum numbers, some of whose masses may lie at the TeV scale. In the vanilla KM model, the dark
gauge group is just the simple GDark ¼ Uð1ÞD needed to describe the DP while the SM gauge interactions
are described by the usual GSM ¼ SUð3Þc × SUð2ÞL × Uð1ÞY . However, we need to go beyond this simple
model to gain a better understanding of the interplay between GSM and GDark and, in particular, determine
how they both might fit into a more unified construction. Following our previous analyses, this generally
requiresGDark to be extended to a non-Abelian group, e.g., SUð2ÞI × Uð1ÞYI

, under which both the PM and
SM fields may transform nontrivially. In this paper, also inspired by our earlier work on top-down models,
we consider extending the SM gauge group to that of the left-right symmetric model (LRM) and, in doing
so, through common vacuum expectation values, link the mass scales associated with the breaking of
GDark → Uð1ÞD and the PM fields to that of the RH-neutrino as well as the heavy gauge bosons of the
LRM. This leads to an interesting interplay between the now coupled phenomenologies of both visible and
dark sectors at least some of which may be probed at, e.g., the LHC and/or at the future FCC-hh.

DOI: 10.1103/PhysRevD.107.095014

I. INTRODUCTION AND BACKGROUND

Although strong evidence for dark matter (DM) is known
to exist over many length scales, its fundamental nature
remains a great mystery. In particular, the answer to the
question as to just how or if DMmay interact with the fields
of the Standard Model (SM), apart from via the obvious
gravitational interactions, is most pivotal in our attempt to
understand how the DM may have achieved the relic
density determined by Planck [1]. More than likely, some
new non-SM force(s) must exist to help achieve this result
and one might ask how such new forces and the familiar
ones of the SM may be related (if at all) and if some unified
interaction framework might be contemplated.
Of course these are not new questions and the searches

for the “traditional”DM candidates, such as the QCD axion
[2–4] and weakly interacting massive particles, i.e.,
WIMPS [5,6], continue to push deeper and wider into
parameter space with ever greater sensitivities. So far,
however, these searches by direct or indirect detection
experiments, as well as those at the LHC [7–11], have

produced negative results, thus excluding an ever growing
region of the corresponding allowed model space. Over the
last few years, the long wait for convincing axion and/or
WIMP signatures has led to an ever expanding set of new
ideas for the nature of DM and its interactions with the SM.
In particular, it is now clear that both DM masses and
coupling strengths to (at least some of) the fields of the SM
can both span extremely large ranges [12–17] thus requir-
ing a wide variety of very broad and very deep searches. In
addition, the types of interactions that are possible between
the SM and DM fields have also been found to be quite
numerous and a very useful classification tool to describe
these potential structures is via renormalizable (i.e., dimen-
sion ≤4) and nonrenormalizable (i.e., dimension >4)
“portals.” This approach posits the existence of a new
set of mediator fields which link the SM to the DM and also
possibly to an enlarged, potentially complex, dark sector of
which the DM itself is its lightest, stable member due to the
existence of some new at least approximately conserved
quantum number.
Of the various portals, one that has gotten significant

attention in the literature due to its parameter flexibility is
the renormalizable kinetic mixing (KM)/vector portal
[18–20] scenario which is based upon the existence of a
new dark gauge interaction. One finds that in such a setup,
even in its simplest manifestation and for a suitable range
of parameters, that this scenario allows DM to reach its
measured abundance via the usual WIMP-like thermal
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freeze-out mechanism [21,22]. However, this now occurs
for sub-GeV DM masses by employing this new non-SM
dark gauge interaction that so far have evaded detection.
This simplest and most familiar of these manifestation
assumes only the existence of a new Uð1ÞD gauge group,
with a gauge coupling gD, under which the SM fields are
neutral, thus carrying no dark charges, i.e., havingQD ¼ 0,
and where the new Uð1ÞD gauge boson is referred to as the
“dark photon” (DP) [23,24], which we will henceforth
denote by V or AI depending on context. As noted, to
obtain the observed relic density by thermal means, this
new Uð1ÞD is usually assumed to be spontaneously broken
at or below the∼fewGeV scale so that both the DM and DP
will have comparable masses. This symmetry breaking is
usually accomplished via the (sub-)GeV scale vev(s) of at
least one new scalar, the dark Higgs, in complete analogy
with the symmetry breaking occurring in the SM. Within
such a framework, the interaction between the SM and the
dark sector is generated via renormalizable kinetic mixing
(KM) at the 1-loop level between the Uð1ÞD and the SM
Uð1ÞY gauge fields. The strength of this KM interaction is
then described by a small, dimensionless parameter, ϵ. For
this mixing to occur, these loops must arise from a set of
new matter fields, usually being vectorlike fermions (and/or
complex scalars), here called portal matter (PM) [25–37],
that, unlike the SM fields, carry both SM hypercharge (plus
other model-dependent SM quantum numbers) as well as a
Uð1ÞD dark charge. Subsequent to field redefinitions that
bring us back to canonically normalized fields, after both
the SM and Uð1ÞD gauge symmetries are broken, and
further noting the large ratio of the resulting Z to V masses,
this KM leads to a coupling of the DP to SM fields of the
form ≃eϵQem, up to correction terms or orderm2

V=m
2
Z ≪ 1.

The size of the parameter ϵ is constrained by phenom-
enology to very roughly lie in the ϵ ∼ 10−ð3–4Þ range given
the DM/DP lies within the sub-GeV mass region that leads
to the thermal DM freeze-out mechanism of interest to us
here. One also finds that in such a setup, for p–wave
annihilating DM or for pseudo-Dirac DM with a sufficient
mass splitting, the rather tight constraints arising from the
CMB can also be rather easily avoided [1,38–40] for a
similar range of parameters.
In the conventionally chosen normalization [18,19], with

cw ¼ cos θw, ϵ can be expressed in terms of the properties
of the PM fields themselves appearing in these vacuum
polarization graphs and is given by the sum

ϵ ¼ cw
gDgY
24π2

X
i

ηi
Yi

2
NciQDi

ln
m2

i

μ2
; ð1Þ

where gY;D are the Uð1ÞY;D gauge couplings and
miðYi; QDi

; NciÞ are the mass (hypercharge, dark charge,
number of colors) of the ith PM field. Here, we note that
ηi ¼ 1ð1=2Þ if the PM particle is a chiral fermion (complex
scalar) and the SM hypercharge is here normalized so that

the electric charge is given as Qem ¼ T3L þ Y=2. It is
important to note that in a somewhat more complex
scenario where this effective theory is embedded into a
broader UV-complete setup, such as we will describe
below, this same group theory requires that the sum (for
fermions and scalars separately)

X
i

ηi
Yi

2
NciQDi

¼ 0; ð2Þ

so that one finds that ϵ is both finite and, if the PM masses
and couplings were also known, completely determined
within the more fundamental underlying model.
Clearly it is advantageous to go beyond this rudimentary

effective theory to further our understanding of how this
(apparently) simple KM mechanism fits together in a
single picture with the SM, something that we have
begun to examine in pathfinder mode employing various
bottom-up and top-down approaches in a recent series of
papers [25,26,28–35]. Two specific features of our general
framework are the extension of the Uð1ÞD dark Abelian
symmetry to, e.g., the non-Abelian, SM-like GDark ¼
SUð2ÞI ×Uð1ÞYI

[26] gauge symmetry [41] and the
appearance of at least some of the SM fields in common
SUð2ÞI representations with the PM fields. In such setups,
the PM masses are themselves generally the result of the
GDark → Uð1ÞD symmetry breaking and so, with Oð1Þ
Yukawa couplings, will share a similar overall scale with

the new, heavy, Qem ¼ 0, gauge bosons, denoted by Wð†Þ
I ,

ZI , associated with the broken group generators. This was
seen quite explicitly in Ref. [26] whose PM content and the
GDark ¼ SUð2ÞI ×Uð1ÞYI

gauge group were both inspired
by E6 [42,43]. One can also consider classes of models
wherein the SM gauge group,GSM, is itself extended as was
suggested by the top-down analysis in Ref. [34]. In any
such setup where the SM lepton doublets and PM fields are
found to lie in common representations of that group, it is
easily imagined that there may exist a possible relationship
between the seesaw mass scale that is responsible for
generating small Majorana neutrino masses and that asso-
ciated with the breaking of GDark down to Uð1ÞD and
producing the PM masses. This is perhaps most easily
realized in scenarios loosely described by the product of
gauge groups G ¼ GSM ×GDark under which the DM is a
GSM singlet and GSM already naturally gives rise to a
seesaw mass structure. The most simple, obvious and
familiar example of such a possibility is to consider iden-
tifying the augmented GSM with the Left-Right Symmetric
Model (LRM) [44–48] wherein the usual SM is extended to
G ¼ SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L, which also
has other advantages, e.g., in making it easier to satisfy
anomaly constraints and in obtaining a finite and calculable
value of ϵ as described above. This is the scenario that we
will consider below. As in earlier work, we will employ
GDark ¼ SUð2ÞI ×Uð1ÞYI

[26] as the simplest non-Abelian
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example which can contain an unbroken Uð1ÞD and which
allows for QD ¼ 0 SM fields to lie in common representa-
tions with PM fields which must have QD ≠ 0. Of course,
this choice is hardly unique but its simplicity allows us to
more clearly see the relationship between the right-handed
neutrino/seesaw mass scale and that of PM, where GDark
also breaks.
In order to satisfy our various model building require-

ments, it is far simpler (and more easily UV-completed) to
base our model on a simplified, single-generation version
of the one appearing in Ref. [29] (since here we will not be
addressing any flavor issues) in the following discussion.
Specifically, we’ll be considering an extended version of
the Pati-Salam(PS)-left-right model (LRM) [44] augmented
by a non-Abelian dark sector gauge group as discussed in
Ref. [29], i.e., G¼ SUð4Þc×SUð2ÞL×SUð2ÞR×SUð2ÞI×
Uð1ÞYI

, which we will denote for brevity as 4c2L2R2I1YI
.1

Here it will be assumed that the breaking of SUð4Þc →
SUð3Þc × Uð1ÞB−L occurs at a very large mass scale,Mc ≳
106 TeV or even at the unification scale, so that although
it determines the initial representation structure of the
fermion sector necessary for anomaly cancellation, etc., it
will not have any phenomenological impact on the dis-
cussion that follows below [49]. This setup then implies
that at accessible energy scales below ∼10’s of TeV, the
effective gauge group for our discussion is actually just
Geff ¼ 3c1B−L2L2R2I1YI

. In such a framework, it is now
the two Uð1Þ’s, 1B−L1YI

, which will undergo KM. While
this KM will still manifest itself as a DP which (weakly)
couples like the SM photon at the ≲1 GeV mass scale,
additional coupling terms to SM fields of various kinds will
also be present due to, e.g., mass mixing from the several
steps of symmetry breaking which are necessary before the
≲1 GeV scale is reached and due to the fact that some of
the Higgs fields with vacuum expectation values (vevs)
will carry both SM and nonzero values of QD. As we will
see below, to maintain anomaly freedom in such a setup,
every SM field is now accompanied by two sets of PM
fields with similar SM electroweak quantum numbers,
which will together form a complete SM/LRM vectorlike
family, but whose members will transform differently under
GDark. As we will see in the analysis that follows, the
masses of the PM fields, the mass of the right-handed
neutrino and the breaking scale for all of the new heavy
gauge bosons will all become correlated, intertwining the
physics of the LRM and dark sector gauge groups and
leading to a complex phenomenological structure some of
whose implications we will begin to study below. For
example, we will find that both of the heavy neutral Dirac
PM fields in the model will be split into pairs of pseudo-
Dirac states via Majorana mass terms arising from some of

the same Higgs fields that are responsible for LRM-like
neutrino mass generation.
The outline of this paper is as follows: Following the

present Introduction and Background discussion, in Sec. II
a broad outline of the model framework will be presented to
set the overall stage for the analysis that follows. Section III
will then individually examine the various sectors of this
setup, i.e., the generation of the Dirac and Majorana
fermion masses together with the corresponding mixings
between the PM and SM/LRM fermion fields. The KM and
gauge symmetry breaking which takes place in several
distinct steps at a hierarchy of mass scales and resulting
gauge boson masses and mixings that will be important at
the electroweak scale and below will then be discussed. An
examination of a sample of some of the phenomenological
implications and tests of this scenario will also be presented
along the way throughout this section as part of the model
development, although much of this model still remains to
be explored in future work. A summary, a discussion of our
results, possible future avenues of exploration and our
subsequent conclusions can then be found in Sec. IV.

II. MODEL SETUP AND FRAMEWORK

For our study below, the specific model building require-
ments will be taken to be as follows: (i) Due to the dual
quark-lepton and left-right symmetries of the Pati-Salam
setup, all of the SM fermions will have the need of PM
partners. (ii) The PM fermions, though vectorlike with
respect to the SM/LRM gauge groups, should obtain their
masses at the GDark and/or the GLRM breaking scale. The
combination of (i) and (ii), in fact, implies that there are
now two distinct PM chiral partners, together forming a
single vectorlike fermion, for each SM field as we will see
below. (iii) With an eye toward a possible unification in an
even larger gauge structure, this setup must be automati-
cally anomaly-free and yield a finite and calculable value
for ϵ as described above. These conditions follow auto-
matically from the discussion in Ref. [29] when the
additional family symmetry group is suppressed as will
be the case below. Some additional constraints associated
with the symmetry breaking hierarchy will be subsequently
encountered as we move forward with our discussion.
In terms of the 4c2L2R2I1YI

gauge groups discussed
above and denoting the quantum numbers of the fields by
ð4c2L2R2IÞYI=2, a single fermion generation, here denoted
by F, will consist of the following set of fields [29]:

F ¼ Að4; 2; 1; 2Þ−1=2 þ Bð4; 1; 2; 2Þ−1=2 þ Cð4; 2; 1; 1Þ−1
þDð4; 1; 2; 1Þ−1; ð3Þ

and, recalling that under the breaking SUð4Þc → SUð3Þc ×
Uð1ÞB−L at the very large mass scale, Mc, assumed here,
one has 4 → 31=3 þ 1−1. Thus we see that while the familiar
SM fermions and the RH-neutrino, fL;R, which form the

1As we will see below, we will on some occasions refer to
the product 2L2R as simply 2122 whenever we need to avoid
confusion with respect to the fermion assignments.
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usual LRM doublets under SUð2ÞLðRÞ, lie in the represen-
tations A, B, additional vectorlike (with respect to the
SM/LRM) fermions, here denoted as FL;R, F0

L;R, are also
present. While ðf; FÞTL;R combine to form the 2I doublets,
A, B, respectively, F0

R and F0
L, are both 2I singlets that form

the corresponding representations C and D. It is important
to note that F0

R is a 21ð¼ 2LÞ doublet and a 22ð¼ 2RÞ singlet
while the reverse is true for F0

L. It is this subtle and
somewhat unusual fermion assignment which prevents us
from completely casually referring to 2122 as 2L2R in the
usual manner, though we will with some caution mostly
employ this later notation to make contact with the tradi-
tional LRM setup as long as the careful reader is always
mindful of the subtleties involved. Within this framework,
we see explicitly that the SM fermion fields will all have
QD ¼ 0 while the PM fermions will all have QD ¼ −1.
In such a setup with, e.g., SUð2ÞI acting vertically and
SUð2ÞL acting horizontally, the LH SM fermions will
appear as bidoublets with their unprimed PM partners, e.g.,

�
νL eL
NL EL

�
;

�
uL dL
UL DL

�
; ð4Þ

and similarly for the RH states, while the primed PM states
will be appear purely “horizontal” as they are SUð2ÞI
singlets but SUð2ÞL or SUð2ÞR doublets, e.g., ðN0; E0ÞR;L,
respectively (note the flipped helicities), and ðU0; D0ÞR;L. It
is important to note that while transforming quite differ-
ently under GDark, with the caveats mentioned above, the
(chiral) fields f, F and F0 will all have somewhat similar
transformation properties under the 3c2L2R1B−L combina-
tion of gauge groups since F, F0 together will form a SM
vectorlike copy of the chiral fermion, f.
As seen above, at the level ofGeff ¼ 3c1B−L2L2R2I1YI

, it
will be the two Uð1ÞB−L and Uð1ÞYI

Abelian gauge fields
which will undergo KM due to the now familiar PM loops.
Denoting the B − L and YI kinetically mixed gauge field
strengths as B̃μν, D̃μν, respectively, the KM piece of the
Lagrangian for the two Uð1Þ’s above the 2R2I breaking
scales, MR;I , can be written as

LKM ¼ −
1

4
B̃2
μν −

1

4
D̃2

μν þ
σ

2
B̃μνD̃μν; ð5Þ

where the dimensionless parameter, σ ∼ 10−ð3–4Þ, describes
the strength of the KM. Below, we will connect this
parameter with the familiar ϵ one of similar magnitude
which describes the KM of the DP with the SM photon at
low energy scales. Employing similar notation to the above,
one finds that σ is given by

σ ¼ gB−LgYI

24π2
X
i

ηi
YIi

2

ðB − LÞi
2

Nci ln
m2

i

μ2
; ð6Þ

with gB−L;YI
being the Uð1ÞB−L;YI

gauge couplings with
their associated quantum numbers and that, correspond-
ingly, the requirement

X
i

ηi
YIi

2

ðB − LÞi
2

Nci ¼ 0; ð7Þ

so that the requirement that σ is finite and calculable is
indeed found to be satisfied for the fermion content of the
setup above. Wewill later see that this remains true once the
scalar degrees of freedom are included below as these are
just “products” of the above fermion representations and so
will just have the quantum numbers which are either sums
and differences of those of the A −D fermion fields which
themselves lead to a finite σ. As is usual, since the KM
parameter (in this case σ) is expected to be so small, we can
safely work to linear order in this parameter most of the
time and so we observe that the KM above is removed by
the familiar field redefinitions B̃μν → Bμν þ σDμν, D̃μν →
Dμν and leads to the following interaction structure (in
obvious notation)

gB−L
B − L
2

Bμ þ
�
gYI

YI

2
þ σgB−L

B − L
2

�
Dμ; ð8Þ

where B, D here are simply the associated canonically
normalized gauge fields, and which then will appear as one
of the pieces of the covariant derivative.
For the neutral, Hermitian fields (apart from QCD

which remains exactly as in the SM), the part of the
covariant derivative describing interactions can be sugges-
tively written in the familiar GSM=LRM ×GDark (from
Ref. [26]), but not-quite mass eigenstate, basis as (sup-
pressing Lorentz indices)

Lh
int ¼ eQAþ gL

cw
ðT3L − xQÞZ þ gL

cw
½κ2 − ð1þ κ2Þx�−1=2

× ðxT3L þ κ2ð1 − xÞT3R − xQÞZR

þ gI
cI
ðT3I − xIQDÞZI þ gDQDAI

þ σλgL
B − L
2

ðcIAI − sIZIÞ; ð9Þ

with Q ¼ Qem and, more suggestively, with the replace-
ment V → AI to further heighten the analogy to the SM.
Here, we have introduced the usual SM relationship e ¼
gLsw with swðcwÞ ¼ sin θwðcos θwÞ, etc., as well as the
abbreviations x ¼ xw ¼ s2w, κ ¼ gR=gL and also

λ2 ¼ κ2x
κ2 − ð1þ κ2Þx ¼ κ2xΩ−2; ð10Þ

so that gB−L ¼ gLλ; note the constraint arising from the
requirement of real couplings in that κ is bounded from
below, i.e., κ2 > x=ð1 − xÞ ¼ t2w [50] so that κ ≳ 0.55.
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Similarly, in close analogy to the SM and as we have
employed in earlier work [26], we have also defined
gD ¼ gIsI ¼ eI , with sI being the analog of sw, etc., to
be the Uð1ÞD gauge coupling of the light DP, together with
xI ¼ s2I and QD ¼ T3I þ YI=2 as the usual dark charge
to which the DP couples, again simply completely paral-
leling the SM case. We note that ZI in this setup couples
universally, i.e., independent of flavor or generation, for
all choices of f, F and F0, before the effects of fermion
mixing are included as we will discuss below. The last term
in the above expression is the one arising from the KM
σgB−L

B−L
2

D coupling term in Eq. (8) above but is now
written here more suggestively in terms of the ZI , AI fields.
Similarly, the interactions of the non-Hermitian gauge
bosons,WL;R;I, are controlled by the gauge group coupling
structure which in this same approximate mass eigenstate
basis is given by

Lnh
int ¼

gLffiffiffi
2

p ðTþ
LWþH:c:Þ þ ðL→ RÞ þ gIffiffiffi

2
p ðTþ

I WI þH:c:Þ;

ð11Þ

where Tþð−Þ
L;R;I are the corresponding isospin raising(lowering)

operators for the SUð2ÞL;R;I gauge groups, respectively.

III. ANALYSIS AND PHENOMENOLOGY

To go further, we must address how the various sym-
metries are broken and how the corresponding gauge
bosons and fermions obtain their different masses. In this
construction, ignoring Mc, there are (at least) 3 distinct,
widely separated mass scales. At the highest mass scales,
≳10’s of TeV, the LRMmust break down to the SM (atMR)
and also GDark → Uð1ÞD (at MI), both of which may be
related as we will discuss below. At the ∼100 GeV scale,
the SM undergoes the familiar electroweak symmetry
breaking while Uð1ÞD itself breaks at low energies, i.e.,
∼1 GeV or below. Note the hierarchy of roughly a factor of
∼102 between these three scales so that it is reasonable to
consider them somewhat sequentially and we note that QD
will be a conserved quantity until quite low scales are
reached. Thus the vevs of the Higgs fields which are mainly
responsible for the first two symmetry breaking steps can
only arise from neutral scalar multiplet members also
having QD ¼ 0. This will be important to remember in
the following discussion.

A. Dirac fermion masses

The quantum numbers of the active set of Higgs fields,
H1−4, all assumed to be color singlets and having
B − L ¼ 0, that are needed to generate the various Dirac
fermion masses are easily obtained by taking appropriate
products of the fermion representations A −D above and
can be expressed, i.e., via the Yukawa couplings which
generalizes the usual LRM structure as:

LDirac ¼ ĀLBRðy1H1 þ ỹ1H̃1Þ þ y2ĀLCRH2 þ y3D̄LBRH3

þ D̄LCRðy4H4 þ ỹ4H̃4Þ þ H:c: ð12Þ

where as usual H̃i ¼ iσ2H�
i σ2, with σ2 being the Pauli

matrix, and where the yi, ỹi are Yukawa couplings, so that
the Hi’s ð2L; 2R; 2IÞYI=2 quantum numbers can be easily
chosen to be

H1ð2;2;1Þ0; H2ð1;1;2Þ1=2; H3ð1;1;2Þ−1=2; H4ð2;2;1Þ0:
ð13Þ

Note that we will not necessarily impose any P, C or CP
symmetries as might be the case in the usual LRM on these
Yukawa couplings in the discussion below but for sim-
plicity alone we will assume that all of the couplings and
vevs are real. For the immediate discussion, we will focus
ourselves only on the Higgs vevs which do not break
Uð1ÞD and so all correspond to QD ¼ 0 components of the
Hi. The effects of any small additional terms due to
possible QD ≠ 0 vevs can be added later on as a perturba-
tion upon those which we will now discuss as these are
relatively quite highly suppressed by factors of (at least)
102. Note that we will treat H1 and H4, which are typical
LRM bidoublets, as distinct fields and we will not take H2

and H3 to be the complex conjugates of each other so that
they too are also unrelated fields. Note further that the two
vevs contained in each of H1;4 are of the electroweak scale
while the single vev in each of H2;3 will be at the ∼10 TeV
scale or so and these will lead to the breaking of SUð2ÞI ×
Uð1ÞYI

→ Uð1ÞD as will be discussed later below.
Denoting the generic set of weak eigenstate fermion

fields as F 0
L;R ¼ ðf; F; F0Þ0L;R in the notation employed

above, the vevs within the Hi will then generate a 3 × 3
mass matrix of the form

F̄ 0
LMF 0

R; ð14Þ

whose entries will depend upon the location of the QD ¼ 0
elements within the various Higgs representations and
which can be diagonalized as is usual by a biunitary
transformation

MD ¼ ULMU†
R: ð15Þ

As noted, ignoring the possibility of CP-violation, etc., we
can for simplicity take the elements ofM to be real so that
this 3 × 3matrix can be symbolically (as the 2L2R subspace
itself does not appear here) written, after absorbing the
various Yukawa couplings into the vevs for brevity, as

M ∼
1ffiffiffi
2

p

0
B@

v 0 0

0 v Λ
0 Λ0 v0

1
CA; ð16Þ
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where v, v0 represent generic weak scale vevs ∼100 GeV,
arising from H1 and H4, respectively, and Λ, Λ0 represent
vevs at the ∼10 TeV scale, arising from H2 and H3,
respectively. To clarify, it should be recalled that since
both H1;4 are standard bidoublets in the 2L2R subspace,
v and v0 here are both just symbolic ‘projections’ of the
familiar electroweak scale vevs, k1;2 and k01;2, that we would
usually encounter in the ordinary LRM, where we would
instead write the vevs of H1;4, now in the 2L2R-subspace
language as2

hH1i ¼
1ffiffiffi
2

p
�
k1 0

0 k2

�
; hH4i ¼

1ffiffiffi
2

p
�
k01 0

0 k02

�
; ð17Þ

which, given the coupling structure above, would allow,
e.g., different masses for up- and down-type quarks. Thus
v, v0 can just be thought of as symbolic appropriate linear
combinations of the ki and k0i, respectively, depending upon
the 2L2R transformation properties of the relevant fermion
field. Next, we can easily determine the biunitary trans-
formations needed to diagonalize this matrix, which here
are just (almost) essentially rotations,UL;R, via the standard
relation

M2
D ¼ U†

LMM†UL ¼ U†
RM

†MUR; ð18Þ
whereMD is the resulting diagonal mass matrix. From the
form of M, and the corresponding products with its
Hermitian conjugate, it can be seen that the generated
mixing at this level of symmetry breaking lies totally within
the F − F0 sector in a 2 × 2 sub-matrix and that the mass of
the unmixed SM field, f, is just ∼y1ðy01Þv=

ffiffiffi
2

p
, as is similar

to the LRM/SM.3 With this and the assumptions we made
above we can then replace UL by a simple 2 × 2 rotation
matrix,OL, andUR by a simple 2 × 2 rotation together with
a discrete transformation, i.e., UR ¼ ORP where P is just

P ¼
�
0 1

1 0

�
; ð19Þ

andOL;R are each described by a single mixing angle, θL;R,
which are given in terms of ratios of the vevs v, v0, Λ, Λ0 by

tan 2θL ¼ 2ðΛv0 þ Λ0vÞ
Λ2 þ v2 − Λ02 − v02

;

tan 2θR ¼ 2ðΛvþ Λ0v0Þ
Λ2 þ v02 − Λ02 − v2

; ð20Þ

both of which are of similar magnitude, Oð10−2Þ, given the
anticipated mass scales of the various vevs. These mixing

angles can then be used to describe how the resulting mass
eigenstate fermion fields, here termed f, F1;2 at this stage of
symmetry breaking, will interact with the many gauge
bosons in the current setup, in particular, the heavy gauge
fields associated with the brokenGDark ¼ SUð2ÞI × Uð1ÞYI

generators. For completeness, we note that to leading order
in the squared vev ratios ðv2; v02Þ=ðΛ2;Λ02Þ, the mass
squared eigenvalues for F1;2 are given by the expressions

m2
1;2 ≃

1

2
ðΛ2 þ v2 þ Λ02 þ v02Þ � 1

2
jðΛ2 þ v2 − Λ02 − v02Þj

� ðΛv0 þ Λ0vÞ2
jΛ2 − Λ02j ; ð21Þ

along the lines that we might have expected, i.e., that
essentially m1 ≃ Λ while m2 ≃ Λ0 up to few percent
corrections. Note that before explicitly evaluating these
expressions for the mixing angles and masses, however,
we must appropriately restore all the suppressed Yukawa
couplings, e.g., v → y1ðy01Þv, Λ → y2Λ, Λ0 → y3Λ0, and
v0 → y4ðy04Þv0.
One very simple but important application of this mixing

analysis is to, e.g., identify the PMmass eigenstates sharing
the SUð2ÞI left- and right-handed doublets together with
the SM fields, fL:R, as these allow the PM states to decay
via, e.g., F1;2 → fWI . This is easily done and one finds,
defining cðsÞL;R ¼ cosðsinÞθL;R, that

FL ¼ F1LcL − F2LsL;

F0
L ¼ F2LcL þ F1LsL;þðL → R; F ⇔ F0Þ: ð22Þ

Since the resulting fF1;2WI couplings are nonchiral, one
possible implication of this is that one-loop graphs can
produce a significant effective dipole moment type inter-
action of the SM fermions with AI at 1-loop that can have
important implications for DM searches and associated
phenomenology as was discussed via a toy example in
Ref. [30] but here can realized in a more realistic fashion.
Specifically, comparing with this earlier work, one finds the
scale associated with these dipole couplings to be given by

1

Λf
¼ αD

32πs2I
Σi

GðyiÞ
mi

ðv2i − a2i Þ; ð23Þ

where we have defined the mass squared ratio
yi ¼ m2

i =m
2
WI

∼ Oð1Þ, the loop function GðyÞ [which
numerically is generally also O(1)] is given by

GðyÞ ¼ 3y2
�
−2ðy − 1Þ þ ðyþ 1Þ lnðyÞ

ðy − 1Þ3
�
; ð24Þ

and the v2i − a2i factors can be directly obtained from the
equations above, i.e., v21 − a21 ¼ 4cLsR and v22 − a22 ¼
−4cRsL, respectively, so that the F1;2 loop contributions

2Note that the overall factor of 1=
ffiffiffi
2

p
here is associated with

each of the vevs appearing in this mass matrix.
3Of course in actuality this is really just a weighted sum of the

ki or k0i vevs.
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relatively destructively interfere. For typical choices of the
TeV scale PM and WI masses and associated model
parameters, one might then expect to obtain values for
Λf ∼ 100’s of TeV in the present setup, which is a
phenomenologically interesting range.4

Also, it is interesting to note that since the 2 sets of
fermions with QD ¼ −1, T3I ¼ −1=2, 0 now mix, the F1;2

states will also have off-diagonal, “flavor changing neutral
current” -like couplings to the neutral ZI gauge boson
which will then propagate to the new gauge boson mass
eigenstates that we will describe in more detail below.
Finally, as noted previously, it is important to recall that

when/if at least some of the QD ≠ 0 vevs that are possible
in the Hi are turned on at much smaller scales below
∼1 GeV, the mixing as discussed above will be slightly
perturbed. These new mass terms will be of order
≲10−2ðv; v0Þ so will not alter the results obtained above
very significantly in a numerical fashion except that they
will generate f − F1;2 mixing, which is phenomenologi-
cally important. In particular, we see that both H2;3 can
have such small, ≲1 GeV, vevs, ðλ; λ0Þ= ffiffiffi

2
p

, respectively,
in obvious notation, that will directly couple the LH- and
RH-handed components of f and F0. In the f − F1 − F2

basis obtained above, the resulting perturbed, now almost
diagonal mass matrix will then appear as

MDP
≃

0
B@

mf a b

a0 m1 0

b0 0 m2

1
CA; ð25Þ

where ða; bÞ ¼ y2λðcR;−sRÞ=
ffiffiffi
2

p
and ða0; b0Þ ¼ y3λ0ðsL;

cLÞ=
ffiffiffi
2

p
. Diagonalization of this matrix produces these

f − F1;2 mixings and also slight shifts (to lowest order in
the small parameters) the fields such as fL → fL þ
aF1L=m1 þ bF2L=m2, F1L → F1L − af=m1, etc., so that
AI can now couple off-diagonally to the f and F1;2 mass
eigenstates in a generally parity violating, yet nonchiral
manner, i.e.,

−
gD
m1

F̄1γμðaPL þ a0PRÞfAμ
I þ ð1 → 2; a → bÞ þ H:c:;

ð26Þ

which then allows for the dominant decay paths
F1;2 → fAI . Recall that this decay mode is always found
to be the most important one for the PM fields in
comparison to other decay paths generated by such mixings
for more conventional vectorlike fermions such as F →
fZ; fH or F → f0W. Although all of these decay modes

are apparently suppressed by rather small mixing
angles and/or mass ratios, the amplitude for the decay
into the DP is also enhanced by large factors of
m1;2=MAI

≫ 1 through the longitudinal couplings of
the DP. Numerically, this enhancement can compensate
rather completely for the presence of the small mixing
angles. In particular, this is quantitatively similar to the
results found in Refs. [25,26] in slightly different
contexts and leads to rapid PM decays generated by
via the application of the Goldstone boson equivalence
theorem [51] applied in the scalar sector and/or the
dominance of the longitudinal modes of the AI (i.e., the
equivalent of the Goldstone boson) since the PM
fermion masses m1;2 are so much larger than that of
AI itself. In the likely event that the DP appears in
collider detectors as MET, the signatures for pair
production of these PM states will then be observable
pairs of SM states, eþe−, μþμ−, b̄b, t̄t, etc, accom-
panied by this MET in a manner qualitatively similar to
those employed in SUSY searches.5

It should be noted that WI , W
†
I will also pick up a

diagonal coupling to f̄f via this same tiny mixing,
∼ða; a0Þ=m1 ∼ 10−4, but which in this case is not offset
by a large longitudinal enhancement in any decay process
and so is not likely to be of much phenomenological
relevance in, e.g., the single resonant production ofWI,W

†
I

gauge bosons at colliders.

B. Neutral fermion Majorana masses

When we consider the Qem ¼ 0 leptonic components of
F , i.e., ν, N, N0 in the weak basis, they can be ‘self-
coupled’ in a manner such that these neutral, neutrinolike
fields may all obtain Majorana masses from the vevs of
suitably chosen Higgs scalars which will carry jQDj ¼ 0, 1
or 2, e.g., via the Yukawa structure

LMajorana ¼ zL1 Ā
c
Liσ2ALΔL þ zL2 D̄

c
Liσ2DLΔ̃L

þ zL3 Ā
c
Liσ2DLXL þ ðA → B;D → C;L → RÞ

þ H:c: ð27Þ

where the zL;Ri are new Yukawa couplings, σ2 is the Pauli
matrix as above andΔL;R, Δ̃L;R and XL;R are the appropriate
Higgs fields, whose active, color-singlet components that
will concern us here will now all carry jLj ¼ 2.6 The
quantum numbers of these Higgs representations in terms
of ð2L; 2R; 2IÞYI=2 are easily seen to be just given by

4Note that in addition to the WI contribution to Λf discussed
here, there are also potential contributions arising from both
CP-even and CP-odd Higgs scalar exchanges which can also
yield results of a similar magnitude.

5For an overview of the current LHC PM search limits and
future prospects, see Ref. [31]; current limits range from 0.9 to
1.5 TeV depending upon the PM flavor.

6Recall that F0
L;R is a doublet under SUð2ÞR;L and a singlet

under SUð2ÞL;R.
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ΔLð3; 1; 3Þ1; Δ̃Lð3; 1; 1Þ2; XLð2; 2; 2Þ3=2;þðL → RÞ;
ð28Þ

so that while ΔLðRÞ and Δ̃LðRÞ are SUð2ÞLðRÞ isotriplets,

XL;R are bidoublets of SUð2ÞL;R.7 Further, ΔL;R ½Δ̃L;R� are
SUð2ÞI triplets [singlets] while XL;R are SUð2ÞI doublets.
Given these quantum numbers we see that the vevs of all of
the neutral component fields contained in any of the Δ̃L;R

and XL;R will be associated with a nonzero value ofQD thus
will necessarily lead to a breaking of Uð1ÞD. Thus these
vevs must be quite small, i.e., certainly ≲1 GeV or so and
will be ignored at the present stage of the discussion but
will be returned to below. Meanwhile, only one component
in each ofΔL;R has bothQem ¼ QD ¼ 0 and so can obtain a
vev without breaking Uð1ÞD and these can be identified
with the familiar triplet vevs, vL;R=

ffiffiffi
2

p
ignoring potential

phases, commonly appearing in the LRM. As is usual in
that framework and for all the familiar reasons, e.g., ρ or
oblique T parameter constraints [44–48], we will assume
here that vL ≪ vR with vR setting the breaking scale for the
LRM, MR. In fact, given such constraints, one might
imagine that if vL is nonzero, its maximum value cannot
be too dissimilar from the various possibleQD ≠ 0 vevs we
will later consider below. As above, we will not explicitly
impose any P, C or CP symmetries on these vevs or
Yukawa couplings but we will for simplicity of our
discussion assume that all of them are real.
One difference between the current setup and the classic

LRM scenario, however, is that both of these QD ¼ 0
allowed vevs, vL;R, arise from fields which are seen to also
be SUð2ÞI triplets and as such these vevs will also lead to
the breaking of SUð2ÞI ×Uð1ÞYI

→ Uð1ÞD. Comparing
this to the discussion in the last subsection, we now
observe that there are two limiting possibilities obtained
by comparison of these multi-TeV scale vevs: if vR ≫ Λ;Λ0
then the SUð2ÞI ×Uð1ÞYI

→ Uð1ÞD breaking scale is also
set by vR and so MI ≃MR. However, if vR ≪ Λ;Λ0, then
we instead find that MR ≪ MI and thus it must be so that
MR ≤MI is always satisfied in the present model setup.
Generically, without tuning we might expect to end up in
the middle of these two extremes so that all of these vevs
are semiquantitatively comparable and we will treat them in
all generality as such in the analysis that follows in the next
subsection when we discuss the nature of the various gauge
bosons masses, etc., in the current setup.
Given this discussion it is clear that only one large

Majorana fermion mass term can be generated at this
QD ¼ 0 level and this is due to vR since all of the other
potentially contributing vevs are constrained to be very
small, at the GeV level or below. This implies that at or

above the mass scale of SM electroweak symmetry break-
ing, ∼100 GeV, the neutral fields N, N0 will mix as
described above to form the two Dirac mass eigenstates,
N1;2, while νL − νR will form a Majorana mass matrix as in
the LRM with the conventional seesaw mechanism being
active via the hierarchal vL ≪ v, v0 ≪ vR vevs. This
decoupled picture will, however, be slightly perturbed
once the set of additional, small lepton-number violating,
QD ≠ 0 vevs get turned on. In particular, those associated
with the T3LðRÞ ¼ 1 members of Δ̃LðRÞ, i.e., Δ̃0

LðRÞ=
ffiffiffi
2

p
, and

those of the corresponding T3LðRÞ ¼ 1, T3I ¼ −1 members

of ΔLðRÞ, i.e., v00LðRÞ=
ffiffiffi
2

p
, will turn out to play the dominant

roles since these are both jQDj ¼ 2 fields which are
obtaining vevs and, as we will see, produce mass terms
that also lie along the diagonal of the Majorana mass
matrix.
Within this setup, it is important to emphasize that while

WL;R will couple linear combinations of the Ni with their
isodoublet PM partners, EL;R, and, correspondinglyWI will
couple them to νL;R, there is no directOð1Þ tree-level gauge
coupling of the Ni to the usual SM leptons, e.g., eL;R. This
renders the study of the nature and properties of these
interesting neutral PM states at colliders somewhat prob-
lematic since conventionally we need light charged leptons
as decay products and/or coproduced states to probe the
e.g., Dirac vs Majorana nature of any new heavy neutral
lepton. Heavier gauge bosons that would play this poten-
tially important role would need to live within a larger
gauge group, G0, within which SUð2ÞI and SUð2ÞL=R were
unified with the possibilities of such a group to be
discussed elsewhere.
Returning now to the Majorana masses themselves, in

the original weak eigenstate basis, i.e., νL, NL, N0
L þ

ðL → RÞ, the full 6 × 6 Majorana mass matrix for the
neutral fermions can be symbolically written as

MMaj ¼
�
ML M

M† MR

�
; ð29Þ

where M is the 3 × 3 Dirac fermion mass matrix given
above in the previous subsection and

ML ¼ 1ffiffiffi
2

p

0
B@

zL1vL zL1v
0
L zL3 xL

zL1v
0
L zL1v

00
L zL3 x

0
L

zL3 xL zL3 x
0
L zL2 Δ̃

0
L

1
CA; ð30Þ

with the elements of MR given by the same expressions
but with L → R. The not previously mentioned remaining
QD ≠ 0 vevs that appear here correspond to the T3LðRÞ ¼ 1,

T3I ¼ �1=2 vevs, ðxLðRÞ; x0LðRÞ=
ffiffiffi
2

p
, of XLðRÞ and the

T3LðRÞ ¼ 1, T3I ¼ 0 vevs, ∼v0LðRÞ=
ffiffiffi
2

p
, of ΔLðRÞ. Note that

in the absence of any of the small jQDj ¼ 1 vevs, the SM/
LRM fields, νL;R, and the neutral, N, N0, PM sector fields

7Note that, in all generality, we allow XL and XR to be different
scalar fields for this discussion but this need not be the case.
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will become completely decoupled. After diagonalization,
the most important effect of the previously noted jQDj ¼ 2
vevs that live along the diagonal of MMaj, to leading
order in the small vev ratios, is to split both of the heavy
N1;2 Dirac states into pairs of quasi-Dirac/pseudo-Dirac
ones [52], i.e., Ni → N�

i . The corresponding masses,
mi → mi � δmi=2, where the δmi are just linear combina-
tions of these four vevs along the diagonal with their
associated Yukawa couplings. Note that for Ni masses in
the expected range of roughly mi ∼ 1–10 TeV, the corre-
sponding fractionalmass splittings will then be expected to
be only of order ≃Oð10−ð3–4ÞÞmaking these splittings quite
difficult to discern experimentally since the Ni are not
directly connected to the charged SM fermions via a direct
gauge interaction. By this we mean, as was noted above,
that while the WL;R gauge boson will connect the Ni to the
charged PM fields, EL;R, and the WI gauge bosons will
connect them to the νL;R fields, there are no gauge bosons in
this setup that will connect the Ni directly to, e.g., e�
making the Majorana nature of the Ni quite difficult to
ascertain. It is important to remember that to leading order
in the small mixing angles, the Ni will dominantly decay as
N1 → νLAI and similarly, N2 → νRAI, if it is kinematically
allowed, which are induced by both fermion and, as we will
see below, gauge boson mixing so that the conventional
vectorlike leptonic decay modes into, e.g., eW, are usually
quite suppressed. However, if the decay through νR is not
kinematically allowed then the νLAI mode still remains
open but this is suppressed by a factor of ≃s2L;R ∼ 10−4 in
rate. Instead, the 3-body decay through a virtual νR and/or
E may become important and this also leads to a visible
final state, i.e., not just missing energy from SM neutrinos
and DPs.
As was discussed in Ref. [52], it was noted that the ratio

ρ ¼ ðδmi=ΓiÞ2, where Γi is the Ni total decay width, is,
in principle, an excellent probe of the Majorana/Dirac
nature of such new neutral heavy leptonic states. From
the arguments above, we already expect that δmi=mi ≲
10−ð3–4Þ whereas the ratio Γi=mi arising from the dominant
decay into the νLAI final state is roughly ≲10−ð2–3Þ
implying that ρ may be relatively small for much of the
model parameter space. A more detailed analysis of this
possibility, however, lies beyond the scope of the current
discussion.
We leave a further study of these effects to future work.

C. Gauge boson masses and mixings

The couplings of the many gauge bosons to the various
fermions introduced above depend not only upon the
mixings between these fermions states as already discussed
but also on the KM and mass mixings among the gauge
fields themselves which we will now consider.
The gauge bosons masses and mixings are rather com-

plex in this scenario due to the presence of both KM as well

as mass mixing at multiple Higgs vev-induced breaking
scales. However, since these scales are widely separated by
roughly 2 orders of magnitude, we can treat them in stages
one at a time in a perturbative manner. It is natural that we
will begin this analysis by working in the convenient and
suggestive basis described by Lh

int and Lnh
int above and first

consider the effects of the largest vevs, vR, Λ and Λ0,
neglecting the effects of KM, upon the real, Hermitian
gauge fields. At this level, only the ZR and ZI fields can
obtain masses so that in this 2 × 2 subspace one obtains a
mass squared matrix of the form

M2
RI ¼ ðgLcwzvRÞ2

�
1 γ

γ γ2ð1þ RÞ

�
; ð31Þ

where

z ¼ κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − ð1þ κ2Þx

p ¼ κ2Ω−1; γ ¼ gI=cI
gLcwz

;

R ¼ Λ2 þ Λ02

4v2R
; ð32Þ

and which can be diagonalized by a rotation to the Z1;2

mass eigenstate basis described by an angle

tan 2θγ ¼
2γ

1 − ð1þ RÞγ2 ; ð33Þ

so that ZR ¼ cγZ1 − sγZ2, etc., in obvious notation. We
note that for R; γ ≃ 1 and Oð1Þ Yukawa couplings, the PM
fields, νR and Z1;2 all will have quite comparable masses in
the ∼ several TeV range.
Note that in terms of, perhaps, the more fundamental

quantity, r ¼ ðgI=cIÞ=ðgL=cwÞ, that we employed in our
earlier work [26], and which describes the overall coupling
strength relative to that of the SM Z, the ratio γ=r is found
to be purely a function of κ and is always≲1.04 as is shown
in the top panel of Fig. 1.
Without any prior input we expect that the mixing

angle θγ to be Oð1Þ so that both Z1;2 can now have
substantial couplings to the dark sector fields carrying
QD ≠ 0 which may lead to important phenomenological
implications. The resulting mass-squared eigenvalues
(always with MZ1

≥ MZ2
) are now given by

2M2
Z1;2

ðgLcwzvRÞ2
¼ 2λ21;2 ¼ 1þ γ2ð1þ RÞ � ½ð1þ γ2Þ2

− 2γ2ð1 − γ2ÞRþ R2γ4�1=2: ð34Þ

Here, the λi (with λ1 ≥ λ2) can be thought of as the masses
of these new heavy neutral gauge bosons scaled in
comparison to that of the conventional LRM expectation
“reference” value for MZR

, i.e., M2
ZR

¼ ðgLcwzvRÞ2 ¼ M2
0.
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It is to be noted thatM0 is itself a function of the parameter
κ and can vary significantly as the value of κ changes; this
dependence can be seen in the middle panel of Fig. 1. Here
we observe that M0 diverges as κ approaches its minimum

value, ≃0.55, and that it grows linearly with κ for larger
values ≳1. The lower panel of this same figure displays the
R, γ dependence of both sγ and cγ; note that very substantial
mixing occurs even for values of γ below unity. While sγ
grows linearly with γ for small values, it rapidly asymptotes
to unity; on the other hand, cγ falls like 1=γ for large values.
Figure 2 shows how these scaled Zi masses, the λi, vary

as functions of the coupling ratio γ for fixed values of the
Higgs vev ratio, R. For large values of γ, λ1 is found to grow
asymptotically as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ RÞp
γ. Note that λ2 vanishes when

γ ¼ 0, since the relevant gauge coupling then vanishes, and
it then asymptotes at large values of γ to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=ð1þ RÞp

. Here
we see, e.g., that the Z2 is always significantly lighter than
Z1 so it is likely to be much more kinematically accessible
to collider searches (for fixed M0) although both fields
generally have qualitatively distinct couplings over much of
the parameter space as we will find below.
If κ ≃ R ≃ 1 and γ is relatively small so that we are

not too far from the LRM limit and only decays to the
SM fermion final states are kinematically allowed, then,
employing the results from the 13 TeV, 139 fb−1 search by
ATLAS [53], we find that, e.g., the Z1 is constrained from
searches from the combined eþe− þ μþμ− dilepton channel
to lie above roughly ≃4.9–5.1 TeV. This constraint may
increase by ≃10–15% or so as the LHC integrated
luminosity is increased to 3 ab−1 [54] if no signal is found.
Of course, if these various assumptions are significantly
relaxed, the present search reach will extend over a
significantly larger range of masses. For the Z1, other
regions of the parameter space can generally lead to
stronger constraints than the one obtained in the LRM
(always under the assumption that only decays to SM final
states are kinematically allowed) as both the couplings to
the SM quarks as well as the Z1 leptonic branching fraction
all increase with corresponding increases in values of γ.
This result for the present Z1 search limit, assuming the
validity of the narrow width approximation (NWA), is
demonstrated in the upper panel of Fig. 3 where the choice
κ ¼ 1 is maintained but both R, γ are allowed to vary. If
additional decay modes are present, clearly the Z1’s
branching fraction to SM leptons will diminish by, certainly
at least,Oð1Þ factors which will degrade the search reach in
this channel somewhat but this may be partially compen-
sated for by the additional alternate search channels that
now become available. Similarly, to the Z1 example, the
mass of the Z2 is also constrained; however, in that case, as
γ → 0, the couplings of the Z2 to SM states all vanish so
that the bound then disappears. Of course, for larger values
of γ, a respectable bound is obtained as the relevant
couplings (initially) grow rapidly and this is shown in
the lower panel of Fig. 3 under the same assumptions as
were previously made for the Z1. Since the Z2 couplings
saturate as γ gets large, with sγ → 1 and γcγ scaling
approximately as ∼ð1þ RÞ−1 independently of γ; here
we see that the resulting bound flattens out in this parameter

FIG. 1. The ratios γ=r (Top) and M0ðκÞ=M0ð1Þ (Middle) as
functions of κ as described in the text. (Bottom) sγ (solid) and cγ
(dashed) as functions of γ for values of the vev ratio R ¼ 0.3
(red), 1 (blue) and 3 (green), respectively.
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space region. Of course, once γ becomes too large,
depending upon the values of the other parameters, our
reach estimate based on the NWA will fail as the Zi’s will
become too wide and thus the signal to background ratio
under the resonance will drop significantly so that the
limit obtained here will clearly overestimate the true bound
by a potentially significant factor and a far more detailed
analysis will then be required.
It is also possible to extrapolate these results for the Z1;2

mass reaches to the case of the 100 TeV FCC-hh by
following the dilepton analysis as presented in Ref. [54],
here assuming an integrated luminosity of 30 ab−1. The
results of this analysis, with the same assumptions as in the

FIG. 3. Approximate present lower bound on the (top) Z1 and
(bottom) Z2 masses assuming only decays to SM fermion final
states are kinematically accessible, as discussed in the text, as a
function of the parameter γ obtained by employing the dilepton
search results from ATLAS [53]. The red (blue, green) curves
correspond to R ¼ 0.3ð1; 3Þ, respectively, and, for demonstration
purposes, all curves assume that κ ¼ 1 as well as the applicability
of the narrow width approximation.

FIG. 2. The scaled masses of the Z1;2 gauge bosons,
MZi

¼ M0λi, as described in the text, as functions of γ for values
of the vev ratio R ¼ 0.3 (bottom red), 1 (middle blue), and 3 (top
green), respectively. The top (middle) panel shows the result for
Z1ð2Þ while the lower panel show the corresponding gauge boson
mass ratio. Note that all κ-dependence of these masses lies in the
M0 prefactor.
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case of the LHC are displayed in Fig. 4, and unsurprisingly
show the same overall qualitative behavior as was seen
above although at a significant higher mass scale. The same
words of caution with respect to the applicability of the
NWA will apply in this case as above.
Correspondingly, at this same mass scale of symmetry

breaking, in the complex, non-Hermitian sector, we find the
relatively simple results for the gauge boson mass eigen-
values to be

M2
WR

¼ 1

2
κ2g2Lv

2
R; M2

WI
¼ 1

2
g2I v

2
Rð1þ 2RÞ; ð35Þ

which, of course, cannot mix together as QðW�;Wð†Þ
I Þ ¼

�1, 0 while WI also carries jQDj ¼ 1. The WR appearing
here is just the usual one present in the LRM, except now
for possible decay modes into heavy PM states and that its
mass is no longer directly correlated in a simple manner

with that of either of Z1;2, for which many searches exist in
multiple final states under various assumptions.8 We note,
however, that more indirectly, since all of the gauge boson
masses are essentially determined by the values of
κ; γ; cI=cw and R, some correlations will exist especially
in certain limits, e.g., at large values of γ when Z1 is mostly
ZI ,MWI

is linearly proportional toMZ1
. Roughly speaking,

these lower bounds on the WR mass for κ ¼ 1 from these
various LHC searches hover in the 4.0–5.7 TeV range
depending upon the search channel and will likely be
improved upon somewhat by HL-LHC. Similarly, the mass
of the WI is no longer directly correlated in a simple way
with that of either Z1;2, e.g., MWI

¼ cIMZI
, yet still must

decay, if kinematically allowed, into a, fF1;2, i.e., a SMþ
PM final state or, if this kinematically forbidden, into
the f̄f þ AI final state as discussed in Ref. [31]. At the
LHC, the WI can be made in pairs via qq̄ annihilation via
s-channelZ1;2 exchange (plus t-channelQ1;2 PMexchange),
in association with AI (also via t−; u-channelQi exchange),
or in association with a Q1;2 PM field in gq fusion as was
discussed in some detail in Ref. [26]. The situation here is
slightly different, however, in that the q ¼ u channel for
associated production is now also open. SinceWI decay (to a
very good approximation) necessarily involves PM fields,
the search reaches for these states are much more model-
dependent than are those for the other gauge bosons that we
have so far discussed. Clearly, since WI production itself
generally involves other heavy states at some level, the WI
search reaches are clearly suppressed in comparison to those
for the more well-studied WR.
To get an idea where these two non-Hermitian gauge

boson masses may lie relative to the those of the Zi
discussed above, Fig. 5 shows both MWR

=M0 as a function
of κ (as it is independent of both γ and R) andMWI

=M0 as a
function of γ (since it is independent of κ) for different
values of R assuming that an additional overall scaling
factor of cI=cw ≲ 1.14 appearing in this mass ratio has been
set to unity. Here we see that while both WR and WI
generally lie somewhat close to the Z1;2 in mass, it is
difficult to make too many universal statements that
might be useful, e.g., for resonance searches and/or model
testing purposes at the LHC. One obvious condition we
observe is that the WR is always lighter than Z1, being
somewhat closer to the Z2 in overall mass range. Indeed,
for a respectable fraction of this parameter space the
decay Z1 → Wþ

RW
−
R is kinematically allowed. On the other

hand, for much of the parameter space examined here, the
WI is close to, but is always below, the Z1 in mass even
when the ratio cI=cw takes on its maximum allowed value
of ≃1.14.
We next turn to the symmetry breaking which occurs

at the electroweak scale, this time first examining the

FIG. 4. Same as the previous figure, but now for the 100 TeV
FCC-hh assuming an integrated luminosity of 30 ab−1 following
Ref. [54].

8For a selection of such searches, see Refs. [55,56].
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non-Hermitian sector which is somewhat simpler as WI
is unaffected by the relevant electroweak scale vevs of
the H1;4. The situation in the charged W −WR sector is
essentially the same as in the LRM so we can be quite
brief. Recalling the bidoublet discussion above when
these are projected back into the 2L2R subspace (i.e., the
usual LRM subspace), one now generates a mass for the
SMW, a shift in theWR mass, as well as a mixing between
these two states as usual as can be seen from the 2 × 2mass
matrix:

M2
WWR

¼
�

M2
W βWM2

W

βWM2
W M2

WR
þ κ2M2

W

�
; ð36Þ

where M2
WR

is as given above and

M2
W ¼ 1

4
g2Lðk21 þ k22 þ k021 þ k022 Þ;

βW ¼ κ
2ðk1k2 þ k01k

0
2Þ

k21 þ k22 þ k021 þ k022
: ð37Þ

This mass squared matrix can be diagonalized via a mixing
angle (which we might expect to be ∼10−ð3–4Þ) given in the
notation above by

tan 2ϕW ¼ −2βWM2
W

M2
WR

þ ðκ2 − 1ÞM2
W
; ð38Þ

to form the mass eigenstates W1;2 given by W ¼ cϕW
W1 −

sϕW
W2, etc., and whose corresponding mass-squared

eigenvalues are given by

2M2
W1;2

¼ M2
WR

þ ðκ2 þ 1ÞM2
W

� ðM4
WR

þ 2M2
WM

2
WR

ðκ2 − 1Þ
þM4

W ½4β2W þ ðκ2 − 1Þ2�Þ1=2: ð39Þ

The resulting leading order fractional downward shift in the
SM W mass due to this mixing is then found to be very
roughly of the samemagnitude as the mixing angle, ϕW , i.e.,

δM2
W

M2
W

≃ −β2W
M2

W

M2
WR

: ð40Þ

We next examine the corresponding symmetry breaking
in the Hermitian gauge boson sector at the electroweak
scale where the situation is a bit more complex. Employing
the SM relationM2

Z ¼ M2
W=c

2
w and recalling theOð1Þ para-

meter combination employed above, Ω2 ¼ κ2 − ð1þ κ2Þx,
in the now Z − Z1 − Z2 basis the relevant 3 × 3 mass
squared matrix now becomes

M2
Z;Z1;Z2

¼

0
BB@

M2
Z −M2

ZΩcγ M2
ZΩsγ

−M2
ZΩcγ M2

1þðMZΩcγÞ2 −M2
ZΩ2sγcγ

M2
ZΩsγ −M2

ZΩ2sγcγ M2
2þðMZΩsγÞ2

1
CCA;

ð41Þ

where M2
1;2, sγ, etc., are all as defined above. To leading

order in the small ratios M2
Z=M

2
1;2, the most important

effects that result from the Z − Z1;2 mixings via the angles,

θZZ1;2
≃ΩM2

Z

�
−cγ
M2

1

;
sγ
M2

2

�
; ð42Þ

respectively, are to slightly reduce the SM Z mass (but only
by fractional factors ∼10−ð3–4Þ which are also the expected
sizes of these mixing angles), i.e.,

FIG. 5. Top: theWR mass, which is independent of the values of
γ, R, in units of M0 as a function of κ. Bottom: the WI mass,
which is κ-independent, in units ifM0 as a function of γ for values
of the vev ratio R ¼ 0.3 (bottom red), 1 (middle blue) and 3 (top
green), respectively. Note that this value must be further rescaled
by the ratio cI=cw ≤ 1.14 which we have taken to be unity here
for demonstration purposes.
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δM2
Z

M2
Z
≃ −Ω2M2

Z

�
c2γ
M2

1

þ s2γ
M2

2

�
¼ −Ω2

M2
Z

M2
0

1þ R
R

; ð43Þ

and to allow this (almost) SM Z state to now pick up, at
this mixing suppressed level, some of the couplings
associated with both ZR;I , e.g., a coupling to RH-neutrinos
as well as to the set of dark sector fields which have
QD ≠ 0. It should be noted that over almost all of the model
parameter space, one finds that jδM2

Zj > jδM2
W j, employing

the result obtained above and this may be of some interest
given the recent W boson mass measurement by CDF II
[57] due to the relative displacement of the two mass
eigenstates induced via this mixing.
The final stage of symmetry breaking at or above the

electroweak scale arises from the effects of both the KM
and the rather large set of all the possible QD ≠ 0 vevs that
may be nonzero in the various Higgs scalar representations
we have introduced above; wewill deal with the KM effects
first. In the Hermitian sector, following the notation above
and now accounting for the effects of the ∼10 TeV scale
mass mixing discussed previously, the KM-induced inter-
action term in Eq. (9) above now appears in terms of the
approximate mass eigenstates as

Lh
intðKMÞ ¼ σ

gLswκ
Ω

ðQem − T3L − T3RÞ
× ½cIAI − sIðcγZ2 þ sγZ1Þ�; ð44Þ

with the further effects of the Z − Z1;2 mass mixing at the
electroweak scale being additionally suppressed by factors
of order θZZ1;2

that can be safely numerically neglected.
Recalling the dimensionless parameters λ1;2 from above,
we see that largest mass mixing term generated by this
interaction arises unsurprisingly from the T3I ¼ T3R ¼ 1,
T3L ¼ 0 vev, vR, resulting in the induced mass mixing of AI
with the Z1;2 via both new diagonal and off-diagonal terms
given by

θAIZ1;2
≃ −

σtwcI
κ

�
cγ þ γsγ

λ21
;
γcγ − sγ

λ22

�
; ð45Þ

which are expected to be roughly ∼10−4 or so, such that to
leading order in the small parameters, one essentially finds
the corresponding shifts in the fields

AI → AI þ
X
i

θAIZi
Zi; Zi → Zi − θAIZi

AI; ð46Þ

result in the diagonalization of the perturbed mass squared
matrix. This implies that both Z1;2 pick up some KM-
suppressed interactions to T3I ¼ 0, QD ≠ 0 states that they
might otherwise not have coupled to, while the AI
correspondingly picks up KM-suppressed couplings to
the SM fields with nonzero values of T3ðL;R;IÞ and/or
Qem which all have QD ¼ 0. Combining the θAIZi

-induced

couplings here with those in Eq. (40) (and recalling that the
AI direct coupling to QD is already present at leading
order), after some algebra we now find that the total KM-
induced coupling for AI at this stage of symmetry breaking
to SM/LRM states is explicitly given by (and recalling from
above that κ2 > t2w)

σgYcI

�
1 −

t2w
κ2

�
−1=2

�
ðα − 1ÞT3R þ

�
1 −

αt2w
κ2

�
Y
2
þ βγT3I

�
;

ð47Þ

where γ is given above, gY is the usual SM hypercharge
coupling and, in terms of the previously defined parame-
ters, one finds that the coefficients α, β are given by

α ¼ c2γ þ γsγcγ
λ21

−
γsγcγ − s2γ

λ22
;

β ¼ γs2γ þ sγcγ
λ21

þ γc2γ − sγcγ
λ22

: ð48Þ

Note that in the pure LRM limit, i.e., γ, sγ, β → 0 so that
also cγ , α → 1, the DP coupling is easily seen to be only to
the SM hypercharge at this stage of symmetry breaking as it
would be in the familiar Uð1ÞD DP model. In this same
limit we would then easily identify the usual ϵ parameter of
the Uð1ÞD model to be given by

ϵ ¼ σcwcIð1 − t2w=κ2Þ1=2: ð49Þ

Interestingly, using the definitions above, after some
lengthy algebra one finds that the relations α ¼ 1, β ¼ 0
are always satisfied so that the AI in this setup indeed only
has KM-induced couplings to the QD ¼ 0 sector via the
SM hypercharge as in the usual Uð1ÞD model.
The mass of AI , i.e., MAI

, which we have not yet
discussed in any detail as, before any potential mixing
effects, it arises solely from the QD ≠ 0 vevs, is found not
to be shifted to leading order in the small parameters by
KM but it is possible that the quadratic terms of order σ2M2

0

can potentially be present and could be numerically
significant in some regions of the parameter space as we
expect σ ∼ ϵ ∼ 10−ð3–4Þ and M0 is relatively quite large, at
least several TeV. In order to address this potential problem,
we must return to the analysis above and re-examine the
full 3 × 3, ZR − ZI − AI mass-squared matrix including
these new terms that are now generated by KM:

M2
0

0
B@

1 γ −q
γ γ2ð1þ RÞ −γq
−q −γq M̃2

AI
þ q2

1
CA;

q ¼ σtwcI
κ

; M̃AI
¼ MAI

=M0: ð50Þ
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Combining all of the contributions to the squared AI mass,
one finds that, fortunately, the terms which are quadratic in
σ completely cancel so that the DP mass still only arises
from the vevs of the QD ≠ 0 scalars that we will discuss
later below. This is a generalization of the well-known
result that occurs in the simple Uð1ÞD scenario.
Next, we consider whether or not AI and Z will

correspondingly mix in the familiar manner via the electro-
weak scale, B − L ¼ 0, bidoublet vevs from H1;4 that were
discussed previously. We recall that the initial KM-induced
AI coupling to the SM fields in Eq. (40) is proportional to
B−L¼Q−T3L−T3R so this coupling would vanish com-
pletely for these representations. However, the AI − Zi
mass mixing above was seen to alter this situation as AI
now in general couples instead only to Y=2 implying a
nonvanishing contribution from the bidoublets which
appears in the conventional manner. The relevant Z − AI ,
2 × 2 part of the gauge boson mass squared matrix can be
written at this level of approximation, now employing the
conventional ϵ notation, as

�
M2

Z −ϵtwM2
Z

−ϵtwM2
Z M2

AI
þ ϵ2t2wM2

Z

�
; ð51Þ

which can be diagonalized as usual by Z → Z þ ϵtwAI, etc.
After diagonalization, the mass of AI is unaltered but it now
couples as ≃ϵeQ in the limit when M2

AI
=M2

Z ≪ 1, appear-
ing as the conventional DP as far as the KM-suppressed
couplings are concerned.
By way of contrast, the non-TeV but now electroweak

scale vev KM-induced AI − Zi mixing is also found to be
nonzero but it is significantly smaller than that obtained in
the discussion above for KM-induced mixing with the Z by
factors of order ∼M2

Z=M
2
1;2 < 10−ð3–4Þ and so can be safely

neglected in what follows.
Lastly, we must turn our attention to the set of the many

possible QD ≠ 0 vevs, here denoted collectively as wi,
that can occur at scales ≲1 GeV and generally also have
other additional quantum numbers, e.g., T3ðL;R;IÞ, associ-
ated with them depending upon which Higgs scalar
representation of the many encountered above that they
may come from. These will not only generate a mass
(before any possible mass or kinetic mixing effects might
be included) for AI, i.e.,

M2
AI

¼ g2D
X
i

Q2
Di
w2
i ; ð52Þ

but will also induce a small gauge boson mass mixing with
the other neutral states (including now with the com-
bination WI þW†

I ) as well as generating (relatively) tiny
Majorana mass terms for some subset of the neutral
fermions as was discussed above. The largest of the
resulting Hermitian gauge boson mixings will be induced

between the Z and AI as the corresponding mixing with Z1;2

will be further suppressed by factors of order ∼M2
Z=M

2
1;2,

and so vevs with both T3L,QD ≠ 0will be the most relevant.
This precludes theHi as well asΔR, Δ̃R andXR from playing
any important role in generating these mixings.9 Thus the
QD ≠ 0 vevs of the three remaining Higgs scalars, ΔL, Δ̃L
and XL, will be the main subject of our attention and the
resulting Z − AI induced mixing angle can generically be
written as

ϕZAI
≃

gL
gDcw

�P
i QDi

T3Li
w2
iP

i Q
2
Di
w2
i

�
M2

AI

M2
Z
; ð53Þ

where we expect the prefactor in front of the mass squared
ratio to be roughly ≲Oð1Þ. This implies a not too uncom-
mon additional coupling of the AI to SM fields in a Z-like
manner, i.e., proportional to −ϕZAI

gL
cw
ðT3L − xQÞ. Here, in

principle, theAI mass also experiences a tiny fractional shift,
δM2

AI
=M2

AI
, due to this mixing as well from the KM-induced

couplings to the ZSM;1;2 associated currents so that all of the
QD ≠ 0 vevs may now contribute; however, these terms are
all found to be suppressed by appropriate factors of order
M2

AI
=M2

ZL;1;2
and so can be safely ignored.

As has been noted several times, the AI is also found to
have a somewhat unusual induced mixing with the QD ≠ 0

Hermitian combination WI þW†
I of states arising from the

Higgs representations which are SUð2ÞI nonsinglets. In
particular, the largest contributions to this mixing will arise,
due to the action of the raising and lowering operators, from
the product of a QD ¼ 0 and a QD ≠ 0 vev from repre-
sentations wherein the largest QD ¼ 0 vevs reside, i.e., the
SUð2ÞI doublets H2;3 (with vevs Λ, Λ0, respectively) and
the SUð2ÞI triplet ΔR (with vev vR). Let us denote the
corresponding small, QD ¼ −1, ≲1 GeV vevs in these
representations by λ, λ0 and v0R, respectively, as above. Then
the ðWI þW†

I Þ − AI mixing angle is found to given by

ϕWIAI
≃ −sI

2vRv0R þ ðΛλþ Λ0λ0Þ
2v2Rð1þ 2RÞ ; ð54Þ

which is again found to be roughly of order ∼10−4. This
implies that AI picks up a new,QD-changing coupling to the
SUð2ÞI isospin raising and lowering operators of the form

gIϕWIAI
ðTþ

I þ T−
I ÞAI: ð55Þ

When acting on the f − F1 − F2 fermions, this structure
produces the effective interaction

gIϕWIAI
½f̄γμPLðF1cL − F2sLÞ þ f̄γμPRðF2cR þ F1sRÞ�Aμ

I

þ H:c:; ð56Þ

9This will of course not be the case for the AI mass itself.
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which augments those couplings of a similar QD-violating
nature already appearing above in Eq. (26) due to SM-PM
fermion mixing effects. By adding these two results, we see
that to leading order in the small vev ratios, the sum of both
the contributions to the effective f − F1 − AI coupling can
now be written as

−gDf̄γμPLF1

�
λ

Λ
þ 2vRv0RþðΛλþΛ0λ0Þ

2v2RþΛ2þΛ02

�
Aμ
I þH:c:; ð57Þ

while that for F2 is given in the same approximation by the
same expression with the replacements PL → PR and
ðΛ; λÞ → ðΛ0; λ0Þ. Couplings to the opposite helicities are
found to be suppressed for both Fi states by factors of order
sL;R ∼ ðv; v0Þ=ðΛ;Λ0Þ ∼ 10−2. As noted previously, this
result is qualitatively similar to that found in Ref. [26] in
a somewhat different (and simpler) context. Like in that case,
here we also see that the contribution to the F1;2 → fAI

decay amplitude due to the longitudinal component of theAI
polarization is enhanced by a factor ofm1;2=MAI

≫ 1which
offsets the suppression due to the small overall mixing angle
factor,ϕWIAI

or, more explicitly, by the set of small vev ratios
appearing in the expression above.
A direct application of this analysis arising from the

ðWI þW†
I ÞAI mixing-induced coupling is the process

Zi → Wð†Þ
I AI which occurs via the ZIWIW

†
I non-Abelian

trilinear interaction at order gI. This is an s-channel,
resonance-enhanced version of a previously examined
process [26] which in that case instead occurred via t−
(or u−)channel F-exchanges so that in the present case the
WI (and its decay products) would appear more centrally
in the detector. As discussed above, the large mass ratio
MZi

=MAI
appearing in the amplitude due to the dominance

of the AI longitudinal polarization offsets the small value of
ϕWIAI

. Note that given the scaled Zi and WI masses shown
in the figures above, for most of the parameter space only
the resonant decay with the Z1 initial state will be
kinematically allowed on-shell. To estimate the cross
section for this process, we need several distinct pieces
of information, e.g., the fraction of the AI mass resulting
from the vev v0R, i.e., f ¼ ðgDv0RÞ2=M2

AI
< 1. Then, we

need to account for the various multiple vev ratios that
enter into the ϕWIAI

mixing angle expression as well as the
gauge boson masses themselves; to this end we define the
Oð1Þ ratio

R ¼ ð1þ 2RÞ−1
�
1þ Λλþ Λ0λ0

2vRv0R

�
; ð58Þ

which we see equals unity when λ=Λ ¼ λ0=Λ0 ¼ v0R=vR,
but can be either greater or less than one. Next, to obtain the
NWA estimate for the desired cross section, we need to

determine the ratio of the Z1 partial widths for the W
ð†Þ
I AI

FIG. 6. Top: the ratio of theWð†Þ
I AI to dilepton partial widths of

theZ1 as a function of γ for values of thevev ratioR ¼ 0.3 (top red),
1 (middle blue), and 3 (bottom green), respectively, assuming

fR2 ¼ 1. Middle: the ratio of the resonant Z1 → Wð†Þ
I AI produc-

tion cross section at the 13 TeV LHC to that for dileptons in the
LRM with the three curves labeled as in the panel above and here

assuming that fR2 ¼ 0.1. Bottom: resonantZ1 → Wð†Þ
I AI induced

production cross section as a function of MWI
assuming that

R ¼ γ ¼ 1 (bottom magenta), R ¼ 0.3, γ ¼ 2 (middle cyan), and
R ¼ 0.3, γ ¼ 3 (top yellow) as an extreme example, together with
fR2 ¼ 0.1. Note that the values κ ¼ cI=cw ¼ 1 have been
assumed in all of the panels above.
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final state to that for dileptons, ΓW=Γl, which we can
write as

ΓW

Γl
¼ fR2

s2γ λ21
R2
l þ L2

l
PðM2

WI
=M2

Z1
Þ; ð59Þ

where, sγ, λ1 are defined above, Rl, Ll are the leptonic
chiral couplings of the Z1 which depend upon the param-
eters R, γ and κ, and PðyÞ is a kinematic function arising
from the product of the squared matrix element with the
relevant phase space:

PðyÞ ¼ ð1 − yÞ3
�
2þ ð1þ yÞ2

4y

�
: ð60Þ

The top panel of Fig. 6 shows this partial width ratio as a
function of γ for specific values of R and we see that it is
generally Oð1Þ or larger. In the middle panel, we take

the ratio of the resonant Z1 → Wð†Þ
I AI production cross

section at the 13 TeV LHC to that for dileptons as given in
the LRM for reference here assuming that no other addi-
tional new Z1 decay modes exist for simplicity (and thus
avoiding a reduced branching fraction) as well as κ ¼
cI=cw ¼ 1 and, to be a bit conservative, we will also take
fR2 ¼ 0.1 for purposes of demonstration. Finally, combin-
ing these results, we can obtain the corresponding resonant
ðWI þW†

I ÞAI production cross section for specific values
of (γ, R) as a function of the mass of theWI as is shown for
three sample values of these pairs of parameters in the
lower panel of Fig. 6, again with the assumption that
fR2 ¼ 0.1. Note, in particular, the very large result
obtained in the case of R ¼ γ ¼ 3; this is due not only
to the enhanced Z1 couplings one finds for these parameter
choices, but also the fact that, for a fixed value of MZ1

, a
larger value of MWI

is obtained and here we are displaying
the cross section as a function of this variable, not MZ1

.
These results compare quite favorably with those shown in
the top panel of Fig. (13) in Ref. [26] for the nonresonant
process mediated by quarklike PM (to which this new
resonant contribution would be added) which was obtained
under somewhat different assumptions.
Clearly, with such a rather complex setup with multiple

moving parts in the gauge, fermion, and scalar sectors,
many more interesting processes which can be probed at
colliders will arise; we plan to consider these and other
potential signatures in our later work.

IV. DISCUSSION AND CONCLUSIONS

The kinetic mixing portal model allows for the possibil-
ity of thermal dark matter in the sub-GeVmass range owing
to the existence of a similarly light gauge boson mediator
which has naturally suppressed couplings to the fields of
the Standard Model. The success of this KM scenario for
generating the interactions of SM fields with DM rests

upon the existence of a new set of portal matter fields, at
least some of which may naturally lie at the ∼TeV scale
[31], which carry both SM and dark charges thus allowing
for the generation of the link between the ordinary and dark
gauge fields at the 1-loop level via vacuum polarizationlike
graphs. In the simplest Abelian realization of this possi-
bility, the dark gauge group, GDark, is just the Uð1ÞD
associated with the dark photon; SM fields are all neutral
under Uð1ÞD, i.e., they have QD ¼ 0 and so do not couple
directly to the DP except via KM. However, the existence
of PM indicates that a larger gauge structure of some kind
for GDark is likely present and one may then ask how GSM
and this enlarged GDark might fit together into a more
unified framework. Clearly, at least a partial answer to this
question can be found through an understanding of the
detailed nature and possible properties of the various scalar
and/or fermionic PM fields themselves and an examination
of other impacts that their existence might have beyond
their essential role in the generation of KM.
In past work, we have begun an examination of the

interplay of PM and a simple non-Abelian version of GDark
togetherwith theSMfollowingboth complementary bottom-
up and top-down approaches in an effort to gain insight into
these and related issues given aminimal set ofmodel building
requirements (which included a finite and calculable value
for the usual KM parameter, ϵ, [25,26,28–34]. Among the
findings from this set of analyses are that (i) It is likely for
at least some of the SM and PM fields lie in common
representations of GDark, the simplest example of which,
consistent with our constraints and the one employed here,
being the SM-like SUð2ÞI ×Uð1ÞYI

setup which breaks
down toUð1ÞD at a mass scale essentially the same as that at
which the PM fields acquire their masses. Again, paralleling
the SM, this is achieved by having the PMmasses generated
by Yukawa couplings to dark Higgs fields whose vevs are
also responsible for the breaking of GDark. It was also found
that (ii) It is possible to relate phenomenological issues in
both the visible and dark sectors, e.g., the magnitude of a
possible upward shift in the mass of W relative to SM
expectations, as measured by CDF II [57], can be related to
the mass of the DP while also satisfying the other model
constraints. (iii) In a top-down study based upon the
assumption of a unification of GSM ×GDark in a single,
though hardly unique,SUðNÞ gauge group [34], it was found
that all of our model building constraints could not be
satisfied when both GSM and GDark take their “minimal”
forms. (iv) It was shown that there are some possible model
building gains to be made when addressing various exper-
imental puzzles by also extending GSM beyond the usual
3c2L1Y while also simultaneously considering a non-Abelian
GDark aswas done earlier [29] to relate the dark sector and the
KMmechanismwith the flavor/mixing problem.By employ-
ing a simpler, single generationversion of this samemodel, in
this paper we have begun to examine the possible relation-
ship between the masses of the portal matter fields and the

TOWARD A UV MODEL …. III. RELATING PORTAL … PHYS. REV. D 107, 095014 (2023)

095014-17



masses of the right-handed neutrino aswell as the new spin-1
fields associated with both its visible and dark extended
gauge sectors when the symmetries of the SM are replaced
by those of the Pati-Salam/left-right symmetric model,
i.e., G ¼ 4c2L2R2I1YI

or, more simply below the color
breaking scale of Mc ≳ 106 TeV which concerns us here,
just Geff ¼ 3c2L2R2I1YI

1B−L.
Among the many immediate implications of and results

obtained from this setup that we have examined above are
that (a) It is 1YI

1B−L that undergo Abelian kinetic mixing at
the ∼fewTeV scale. (b) Left-right symmetry plus anomaly
cancellation requires the set of fermionic PM fields to
transform as a complete vectorlike family under both the
SM/LRM as well as the Uð1ÞD symmetries and this also
leads to a finite and calculable value for KM strength
parameter ϵ of the desired magnitude, ∼10−ð3–4Þ. (c) All of
the usual chiral SM/LRM fermion fields (which still carry
QD ¼ 0) lie in doublets of SUð2ÞI together with a corre-
sponding PM field (which has QD ¼ −1) with which they
share their QCD and electroweak quantum numbers. At the
TeV scale these two sets of fields are connected via the
exchange of the neutral, non-Hermitian gauge bosons of

SUð2ÞI , Wð†Þ
I ; however, the DP also couples these two sets

of fields at the sub-GeV scale but in a suppressed manner
yielding the dominant PM decay path. (d) As usual, at low
energies the DP couples diagonally to the SM via KM as
≃eϵQem and, as occurs frequently in many setups, also
proportional to the SM Z couplings via mass mixing
through a small mixing angle of the same order as ϵ.
(e) If the standard RH-triplet Higgs fields are employed to
break the LR symmetry and generate a heavy Majorana
seesaw mass for the RH-neutrino via a jB − Lj ¼ 2 vev,
since these RH-triplet Higgs are additionally required to be
SUð2ÞI triplets, they will necessarily also lead to the
breaking of 2I1YI

→ 1D at the same mass scale. The extra
Higgs scalars generating the Dirac masses of the charged
PM fermions will also contribute to this same symmetry
breaking. (f) The same bitriplet Higgs representations also
contain vevs carrying both jQDj ¼ 1, 2, the later of which
contributes to a tiny splitting in the masses of each of the

two heavy neutral Dirac PM states forming pairs of pseudo-
Dirac fields. (g) Loops of PM and WI gauge bosons can
realize potentially important dark dipole momentlike cou-
plings of the SM fermions to the DP, making possibly
substantial alterations in the associated phenomenology, as
suggested in previous work. (h) The non-Hermitian, WR
and WI gauge bosons have properties which are semi-
quantitatively not too dissimilar from those encountered in
the usual LRM and in the simpler scenario explored in
Ref. [26] where the important mixing of the DP with the
Hermitian combination WI þW†

I was previously noted.
However, due to the mixing of the SM and PM fields at the
∼10−ð3−4Þ level some novel and yet to be explored new
effects are possible. (i) The two new heavy neutral gauge
bosons present in this setup, ZR;I, generally undergo
substantial mixing into the Z1;2 mass eigenstates, one of
which is always heavier (lighter) than the corresponding
pure LRM ZR “reference” state with generally stronger
(weaker) couplings given the same input parameter values.
Making some reasonable model assumptions for purposes
of demonstration, estimates were obtained for the lower
bounds on the masses of both of these states from existing
ATLAS dilepton resonance search data and then these
reaches were extrapolated to obtain the corresponding mass
reaches for the 100 TeV FCC-hh under an identical set of
assumptions.
The extension of the SM gauge group to the LRM in

addition to the existence of a non-Abelian symmetry for the
dark sector provides a phenomenologically rich and inter-
esting direction to explore in our search for a more UV-
complete model of the gauge interactions of the visible and
dark sectors. Further steps in this direction will be taken in
future work.
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