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Supersymmetry (SUSY) is a highly motivated theoretical framework, whose scale of breaking may be at
petaelectronvolt (PeV) energies, to be consistent with null searches at the Large Hadron Collider. SUSY
breaking through a first-order phase transition may have occurred in the early universe, leading to potential
gravitational wave signals. Constructing a realistic model for gauge-mediated supersymmetry breaking, we
show that such a transition can also induce masses for heavy right-handed neutrinos and sneutrinos, whose
CP-violating decays give leptogenesis at the PeV scale, and a novel mechanism of neutrino mass
generation at one loop. For the same models we predict the possible gravitational wave signals, and we
study the possibility of production of primordial black holes during the phase transition.
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I. INTRODUCTION

First-order phase transitions (FOPTs) in the early uni-
verse have taken on renewed interest, since the sound
waves produced during the transition may produce pri-
mordial gravitational waves (GWs) that could be observed
by upcoming experiments, including LISA [1–3], DECIGO
[4,5], and BBO [6,7]. Other cosmological signatures of
FOPTs might include primordial black hole production, in
particular through a recently proposed mechanism where
heavy states are trapped in the metastable vacuum [8–10].
Moreover, FOPTs can produce nonequilibrium effects such
as are needed for baryogenesis, notably when the electro-
weak phase transition is involved. Possible correlations
between the gravitationalwave signals and successful electro-
weak baryogenesis have been widely studied [11–13].
However, it is also possible to have analogous scenarios
for other kinds of phase transitions, notably where the lepton
number is spontaneously broken [14–16].
It is interesting to consider supersymmetric (SUSY)

generalizations of this framework. Although there is not
yet experimental evidence for SUSY, it figures prominently
in string-theoretic completions of the standard model,
which may be the most promising means of reconciling
quantum mechanics with gravity. Current constraints from

ATLAS and CMS suggest that SUSY is broken well above
the teraelectronvolt (TeV) scale [17], disappointing hopes
that naturalness of the weak scale would imply a low scale
of SUSY breaking. Nevertheless, it has been argued that
SUSY breaking even at the petaelectronvolt (PeV) scale
need not be severely fine-tuned [18]. Moreover, it has been
shown that hidden-sector SUSY breaking at the PeV scale,
through a FOPT, can readily produce observable gravita-
tional waves, with novel features in the high-temperature
dynamics of the phase transition [19].
In the present paper, we extend the work of Ref. [19]

by hypothesizing a connection between SUSY breaking
and the baryon asymmetry of the universe. We also
consider the production of primordial black holes during
the phase transition. We propose an explicit model of
gauge-mediated SUSY breaking that can yield success-
ful leptogenesis, through the out-of-equilibrium decays
of heavy right-handed neutrinos and their superpartners.
Usually the scale of leptogenesis is decoupled from that
of SUSY breaking, but in this work we consider a
model where the two are tied together; we assume that
the same field that breaks SUSY also produces a large
lepton-violating mass for heavy right-handed neutrinos.
We take advantage of the near degeneracy of heavy
right-handed neutrinos in a minimal flavor violation
(MFV) hypothesis to resonantly enhance the CP asym-
metry of their decays, a regime known as resonant
leptogenesis [20], and we extend it to the decays of
sneutrinos. The resonance allows the model to yield the
observed baryon asymmetry despite strong washout
effects due to inverse decays.
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We found that O’Raifeartaigh-like models of SUSY
breaking require at least two right-handed neutrino super-
fields per lepton flavor to have a nonvanishing vacuum
energy in this scenario, in contrast to the usual assumption
of just a single family. The level repulsion between these
two fields pushes the scale of leptogenesis down to
Oð105–106 GeVÞ, while generating light neutrino masses
from one-loop effects at the Oð108 GeVÞ scale.
We start with a description of the general framework of

gauge-mediated hidden-sector SUSY breaking in Sec. II,
and there introduce a specific model. In Sec. III we con-
struct the finite-temperature effective potential needed for
analyzing the first-order SUSY-breaking phase transition.
Section IV describes the generation of the lepton asym-
metry that gives rise to baryogenesis, via resonant lepto-
genesis, as well as the one-loop mechanism for neutrino
mass generation. In Sec. V we describe two additional
cosmological consequences: the production of potentially
observable GWs, and constraints arising from production
of primordial black holes at the end of the phase transition.
Conclusions are given in Sec. VI. Details of the one-loop
effective potential including finite temperature are given in
the Appendix.

II. FRAMEWORK

The authors of Ref. [19] considered scenarios of gauge-
mediated SUSY breaking from a hidden sector, in which a
chiral pseudomodulus superfield X gets a vacuum expect-
ation value (VEV) in its scalar component x, through a first-
order phase transition. The desired shape of the potential
VðxÞ, with a barrier separating the true and false vacua, is
generated by four vectorlike messenger superfields, Φ, Φ0,
Φ̄, and Φ̄0, which also communicate SUSY breaking to the
visible sector, as in the O’Raifeartaigh model [21]. They are
standard model (SM) singlets, but they carry charges þ1,
þ1, −1, −1, respectively, under a Uð1ÞD gauge symmetry,
which allows for a Fayet-Iliopoulos (FI) D-term that can
enhance the gravitational wave signal.
This minimal particle content is sufficient to produce a

FOPT, but to realistically embed the standard model [in the
guise of the minimal supersymmetric standard model
(MSSM)], one can unify the SM gauge group in SU(5),
and include vectorlike messengers analogous to the Φ
fields but in the fundamental representation of SU(5),
which we denote by 5M, 50M, 5̄M, 5̄0M. In addition, we
introduce right-handed neutrino superfields Ni, N0

i whose
coupling to X leads to lepton number violating interactions
after SUSY breaking, enabling leptogenesis. We note that
it is not strictly necessary to unify the SM gauge group to
SU(5), but the 5M mediators provide a simple way of
communicating SUSY breaking to the SM. We can then
consider SU(5) as an approximate global symmetry, broken
by the gauge couplings of the SM. It enlarges to SU(6) by
ignoring the Uð1ÞD coupling and appropriately combining
the Φ and 5M fields:

Ψ ¼ ðΦ; 5MÞT; Ψ0 ¼ ðΦ0; 50MÞ;
Ψ̄ ¼ ðΦ̄; 5̄MÞT; Ψ̄0 ¼ ðΦ̄0; 5̄0MÞ: ð1Þ

The various fields and their transformation properties are
summarized in Table I.
We hypothesize that heavy sterile neutrinos get a

significant contribution to their masses from spontaneous
SUSY breaking, to provide a link between the phase
transition and leptogenesis. In our model, this comes from
a superpotential term XNiNj. However, as discussed below,
this by itself would lead to the sneutrino fields Ñi getting
VEVs and yielding a SUSY-preserving vacuum. Such an
undesired outcome can be avoided by the inclusion of two
types of heavy neutrino fields Ni and N0

i, carrying opposite
lepton numbers, allowing us to generate light neutrino
masses at one loop, by Z and Z̃ exchange.1

In addition to the fields shown, the MSSM contains the
quark doubletsQα, the down-type HiggsHd, and the SU(2)
singlet quarks and leptons, Uα, Dα, Eα. Although they do
not play an immediate role in the present study, for
completeness we suggest a possible set of R-symmetry
charges for them that would be compatible with SU(5)
gauge coupling unification. The fields Qα, Uα, Eα in the
ten-dimensional representation have Rð10Þ ¼ 1, while Dα

and Lα in the 5̄ have Rð5̄Þ ¼ 2, and RðHdÞ ¼ −1. The μ
term (μHuHd) would be nonrenormalizable, requiring
additional fields with total R ¼ 3.
The resulting superpotential, which can realize both

spontaneous SUSY breaking and leptogenesis, is

TABLE I. Superfield content and their charges. � denotes that
each 5-plet contains an SUð2ÞL doublet [as well as an SUð3Þc
triplet]. The hypercharge �y of the 5M mediators is undeter-
mined.

Field R Uð1ÞD SU(5) SUð2ÞL Uð1Þy L ZL
2

X þ2 0 1 1 0 0 þ1
Φ 0 þ1 1 1 0 0 þ1

Φ̄ þ2 −1 1 1 0 0 þ1

Φ0 þ2 þ1 1 1 0 0 þ1

Φ̄0 0 −1 1 1 0 0 þ1

5M 0 0 5 * þy 0 þ1

5̄M þ2 0 5̄ * −y 0 þ1

50M þ2 0 5 * þy 0 þ1

5̄0M 0 0 5̄ * −y 0 þ1

Ni 0 0 1 1 0 −1 −1
N0

i þ2 0 1 1 0 þ1 −1

Lα 2 0 1 2 −1 þ1 −1
Hu 0 0 1 2 þ1 0 þ1

1Qualitatively similar one-loop mechanisms were considered
in Refs. [22,23].
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W ¼ WMSSM − FX þ λXΨΨ̄0 þmðΨΨ̄þ Ψ0Ψ̄0Þ

þ λ0ij
2
XNiNj þMijNiN0

j þ YiαϵabNiLa
αHb

u; ð2Þ

where WMSSM is the superpotential of the MSSM, F
is a dimension-two constant associated with the SUSY-
breaking scale, Hu is the up-type Higgs doublet, α is the
flavor index for the SM fields, and i is that for the right-
handed neutrino superfields. At least two flavors of Ni are
needed for CP violation leading to leptogenesis and to
explain light neutrino oscillations; for simplicity we will
assume only two such flavors. Terms of the formN0NN and
F0N0 are forbidden by a discrete symmetry ZL

2 under which
all fields acquire a sign ð−1ÞL, where L is the lepton
number. This “leptonic parity” could be considered as a
remnant of the broken Uð1ÞL global symmetry.
To construct a predictive and economical model, we will

assume a version of MFV, i.e., that SO(2) symmetry of the
sterile neutrino flavors (labeled by i for both Ni and N0

i)
in the superpotential is broken only by the Yukawa
couplings Yiα, so that at leading order λ0ij ¼ λ0δij

2 and
Mij ≡Mδij þ iM0ϵij, using the invariant tensors of SO(2).
At one loop, corrections are generated involving δY2

ij ≡
YiαY

†
αj=ð16π2Þ [24]:

λ0ij ¼ λ0½δij þ c1δY2
ij�;

Mij ¼ ðδik þ c2δY2
ikÞ½Mδkj þ iM0ϵkj�; ð3Þ

where c1;2 are constants of order unity. Ignoring the small
corrections of order Y2=16π2, the eigenvalues of Mij

are M �M0.
As we are interested in possible connections between

SUSY-breaking and leptogenesis, we restrict ourselves to
heavy neutrinos at a scale M ∼

ffiffiffiffi
F

p
.3 As we will show,

the model requires δY2
ij ∼ 10−8 (that is, Y2 ∼ 10−6) to

radiatively generate neutrino mass of order ∼ 0.05 eV.
Therefore, Yukawa corrections to the mass eigenvalues
are negligible forM0 ≳ 10−7M only. It is technically natural
to assume that M0 ≪ M so that the two states, with masses
M �M0, are nearly degenerate. It will be shown in Sec. IV
that this leads to the quasiresonant enhancement of the CP
asymmetry of neutrino and sneutrino decays. In this work,
we will fix M0 ¼ 10−7M to maximize the effect of this
resonance. On the other hand, the Yukawa interactions

contain CP-violating phases that can lead to the CP
asymmetries needed for leptogenesis, as we will show.
SUSY is spontaneously broken when the scalar compo-

nent of X gets its VEV. The scale

μ ¼ λ0hX̃i≡ λ0ffiffiffi
2

p hxi ð4Þ

will play an important role in the following. It determines
the mass of the heavy sterile neutrinos Ni, in the regime
M ≪ μ where their mixing with N0

i is suppressed. Then N0
i

is relatively light, with mass ∼M2=μ. Wewill see that this is
the favorable regime for obtaining successful leptogenesis.
hxi is determined by the microscopic model parameters as
estimated in Eq. (27) below.
Another frequently occurring scale is the effective F term

FX ≡ F − λhΦ̃ ˜̄Φ0i ð5Þ

at theminimumof the potential, where the fields Φ̃, ˜̄Φ0 obtain
VEVs, as described below. It quantifies the spontaneous
breaking of SUSY, and appears in the gluino mass arising
from gauge-mediated SUSY breaking,

mg̃ ¼ Nm
g2s

ð4πÞ2
FX

hX̃i sMCRG; ð6Þ

where gs is the strong coupling at the scale hX̃i andNm is the
number of vectorlike sets of messenger fields that participate
in gauge mediation. Note that Nm ¼ 2 for the superpotential
(2). The factor sM ≡ 1

6
½λF=m2�2 expresses the effect of

gaugino screening [28–30].4 The correction CRG accounts
for the renormalization group (RG) relation of the softmass to
the pole mass, from Eq. (8.3.3) of Ref. [32]. The current
experimental limit of mg̃ > 2.3 TeV [33] will provide a
significant constraint on the parameter space favorable for
gravitational wave production in the following. Although we
only consider the minimal model with Nm ¼ 2, one could
always consider a model with more sets of messenger fields,
which would increase gaugino masses with little impact on
the FOPT dynamics or leptogenesis.

A. Scalar potential

The F-term potential arising from the superpotential (2)
includes the terms

VF ⊃
����F −

λ0

2
ÑiÑi − λΨ̃ ˜̄Ψ0

����2 þ jmj2ðjΨ̃j2 þ j ˜̄Ψ0j2Þ

þ jλX̃ Ψ̃þmΨ̃0j2 þ jλX̃ ˜̄Ψ0 þm ˜̄Ψj2
þ jλ0X̃Ñi þMiÑ0

i þ ϵabYiαL̃a
αHb

uj2 þ jMiÑij2; ð7Þ

2In what follows, parameters without indices are universal
among right-handed (RH) neutrino flavors. Parameters with a
single index i are specific to one flavor while parameters with two
indices ij refer to the general parametrization of Eq. (2).

3In the case where M ≫
ffiffiffiffi
F

p
, heavy neutrinos would decay

long before the SUSY-breaking phase transition. The B-term
λ0F�Ñ2

i in Eq. (7) would be the only relevant lepton-number-
violating interaction, which would allow for soft leptogenesis
[25–27].

4The screening suppression comes from the first subleading
term in Eq. (7) of Ref. [31], where the leading term is subtracted
by the gaugino mass counterterm.
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where the tilde denotes the scalar component of the
superfield (except later for H̃u, where it is the Higgsino).
In addition, there is a D-term potential from the Uð1ÞD

interaction, including a Fayet-Iliopoulos term,

VD ¼ g2

2

�
D
g
þ jΦ̃j2 þ jΦ̃0j2 − j ˜̄Φj2 − j ˜̄Φ0j2

�
2

; ð8Þ

where g is the Uð1ÞD gauge coupling andD is a dimension-
two constant. We do not write the D-terms of the 5M fields
associated with their SM charges, which only ensure that
these fields have vanishing VEVs at the minimum of the
potential. Therefore the Ψ fields in Eq. (7) can be replaced
by their corresponding Φ components, for the purposes of
minimizing the potential.
At zero temperature, there is a metastable minimum of

V ¼ VF þ VD at Ñ ¼ Ñ0 ¼ Ψ̃ ¼ Ψ̃0 ¼ 0, provided the
conditions M2

i > λ0F and m4 > λ2F2 þ g2D2 are satisfied.
At tree level, X̃ is a flat direction near this local minimum.
However, one-loop corrections to the scalar potential
slightly lift the flat direction, making X̃ ¼ 0 the local
minimum.
If D > F, the true minimum of the tree-level potential

is a runaway solution, X̃ → ∞ and Φ̃; ˜̄Φ0 → 0, with

Φ̃0 ¼ −ðλ=mÞX̃ Φ̃, ˜̄Φ ¼ −ðλ=mÞX̃ ˜̄Φ0 taking finite values
that satisfy

jΦ̃0j2 − j ˜̄Φj2 þD
g
¼ 0: ð9Þ

Therefore at the minimum of V, VD vanishes while
VF ¼ jFj2. However, as we will show, loop corrections

shift the minimum to finite values of X̃, Φ̃, and ˜̄Φ0.
At one loop, V receives a Coleman-Weinberg correction

through the field-dependent masses m2
i ðx;ϕ1;ϕ2Þ, where

for brevity we define x ¼ ffiffiffi
2

p jX̃j, ϕ1 ¼
ffiffiffi
2

p j ˜̄Φj, and ϕ2 ¼ffiffiffi
2

p jΦ̃0j. Expressions for the masses and VCW are given in
the Appendix. We define an effective potential for the
modulus alone, VeffðxÞ, by setting ϕ1 and ϕ2 to the values
that minimize V for fixed x. Typical behaviors for VeffðxÞ at
different temperatures are illustrated in Fig. 1. More details
about Veff and its properties are derived in Sec. III B.

B. Finite temperature corrections

Thermal corrections to the potential decrease the value of
the potential near the origin, but they have negligible effects
at large field values. This is because, for large values of x,
either mass eigenstates become heavy and decouple from
the thermal bath or they become very light and contribute
negligibly to the thermal potential. Therefore, the x ¼ 0
vacuum is the true minimum above a certain critical
temperature Tc. The thermal potential and its high-temper-
ature expansion are given in the Appendix.

C. Interactions of fermions

The fermionic part of the potential, following from the
superpotential, contains the terms

Vf ⊃ MiNC
i N

0
i þ

λ0

2
X̃ NC

i Ni þ Yiαϵab

�
ÑiH̃

C;b
u PLLa

α

þ L̃a
αH̃

C;b
u PLNi þHb

uNC
i PLLa

α

�
þ H:c: ð10Þ

The second term on the first line violates lepton number
conservation and gives rise to a Majorana mass μ ¼ λ0hX̃i
for Ni after X̃ acquires a VEV. In the limit μ ≫ M, Ni and
N0

i split into two distinct eigenstates with masses ∼ μ and
M2=μ [see Eq. (33)].
As was the case for scalar decays, the Yukawa couplings

are the only source of CP violation for the fermionic decay
channels of heavy neutrinos and sneutrinos.

III. SUSY-BREAKING FIRST-ORDER
PHASE TRANSITION

The leptogenesis mechanism presented in this paper (see
Sec. IV) does not require the SUSY-breaking phase transition
to be first order. Nevertheless, FOPTs provide an interesting
opportunity for probing high-energy physics by producing
primordial black holes and a stochastic background of GWs.
Such cosmological observableswill be explored in Sec.V for
the model presented in this paper. In this section, we present
our methodology for finding and studying SUSY-breaking
FOPTs and discuss their properties.

A. Bubble nucleation

FOPTs proceed through bubble nucleations of the true
vacuum. It is triggered by quantum tunneling or thermal
fluctuations, which can both be quantitatively described by

FIG. 1. Typical profiles of VeffðxÞ at T ¼ 0, Tn, and Tc. The
points show the position of the true vacuum. Model parameters
are fixed at λ ¼ 4, D ¼ 8.6F, g ¼ 0.1, and m ¼ ffiffiffiffiffiffiffiffiffiffi

5.3F
p

.
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an instanton or a bounce solution interpolating between the
false and true vacua. In most cases of interest, the phase
transition happens at high temperatures where thermal
fluctuations are much more efficient than quantum tunnel-
ing; hence we only describe the former here.
The nucleation rate, which can be derived from a

semiclassical calculation, is given by [34]

ΓðTÞ ≃ T4

�
S3
2πT

�
3=2

e−S3=T; ð11Þ

where S3 is the O(3)-symmetric Euclidean action

S3ðTÞ ¼ 4π

Z
drr2

�
1

2

�
dϕi

dr

�
2

þ Vðϕi; TÞ
�

ð12Þ

and ϕi denotes a scalar field whose VEV changes during
the phase transition. The tunneling path ϕiðrÞ is found by
requiring S3 to be stationary, which leads to the equations
of motion

d2ϕi

dr2
þ 2

r
dϕi

dr
¼ ∂V

∂ϕi
; ð13Þ

with the boundary conditions ϕiðr → ∞Þ ¼ ϕfalse
i and

dϕi
dr jr¼0

¼ 0.
The phase transition begins at the nucleation temperature

Tn, when there is an average of one bubble per Hubble
volume [35]:

1 ¼
Z

Tc

Tn

dT
T

Γ
H4

¼
Z

Tc

Tn

dT
T3

H4

�
S3
2πT

�
3=2

e−S3=T: ð14Þ

Tc is the critical temperature, defined as the temperature
where the true and false vacua are degenerate,

ΔVðTcÞ ¼ 0; ð15Þ

ΔV is the potential difference between the two vacua. To
obtain an approximate solution of Eq. (14), one can expand
the argument of the exponential linearly in T, and fix T ¼
Tn elsewhere in the integrand; this is justified because the
exponential varies much more rapidly than the other
coefficients. This procedure yields the simpler condition

S3
T

����
T¼Tn

≃ 92.5þ 3

2
log

�
S3

2πTn

�
− 4 log

�
Tn

10 PeV

�
− log

�
βH

100ð1 − e−βHðTc=Tn−1ÞÞ

�
− 2 log

�
g

300

�
;

ð16Þ

where g is the effective number of degrees of freedom and

βH ¼ β

H
¼ Tn

d
dT

�
S3
T

�����
T¼Tn

ð17Þ

quantifies the inverse duration of the phase transition.
Using the fact that the action is stationary under small
variations of the tunneling path, one can write βH in terms
of ϕiðrÞ and S3 as

βH ¼ 4π

Z
drr2

∂V
∂T

−
S3
T

����
T¼Tn

; ð18Þ

which is numerically much more efficient than computing
Eq. (17) by finite difference.
Another important quantity for characterizing the

strength of the phase transition is the ratio of vacuum
energy released in the phase transition compared to the
radiation energy, given by

α ¼ 1

ργ

�
ΔV −

Tn

4
Δ
dV
dT

�����
T¼Tn

; ð19Þ

where ΔV is the difference of potential energy between the
true and false vacua and ργ ¼ gπ2T4

n=30. Larger α corre-
sponds to more energy being released into the plasma,
which yields a stronger phase transition. As we will see in
Sec. V, this quantity, together with β, is important for
determining the spectrum of GWs produced during the
FOPT. In general, the GWamplitude is enhanced at large α
and small β.

B. Effective bounce scalar potential

To study the dynamics of the phase transition, one must
consider the scalar potential as a function of the fields
whose VEVs vary across the bubble walls. As previously
explained, these are the fields X and the four vectorlike
messengers Φ, Φ0, Φ, and Φ̄0. The scalar potential appear-
ing in the bounce action thereby reduces to

V ¼ jF − λΦ̃ ˜̄Φ0j2 þ jmj2ðjΦ̃j2 þ j ˜̄Φ0j2Þ
þ jλX̃ Φ̃þmΦ̃0j2 þ jλX̃ ˜̄Φ0 þm ˜̄Φj2 ð20Þ

þ g2

2

�
D
g
þ jΦ̃j2 þ jΦ̃0j2 − j ˜̄Φj2 − j ˜̄Φ0j2

�
2

þ VCW þ VT; ð21Þ

where VCW and VT are the one-loop vacuum and thermal
potentials, respectively (see the Appendix for more details).
Finding the bounce action for 10 real degrees of freedom is

numerically expensive, so it is advantageous to simplify the
scalar potential to reduce the effective number of degrees of
freedom. This can be achieved with the methodology of
Ref. [19]. One first integrates out the Φ0 and Φ̄ fields by
solving for the F-terms of Φ and Φ̄0, which yields
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Φ̃0 ¼ −
λ

m
X̃ Φ̃; ˜̄Φ ¼ −

λ

m
X̃ ēΦ0 : ð22Þ

Substituting Eq. (22) into Eq. (20) gives the effective
tunneling potential

Veff ¼ jF − λΦ̃ ˜̄Φ0j2 þ jmj2ðjΦ̃j2 þ j ˜̄Φ0j2Þ

þ g2

2

�
D
g
þ ðjΦ̃j2 − j ˜̄Φ0j2Þ

�
1þ λ2

m2
jX̃j2

��
2

þ VCW þ VT: ð23Þ

Veff depends on just four fields: the magnitude of X̃, Φ̃, ˜̄Φ0,
and the relative phase between the latter. Furthermore, the
F-term of X is minimized when this relative phase vanishes,
so without loss of generality, we can choose the three fields
to be real, leaving 3 degrees of freedom.
In what follows, we will make the approximation that

the kinetic terms of X̃, Φ̃, and ˜̄Φ0 remain canonical. In
principle, Eq. (22) would also modify the kinetic terms
of the three remaining fields. The pseudomodulus term
gets corrections of order ðλhϕi=mÞ2, where hϕi2 ¼
hΦ̃i2 þ h ˜̄Φ0i2. In the region of parameter space under
study, hϕi ≪ m, making these corrections insignificant.
The other kinetic terms receive a correction of order
ðλX̃=mÞ2, which is not small. But, as was argued in
Ref. [19], despite this extra term, the messengers’ kinetic
terms have little impact on the bounce action and can
be ignored altogether. That is because the distance they
travel in field space during the phase transition is so small
that they never acquire a substantial velocity.
The bounce action Eq. (12) can then be rewritten in terms

of the fields x ¼ ffiffiffi
2

p jX̃j, ϕ1 ¼
ffiffiffi
2

p jΦ̃j, and ϕ2 ¼
ffiffiffi
2

p j ˜̄Φ0j as

Seff3 ðTÞ ¼ 4π

Z
drr2

�
_x2

2
þ

_ϕ2
1

2
þ

_ϕ2
2

2
þ Veffðx;ϕ1;ϕ2;TÞ

�
:

ð24Þ

To get accurate results, one must minimize the potential
(20) numerically to find the true vacuum. We compute the
bounce solution ðx;ϕ1;ϕ2ÞðrÞ and the tunneling action
numerically using the package CosmoTransitions [36], which
also calculates the nucleation temperature Tn as described
in the last subsection (see Ref. [19] for an analytical
estimate of the action).
One can get analytic insight into the phase transition

dynamics by estimating the position of the true vacuum.
As argued in Sec. II, the tree-level true vacuum is at
x → ∞, and it is rendered finite, though still large, by
small radiative contributions to Veff . Consequently, Eq. (9)
implies that hϕ1i and hϕ2i are small. Moreover, to
minimize the F- and D-terms, ϕ1 must be suppressed with
respect to ϕ2 by a factor of gF=ðλDÞ, which is assumed to
be small. Therefore, hϕ1i is neglected in the following.

We integrate out ϕ2 by partially minimizing Veff with
respect to it, with the solution at large x,

hϕ2ix→∞ ≅
2m
λx

ffiffiffiffi
D
g

s
;

Veffðx → ∞;TÞ ≅ F2 þ 2m4D
gλ2x2

þ VCWðxÞ þ VTðx;TÞ;

ð25Þ
where we neglected the one-loop contributions to compute
hϕ2i. As expected, the tree-level potential does not have a
minimum at finite x. Therefore, one must estimate the one-
loop contributions to obtain a finite VEV. We show in the
Appendix that, for large x,

VCWðx → ∞Þ ≅ 3λ2F2

8π2
log

�
λ2x2

2m2

�
;

VTðx → ∞;TÞ ≅ 3m4T2

λ2x2
; ð26Þ

neglecting constant terms that have no effect on the
vacuum’s position. Adding the one-loop corrections to
the tree-level potential, one finds that the true vacuum is
located at

hxi ≅ 4πm2ffiffiffi
3

p
λ2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
g
þ 3T2

2

s
: ð27Þ

hxi depends on negative powers of the coupling constants,
confirming the hypothesis that hxitrue is large when the
interactions are weak.
The fact that x gains a large VEV has important

consequences for the FOPT’s dynamics. It implies that
to get from one vacuum to the other, a large amount of
kinetic energy must be expended, which increases the
tunneling action. Therefore tunneling will only be possible
at a low temperature relative to Tc, which leads to greater
supercooling and consequently a stronger FOPT. This has
the potential to enhance GW production and the probability
of detection. In Sec. V, we will compute GW spectra for a
range of parameters and show that this is indeed the case.

IV. RESONANT LEPTOGENESIS

Next we describe the mechanism of leptogenesis in the
SUSYmodel, arising from the out-of-equilibrium decays of
the sterile neutrinos Ni, N0

i and their superpartners Ñi, Ñ0
i.

CP and lepton number violation in the decays generate a
lepton asymmetry Y tot

L ¼ P
α YLα

þ YL̃α
, where Yi ¼ ni=s

is the comoving abundance of a given species. Assuming
B − L is conserved, sphalerons partially convert the lepton
asymmetry into a baryon asymmetry. In the Minimal
Supersymmetric Standard Model (MSSM), the conversion
efficiency is [37]
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YB ¼ nB − nB̄
s

¼ −
8

23
Y tot
L : ð28Þ

Big Bang nucleosynthesis (BBN) and cosmic microwave
background (CMB) data constrain the baryon asymmetry
of the universe to [38,39]

YBBN
B ¼ ð8.7� 0.5Þ × 10−11;

YCMB
B ¼ ð8.69� 0.06Þ × 10−11 ð29Þ

at 95% C.L.
In our model, all lepton-number-violating interactions

are related to the breaking of SUSY via the nonvanishing

F-term FX ¼ F − λhΦ̃ ˜̄Φ0i or the pseudomodulus X̃,

−L=L ¼ −
λ0F�

X

2
ÑiÑi þ

λ0X̃
2

NC
i Ni

þ λ0X̃ÑiðM�
i Ñ

0�
i þ ϵabY�

iαL̃
a�
α Hb�

u Þ: ð30Þ

One may recognize the first term of this expression as a soft
SUSY-breaking B-term, which mixes sneutrinos with their
conjugates even before the phase transition, allowing their
decays to violate the lepton number outside the bubble wall.
When X̃ gets a VEV, neutrinos acquire a Majorana mass
μ ¼ λ0hX̃i, opening their decays to lepton number violation
as well.
A priori, all parameters appearing in the superpotential

(2) are complex. One can rephase the fields Ni, N0
i, Lα, and

Hu to remove the complex phases in the mass matrix and in
three Yukawa couplings, for example, Y1α. If there are
several right-handed neutrino flavors, in general one cannot
simultaneously remove the phases of Y1α and Yjα (j > 1),
allowing one to define a set of invariant CP-violating
phases,

θjα ¼ arg ðYjαY�
1αÞ ðno sumon α; j > 1Þ; ð31Þ

which can be assigned to Yjα. Hence at least two right-
handed N and N0 species are needed for leptogenesis.
Additional interactions such as A-terms AiÑiL̃Hu, which
arise from RG running of SUSY-breaking interactions and
which are essential to standard soft leptogenesis [25–27],
are not required and can be neglected if leptogenesis occurs
at a scale close to

ffiffiffiffi
F

p
. In the following we will consider

two heavy neutrino flavors, so that only two SM neutrinos
are massive.
There are two ways in which a lepton asymmetry can

arise, depending on whether μ ≪ M or μ ≫ M. In the
former case, (s)neutrinos decay in the thermal bath,
possibly even before the SUSY-breaking phase transition
if M ≫

ffiffiffiffi
F

p
(in which case only sneutrinos produce a

lepton asymmetry due to their B-term), and the CP
asymmetry is resonantly enhanced by the small mass
splitting between flavors. Strong washout is then required

to achieve the observed baryon asymmetry. However, we
have found that in this scenario, the SM neutrino masses
induced at one loop are too small to match observations.
Consequently, we will focus on the case μ ≫ M. After

the phase transition, N and N0 are weakly mixed with
mixing angle ∼M=μ ≪ 1, and we will refer to the
corresponding mass eigenstates as N, N0. Going to the
basis where Mij ¼ ð M

iM0
iM0
M Þ becomes diagonal with eigen-

values Mi ¼ M þ s1M0, where s1 ¼ �1, the four scalar
masses are given by

m2
Ñ0

i;�
¼ M2

i

�
M2

i þ s2λ0FX

μ2

�
≅
M4

i

μ2
;

m2
Ñi;�

¼ μ2 þ 2M2
i þ s2λ0FX ≅ μ2; ð32Þ

with s2 ¼ �1. In the approximation m2
Ñ0

i;�
≅ M4

i =μ
2, we

assumed that λ0FX=μ2 ≪ M0=M. The fermionic mass
eigenvalues are

mN0
i
¼ −

M2
i

μ
;

mNi
¼ μ

�
1þM2

i

μ2

�
≅ μ: ð33Þ

It is useful to rewrite the Lagrangian interactions relevant
for leptogenesis in the mass eigenbasis. Keeping only the
leading terms, one finds

−Ls ¼
ϵabYiαffiffiffi

2
p

�
Ñ0

i;−

�
M3

i

μ2
L̃a
αHb

u −
Mi

μ
H̃C;b

u PLLa
α

�
þ iÑ0

i;þ

�
M3

i

μ2
L̃a
αHb

u þ
Mi

μ
H̃C;b

u PLLa
α

�
þ Ñi;−

�
μL̃a

αHb
u þ H̃C;b

u PLLa
α

�
þ iÑi;þ

�
μL̃a

αHb
u − H̃C;b

u PLLa
α

�	
þ H:c: ð34Þ

for sneutrinos and

−Lf ¼ ϵabYiα

�
N0C

i

�
−
Mi

μ
L̃a
αPLH̃b

u −
Mi

μ
Hb

uPLLa
α

�
þ NC

i ðL̃a
αPLH̃b

u þHb
uPLLa

αÞ
	
þ H:c: ð35Þ

for neutrinos.
When X̃ acquires a VEV, the N states become heavy and

quickly decay, giving rise to an initial lepton asymmetry,
due to the CP-violating phases from the Yukawa couplings.
In contrast, N0 is typically lighter than the SUSY-breaking
scale. As wewill show, because of its small mass and strong
interaction with the thermal bath,N0 remains in equilibrium
and its inverse decays exponentially wash out the lepton
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asymmetry produced by N decays. Therefore, we can
ignore the N contribution to the asymmetry and focus
on that of N0.
When T drops below mN0 ≅ M2=μ, the N0 states fall out

of equilibrium and a net lepton asymmetry results. Within
the MFV hypothesis, CP violation in (s)neutrino decays
comes from the one-loop mixing between N0 (Ñ0) flavors.
The one-loop diagrams are illustrated in Fig. 2. The
detailed calculation of the CP asymmetry will be presented
in Sec. IV B.
Ignoring corrections to the mass eigenvalues, N0

i and Ñ0
i

states have the same decay rates into leptons, sleptons, and
their conjugates. The total decay rate is given by

Γi ¼
1

4π
ðYY†Þii

�
M4

μ3

�
: ð36Þ

A. Loop-induced neutrino masses

To fully determine the parameters consistent with suc-
cessful leptogenesis, we must relate the Yukawa couplings
to the observed light neutrino masses. The mass matrix in
the basis ðν; N0; NÞ takes the form0B@ 0 0 mD

0 0 M

mT
D M μ

1CA; ð37Þ

where mD;iα ¼ YiαhHui≡ Yiαvu, μij ¼ λ0hX̃iδij, and M
denotes the matrix Mij from Eq. (2). We recall our

assumption that jμj ≫ jMj. The lightest neutrinos remain
massless with this tree-level matrix, since only the linear
combination ðmD=MÞνþ N0 gets a mass. However, at one
loop, a direct Majorana massmν is generated for the ν states
by the diagrams shown in Fig. 3, while no N0 Majorana
term is induced at this level. This lifts the flat direction
orthogonal to ðmD=MÞνþ N0 and gives a small mass to the
lightest neutrino. IfM ≫ mD, mixing between ν andN0 can
be neglected, and the light neutrino mass matrix is given by

mν ¼
g22Y

TYðv2u=μÞ
8π2cos2θW

�
lnðμ=mZÞ
1 −m2

Z=μ
2
þ λ0FX

16μmZ̃
fðsmÞ

�
;

fðxÞ ¼ x2ð1 − x2 þ x2 lnðx2ÞÞ
ð1 − x2Þ2 ; ð38Þ

where g2 is the SU(2) gauge coupling,mZ̃ is the Zino mass,

mZ̃ ¼ Nm
g22

ð4πÞ2
FX

hX̃i smCRG; ð39Þ

including gaugino screening by the factor sm, Nm ¼ 2 sets
of messenger fields, and RG running correction CRG as in
Eq. (6). We have approximated mZ̃ ≅ mν̃sm, and that M is
proportional to the unit matrix in the N − N0 flavor space.
We find that mν is dominated by the first diagram, with the
second making a correction of ∼8% for a screening factor
of sm ∼ 0.1.
In addition to the previous assumptions and the near

degeneracy of the heavy RH neutrino Ni, we consider
the SM neutrinos to be hierarchical. To relate light

FIG. 2. One-loop self-energy diagrams for Ñ0 (top) and N0 (bottom) decays. Dotted vertical lines indicate the intermediate states that
go on-shell when evaluating the absorptive parts of the diagrams, in accordance with the Cutkosky rules [40].

FIG. 3. Mass generation of the light neutrinos.
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neutrino masses with the parameters of our model, we
introduce a Casas-Ibarra parametrization of the Yukawa
matrix [41–43]. Because our model only contains two
sterile neutrino flavors, the lightest neutrino is exactly
massless. We will consider the normal (NH) and inverted
(IH) hierarchies, for which m1 ≅ 0 and m3 ≅ 0, respec-
tively. One obtains

Yiα ¼
ffiffiffiffiffiffiffiffiffi
C

μ

v2u

r
RD ffiffiffiffi

mν
p U†

ν; ð40Þ

where we have regrouped all numerical coefficients into
C ≈ 9.7, Uν is the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix, and D ffiffiffiffi

mν
p is the diagonal matrix

D ffiffiffiffi
mν

p ¼ diagð0; ffiffiffiffiffiffi
m2

p
;

ffiffiffiffiffiffi
m3

p Þ ðNHÞ;
D ffiffiffiffi

mν
p ¼ diagð ffiffiffiffiffiffi

m1

p
;

ffiffiffiffiffiffi
m2

p
; 0Þ ðIHÞ: ð41Þ

The 2 × 3 matrix R contains a 2 × 2 complex orthogonal
submatrix,

R ¼
�
0 cos ϱ̂ sin ϱ̂

0 − sin ϱ̂ cos ϱ̂

�
ðNHÞ;

R ¼
�

cos ϱ̂ sin ϱ̂ 0

− sin ϱ̂ cos ϱ̂ 0

�
ðIHÞ; ð42Þ

where ϱ̂≡ aþ ib is a complex parameter. Using Eq. (38),
one can estimate the numerical values of the Yukawa
couplings required to yield neutrino masses in agreement
with observations,

YTY ¼ 1.6 × 10−6
�

μ

100 PeV

��
mν

0.05 eV

��
1

sin2β

�
; ð43Þ

where tan β ¼ vu=vd and we used v2u þ v2d ¼ ð174 GeVÞ2.
The matrix YY† will be central in our analysis of

leptogenesis, so it is convenient to express it using the
Casas-Ibarra parametrization,

YY† ≡ C
μ

2v2u
M

¼ C
μ

2v2u

�
δc2a þ σch2b −δs2a þ iσsh2b
−δs2a − iσs2b −δc2a þ σch2b

�
; ð44Þ

where σ ¼ m2 þm3 (m1 þm2) and δ ¼ m2 −m3

(m1 −m2) for NH (IH). In this expression, a and b are
the real and imaginary parts of the complex angle ϱ̂ in
Eq. (42), and cx ¼ cos x, sx ¼ sin x, chx ¼ cosh x,
shx ¼ sinh x. Note that the PMNS matrix does not enter
this expression and therefore has no direct impact on
leptogenesis.

B. CP asymmetry

Because of the tiny mass splitting ∼M0 between sterile
neutrino flavors, one-loop flavor mixing is resonantly
enhanced. This makes the self-energy diagrams of Fig. 2
the dominant contribution to CP asymmetry in N0 and Ñ0

decays, which is often referred to as ε-type CP violation.
Vertex diagrams, or ε0-type CP violation, can therefore be
neglected in our model [20,26,27,44].
Two types of sneutrino mixing can lead to CP violation:

Ñ0
i;� with Ñ0

j;� (same sign), and Ñ0
i;� with Ñ0

j;∓ (opposite
sign). In the former case, the mass squared difference is of
order [cf. Eq. (32)]

δm2
ij ≅ 8M2

�
M
μ

�
2
�
M0

M

�
; ð45Þ

which is much smaller than the splitting of the second
mixing, ∼ λ0FXðM=μÞ2. Therefore, the second mixing is
not as resonant as the first one, and we can ignore CP
violation coming from the latter.
Using the resummation approach for unstable par-

ticle propagators described in [20,25,26,44], the one-
loop amplitude for the sneutrino decays Ñ0

i → aα, with
aα ¼ L̃αHu or LαH̃u is

Âaα
i ¼ Aaα

i − i
X
j≠i

Aaα
j

Σ̃ðabsÞ
ji

p2 −M2
j þ iΣ̃ðabsÞ

jj

: ð46Þ

In this expression, Aaα
i is the tree-level amplitude of

the Ñ0
i → aα decay and Σ̃ðabsÞ

ji is the absorptive part of

the Ñ0
i → Ñ0

j self-energy, which we evaluated with the
Cutkosky rules [40].
For neutrino decays N0

i → bα, where bα ¼ LαHu or
L̃αH̃u, the one-loop amplitude is given by a similar
expression,

Âaα
i ¼ ūbαPR

�
hiα − i

X
j≠i

hjα

=p −Mj þ iΣðabsÞ
jj

ΣðabsÞ
ji

	
uN0

i
:

ð47Þ

Here, ΣðabsÞ
ji is the absorptive part of the N0

i → N0
j self-

energy and hiα is the tree-level coupling betweenN0
i and the

final state bα [cf. Eq. (35)].
One can define the CP asymmetry parameters as

ϵi ¼
P

aα;αΓðN0
i → aαÞ − ΓðN0

i → a�αÞP
aα;αΓðN0

i → aαÞ þ ΓðN0
i → a�αÞ

ð48Þ

for neutrinos and
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ϵ̃i ¼
P

bα;αΓðÑ0
i → bαÞ − ΓðÑ0

i → b�αÞP
bα;αΓðÑ0

i → bαÞ þ ΓðÑ0
i → b�αÞ

ð49Þ

for sneutrinos. Here, a�α and b�α are the CP conjugates of the
final states aα, bα.
At one-loop order, we find that neutrinos and sneutrinos

have the same CP asymmetry:

ϵi ¼ ϵ̃i ¼
1

2

X
i≠j

Im½ðYY†Þ2ij�
ðYY†ÞiiðYY†Þjj

ðmiΓjÞðδm2
ijÞ

ðδm2
ijÞ2 þ ðmiΓjÞ2

: ð50Þ

This expression is the same as in resonant leptogenesis
[20,43]. Significantly, because all decay channels of a given
state contribute with the same sign to the CP asymmetry,
thermal factors of the decay product cancel out in the
expression for ϵi, which implies the CP asymmetry
survives even in the T → 0 limit. This is to be contrasted
with the standard case of soft leptogenesis where bosonic
and fermionic decay channels have opposite CP asymme-
try and leptogenesis requires thermal effects to avoid exact
cancellation between them [25–27].
In the absence of SUSYbreaking, the resonance condition

miΓj ∼ δm2
ij would be satisfied assuming Y2 ∼M0=M, as

can be seen by comparing Eqs. (32), (33), (36), and (45). In
that case, the fraction ðmiΓjÞδm2

ij=½ðδm2
ijÞ2 þ ðmjΓjÞ2� is

maximized, leading to ϵi ∼ 1. This would be an example of
resonant leptogenesis.
However, in our model the breaking of SUSY suppresses

the decay widthmiΓj by ðM=μÞ4 [cf. Eq. (36)] while δm2 is
suppressed by ðM=μÞ2 only [cf. Eq. (45)].
With M0=M ¼ 10−7, we find that δmij ≫ miΓj and the

resonant enhancement is not maximal, but it is still
sufficient to yield successful leptogenesis at the PeV scale,
as we will show. We can rewrite Eq. (50) in terms of the
leptogenesis scale, M2=μ,

ϵi ≃
C

64πv2u

�
M
M0

��
M2

μ

�X
j≠i

jMj2ij sinð2ϕijÞ
ðMÞii

; ð51Þ

where ϕij ¼ argðMijÞ. We recall that C ≈ 9.7 andM is the
matrix introduced in the Casas-Ibarra parametrization of
YY†, Eq. (44). Assuming M2=μ ≈ 1 PeV, M ≈ 0.05 eV,
andM0=M ¼ 10−7, and barring a strong hierarchy between
on- and off-diagonal entries of the matrix M (or equiv-
alently, of YY†), one could therefore expect the CP
asymmetry to be of order ϵi ∼ 10−3. Although this is not
as large as what standard resonant leptogenesis models can
achieve, this is sufficient to produce the observed baryon
asymmetry as we will now show.

C. Evolution of lepton asymmetry

The initial asymmetry generated by the decays is
partially washed out by scattering and inverse decay

processes. The strength of the latter is characterized by a
washout parameter, defined as

Ki ¼
Γi

Hi
; ð52Þ

where Γi is given in Eq. (36) and Hi ¼ 1.66
ffiffiffiffiffi
g�

p
m2

i =Mpl is
the Hubble rate evaluated at T ¼ mi, with Planck mass
Mpl ¼ 1.22 × 1019 GeV. Numerically estimating the value
of Ki yields

Ki ¼ 1000

� ðYY†Þii
1.6 × 10−6

��
100 PeV

μ

��
230

g�

�
1=2

; ð53Þ

which is in the strong washout regime, Ki ≫ 1.
In the strong washout regime, inverse decays of right-

handed neutrinos remain in equilibrium down to temper-
atures well below their masses. This implies significant
suppression of the final lepton asymmetry, but it also allows
for several simplifying assumptions:

(i) the final lepton asymmetry is independent of the
initial right-handed neutrino abundances because
they rapidly come into thermal equilibrium;

(ii) any lepton asymmetry coming from the decays of
heavy N and Ñ (whose mass is μ ≫ M,

ffiffiffiffi
F

p
) is

exponentially suppressed and can be ignored relative
to those of the lighter N0 and Ñ0; and

(iii) thermal effects and CP violation from 2 → 2 scat-
tering processes can be ignored, as those are
significant only at large temperatures [45].

The coupled Boltzmann equations for the evolution of the
right-handed neutrino, sneutrino, and lepton number abun-
dances, YX ¼ nX=s, are

dYN0
i

dz
¼ −Kiz

K1ðzÞ
K2ðzÞ

ðYN0
i
− Yeq

N0
i
Þ; ð54Þ

dYÑ0
i

dz
¼ −Kiz

K1ðzÞ
K2ðzÞ

�
YÑ0

i
− Yeq

Ñ0
i

�
; ð55Þ

dYL

dz
¼

X
i

�
ϵiKiz

K1ðzÞ
K2ðzÞ

�
YN0

i
− Yeq

N0
i
þ YÑ0

i
− Yeq

Ñ0
i

�
− 2

Kiz3

4
K1ðzÞYL

�
; ð56Þ

where z ¼ m=T ¼ ðM2=μÞ=T, indicating our approxima-
tion that all states have the same mass, KiðxÞ are the
modified Bessel functions of the second kind, and the
equilibrium abundances in the Maxwell-Boltzmann
approximation are given by Yeq ¼ 45=ð4π4g�Þz2K2.
In Fig. 4(a) we show the numerical solutions of the

Boltzmann equations assuming the two right-handed neu-
trino flavors have the same washout parameter Ki ¼ 1000
and the same CP asymmetry ϵi. The initial conditions we
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used were YN0
i
¼ YÑ0

i
¼ Yeq and YL ¼ 10−12, from the

initial decays of the heavy states. The final values relevant
for the observed baryon asymmetry are, however, quite
insensitive to the initial conditions, which is characteristic
of the strong washout regime. In Fig. 4(b), the resulting
baryon asymmetry as a function of K is plotted for several
values of ϵ. Numerically, we obtain that the solution YL
scales as

YL ∼ 10−4
ϵ

K
ð57Þ

up to a logarithmic dependence on K, which agrees with
the analytical estimate found in Ref. [45] for the strong
washout regime. These estimates show that we can obtain
the observed asymmetry with ϵ ∼ 10−3.

Combining the Casas-Ibarra parametrization of YY† (44)
with the expression for the washout parameter (53) and the
CP asymmetry (51), one finds that the final lepton
asymmetry depends on a handful of parameters, namely
the light neutrino masses, the leptogenesis scale M2=μ,
the mass splitting parameter M0=M, and the complex angle
ϱ̂ ¼ aþ ib that enters the matrix R.
The contour plots of Fig. 5 show the leptogenesis scale

M2=μ that yields the experimental baryon asymmetry,
YB ¼ 8.7 × 10−11, for given values of a and b, and in
the (a) NH and (b) IH scenarios. For the NH case, a large
region of the parameter space yields successful lepto-
genesis at the PeV scale. The IH scenario requires a slightly
larger scale, M2=μ≳ 6 PeV. This is because the imaginary
part of YY†

12 scales with the light neutrino mass difference,
which is smaller for IH.

(b)(a)

FIG. 4. (a) Evolution of the (s)neutrino abundance YN (YÑ) and the baryon asymmetry as a function of z ¼ mi=T ¼ ðM2=μÞ=T for a
benchmark model with washout parameterK ¼ 1000. (b) Final baryon asymmetry for varying washout parameterK and CP asymmetry
ϵ. The light (dark) blue horizontal band illustrates the 95% C.L. limits set by BBN (CMB) data [cf. Eq. (29)].

(b)(a)

FIG. 5. Contour plot of the leptogenesis scaleM2=μ that yields the observed baryon asymmetry for a given complex angle ϱ̂ ¼ aþ ib
in the R matrix of Eq. (42). The left and right panels show scenarios with normal and inverted light neutrino hierarchy, respectively.
Black dashed curves show the contour lines of some benchmark values. White dotted curves show parameters corresponding to models
1 (left) and 2 (right) of Table II.
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Equation (6) and the experimental bound mg̃ ≳ 2.3 TeV
put a lower bound on the ratio FX=X̃. We also recall that
stability of the Ñ ¼ Ñ0 ¼ 0 vacuum requires λ0FX=M2 ≈
λ0F=M2 ≤ 1. Combining these constraints, one obtains a
lower bound on the mass scale of the N0

i states,

M2

μ
≳ 700 TeV

�
0.1
sM

��
M2

λ0FX

�
; ð58Þ

where we used g2s=4π ≈ 0.12. Equation (58) can be under-
stood as an absolute lower bound for the scale of lepto-
genesis in our model, which is orders of magnitude below
the ∼109 GeV Davidson-Ibarra bound in standard lepto-
genesis [46] and the ∼107 GeV limit seen in soft lepto-
genesis [26] and other models with radiatively induced
light neutrino masses [47].

D. Charged lepton flavor violation

SUSY-breaking models typically open the way to
charged lepton flavor violating processes that are highly
constrained, such as μ → eγ [41,48,49]. These interactions
are allowed by off-diagonal entries in the slepton soft mass
matrix,

ðm2
L̃
Þαβ ≈ −

3m2
0

8π2
ðY†YÞαβ ln

�
MGUT

M

�
; ð59Þ

wherem0 is the universal slepton mass. The branching ratio
of Lα → Lβγ decays is approximately given by

BRðLα → LβγÞ ≈
α3

G2
F

jðm2
L̃
Þαβj2

m8
SUSY

tan2β; ð60Þ

where α is the fine structure constant, GF is the Fermi
constant, and mSUSY is the superpartner mass scale.
Assumingm0 ≈mSUSY, we can numerically estimate this

branching ratio in our leptogenesis model,

BRðLα → LβγÞ ≈ 4.5 × 10−19
� ðY†YÞαβ
1.6 × 10−6

�2

×

�
1 TeV
mSUSY

�
4
�
tan β
10

�
2

; ð61Þ

where we used MGUT ≈ 1016 GeV and M ≈ 10 PeV. This
estimate is orders of magnitude below the current bound for
lepton flavor violation in muon decays, BRðμ → eγÞ ≲
4.2 × 10−13 [50], and well below the ∼6 × 10−14 predicted
sensitivity for the MEG II experiment [51,52]. Charged

lepton flavor violation in our model is therefore too small to
be observed in the near future, which is a general
consequence of the flavor blindness of gauge-mediated
SUSY breaking models [32,53].

V. OTHER COSMOLOGICAL SIGNATURES

In addition to providing a mechanism for leptogenesis, a
first-order SUSY-breaking phase transition may produce
other cosmological signals that future experiments can
observe. In this section, we start by estimating the GW
spectrum generated by such a FOPT and compare it to the
expected noise spectrum of several proposed GW detectors.
We then demonstrate that this SUSY-breaking phase tran-
sition would be prone to producing primordial black holes.

A. Gravitational waves

To assess the observability of GWs produced in the FOPT,
one considers the spectrumΩgwðfÞ, which is the contribution
per frequency octave to the energy density in gravitational
waves, i.e.,

R
ΩgwðfÞdðlogfÞ, the fraction of energy density

compared to the critical density of the universe. In general,
the spectrum can be separated into contributions from the
scalar fields, sound waves in the plasma and magneto-
hydrodynamical turbulence. However, the scalar field con-
tribution is only important for runaway walls (γw → ∞);
Ref. [54] showed that for ultrarelativistic walls, interactions
with gauge bosons create a pressure on thewall proportional
to γw which prevents it from running away. Furthermore, the
estimates for the magnetohydrodynamical turbulence are
uncertain and sensitive to the details of the phase transition
dynamics [55], and are expected to be much smaller than the
contribution from soundwaves. Hence, we only consider the
contribution from the latter.
The GW spectrum from sound waves observed today can

be parametrized as [56,57]

ΩgwðfÞ ¼ 2.061Fgw;0Ω̃gw
ðHRÞ2ffiffiffiffi
K

p þHR
K2Cðf=fp;0Þ; ð62Þ

where Fgw;0 ¼ 3.57 × 10−5ð100=g�Þ1=3, quantifies the
decrease in GWenergy from the expansion of the universe,
R ¼ ð8πÞ1=3vw=β is the mean bubble radius at the time
of percolation,5 K ¼ κα=ð1þ αÞ is the kinetic energy

TABLE II. Parameters for two benchmark models with successful leptogenesis and high GW production. All the dimensionful
quantities are expressed in PeV except for the gluino mass.

Model
ffiffiffiffi
F

p
m λ g

ffiffiffiffi
D

p
Tn hxiT¼Tn

α βH
ffiffiffiffiffiffi
FX

p
mg̃ [TeV] ϵR λ0 M μ M2=μ

1 30 50.7 2.14 0.1 84.0 26.9 769 0.429 76.8 24.6 2.49 1.90 × 10−3 1.58 40 890 1.80
2 30 59.7 2.97 0.117 78.3 26.9 555 0.317 74.4 21.5 2.58 2.69 × 10−3 0.623 40 258 6.20

5We make the approximation T� ≃ Tn, where T� is the
percolation temperature.
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fraction, CðsÞ ¼ s3ð7=ð4þ 3s2ÞÞ7=2 is a function deter-
mined from simulations that approximate the spectrum’s
shape, and the peak frequency is

fp;0 ¼ 2.62

�
1

HR

��
Tn

100 PeV

��
g�
100

�
1=6

Hz: ð63Þ

Furthermore, g� is the effective number of degrees of
freedom, β and α were given in Eqs. (17)–(19), vw is
the wall velocity,6 Ω̃gw ¼ 0.012 is a constant determined
numerically which represents the efficiency with which
kinetic energy is converted into GWs, and κ ≅ α=
ð0.73þ 0.083

ffiffiffi
α

p þ αÞ is the efficiency with which vac-
uum energy is turned into kinetic energy.
Once the GW spectrum is known, it must be compared to

the sensitivity of a detector to assess its detectability. The
signal-to-noise ratio (SNR) is defined by

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
Z

fmax

fmin

df

�
ΩgwðfÞ
ΩsensðfÞ

�
2

s
; ð64Þ

where ΩsensðfÞ denotes the sensitivity curve of the detec-
tor and T is the duration of the mission. Whenever SNR is
greater than a given threshold SNRthr, we conclude that
the signal can be detected. In general, the threshold
depends upon the configuration of the detector and can
be complicated to compute, but the value SNRthr ¼ 10 is
reasonable for most detectors. We compare the prediction
(62) for a range of parameters to several proposed GW
detectors: the earth-based detectors LIGO [59], ET [60],

and CE [61], and the space-based detectors LISA [1,62],
AEDGE [63], DECIGO [4,64], and BBO [6,64]. For each
experiment, we assume SNRthr ¼ 10 and T ¼ 4 years,
and the sensitivity curves can be found in the previous
references.
We performed two scans of the parameter space at a

scale
ffiffiffiffi
F

p ¼ 30 PeV and computed the SNR for each
detector. In both scans, λ ranges from 1 to 7, with D=F ∈
½6; 13� in the first scan and g ∈ ½0.02; 0.2� in the second.
Figure 6 shows the amplitude of the GW signal in the
planes of the varied parameters, and the regions of
sensitivity of the future experiments. It demonstrates that
a large region of parameter space can be probed by the
proposed experiments, especially by the earth-based
detectors ET and CE. In contrast, no model is detectable
by LIGO. Figure 6 shows that the GW amplitude is
maximized at small couplings λ≲ 2, g≲ 0.1 and for
D=F ≲ 8. The amplitude is maximal at the boundary of
the “No nucleation” region, where no solution to Eq. (16)
exists. Close to this boundary, the phase transitions have
enhanced supercooling, which leads to a stronger FOPT
and consequently a larger GW amplitude.
Figure 7 shows the peak-integrated sensitivity curves

(PISC) [65] of the detectors, along with the peak value of
the GW spectrum for each model appearing in Fig. 6. The
PISC is defined in such a way that any GW signal whose
amplitude peaks above the PISC will be detected. It is
therefore an intuitive figure of merit for the sensitivity of a
detector. At the scale

ffiffiffiffi
F

p ¼ 30 PeV, the frequency range
of the GW signal produced by the FOPT coincides with
the region of peak sensitivity of the earth-based detectors.
This allows them to probe a larger region of parameter
space, despite their lower sensitivity relative to space-
based detectors. If we lower the scale to

ffiffiffiffi
F

p ¼ 3 PeV,
the peak frequency is also rescaled by the same factor
since all the dimensionful parameters are expressed as a

(b)(a)

FIG. 6. Intensity plot of maximal amplitude of the GW spectrum. The regions (a) below or (b) left of the dashed lines would be
detected by the indicated experiment. We fixed (a)

ffiffiffiffi
F

p ¼ 30 PeV, g ¼ 0.1, and λF=m2 ¼ 3=4, and (b)
ffiffiffiffi
F

p ¼ 30 PeV, λF=m2 ¼ 3=4,
and gD=m2 ¼ 1=5. The red signs × and þ show, respectively, the position of the models 1 and 2 of Table II.

6Determining vw is a notoriously difficult problem; hence we
do not try to do a complete calculation here. Nevertheless,
Refs. [13,58] showed that for strong FOPTs (α ≳ 0.01), the wall
becomes ultrarelativistic. Since our model always yields α≳ 0.1,
vw ≅ 1 and we adopt this value.
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ratio of
ffiffiffiffi
F

p
,7 so we must have fp;0 ∝

ffiffiffiffi
F

p
. The frequency

range then becomes closer to the sensitivity region of the
space-based detectors. This highlights the importance of
having both types of detectors to cover a large range of
frequencies, and of the corresponding energy scales.

B. Primordial black holes

Several recent studies suggest that primordial black holes
(PBHs) can be produced by a collision of true-vacuum
bubbles during a FOPT. One mechanism relies on the
energy stored in the wall to cause gravitational collapse
when neighboring bubbles collide [66]. However, to reach
the required energy density, the bubbles must have a large
radius, which implies βH ≪ 1. In our model, obtaining
such values of βH requires significant fine-tuning, since
typically βH ∼ 100, and the smallest value from the 2000
models represented in Fig. 6 was βH ∼ 1.
A more promising mechanism in the present context is

mass gain by particles across the bubble walls [8–10]. It
requires a species that is initially light to acquire a large mass
Δm ≫ γwT during the FOPT. These particles do not have
enough kinetic energy to go through thewall and are trapped
in the false vacuum. At the end of the phase transition, they
form false-vacuum bubbles that are compressed by the
vacuum pressure and can thereby lead to a gravitational
collapse.
As argued in Sec. III, the pseudomodulus field x

naturally gets a large VEV during the phase transition;
hence it is generic to have a large variation of masses across
the wall. For example, ifm≲ T and λhxi ≫ γwT, half of the

messenger fields8 would gain a large enough mass to
contribute to the collapse (the other half becoming light and
not trapped in the false-vacuum bubble).
Determining the final abundance and mass spectrum of

the resulting PBHs is a complicated task that is beyond the
scope of this paper. Nevertheless, one can follow the
methodology of Ref. [9] to estimate that PBH production
should be efficient. For simplicity, we take the false-
vacuum bubble at the end of the phase transition to be
spherical, with radius rðtÞ. One can show that, for non-
relativistic walls,9 the energy density of the heavy mes-
sengers inside the bubble scales as rðtÞ−4, assuming that
none of them can escape the bubble.
For the bubble to collapse into a black hole, rðtÞ must

become smaller than the Schwarzschild radius rs:

rðtÞ < rs ¼ 2GEtot; ð65Þ
where Etot is the total energy of the heavy messengers
inside the bubble. Using the previous scaling relation for
the energy density, one can show that this condition leads to

rðtÞ
rH

<
ffiffiffiffiffiffiffiffi
agΨ
g�

r �
r0
rH

�
2

; ð66Þ

where gΨ ¼ 45 (g� ≅ 341.25) is the heavy messenger (total)
effective number of degrees of freedom, r0 ¼ rðt0Þ is the
initial bubble radius, and rH ¼ 1=H is the Hubble radius.
We have also introduced the parameter

a≡ ρΨðr0Þ
ρn

; ð67Þ

where ρn ¼ π2gΨT4
n=30 is the messenger’s thermal energy

density at the beginning of the phase transition and ρΨðr0Þ is
the energy density when the false-vacuum bubbles form. In
general, one expects a > 1 since when the bubbles form,
there is already a non-negligible fraction of the universe in
the true vacuum, which decreases the volume of the false
vacuum regions, and thereby increases their energy density.
Assuming that the energy scales as V−4=3 and that the first
false vacuum bubbles form at the time of percolation, when
the volume fraction remaining in the false vacuum is pf ≅
0.71 [67], we estimate a ≅ p−4=3

f ≅ 1.6. For a typical initial
size of r0 ¼ rH, the bubble need only shrink by a factor of 2.2
to collapse.
One must still assess whether the bubble can shrink this

much. A necessary condition is that the net inward pressure

FIG. 7. Peak-integrated sensitivity curves of the detectors
(background) and peak values of the GW signal (foreground)
for the models used to generate Fig. 6. The cyan square and red
triangle markers show, respectively, the position of the models 1
and 2 of Table II.

7Only the Hubble parameter H, which appears in Eq. (14), has
a different scaling relation H ∝ F=mP. However, Tn only
depends logarithmically on H, so it has a small effect and one
still approximately has Tn ∝

ffiffiffiffi
F

p
.

8For simplicity, we only consider the contribution from the
messengers, but the same mechanism would work with the
neutrinos Ni if M ≲ T and λ0hxi ≫ γwT.9We use the nonrelativistic limit to simplify the analysis. In
reality, the wall is ultrarelativistic and therefore transmits more
energy to the particles that reflect on it. Thus, the estimates
derived here are conservative, and one should expect the actual
PBH production to be larger.
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remains positive while rðtÞ > rs. Assuming that the plasma
remains in thermal equilibrium and that the bubble shrinks
adiabatically without losing particles, the thermal pressure
that opposes the contraction is given by

PTðrÞ ¼
1

3
ρΨðrÞ ¼

aρn
3

�
r0
rðtÞ

�
4

: ð68Þ

This must be compared to the vacuum pressure ΔV and the
gravitational pressure, both of which promote the collapse.
For a uniform spherical bubble, the gravitational energy is

EG ¼ −
3GE2

Ψ
5r

¼ −
3G
5r

�
4

3
πr3

�
2

ðaρnÞ2
�
r0
r

�
8

¼ −
2π

5r3
r80H

2a2ρn

�
gΨ
g�

�
; ð69Þ

yielding the gravitational pressure

PG ¼ ∂EG

∂V
¼ 3r80

10r2Hr
6
a2ρn

�
gΨ
g�

�
: ð70Þ

It follows that the net pressure Pnet ¼ ΔV þ PG − PT is
minimized for a false vacuum bubble of radius

rmin ¼
3

2

ffiffiffiffiffiffiffiffiffiffi
3agΨ
5g�

s
r20
rH

≅ 1.162rs: ð71Þ

Hence, the most stringent constraint does not arise from
rðtÞ reaching the Schwarzschild radius rs, but rather at the
slightly larger radius rmin. Once a bubble becomes smaller
than rmin, the gravitational pressure starts to dominate and
collapse is inevitable. The condition on the net inward
pressure at rmin for collapse is

PnetðrminÞ ¼ ΔV −
400

6561a

�
g�
gΨ

�
2
�
rH
r0

�
4

ρn > 0: ð72Þ

Neglecting the second term in the definition (19) of α, one
then obtains the condition

α >
400

6561a

�
g�
gΨ

��
rH
r0

�
4

≅ 0.29

�
rH
r0

�
4

ð73Þ

for the formation of PBHs.
The criterion (73) implies that only very strong FOPTs

can produce PBHs. For weaker transitions, the thermal
pressure grows too rapidly as the false-vacuum bubble
shrinks, and it eventually overcomes the vacuum and

(b)(a)

FIG. 8. α and βH intensity plots for the scans presented in Fig. 6.
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gravitational pressures. It is also apparent that PBH
production is favored in large initial bubbles. Since one
expects r0=rH ∼ 1=βH, βH should not be too large. Intensity
plots of α and βH are shown in Fig. 8 that demonstrate the
existence of extended regions with large α, close to the no-
nucleation boundary. These correspond to the regions of
minimal βH, which favors PBH production.
We emphasize that the heuristic analysis made here

neglects several physical effects. For example, for relativistic
walls, the particles gain more energy with each collision,
making it easier to satisfy the Schwarzschild radius criterion.
On the other hand, several processes can reduce the number
of particles in the bubbles (e.g., decays into lightmessengers,
annihilation into XX pairs, sufficiently energetic particles
able to cross thewall), which reduce the energy density. Such
effects were investigated in Refs. [8,9]. Furthermore, we
made the approximation of relativistic messengers, whereas
they typically have a mass ofm=Tn ∼ 1–2. Recomputing the
criterion (73) numerically with a finite mass, we find that it
scales approximately as n−5=4, where n ∼ gΨT3

ne−m=Tn is the
messenger number density. Therefore, PBH production is
stronglyBoltzmann suppressed at highm, but the bound onα
remains reasonably low for m=Tn ∼ 1–2. A quantitative
calculation of the final PBH abundance would require
determining the distribution of the r0 and a values, which
is beyond the scope of this paper.
Nevertheless, the criterion (73) is very general. As long

as a few fundamental conditions are satisfied—namely
Δm ≫ γwT, vw ≪ 1 and that the number of particles stays
roughly constant—efficient PBH production should be
predicted by a condition similar to (73), irrespective of
the details of the phase transition.
As it is not possible to predict the PBH spectrum with

this simple method, it is difficult to determine the fate of
the produced BHs with certainty. Nevertheless, a simple
estimate of the typical mass of these BHs can be obtained
from Eqs. (65) and (66):

MBH ≡ Etot ¼
rs
2G

≈ 1.2 × 10−16M⊙

�
10 PeV
Tn

�
2
�
r0
rH

�
2

: ð74Þ

Interestingly, the observational constraints at this mass are
particularly low [68], and these PBHs could therefore
account for all the dark matter in the Universe if 10−16 ≲
MBH=M⊙ ≲ 10−10 [8]. Of course, one still needs to satisfy
ΩPBH ≤ ΩDM in order to avoid overclosing the Universe.
In principle, this could be used to put constraints on the
model presented here. But as already mentioned, this would
require a more careful analysis to estimate the final PBH
spectrum, which is beyond the scope of this paper.

VI. CONCLUSIONS

In this work we have developed the paradigm started in
Ref. [19], where the potential for first-order supersymmetry

breaking phase transitions to produce observable gravita-
tional waves was initially explored. A primary challenge
undertaken here was to extend the original framework to
encompass viable leptogenesis, to simultaneously explain
the baryon asymmetry of the universe. This proved to be
more constraining than might be expected a priori, due to
our hypothesis that the asymmetry could be linked to the
phase transition.
In particular, we assumed that the lepton number is

broken by a single interaction λ0XNiNi coupling heavy
sterile neutrinos to the pseudomodulus field in the super-
potential W,10 which leads to the heavy neutrino mass
mN ¼ λ0hX̃i being correlated with the scale of SUSY
breaking, taken to be ∼10 PeV to get observable gravita-
tional waves. This is too low for conventional leptogenesis.
We found these challenges could be overcome by intro-
ducing a second set of heavy neutrinos N0

i that pair with Ni
to form Dirac states before SUSY breaking (but become
lighter than Ni after SUSY breaking), and whose out-of-
equilibrium decays, along with those of the corresponding
sneutrinos, produce the lepton asymmetry. In this setup,
light neutrino masses vanish at tree level, but get generated
at one loop via virtual Z-N exchange. A large enough
lepton asymmetry is achieved by assuming minimal flavor
violation in the leptonic sector, which makes the heavy N0

i
nearly degenerate, leading to partially resonant leptogen-
esis. This occurs at the scale T ≲ ffiffiffiffi

F
p

, which is much lower
than in conventional leptogenesis.
A novel outcome is our proposal for neutrino mass

generation at one loop, due to the presence of additional
right-handed neutrino species N0

i that cause the tree-
level masses to vanish. The resulting neutrino mass
spectrum is similar to that provided by the seesaw
mechanism, with an effective right-handed neutrino
mass that is parametrically larger than the actual mass
by a factor of 2π=αw.
The authors of Ref. [19] noted that the SUSY-breaking

scale
ffiffiffiffi
F

p
is rather narrowly constrained, since LHC limits

on the gluino mass bound it from below, while gravitino
overproduction, combined with big bang nucleosythesis,
bounds it from above.11 The LHC constraint is strengthened
in our model, which predicts a definite degree of gaugino
screening, pushing the gluino mass close toward its current
limit. In this sense the model is quite predictive, requiring
mg̃ to be not much higher than 2 TeV.
We have taken a preliminary step toward estimation of

the primordial black holes, by the mechanism of particles

10The corresponding bare mass term MNN is forbidden in W
by R symmetry.

11The gravitino cannot be decoupled in this framework, since it
is generically light in gauge-mediated SUSY breaking, and too
large a contribution to its mass by gravity mediation from
additional SUSY-breaking sectors leads to unacceptably large
flavor-changing neutral currents.
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being trapped in the disappearing false vacuum regions
toward the end of the phase transition. A full study of the
spectrum of produced PBHs would require simulating the
phase transition on a lattice, which is beyond the scope of
the present work. The criterion we derived for which false
vacuum bubbles would lead to PBH formation may be
useful in such a future investigation.
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APPENDIX: ONE-LOOP POTENTIAL
AND MASS EIGENVALUES

One-loop corrections are given by the Coleman-
Weinberg potential:

VCWðϕiÞ ¼
X
j

ð−1ÞF gjm
4
jðϕiÞ

64π2

�
log

�
m2

jðϕiÞ
Q2

�
− cj

�
;

ðA1Þ

where F ¼ 0 (1) for bosons (fermions), gi ¼ 1 (2) for
scalars (fermions), ci ¼ 3=2 for scalars and fermions in the
MS renormalization scheme, and Q is the renormalization
scale. We will take Q ¼ m. Here ϕi indicates the depend-
ence of the mass eigenvalues on x and the VEVs of the
Uð1ÞD messenger fields. The sum is taken over all tree-
level mass eigenvalues in our model.
Similarly, the thermal corrections to the potential are

given by

VTðϕi; TÞ ¼
T4

2π2
X
j

ð−1ÞFgjJB=F
�
m2

jðϕiÞ
T2

�
; ðA2Þ

with the thermal functions

JB=Fðz2Þ ¼
Z

∞

0

dxx2 log
h
1 − ð−1ÞF exp



−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p �i
:

ðA3Þ

At high temperature, these functions can be approximated
to lowest order by the following expansions:

JBðz2Þ ¼ −
π4

45
þ π2

12
z2 þ � � � ;

JFðz2Þ ¼
7π4

360
−
π2

24
z2 þ � � � : ðA4Þ

In our calculation of the Coleman-Weinberg and thermal
corrections, we included all species listed in Table I, with
the exception of L and Hu. In this model MSSM particles
are much lighter than the SUSY-breaking scale, so their
impact on the potential is negligible.
To find the mass eigenvalues, we write the quadratic

terms of the potential as

1

2
ðϕ� ϕ Þm2

sðϕiÞ
�

ϕ

ϕ�

�
and diagonalize the x-dependent matrix m2

sðϕiÞ.
To get the fermionic mass eigenvalues, we must diag-

onalize the matrix

ðmfÞij ¼
δ2W

δΦiδΦj

����
Φi→ϕi

:

The notation Φi → ϕi means we replace the superfields
with their scalar components.
At tree level, the components of X and of all MSSM

fields are massless, with the exception of the Higgs
doublets Hu, Hd that have a mass μ prior to the breaking
of SUSY. However, in the limit where μ is much smaller
than m and

ffiffiffiffi
F

p
, we can treat the Higgs doublets as

massless.

1. Right-handed neutrinos

The sneutrino mass eigenvalues are given by

ðmÑi;�Þ2 ¼ M2
i þ

1

2
ðμ2 þ Δ2

i;� � λ0FXÞ;

ðmÑ0
i;�Þ2 ¼ M2

i þ
1

2
ðμ2 − Δ2

i;� � λ0FXÞ; ðA5Þ

where μ ¼ λ0x=
ffiffiffi
2

p
, FX ¼ jF − λϕ2ϕ̃2j, and

Δ2
i;� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4 þ 4μ2M2

i � 2μ2ðλ0FXÞ þ ðλ0FXÞ2
q

: ðA6Þ

The neutrino masses are given by

mNi
¼ 1

2



μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 4M2

i

q �
;

mN0
i
¼ 1

2



μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 4M2

i

q �
: ðA7Þ

In the limit μ ≫ Mi the superfields Ni and N0
i unmix and

split into heavy and light eigenstates, which are approx-
imately given by

ðmÑi;�Þ2 ≅ μ2 þ 2M2
i � λ0FX;

ðmÑ0
i;�Þ2 ≅ M2

i

�
M2

i � λ0FX

μ2

�
ðA8Þ
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for the scalars and

mNi
≅ μ

�
1þM2

i

μ2

�
≅ μ;

mN0
i
≅ −

M2
i

μ
ðA9Þ

for the fermions.

2. SUð5Þ gauge mediators

The mass matrix of the SUð5Þ gauge mediators is very
similar to that of the right-handed neutrinos. The scalar
eigenvalues are

ðm5̃M;�Þ2 ¼ m2 þ 1

2
½ðλxÞ2=2þ Δ2

5;� � λFX�;

ðm ˜̄5M;�Þ
2 ¼ m2 þ 1

2
½ðλxÞ2=2 − Δ2

5;� � λFX�; ðA10Þ

where

Δ2
5;� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλxÞ4=4þ 2ðλxÞ2m2 � ðλxÞ2ðλFXÞ þ ðλFXÞ2

q
:

ðA11Þ

These are identical to the sneutrino eigenvalues with λ0 → λ
and Mi → m.
Similarly the fermion eigenvalues are

m5M
¼ 1

23=2



λxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλxÞ2 þ 8m2

q �
;

m5̄M
¼ 1

23=2



λx −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλxÞ2 þ 8m2

q �
: ðA12Þ

3. Uð1ÞD gauge mediators

The mass matrix of the ϕ fields is identical to that of the
5M with the exception of the additional Fayet-Iliopoulos
contribution. This does not affect the fermion mass matrix,
so their mass eigenvalues are equal to Eq. (A12).
Unfortunately, solving for the mass squared eigenvalues

of the scalars requires finding the roots of a fourth-order
polynomial, which we cannot do analytically. In the limit

g ≪ 1, those eigenvalues are also given by Eq. (A10). We
shall use this approximation to estimate the loop correc-
tions to the scalar potential.
At leading order, we can simply shift the eigenvalues of

the SUð5Þ messengers by �gD. This is enough to see what
happens in the limit of large x: some eigenvalues that
previously converged to m2 → 0 will instead converge to
m2 → −gD; that is, the model will have tachyons. At this
point the potential becomes unstable at ϕ ¼ ϕ̃ ¼ 0 and
the Uð1Þ messengers will get a VEV. This VEV will allow
the scalar fields to cancel out the D term in the limit
x → ∞. In other words, the true vacuum of the tree-level
potential is the runaway solution x → ∞. A slightly more
accurate estimate of the mass eigenvalues is given by
Eqs. (4.17)–(4.19) in Craig et al. [19].

4. Large x approximation

For large values of the pseudomodulus field x, most of
the masses become either very large (∼x) or very small
(∼1=x). This allows one to derive simple approximations
for the vacuum and thermal corrections (A1) and (A2).
To simplify the analysis, we will only consider the
contribution from the messengers. This is justified since
they have a much larger number of degrees of freedom
than the neutrinos. Furthermore, we will use the analyti-
cal formulas (A10)–(A12) for all the messenger masses,
including the ϕ.
Summing Eq. (A1) over all the mass eigenstates

(A10)–(A12) and expanding to lowest order in 1=x, one
obtains

VWðx → ∞Þ ≅ 3λ2F2

8π2
log

�
λ2x2

2m2

�
; ðA13Þ

where we neglected constant terms. The calculation of the
thermal potential is slightly different, as large mass eigen-
states are Boltzmann suppressed. One can therefore only
consider the light eigenstates with the high-temperature
approximation (A4). The leading-order thermal correction
is then

VTðx → ∞; TÞ ≅ 3m4T2

λ2x2
: ðA14Þ
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