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The W-boson mass measurement recently reported by the CDF-II experiment exhibits a significant
deviation from both the Standard Model prediction and previous measurements. There is also a long-
standing deviation between the Standard Model prediction of the forward-backward asymmetry of the

bottom quark (A0;b
FB ) and its measurement at the LEP experiment. The beautiful mirror model, proposed to

resolve the A0;b
FB discrepancy, introduces vectorlike quarks that modify the W-boson mass at the one-loop

level. In this study, we find an interesting region in the model parameter space that could potentially explain
both discrepancies, which puts the new quarks in the multi-TeV region. This region is mostly consistent
with current LHC bounds from direct searches and Higgs coupling measurements, but will be thoroughly
probed at the high-luminosity LHC. As such, the beautiful mirror model as an explanation of the mW and

A0;b
FB discrepancies could be confirmed or falsified in the near future.

DOI: 10.1103/PhysRevD.107.095013

I. INTRODUCTION

Recently, the CDF-II experiment reported a new meas-
urement of the W-boson mass [1],

mCDF-II
W ¼ 80433.5� 9.4 MeV; ð1:1Þ

which exhibits a 7σ deviation from the StandardModel (SM)
prediction, mSM

W ¼ 80357� 6 MeV, and a 4σ deviation
from the PDG world average value [2], mPDG

W ¼ 80377�
12 MeV. The possible new physics explanations of this
discrepancy have been extensively studied afterwards
[3–126]. These explanations can be generally divided into
two categories. One could introduce new physics that
modifies the W mass at the tree level; this puts the new
particle masses at or above the multi-TeV range which is
beyond the reach of current or future LHC searches, but the
new physics scenarios are limited to only a few possibilities,
such as triplet scalarmodels (see e.g.Ref. [46]).A larger class

of models could modify the W mass at the one-loop level,
which leads to much richer phenomenological implications.
In this case, larger couplings or smaller new-particle masses
are usually required to generate a large enough modification
to theW mass. This is generally in tension with direct search
bounds, or other precision measurements if the new physics
contributes at the tree level.
On the other hand, there is a long-standing 2.5σ

discrepancy in the forward backward asymmetry of the
bottom quark (A0;b

FB ) between the SM prediction and the
measured value at the LEP experiment [127]. Assuming
this discrepancy is due to effects of beyond-the-Standard-
Model (BSM) physics, it could be explained by introducing
new exotic quarks that mix with the bottom quark, first
proposed in Ref. [128] with the name “beautiful mirror”
(BM). The new quarks contribute to the propagators of the
electroweak (EW) gauge bosons and generate a nonzero T
parameter, and thus modify the W-boson mass. This offers
an intriguing possibility that the two measurement discrep-
ancies could come from the same physics origin.
In this study, we further investigate the possibility that

the BM Model gives rise to the measured discrepancies
(from SM) for both A0;b

FB at LEP and mW at CDF-II. By
performing a global fit of electroweak precision measure-
ments, we find the preferred region of the parameter space.
As shown later, it indeed provides a good fit to both
measurements, significantly reducing the tension by only
introducing a few model parameters in addition to the SM
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ones. We also study other phenomenological implications
of this model, including the direct searches for exotic
quarks and the precision Higgs measurements at the LHC.
Roughly speaking, the parameter space preferred by the
A0;b
FB and CDF-II mW measurements is consistent with

current LHC measurements but can be thoroughly probed
by future LHC runs, especially the HL-LHC. Therefore, the
possibility that both the A0;b

FB and CDF-II mW discrepancies
are explained by the BM model can be confirmed or
falsified in the near future.
The rest of this paper is organized as follows: In Sec. II

we review the BM model and work out its modifications
to the relevant observables. In Sec. III, we perform an
electroweak global fit to find the preferred region in the
model parameter space. In Sec. IV, we summarize the
current status of the relevant direct search bounds and
Higgs coupling measurements as well as their future
projections at the HL-LHC. The preferred regions of the
model parameter space from various measurements are
presented in Sec. V. Finally, we conclude in Sec. VI.

II. THE BEAUTIFUL MIRROR MODEL

The BM model was proposed in Ref [128] as a new-
physics explanation of the A0;b

FB measurement at LEP [127],
which deviates significantly (∼2.5σ) from the SM predic-
tion. New vectorlike exotic quarks are introduced, which
mix with the bottom quark and modifies the Zbb̄ couplings.
Defining δgLb and δgRb as

L ¼ −
g
cW

Zμ

�
b̄Lγμ

�
−
1

2
þ 1

3
s2W þ δgLb

�
bL

þ b̄Rγμ
�
1

3
s2W þ δgRb

�
bR

�
þ…; ð2:1Þ

where sW ≡ sin θW , cW ≡ cos θW and θW is the weak
mixing angle, positive values are preferred for both δgLb
and δgRb, as shown later in Sec. III. This can be achieved by
introducing two vectorlike quarks,

ΨL;R ¼
�
B

X

�
∼ ð3; 2Þ−5=6;

B̂L;R ∼ ð3; 1Þ−1=3; ð2:2Þ

where the numbers in the bracket denote representations
under SUð3Þc and SUð2ÞW , respectively, and the subscript
denotes Uð1ÞY hypercharge. The mass and relevant inter-
action terms in the Lagrangian are given by

−L ⊃ M1Ψ̄LΨR þM2
¯̂BLB̂R þ y1Q̄LHbR

þ yLQ̄LHB̂R þ yRΨ̄LH̃bR þ H:c:: ð2:3Þ

After the electroweak symmetry breaking, the vacuum
expectation value (VEV) of the Higgs field generates

mixings between the new quarks and the SM bottom
quark, and modifies the Zbb̄ couplings as

δgLb ¼
y2Lv

2

4M2
2

; δgRb ¼
y2Rv

2

4M2
1

; ð2:4Þ

where v ¼ 246 GeV. They can be obtained by either
diagonalizing the mass matrix or using effective field
theory (EFT) methods,1 and are both positive as desired.
Contributions to the gauge-boson propagators are gener-
ated at the one loop, which modifies the S and T parameters
[130]. A direct computation gives

S ≈
2

9π

�
−2δgRb

�
log

�
y21v

2

2M2
1

�
þ 7

�

þ δgLb

�
4 log

�
y21v

2

2M2
2

�
þ 2

��
; ð2:5Þ

T ≈
3

16π2αv2

�
16

3
δg2RbM

2
1 þ 4δg2LbM

2
2

− 4δgLb
M2

2m
2
top

M2
2 −m2

top
log

�
M2

2

m2
top

��
; ð2:6Þ

where we have omitted terms suppressed by the small
bottom mass. Note that the S-parameter is generally
small since we have only introduced vectorlike quarks.
On the other hand, there is a sizable contribution to the
T-parameter.
The BM model also modifies the Higgs couplings, and

can therefore also be probed by precision Higgs measure-
ments. At the tree level, only the hbb̄ coupling is modified.
A large set of Higgs couplings will be modified at the one-
loop level. However, we expect the hgg and hγγ couplings
to be the most relevant ones since they are relatively well-
probed and their leading SM contributions are also at the
one-loop level. For simplicity, we focus on the modifica-
tions of the hbb̄, hgg and hγγ couplings, and compute them
in the m2

h ≪ M1;2 limit. They can be parametrized by the
familiar “kappa” parametrization,

Γðh → bb̄Þ
ΓSMðh → bb̄Þ≡ ð1þ δκbÞ2;

Γðh → ggÞ
ΓSMðh → ggÞ≡ ð1þ δκgÞ2;

Γðh → γγÞ
ΓSMðh → γγÞ≡ ð1þ δκγÞ2: ð2:7Þ

In particular, in the BM model they can be connected to
δgLb and δgRb as (see also [131])

δκb ≃ −2ðδgLb þ δgRbÞ; δκg ≃ 1.937ðδgLb þ δgRbÞ;
δκγ ≃ −0.137ðδgLb þ δgRbÞ: ð2:8Þ

1The sum rules listed in Ref. [129] are also particularly
convenient for the calculation in the EFT approach.
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III. ELECTROWEAK GLOBAL FIT

We perform a global fit to electroweak observables to
determine the preferred region in the parameter space of
the BM model. Following Ref. [132], the fit is done in
the “SMþ S; T; δgLb; δgRb” framework, where the SM is
augmented by the four free parameters S, T, δgLb, and
δgRb, which contain the leading contributions of the BM
model. The results could then be easily translated into
constraints on the model parameters. Our analysis mainly
follows Refs. [22,133,134], and is a slightly simplified
version of the ones in Refs. [131,132]. In particular, we
have checked that our results are in good agreement with

the one in Ref. [132]. We choose the fα; mZ; GFg input
scheme and fix the values of the input parameters as [2]

α ¼ 1=127.940; mZ ¼ 91.1876 GeV;

GF ¼ 1.1663787 × 10−5 GeV: ð3:1Þ

We include the W and Z pole measurements, which are

ΓZ; σhad; Rf; A0;f
FB; Af; Apol

e=τ;

mW; ΓW; BrðW→eνÞ; BrðW→μνÞ; BrðW→ τνÞ;
ð3:2Þ

where f ¼ e, u, τ, b, c, and Apol
e=τ is Ae and Aτ measured

using final-state tau polarizations at LEP. For the Z-pole
measurements, we use the results in Ref. [127]. For the W
branching ratios measurements, we take the results from
Ref. [135]. The measurement of ΓW is taken from Ref. [2].
For the W boson mass mW , we consider two different
measurements, one is the “old” world average measure-
ment from Ref. [2], the other is the “new CDF” measure-
ment from Ref. [1]. Our results are shown in Table I in
terms of the 1σ bounds of S; T; δgLb; δgRb, and their
correlations. We further illustrate the results in Fig. 1 in
terms of the 68% confidence level (CL) regions in the S − T
and δgLb − δgRb planes. For comparison, the results in the
SMþ S, T framework (with δgLb, δgRb fixed to zero) and
the ones in the SMþ T; δgLb; δgRb framework (with S ¼ 0)
are also shown. The latter scenario is closer to the case in

–0.2 –0.1 0.0 0.1 0.2 0.3
–0.2

–0.1
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0.1

0.2

0.3
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68 CL
S,T, min

2 =28.7
S,T, gLb, gRb, min

2 2
=21.5

S,T, min
2 =33.2

S,T, gLb, gRb, min
2 =25.4

old

new CDF

FIG. 1. Preferred regions in the S − T and δgLb − δgRb planes from a two-parameter fit with S and T (solid contours), a four-parameter
fit with S; T; δgLb; δgRb (dashed contours), and a three-parameter fit with T; δgLb; δgRb (fixing S ¼ 0, dotted contours) with the current
EW measurements. Two different mW scenarios are considered, which are the “new CDF” measurement and the “old PDG” mW
measurement before the CDF one. The red point is the SM prediction. All contours correspond to 68% CL, except for the shaded regions
on the right panel which correspond to the 95% CL region of the three-parameter fit with T; δgLb; δgRb.

TABLE I. Best-fit values �1σ of and correlations among
S; T; δgLb; δgRb from EW global fit with the two different mW
scenarios.

Correlation

1σ bound S T δgLb δgRb

Old PDG
S −0.034� 0.084 1
T 0.023� 0.068 0.926 1
δgLb 0.0031� 0.0015 −0.345 −0.237 1
δgRb 0.020� 0.0078 −0.394 −0.299 0.917 1

New CDF
S 0.070� 0.082 1
T 0.198� 0.064 0.938 1
δgLb 0.0037� 0.0015 −0.359 −0.271 1
δgRb 0.021� 0.0078 −0.403 −0.326 0.918 1
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the BM model, which generally has a very small contri-
bution to the S parameter, as mentioned above.
It is clear in Fig. 1 that, with only the S and T parameters,

the new CDF W-mass measurement prefers a positive shift
in both S and T. This is in agreement with many of the
earlier EW-fit results, such as Refs. [3,7,9,16,22,24]. The
inclusion of δgLb, δgRb brings down the overall χ2min due to
the better agreements in A0;b

FB , and also introduces a negative
shift in S and T (as also observed in Ref. [132]). As a result,
a zero S is within the 68% CL even with the new CDF mW
measurement. On the other hand, as shown in Fig. 1, the
68% CL preferred region in the δgLb − δgRb plane changes
only slightly under a shift in mW , and the SM point (0,0) is
clearly at the outside of it. However, the difference is
notably larger for the S ¼ 0 case, with the preferred regions
of δgLb and δgRb both shifted to larger values with the new
CDF mW measurement. This has important implications in
the BM model, as we will discuss below. In Fig. 2, we
project the EW global-fit results (with the new CDF mW)
onto the parameter space of the BM model. The relevant
parameters are the two Yukawa couplings yR, yL, and the
two masses,M1 andM2. A crucial observation is that while
δgLb, δgRb, and T all scales as 1=M2

1;2 at the leading order as
they correspond to dimension-6 operators, their depend-
encies on the Yukawa couplings are different, with
δgLb; δgRb ∼ y2 and T ∼ y4. This difference can be easily
understood from the fact that δgLb, δgRb are generated at the
tree level with two insertions of Yukawa couplings, while T
is generated by a fermion loop with four insertions of

Yukawa couplings (as OT ¼ 1
2
ðH†D

↔

μHÞ2 contain four

external Higgs legs). Therefore, the global fit could in
principle separately constrain the Yukawa couplings and
the mass terms. This is illustrated on the left panel of Fig. 2,
where we marginalize over δgLb and δgRb and project the
bounds from the “SMþ S; T; δgLb; δgRb” fit on the
ðM1;M2Þ plane. Results with the “new CDF” mW (in blue)
and the “old” PDG mW (in orange) are shown in compari-
son. Note that, for fixed δgLb and δgRb, the bound is mostly
provided by the T parameter. The result clearly shows that
the EW measurements are mainly sensitive toM1, which is
expected from Eq. (2.6) since δgRb ≫ δgLb, and the upper
bound on the T parameter also puts an upper bound onmW .
On the other hand, it is peculiar that with the new CDFmW,
the upper bound onM1 is stronger despite that it allows for
a larger value of T. This is because, as shown in Fig. 1, the
preferred value of δgRb is also larger with the new CDFmW,
especially for S ¼ 0 which is approximately the case in the
BM model. It is clear from Eq. (2.6) that for a fixed T this
would decrease the value ofM1. In particular, for the “old”
measurements, the 95% CL contour almost reaches the
point δgLb ¼ δgRb ¼ 0, at which the T parameter would not
provide an upper bound onM1. Indeed, we observe a much
larger 95% CL upper bound forM1 with old measurements,
which is at around 10 TeV. On the right panel of Fig. 2 we
fix M2 to a relatively large value, 4 TeV, and marginalize
over yL to find the preferred region in the ðM1; yRÞ plane
from the “SMþ S; T; δgLb; δgRb” fit. This is our main
result, which has important implications. First, it is clear
that yR and M1 can be separately constrained due to the
interplay between δgRb and T. To illustrate this, we also
show the 68% CL bounds from the δgRb alone and T alone,

CDF 68%CL CDF 95%CL

Old 68%%CL

1 2 3 4 5
1

2

3

4

5

M1(TeV)

M
2(
Te
V
)

FIG. 2. Left: 68% and 95% CL preferred regions in theM1 −M2 plane from the EW fit with the new CDFmW (blue) and the old PDG
mW (orange). The arrows point to the more preferred regions. For the “old” case, the 95% CL contour is at M1 ≃ 10 TeV. Right:
Preferred regions of parameter space in theM1 − yR plane, withM2 fixed at 4 TeVand yL marginalized. The blue (orange) areas are the
68% and 95% CL regions from the EW global fit with the new CDF mW (old PDG mW), while the cyan, blue (orange, yellow) dashed
lines correspond to 68% CL bounds from the δgRb, T-parameter constraint alone, respectively.
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which clearly constrain different combinations of yR and
M1. As a result, with the new CDF mW measurement (blue
regions), the global fit puts an upper bound on M1, with
M1 ≲ 4 TeV within a 95% CL Crucially, this bound is
consistent with the current LHC limits but could be relevant
for future LHC probes, as we will discuss in the next
section. On the other hand, with the old mW , a larger M1 is
allowed, as mentioned above. The corresponding yR is of
order one in both cases, which ensures the perturbativity of
the model.

IV. LHC PROBES

With the BMmodel being a potential explanation of both
the A0;b

FB and the mW discrepancies, it is crucial to look for
additional signals at the LHC that could confirm (or rule
out) this possibility. The signals could come from either the
direct searches of heavy exotic quarks or the precision
Higgs measurements. They are discussed separately in this
section.

A. Direct search bounds

In the BM model, QCD pair production has the largest
rate in the small quark masses region, while single
production of mirror quarks dominates for larger masses.
In the multi-TeV region we are interested in, it turns out that
the single production of the charge−4=3 quark XR provides
better reach, and wewill focus on this channel. The relevant
terms in the Lagrangian in the mass eigenstates are

−
gsRffiffiffi
2

p X̄Rγ
μW−

μbR þ H:c:; ð4:1Þ

where sR ¼ yRvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2Rv

2þ2M2
1

p is the sine of the mixing angle

between the right-handed quarks bR and BR. X decays
dominantly to bW− (or b̄Wþ), which is very similar to the
decay of a charge 2=3 top partner but with the opposite
charge for the W. In the CMS study [136], the search on a
charge −4=3 quark in the single production channel was
done with a center-of-mass energy

ffiffiffi
s

p ¼ 13 TeV and an
integrated luminosity of 2.3 fb−1. A lower-mass limit of
1.0 TeV is obtained assuming a coupling of 0.5 and 100%
branching ratio to bW. The number of background events
and the limits on signal σ × BðbWÞ are also provided in
Ref. [136] up to MX ¼ 1.8 TeV, making it straightforward
to extrapolate the bounds to the BMmodel parameter space
and to the current integrated luminosity, at least up to
around M1 ≈ 1.8 TeV. We use the VLQ model [137] in
MadGraph 5 [138] to estimate the number of signal events
for a benchmark point in the BM model. The resultant
exclusion region is shown by the red shaded area in the left
panel of Fig. 3, which assumes an integrated luminosity of
138 fb−1. Furthermore, we extrapolate the bounds to the
HL-LHC with an integrated luminosity of 3 ab−1. This
goes above the mass range covered in Ref. [136], and an
accurate estimation of the background events is beyond the
scope of this paper. Instead, we consider two scenarios with
different assumptions on backgrounds. The first is simply

95%CL95%CL
conservative

optimistic

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.5

2.0

2.5

M1(TeV)

y R

68%CL

95%CL

95%CL

85%CL

85%CL

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.5

2.0

2.5

M1(TeV)

y R

FIG. 3. Left:Direct search bounds from single productions of the charge 4=3 quark in theM1 − yR plane. The light red area is excluded
at 95% CL by the CMS analysis [136] with an integrated luminosity of 138 fb−1. The two dotted lines are the projected 95% CL reach at
HL-LHC with different assumptions on the background. See text for more details. Right: Higgs coupling measurements bounds in the
M1 − yR plane withM2 fixed at 4 TeVand yL marginalized. The green (light green) areas are the region preferred by the current ATLAS
Higgs couplings measurement [139] at 85% (95% CL). Note that, due to a small tension between the BMModel prediction (δκg > 0) the
current Higgs measurement (which prefers δκg < 0), the lowest CL (with a Δχ2 measured from the χ2min of the three-parameter Higgs
coupling fit) is already at 83%. The area right to the cyan dotted lines represent the preferred region of future Higgs measurement at
HL-LHC (assumed to be SM-like) with 68% and 95% CL as labeled.
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no background, which gives the best possible reach; for the
second, we assume a 400 GeV invariant-mass window is
applied around mX to efficiently remove backgrounds
while keeping most signal events, and then simply extrapo-
late from the background in the range 1600 GeV to
2000 GeV in Ref. [136] to higher invariant masses,
assuming the background cross section remains the same.
This overestimates the background and will thus provide a
conservative projection. Both results are shown with red
dashed lines in the left panel of Fig. 3, with labels
“optimistic” and “conservative”, respectively.

B. Higgs coupling measurements

As mentioned in Sec. II, the BM model mainly contrib-
utes to κb, κg, and κγ in the Higgs measurements. Since
these couplings contribute to multiple channels as well as
the Higgs total width, we perform a three-parameter global
fit to all the Higgs measurements to extract their bounds,
assuming all other Higgs couplings are SM-like. For the
current measurements, we use the ones collected in the
ATLAS report [139]. Similar reaches are obtained by using
the Higgs measurements at CMS [140]. For the HL-LHC
Higgs measurements, we use the projections summarized in
[141]. The results of the three-parameter fit are presented in
Table II. Note that the HL-LHC Higgs measurements are
assumed to be SM-like, so that the corresponding central
values of δκb, δκg, δκγ are zero by construction.
With Eq. (2.8) it is straightforward to map the Higgs

coupling constraints in Table II to the BM model parameter
space. In particular, we note that the BM model predicts
negative δκb, δκγ, and a positive κg. Again, we fix
M2 ¼ 4 TeV, marginalize yL to project the bounds on
the ðM1; yRÞ plane, which are shown in the right panel of
Fig. 3. The preferred region from the current measurements
is shown with light green shades. Note that, the current
ATLAS measurement prefers a negative δκg, which has
some tension with the prediction of the BM model. As a
result, the lowered CL in the ðM1; yRÞ plane is already at
83% (with Δχ2 ¼ 3.55 with respect to the χ2min of the three-
parameter Higgs coupling fit), while a region in the upper-
left corner can be excluded by 95% CL (We have also
shown the 85% CL contours.) On the other hand, assuming
SM-like results, the HL-LHC prefers the bottom-right

region with small yR and large M1, and the corresponding
68% and 95% CL bounds are shown with cyan dotted lines.

V. COMBINED RESULTS

We now combine the results of the EW precision
measurements in Fig. 2 with the bounds from direct
searches and Higgs measurements in Fig. 3. Our final
result is presented in Fig. 4. The main message of our result
is that the region in the BM model parameter space
preferred by the A0;b

FB and CDF-II mW measurements is
still consistent with the current direct search bounds and
Higgs measurement constraints at the LHC. However, the
model exhibits some small tension with the Higgs

FIG. 4. Combined results in M1 − yR plane from the current
EW global fit with the new CDF/old PDG mW measurement
(preferred regions shown by the blue/orange area, from Fig. 2),
current LHC direct search bounds (excluded region shown by
the red area, from Fig. 3), and current LHC Higgs coupling
measurements (preferred regions shown by the green areas, from
Fig. 3). The red dotted lines are projected direct-search reaches of
the HL-LHC. The area right to the cyan dotted lines are the
preferred regions from the Higgs measurements at HL-LHC,
assuming they are SM-like.

TABLE II. Best-fit values �1σ of and correlations among κb, κg, κγ from the current ATLAS measurement [139]
and the HL-LHC projections [141], assuming all other Higgs couplings are SM-like.

Current (ATLAS) HL-LHC

Correlation Correlation

1σ bound δκb δκg δκγ 1σ bound δκb δκg δκγ

δκb −0.14� 0.07 1 �0.0165 1
δκg −0.069� 0.05 0.679 1 �0.012 0.725 1
δκγ −0.014� 0.05 0.323 −0.128 1 �0.0125 0.313 −0.064 1
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measurements, as it predicts an enhancement on the hgg
coupling which is disfavored by current measurements. The
direct search limit can be significantly improved at the
HL-LHC, but even with the most optimistic assumption
(with zero background), it will not be able to completely
cover the relevant parameter space (95% CL preferred
region of current EW measurements). The Higgs couplings
measurements provide slightly better reaches. The region
preferred by the HL-LHC Higgs couplings measurements,
if SM-like, has little overlap with the one preferred by
current EW measurements. Overall, the possibility that the
BM model explains the A0;b

FB and CDF-II mW discrepancies
will likely be either confirmed or ruled out by the HL-LHC.
Crucially, this is not the case with the old mW measure-
ments, for which the (95% CL) allowed region by the EW
measurements extends to much larger values of M1. The
CDF-II mW result thus provides a strong motivation to
search for the BM model at the HL-LHC.

VI. CONCLUSION

The mW measurement at CDF-II and the A0;b
FB measure-

ment at LEP both exhibit significant discrepancies with the
SM predictions. Needless to say, further investigations on
the experimental side are needed for both measurements
before one could make more definitive statements on the
origins of the discrepancies. Meanwhile, the possibility that
both discrepancies could come from the same underlying
new physics is also interesting and worth exploring. In this
paper, we consider the beautiful mirror model as a possible
explanation to both discrepancies. By performing a global
electroweak fit that includes the A0;b

FB and the CDF-II mW
measurements, we find that this model indeed provides a
much better fit to the measurements compared with SM. To
achieve it, the mass of the exotic quark (with charge −4=3)
is required to be below 4 TeV at the 95% confidence level,

and the best-fit point corresponds to a mass of around
1.5 TeV. While the model is consistent with the current
direct-search limits at the LHC, the future LHC runs,
especially the HL-LHC, will be able to cover most of the
regions of the parameter space preferred by the electroweak
fit. The contributions to the Higgs couplings in this model
are also relevant, especially for the hgg, hbb̄, and hγγ
couplings. Once again, the preferred region is consistent
with the current LHC measurements but would be in
tension with the projected precisions of the Higgs meas-
urement at the HL-LHC, if they turn out to be SM-like. In
summary, the possibility that both the A0;b

FB and the CDF-II
mW discrepancies are explained by the beautiful mirror
model will very likely be either confirmed or ruled out after
the HL-LHC runs.
It should also be noted that, while both mW and

observables similar to A0;b
FB could be measured at the

LHC [142–146] or the Electron-Ion Collider (EIC)
[147,148], these measurements are difficult and even with
the future runs they may not reach the desired precision to
resolve the discrepancies. Future lepton colliders, espe-
cially those with Z-pole and WW threshold runs (such as
CEPC [149] and FCC-ee [150]), will be able to signifi-
cantly improve the measurement precisions of these two
observables, as well as the ones of other EW or Higgs
measurements. Such a collider will be able to unambigu-
ously resolve the current observed discrepancies in A0;b

FB
and mW .
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