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A vector boson Wμ
1 with the quantum numbers ð3; 1Þ under SUð2ÞL ×Uð1ÞY could in principle couple

with the Higgs field via the renormalizable term Wμ�
1 HDμH. This interaction is known to affect the T

parameter and, in so doing, it could potentially explain the recent CDF measurement of the W-boson mass.
As it is often the case with vectors, building a viable model with a W1 gauge boson is nontrivial. In this
work I will describe two variations of a minimal setup containing this field; they are based on an extended
SOð5Þ × SUð2Þ × Uð1Þ electroweak group. I will nevertheless show that interactions such as Wμ�

1 H∂μH
are not generated in a Yang-Mills theory. A coupling between W1, H and another Higgs doublet H0 is
possible though. Finally, I will provide an explicit recipe for the construction of viable models with gauge
bosons in arbitrary representations of the Standard Model group which may couple to a Standard Model
fermion and an exotic one.

DOI: 10.1103/PhysRevD.107.095007

I. INTRODUCTION

There is abundant speculation on what may lie beyond the
Standard Model (SM). Out of many approaches, there have
been attempts to systematically parametrize the effect of new
particles without reference to specific models. For example,
one may look for those fields which can interact with
Standard Model particles—such as a pair of fermions—in
a renormalizable way [1,2]. At low energies, they give rise to
four-fermion interactions much like those in the Fermi
theory, which led to the discovery of weak interactions.
A fieldwhich has received fairly little attention isW1, with

the SUð2ÞL ×Uð1ÞY quantum numbers ð3; 1Þ and trans-
forming as a 4-vector under the Lorentz group. It can couple
only to the Higgs doublet, doing so via the interaction [1–3]

κ

2
Wμ;a�

1 HTðiσ2σaÞDμH: ð1Þ

Once integrated out, the fermionphobicWμ
1 gives rise to the

effective dimension six interaction

−
jκj2
4m2

W1

ðO1
H þO3

HÞ ð2Þ

withO1
H ≡ ½ðDμHÞ†ðDμHÞ�ðH†HÞ andO3

H ≡ jH†ðDμHÞj2.
In turn, this last operator contributes to the T̂ ¼ αT parameter
[4–6] as follows:

T̂ ≡ ΠW3W3ð0Þ − ΠWþW−ð0Þ
m2

W
¼ jκj2

4

v2

m2
W1

;

v2 ≡ hH†Hi ≈ ð174 GeVÞ2: ð3Þ

Recently, the CDF collaboration published a surprising
large value of the W mass [7],

mW ¼ 80433.5� 9.4 MeV; ð4Þ

which seems to be well fitted by T̂ ≈ ð8.8� 1.4Þ × 10−4 [8]
(see also [9]). Thiswould correspond to avalue ofmW1

=jκj ≈
2.9 TeV [3], which is not ruled out by LHC searches. The
authors of [10] find that W1 is one of the single-field
extensions of the Standard Model which best fits the
CDF data, adding nonetheless that this field is not com-
monly found in unified gauge theories. Notice that unlike a
Z0 or a W0, a single W1 cannot be produced in a proton-
proton collision, neither through vector-boson fusion nor
through the Drell-Yan process. For this reason, searches for
new vector fields by ATLAS and CMS [11–14]—which in
some cases exclude masses up to 5 TeV—do not apply to
W1. On the other hand, mass limits from pair production
searches reach at most 1 to 2 TeV (see for instance [15,16])
for colored fields. For uncolored ones, the LHC reach is even
lower, as can be seen from the limits on the scalar analog of
W1, which is present in seesaw type-II mechanism for
neutrino masses [17,18].
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It is far from clear that this new determination of
the W mass will resist the test of time, and in fact the
CDF measurement is in tension with other direct and
indirect determinations of mW [10,19,20]. Nonetheless—
independently of the validity of this result—it is worth
considering in detail the phenomenology associated to a
W1 vector, which will inevitably depend on the ultraviolet
origin of the field. To my knowledge, there have been no
previous attempts of incorporating this vector in a complete
model. With that in mind, in this work I will present a
minimal setup where W1 is a gauge boson associated to an
extended electroweak group, which is spontaneously bro-
ken at the TeV scale or above. Another possibility, not
considered here, is thatW1 is a composite field rather than a
fundamental one.
It turns out that the trilinear interaction between a gauge

field and two scalars, ϕ and ϕ0, must be anti-symmetric
under the exchange of the scalars. This means that for
ϕ ¼ ϕ0 ¼ H, which is an SUð2Þ doublet, there can be no
coupling to the tripletW1. I will discuss this point in Sec. II,
after which I will detail a realistic model for W1 based on
the gauge group SOð5Þ × SUð2Þ ×Uð1Þ (Sec. III). In it the
new vector does not couple to matter; however, one can
modify the setup so that it does (Sec. IV).
Looking beyond W1, it is not straightforward to build

Yang-Mills theories with gauge bosons transforming
according to random representations of the Standard
Model group. In many cases, there might be no model
in the literature containing such vector fields. To improve
on this situation, in Sec. V I describe an explicit recipe for
building models with gauge bosons assigned to arbitrary
representations of the Standard Model group. Section VI
summarizes the main conclusions in this work.

II. Wμ�
1 HDμH AND SIMILAR COUPLINGS
IN A YANG-MILLS THEORY

In order for a gauge boson to potentially couple to the
combination HDμH, rather than to H�DμH, it must be that
the Higgs is a linear combination of at least two fields—let
us call them Hu ¼ ð2; 1=2Þ and Hd ¼ ð2;−1=2Þ—which
are part of the same irreducible representation Ω of the
gauge group. Then, from the kinetic term of this last field,
one might hope to get the sought after interaction:

ðDμΩÞ†ðDμΩÞ ∝ � � � þ ðWμ�
1 H�

dDμHu þ H:c:Þ
∝ � � � þ ðWμ�

1 HDμH þ H:c:Þ: ð5Þ

I have used here the proportionality sign to avoid distractions
with the prefactors of each expression; likewise I also did not
track carefully how the SUð2Þ indices are contracted.
However, by tracking attentively relative signs, the reader
will see that while one can indeed achieve a Wμ�

1 H�
dDμHu

coupling which goes on to contribute to the interaction
Wμ�

1 HDμH, we must also take into account a term

Wμ�
1 HuDμH�

d with the opposite effect. All in all, this means
that the prefactor of the Higgs-Higgs-W1 coupling is null.
Perhaps—one might think—this cancellation is specific

to the minimalist scalar setup described above. That is not
true: I will argue in the following that in a Yang-Mills
theory an interactionAμϕϕ0 between a gauge bosonAμ and
two scalars ϕ and ϕ0, through a derivative, must be
antisymmetric under an exchange of these two scalars.
Since in our particular example the SUð2Þ quantum
numbers force the two H’s to be contracted symmetrically
with the triplet W1, it must be that the coefficient of the
interaction is zero, regardless of the details of the model.
To see this, we may start by decomposing all scalars in a

model in real components, and collecting them in a column
vector Φ (¼Φ�). Any gauge transformation can be repre-
sented through a matrix exp ðiεaTaÞ which must be both
real and unitary, hence

Ta ¼ T†
a ¼ −T�

a: ð6Þ

These anti-symmetric Ta generators regulate the interaction
1

ΦTðigTaA
μ
aÞðDμΦÞ ð7Þ

obtained from the kinetic term ðDμΦÞTðDμΦÞ=2, so in any
other basis (such as the electroweak one, or perhaps themass
basis), with Φ ¼ UΦ0, the all-important matrices igUTTaU
remains antisymmetric. Therefore, for any pair of irreducible
representations ϕ and ϕ0 of the gauge group, we extract from
the off-diagonal part of igUTTaU a term

Aμ
a½ϕTXaðDμϕ

0Þ − ϕ0TXaðDμϕÞ� ð8Þ

for some realmatricesXa. In the particular casewhenϕ ¼ ϕ0
we may write the interaction as

Aμ
a½ϕTXaðDμϕÞ� with Xa ¼ −XT

a ; ð9Þ

the Xa are nothing but diagonal blocks of the bigger
igUTTaU matrices mentioned above. The last expression
shows explicitly that the gauge indices of the two ϕ’s must
contract antisymmetrically: a coupling Bμ�

1 HDμH with the
field B1 ¼ ð1; 1Þ is fine, given that two doublets contract
anti-symmetrically to form a singlet; by an analogous argu-
ment, a coupling Wμ�

1 HDμH is not.
I have followed the usual method of building gauge

boson interactions, expressing them in terms of the Ta
matrices. This in turn led us to antisymmetric Xa’s. But, to
be clear, one can check in a more direct way that any
symmetric component of the Xa’s would break gauge
invariance. Indeed the relation

1There is more than one coupling constant g if the gauge group
is semisimple. Nonetheless, such complication is of no conse-
quence to the present discussion.
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Aμ
aϕTðXa þ XT

aÞð∂μϕÞ ¼ ∂μðAμ
aϕTXaϕÞ − ð∂μAμ

aÞϕTXaϕ;

ð10Þ

shows that—up to a total derivative—the leftmost expres-
sion is the same as −ð∂μAμ

aÞϕTXaϕ, which is not invariant
under a general local gauge transformation. A hypothetical
symmetric component of the Xa generated through loops
must therefore be finite and gauge dependent.
As a complement to the above arguments, let us consider

the spinor-helicity formalism, where it is straightforward
to compute the scattering amplitude for a spin 1 field
(particle #1) and two scalars (particles #2 and #3) when all
three are massless. Poincaré invariance and unitarity are the
only extra assumptions. In the widely used bracket nota-
tion, depending on the helicity of the spin 1 particle, the
amplitude is proportional to either

h12ih31i
h23i or

½12�½31�
½23� : ð11Þ

In both cases, permuting the two scalars (2 ↔ 3) yields a
minus sign so the spinor-helicity formalism corroborates
the antisymmetry of a Aμϕϕ0 interaction. To reach this
result, all fields we assumed to be massless. However, this
assumption is unnecessary: the spinor-helicity formalism
can be extended to massive particles [21], and doing so one
reaches the same conclusion as in the massless case (see for
example [21–23]).
In conclusion, a fundamental fieldW1 which gets a mass

through the Higgs mechanism cannot have a Wμ�
1 HDμH

coupling; such an interaction is absent ifW1 is a gauge boson.
With this advance warning, I will proceed to describe the

basic features of a minimal extension of the Standard
Model where this field appears.

III. A MODEL FOR Wμ
1

Since W1 is charged under both SUð2ÞL and Uð1ÞY , this
field as well as the Standard ModelW and Bmust be gauge
bosons associated to some group which includes the
electroweak one, SUð2ÞL × Uð1ÞY . The adjoint represen-
tation of such a group must be of size at least
6þ 3þ 1 ¼ 10, considering that this is the total number
of real field components in W1, W and B. It turns out that
the adjoint representation of the group SOð5Þ [whose
algebra is isomorphic to Spð4Þ] is precisely 10 dimen-
sional. Furthermore, SUð2Þ ×Uð1Þ is a subgroup of
SOð5Þ, and under it the spinor representation branches
as follows2:

4 → ð2; 1=2Þ þ ð2;−1=2Þ: ð12Þ

The adjoint decomposes in the manner alluded above,
namely

10 → ð1; 0Þ þ ð3; 0Þ þ ð3; 1Þ þ ð3;−1Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
W1

: ð13Þ

Note that the decomposition of the spinor representation
implies that a scalar field transforming as a 4 contains both
an Hu- and an Hd-like field, which is precisely what one
needs to generate a H −H0 −Wμ

1 coupling, as discussed in
the previous section.
So far everything looks promising. Nevertheless, when it

comes to fermions, it is challenging to charge them non-
trivially under SOð5Þ. For example, the left-handed leptons
L ¼ ð2;−1=2Þ necessarily interact via the W1 gauge
bosons with fermions whose charges are ð2;−3=2Þ,
ð2; 1=2Þ, ð4;−3=2Þ, or ð4; 1=2Þ, none of which are part
of the Standard Model. The same thing happens with
quarks, and therefore one would need to find vectorlike
partners for these new fields in order to give them masses
above those of hHi ≈ 174 GeV. With the help of an extra
Uð1Þ which would provide more flexibility in forming the
SM hypercharge group, one can certainly find SOð5Þ ×
Uð1Þ representations with the sought-after fermions, how-
ever these tend to propagate the problem by introducing
further chiral states.
We are therefore guided to the possibility that no chiral

fermion is charged under SOð5Þ, and instead the full
electroweak group is SOð5Þ × SUð2Þ ×Uð1Þ, which con-
tains SUð2Þ0 ×Uð1Þ0 × SUð2Þ ×Uð1Þ; in turn, its diagonal
subgroup is SUð2ÞL ×Uð1ÞY :

SOð5Þ×SUð2Þ×Uð1Þ→ SUð2Þ0×SUð2Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
⊃SUð2ÞL

×Uð1Þ0×Uð1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
⊃Uð1ÞY

:

ð14Þ

The adjoint representation of the extended electroweak
group includes the SUð2ÞL ×Uð1ÞY representationsB; Z0 ¼
ð1; 0Þ,W;W0 ¼ ð3; 0Þ andW1 ¼ ð3; 1Þ. These gauge bosons
acquire amass proportional to theSOð5Þ-symmetry breaking
scale, except for the StandardModelB andW, which are less
massive. The latter fields are a mixture of the SOð5Þ gauge
bosons with those of SUð2Þ ×Uð1Þ.
Note also that a scalar Ω transforming as a spinor under

SOð5Þ would couple to W1, but not to fermions since they
are uncharged under this group. Consequently, in order to
have Yukawa interactions one also needs an SOð5Þ-singlet
scalar Ĥ. Finally, the extended electroweak group can be
broken to SUð2ÞL ×Uð1ÞY with a nonzero vacuum expect-
ation value (VEV) of some field χ.
With the above general considerations, we are in a

position to flesh out a model. The requirements discussed

2In fact, SOð5Þ has two inequivalent SUð2Þ × Uð1Þ subgroups.
The other embedding is associated to the branching rule
4 → ð1; 1=2Þ þ ð1;−1=2Þ þ ð2; 0Þ, which is not relevant for
the present work.
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earlier on the scalar sector are fully met by the fields in
Table I. In terms of Standard Model SUð2ÞL ×Uð1ÞY
representations, χ contains a component with quantum
numbers ð1; 0Þ; as we shall see, its VEV preserves only the
subgroup SUð2ÞL ×Uð1ÞY of SOð5Þ × SUð2Þ ×Uð1Þ.
Note also that there is a total of 3 Higgs doublets in Ω
and Ĥ, which can mix to produce the Standard Model
field H.
Let us now establish a set of generators of the

4-dimensional representation of SOð5Þ. Notice again that
this group is isomorphic to Spð4Þ, which can be defined via

the set of 4-dimensional matrices G satisfying the relation
GTJG ¼ J; J is a nonsingular antisymmetric matrix which
is often taken to have the block form

J ¼
�

0 12
−12 0

�
: ð15Þ

Rewriting G as exp ðiεaTaÞ with real εa parameters—and
requiring also that G†G ¼ 14—leads to infinitesimal gen-
erators of the form

εaTa ¼
�

B C

C� −B�

�
ð16Þ

where B and C are arbitrary 2-dimensional hermitian and
symmetric matrices, respectively. However, it is more
convenient to work on a basis where the last two entries
of the 4-dimensional space are rotated with the ϵ ¼ iσ2
matrix, such that

J ¼
�
0 ϵ

ϵ 0

�
: ð17Þ

The 10 generators can then be picked to have the follow-
ing form3:

εaTa ≡ 1

2

0
BBBBB@

ε3 þ ε10 ε1 − iε2 ε8 − iε5
ffiffiffi
2

p ðε6 − iε9Þ
ε1 þ iε2 −ε3 þ ε10

ffiffiffi
2

p ðε4 − iε7Þ −ε8 þ iε5

ε8 þ iε5
ffiffiffi
2

p ðε4 þ iε7Þ ε3 − ε10 ε1 − iε2ffiffiffi
2

p ðε6 þ iε9Þ −ε8 − iε5 ε1 þ iε2 −ε3 − ε10

1
CCCCCA: ð18Þ

If we throw away ε4;…;9, this becomes a block-diagonal
matrix and in fact T1;2;3 are generators of an important
SUð2Þ0 subgroup [see expression (14)], with Pauli matrices
on the diagonal blocks; T10 generates a Uð1Þ0 which
commutes with this SUð2Þ0.
The scalar χ ¼ ð4; 2; 1

2
Þ can be seen as a two index field

χjk with SOð5Þ acting on j and SUð2Þ on k. With this
understanding,

Dμχjk ¼ ∂μχjk þ igAA
a;SOð5Þ
μ Ta

jj0χj0k þ
i
2
gBA

b;SUð2Þ
μ σbkk0χjk0

þ 1

2
gCA

Uð1Þ
μ χjk: ð19Þ

The vacuum expectation value (VEV)

hχi ∝

0
BBBBB@

0 0

0 0

0 −1
1 0

1
CCCCCA ð20Þ

breaks all but 4 linear combinations of the original 14
generators of the group SOð5Þ × SUð2Þ ×Uð1Þ, namely�

T1;2;3
jj0 δkk0 þ

1

2
δjj0σ

1;2;3
kk0

�
hχij0k0

¼
�
T10
jj0δkk0 þ

1

2
δjj0δkk0

�
hχij0k0 ¼ 0: ð21Þ

They generate the SUð2ÞL diagonal subgroup of SUð2Þ×
SUð2Þ0, together with Uð1ÞY which is the diagonal sub-
group of Uð1Þ ×Uð1Þ0. It follows directly from these

TABLE I. The quantum numbers of the three scalars in the
model, under the extended electroweak group SOð5Þ × SUð2Þ×
Uð1Þ. A nonzero vacuum expectation value of χ can break this
symmetry down to SUð2ÞL × Uð1ÞY . The transformation proper-
ties of the scalars under this latter group are shown in the last
column. All fermions transform trivially under SOð5Þ.

Scalar SOð5Þ × SUð2Þ × Uð1Þ
SUð2ÞL ×Uð1ÞY
decomposition

Ω ð4; 1; 0Þ ð2;− 1
2
Þ þ ð2; 1

2
Þ

Ĥ ð1; 2; 1
2
Þ ð2; 1

2
Þ

χ ð4; 2; 1
2
Þ ð1; 0Þ þ ð1; 1Þ þ ð3; 0Þ þ ð3; 1Þ

3This is
ffiffiffi
2

p
times the matrices given by RepMatrices

[SO5,4] in GroupMath [24], after a reordering.
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relations that the Standard Model gauge couplings g and g0

are given by the expressions

g−2 ¼ g−2A þ g−2B ; ð22Þ

ðg0Þ−2 ¼ g−2A þ g−2C : ð23Þ

We can also extract from ðDμhχijkÞ�Dμhχijk the leading
contribution to the various gauge boson masses (the Higgs
doublet VEVs produce corrections):

m2
W1

¼ g2Ahχi2; ð24Þ

m2
W0 ¼ ðg2A þ g2BÞhχi2; ð25Þ

m2
Z0 ¼ ðg2A þ g2CÞhχi2; ð26Þ

where hχi2 ≡ hχi�jkhχijk. From Eqs. (22) and (23) plus the
known values of couplings at the electroweak scale
(g ≈ 0.65 and g0 ≈ 0.36) it must be that gC is smaller than
gB, so

mW1
< mZ0 < mW0 : ð27Þ

Furthermore, the two independent ratios which can be
computed out of the three masses are related by the
expression

m2
W1

m2
Z0

�
m2

W0

m2
Z0
− tan2θw

�
¼ ð1 − tan2θwÞ

m2
W0

m2
Z0

ð28Þ

where tan2 θw ≡ g02=g2 ≈ 0.30. Notice that whilemW0=mW1

can be arbitrarily large, mZ0=mW1
is bounded between

1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1 − tan2 θwÞ

p
≈ 1.19. Since W1—the lightest

new particle—is hard to produce in a collider, the most
stringent constraint on this model comes from LHC
searches for a Z0 boson with the same couplings to fermions
as the SM Z (that is what happens in the present model).
Current data excludes such a particle up to a mass of
5 TeV [25,26].
Besides interacting with other gauge bosons,W1 couples

to scalars. In particular Ω contains an up- plus a down-type
Higgs doublet,Hu ¼ ð2; 1=2Þ and Hd ¼ ð2;−1=2Þ, so—as
foreseen in Sec. II—from the covariant derivative of Ω we
get the interactions

gAffiffiffi
2

p Wμ;a�
1 ½H†

dσaðDμHuÞ − ðDμHdÞ†σaHu� þ H:c: ð29Þ

The fields Hu, H�
d and Ĥ mix, generating the 125 GeV

scalar H of the Standard Model, as well as two heavier
doublets: H0 and H00. No matter what is the form of this

mixing, there will be no HH, H0H0 or H00H00 interaction
with W1. However, we do get the term

κHH0Wμ;a�
1 ½HTðiσ2σaÞDμH0 −H0Tðiσ2σaÞDμH� ð30Þ

plus similar ones for other combinations of the three scalar
doublets.
In this model, fermions do not couple to W1. They also

do not couple to the χ scalar, which is significant because
this fields contains an ð3; 1Þ representation. These are the
quantum numbers of the mediator in the type-II seesaw
mechanism, capable of generating neutrino masses. But for
that to happen, χ would need to interact with leptons, which
is not the case. Note also that the model conserves lepton
number, hence neutrinos are massless. This changes, for
example, with the introduction of an extra scalar with the
quantum numbers ð1; 3; 1Þ under the extended electro-
weak group.

IV. AN ALTERNATIVE: CHARGING
FERMIONS UNDER SOð5Þ

Nofermion is chargedunderSOð5Þ in themodel described
above. However, on top of the chiral ones, we may introduce
vectorlike fermions which do couple to the gauge bosons of
this group, without producing dangerous light fields. One
possibility is this: for every chiral fermion F ¼ Q; uc; dc;
L; ec with the quantumnumbers ðC; 1;L; yÞ underSUð3ÞC×
SOð5Þ × SUð2Þ ×Uð1Þ, we introduce the vectorlike pair of
left-handedWeyl spinors ðF ; F̄Þwith F ¼ ðC; 4;L; yÞ and its
conjugate representation F̄ ¼ ðC̄; 4;L;−yÞ.4 In other words,
apart from transforming as a spinor of SOð5Þ, all other
quantum numbers of F are the same as those ofF. The scalar
χ, as before, is needed for symmetry breaking; it also
participates in Yukawa interactions with the new fermions.
Between the two remaining scalars (Ĥ and Ω) there is need
for just one: in the following I will keepΩ (see Table II) since
it induces a coupling ofW1 to two scalar doublets. However,
since this is not a phenomenological requirement, χ þ Ĥ
would also lead to a valid scalar sector.
With these charge assignments, we may have the

following masses and interactions:

X
F

ðyΩFFF̄ΩþmFFF̄Þ þ yχQUQucχ þ yχ0QUQucχ

þ yχQDQdcχ� þ yχ0QDQdcχ� þ yχLELe
cχ�

þ yχ0LELe
cχ� þ H:c: ð31Þ

Note that Ω needs to be a complex field, so terms of the
form FF̄Ω� are also allowed. However, for simplicity, I will

4The spinor representation of SOð5Þ is pseudoreal, therefore it
is isomorphic to its conjugate. The same is true for any
representations of SUð2Þ.
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consider that they has been removed (with a Z4 symmetry,
for example).5

Let us now consider what happens under the Standard
Model subgroup. The F’s do not transform under SOð5Þ,
so for convenience one may use the same name, F, to
designate their quantum numbers under the reduced
SUð2Þ × Uð1Þ group. With this understanding, a quick
way of grasping all the fermion subrepresentation in F=F̄ is
to note that Ω ¼ Hu þHd, so F̄ contains all the states
which couple to the product FHu as well as all those which
couple to FHd. This is an unusual two-Higgs doublet
model where every Standard Model fermion F couples to
both Hu and Hd (not their conjugates), which implies that
in some cases the remaining fermion in the interaction must
be exotic. This is not a problem since the extra fields can be
made heavy via the mF mass term in Eq. (31).
Let us consider in the following the lepton sector only.

The decomposition of the various representations is as
follows:

L → ð2;−1=2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
lD

; ð32Þ

L → ð3; 0Þ þ ð3;−1Þ þ ð1; 0Þ þ ð1;−1Þ|fflfflffl{zfflfflffl}
lS

; ð33Þ

L̄ → ð3; 0Þ þ ð3; 1Þ þ ð1; 0Þ þ ð1; 1Þ|fflffl{zfflffl}
lc0
S

; ð34Þ

ec → ð1; 1Þ|fflffl{zfflffl}
lc
S

; ð35Þ

ec → ð2; 3=2Þ þ ð2; 1=2Þ|fflfflfflffl{zfflfflfflffl}
lcD

; ð36Þ

ec → ð2;−3=2Þ þ ð2;−1=2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
l0D

: ð37Þ

The Standard Model charged leptons are a mixture of the
charged components of the SUð2Þ × Uð1Þ representations
labeled above. The nomenclature keeps track of lepton
number, which is conserved (a superscript c denotes an
antilepton), and the subscripts indicate whether a field is
part of a SUð2Þ singlet (S) or a doublet (D). Inserting the
vacuum expectation values of the scalars, and collecting the
fermions in the vectors Ψ ¼ ðlD;l0

D;lSÞT and Ψc ¼
ðlc

S;l
c0
S ;l

c
DÞT we get the mass term

ΨT

0
BB@

0 yΩLhHdi yχLEhχi
yΩEhHdi 0 mE

yχ0LEhχi mL 0

1
CCAΨc: ð38Þ

The VEVof the Hu doublet contained in Ω does not appear
in this expression. Presuming that mE and mL are sub-
stantially larger than the scalar vacuum expectation values,
the last expression implies that there are two heavy Dirac
fermions, with masses ≈mE and ≈mL, and a light one with
a mass

mlight ≈
�
yΩEy

χ
LE

mL
þ yΩLy

χ0
LE

mE

�
hHdihχi: ð39Þ

The left-handed part of this field is mostly composed of lD,
with a small admixture of l0

D and lS; the right-handed part
is mostly formed from lc

S, but also from lc0
S and lc

D (to a
lesser extent):

l ≈ lD −
yχLEhχi
mL

l0
D −

yΩLhHdi
mE

lS; ð40Þ

lc ≈ lc
S −

yχ0LEhχi
mE

lc0
S −

yΩEhHdi
mL

lc
D: ð41Þ

Note that the terms proportional to hHdi=mE;L change the
lepton couplings to theW and Z bosons, with respect to the
Standard Model prediction. Since the branching fractions
of Z → l−lþ and W → lþν have been measured with a
precision of 1 part in 103 [27], a rough estimate would be
that the mE;L masses should be at least ∼

ffiffiffiffiffiffiffi
103

p
times larger

than hHdi.
The situation is analogous for quarks: due to small

admixtures with the fields in the spinor representations of
SOð5Þ, the Standard Model fermions can interact through
Wμ

1 with heavy new fermions, the latter having exotic
quantum numbers.
Note that lepton number is conserved again, and there is a

total of 5 neutrinos and 4 anti-neutrinos (per generation), so
we conclude without further calculations that one neutrino
is massless. This comment applies to each generation of
fermions so, in contradiction with oscillation data, there is
a total of three massless neutrinos. Nevertheless, as in the
previous model, an extra ð1; 1; 3; 1Þ scalar solves the
problem.

TABLE II. Field content of the second model, containing
vectorlike fermions ðF ; F̄Þ unlike the first setup. Furthermore,
adequate Yukawa interactions can be achieved without the scalar
Ĥ (compare with Table I).

Field Spin SUð3ÞC × SOð5Þ × SUð2Þ × Uð1Þ
F ¼ Q; uc; dc; L; ec 1=2 As in the SM; 1 under SOð5Þ
F ¼ Q; uc;dc;L; ec 1=2 As in the SM; 4 under SOð5Þ
F̄ ¼ Q̄; uc;dc; L̄; ec 1=2 Complex conjugate of F
Ω 0 ð4; 1; 0Þ
χ 0 ð4; 2; 1

2
Þ

5The charges i, 1, −i, 1, 1, 1, i, −i, 1, i, −i, 1, i, −i, −i, 1, 1 for
the fields Ω, χ, Q, Q, Q̄, uc, uc, uc, dc, dc, dc, L, L, L̄, ec, ec, ec
successfully achieve the goal.
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V. GAUGE BOSONS WITH ARBITRARY
QUANTUM NUMBERS

Most research on extensions of the StandardModel group
GSM ¼ SUð3ÞC × SUð2ÞL ×Uð1ÞY is based on just a hand-
ful of groups, and there is little freedom (if any) to change the
way fermions transform under them. Fermionmasses are the
main culprit: by having these particles transform under some
arbitrary representation of the gauge symmetry, it is likely
that fermions with exotic quantum numbers and which are
chiral under GSM will also be part of the model (see for
instance [28]). This is a concern because such fields can have
at most an electroweak scale mass.
On the other hand, the simple exercise of picking pairs

of right- and left-handed Standard Model fermions yields a
list of quantum numbers for vectors fields which would
have interesting phenomenology consequences [1,29,30].
However, just a few of them have been incorporated into
fully fledged models, mostly because of the above diffi-
culty. For example, while looking at vectors fields that can
mediate the neutrinoless beta decay of a proton, the paper
[30] argued that ultraviolet-complete models might be
possible only for a few of them.
That assessment was too pessimistic. In the following, I

will argue that one can build viable models containing
gauge bosons in arbitrary representations of the Standard
Model symmetry group. I will proceed in two steps:
(1) It is possible to show that for any representation X of

the Standard Model group GSM, there is always a
group G containing GSM in such a way that its
adjoint representation includes X.

(2) Fermions can be assigned to representations of G
such that only the Standard Model ones remain
massless right before eletroweak symmetry is bro-
ken. This guarantees that exotic new fermions can be
made heavy. Furthermore, no gauge anomalies are
generated. The vector boson mentioned above can
couple to Standard Model fermions.

The first step involves group theory only. For the sake of
argument, consider the following scenario which works for
any X,6 even though it might not yield the smallest groupG.
Take S to be the trivial representation ð1; 1; 0Þ of GSM, and
S0 ¼ ð1; 1; yÞ with y equal to minus the total hypercharge of
all components of X. In other words, Uð1ÞY acts on the
reducible representationX ⊕ S0 via a traceless matrix. If n is
the dimension of X, then one can embed GSM in SUðnþ 2Þ
in such a way that the adjoint representation of the latter
contains X. To see it, note that there is an embedding under
which the fundamental representation F of SUðnþ 2Þ
decompose as

F → X ⊕ S ⊕ S0: ð42Þ

After all, X ⊕ S ⊕ S0 is represented by a set of twelve
(nþ 2)-dimensional matrices which are traceless and
Hermitian, hence they form a subalgebra of SUðnþ 2Þ.
Moving on to the adjoint representation, it transforms in the
sameway asF × F�with a singlet subtracted (informally, we
may express this asAd ∼ F × F� − 1), so it follows directly
from the previous branching rule that the adjoint representa-
tion Ad of SUðnþ 2Þ decomposes as

Ad → X ⊕ X� ⊕ ‘more’; ð43Þ

with ‘more’¼ðX×X�Þ⊕S0⊕S0�⊕ðX×S0�Þ⊕ðX�×S0Þ⊕S.
As an example, we can infer immediately that a gauge boson
with the unusual quantum numbersX ¼ ð1; 5; 8Þ≡ 58 can be
obtained from SUð7Þ through the embedding defined by the
branching rules

F≡ 7 → 58|{z}
X

⊕ 10|{z}
S

⊕ 1−40|{z}
S0

; ð44Þ

Ad≡ 48 → 58 ⊕ 5−8|fflfflfflfflffl{zfflfflfflfflffl}
XþX�

⊕ 1−40 ⊕ 140|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
S0þS0�

⊕ 10 ⊕ 30 ⊕ 50 ⊕ 70 ⊕ 90|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X×X�

⊕ 548 ⊕ 5−48|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X×S0�þX�×S0

⊕ 10|{z}
S

: ð45Þ

The above reasoning works for any X, but it is unlikely to
involve the smallest possible group. For several quantum
numbers of the vector field, the reader can see in Table 1 of
[30] what are the minimal groups. To illustrate the point,
X ¼ ð8; 3; 0Þ can be obtained from SUð26Þ by the above
argument, however, it can also be extracted from the much
smaller SUð6Þ × Uð1Þ group.7
Having settled this mathematical part of the problem, it

remains to be seen whether or not one can build realistic
models based on the above group embeddings. In principle,
the solution adopted in thiswork for theW1 vector field—and
which has also been used in models for the B-anomalies
[31–34]—can be adapted to gauge bosons with other
representations. We may start by extending G to G ×
SUð3Þ × SUð2Þ ×Uð1Þ (some of these factors, such as
SUð3Þ on the earlier models forW1, might be unnecessary).
The Standard Model symmetry group GSM is obtained from
the diagonal subgroup of an SUð3Þ0 × SUð2Þ0 ×Uð1Þ0 con-
tained in G, and G321 ≡ SUð3Þ × SUð2Þ × Uð1Þ outside it.
The model will contain fermions F ¼ Q; uc; dc; L; ec which
transform as usual under G321 and have a trivial G charge.

6The argument actually fails when X is inert under the full
SUð3ÞC × SUð2ÞL ×Uð1ÞY . However, it is well known that the
trivial representation X ¼ ð1; 1; 0Þ is obtainable from extra Uð1Þ
factors, for example.

7It corresponds to the first branching rule (out of three) given
by the command DecomposeRep[{SU6,U1}, Adjoint
[{SU6,U1}], {SU3,SU2,U1}] in GroupMath [24].
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One must also add some scalars to correctly break the
extended gauge group and to couple to fermions via
Yukawa interactions.
This is one possibility. There are no gauge anomalies

and, with an appropriate scalar sector, it should be feasible
to obtain the Standard Model as a low energy effective
theory. Importantly, fermions will not couple directly to the
gauge bosons of G.
The situation changes if we introduce for each (or at least

some) F a corresponding pair of vectorlike fermions ðF ; F̄Þ
transforming nontrivially under the group G, and with the
same G321 quantum numbers as F. (In the case of F ¼ Q it
might be convenient to add two pairs of vectorlike fermions,
as explained shortly.) The recipe can be as follows for a gauge
boson in some representation X of GSM:
(1) Find a group G whose adjoint representation con-

tains X. This requirement can always be fulfilled.
The full symmetry of the model shall be given by the
G ×G321 group.

(2) Pick a nontrivial representation R of G such that
ðR; 1; 1; 0Þ ofG × G321 contains the Standard Model
subrepresentation ð1; 2;−1=2Þ.

(3) Introduce two scalars Ω¼ðR;1;1;0Þ and χ¼ðR̄;1;2;
−1=2Þ; they include at least one Higgs doublet
ð1; 2;−1=2Þ and a singlet ð1; 1; 0Þ.8

(4) Introduce Weyl fermions F ¼ Q; uc; dc; L; ec trans-
forming as ð1; 3; 2; 1=6Þ, ð1; 3̄; 1;−2=3Þ, ð1; 3̄; 1;
1=3Þ, ð1; 1; 2;−1=2Þ and ð1; 1; 1; 1Þ. For each F
we need a vectorlike fermion pair ðF ; F̄Þ such that
F transforms as F under G321 and as a R under G.
However, since the R representation contains only a
downlike Higgs doublet, ðR;1;1;0Þ→ð1;2;−1=2Þ þ
���, ðQ; Q̄Þ will contain only downlike quarks
—ð3̄; 1; 1=3Þ and ð3; 1; 1=3Þ. In order to treat all
quarks equally, we may want to introduce two vector-
like fermions in association to F ¼ Q:

Qu≡ ðR̄;3;2;1=6Þ and Qd≡ ðR;3;2;1=6Þ: ð46Þ

This is not needed ifR contains both ð1; 2;−1=2Þ and
ð1; 2; 1=2Þ (as in the SOð5Þ models of Secs. III
and IV).

(5) If R is complex, the list of fermion masses and
Yukawa terms is the following:

masses∶ QuQu; QdQd; ucuc; dcdc;

LL̄; ecec; ð47Þ

singlet interactions∶Qucχ�; Quucχ�; Qdcχ;

Qddcχ; Lecχ; Lecχ; ð48Þ

doublet interactions∶QQuΩ�; ucucΩ�; QQdΩ;

dcdcΩ; LL̄Ω; ececΩ: ð49Þ

By design all but the Standard Model fermions can
be made heavy without any tuning. Assuming that
the scalar VEVs are smaller than the vectorlike
massesmFFF̄ , the light fermion mass eigenstates are
composed mostly of the F’s (that is Q; uc; dc; L, and
ec). Mostly, but not entirely: a particularly important
consequence is that through mixing the Standard
Model fermions will couple to the gauge bosons of
G. Furthermore, note that the VEV of χ does not
break GSM, thus it can be comparable (or even
greater than) the masses mF; as a consequence,
fermion mixing might be large.9

An analogous list of interactions can be compiled when R is
(pseudo)real. In that case there is no need for bothQu andQd
(a single vectorlike Q is sufficient).
Lastly, it is interesting that baryon and lepton numbers are

preserved in this construction. That was also the case in the
SOð5Þ models for W1, where neutrinos are Dirac particles
even though there are right-handed neutrinos and scalars
which are capable of inducing Majorana masses.
As a further example, consider a gauge boson Xμ with the

quantum numbers X ¼ ð3; 2; 5=6Þ. The argument reported
earlier points to the SUð8Þ group, but the field can also be
obtained in the widely studied SUð5Þ model of grand
unification [35]. Xμ induces proton decay via its simulta-
neous coupling to theStandardModel bilinearsQuc andLec,
hence itmust be an extremely heavy field.An alternative is to
forbid one of its two problematic couplings with a symmetry
that, for example, enforces baryon-number conservation.
Given the stringent limits on the proton’s lifetime [36], a Xμ

field at theTeVscale is problematic even if it induces nucleon
decay through loops only.
Now consider an SUð5Þ×SUð3Þ×SUð2Þ×Uð1Þ model,

with R ¼ 5. Despite the complexity of the list of fermion

8If the VEV of this last field is insufficient to correctly break
G × G321 down to the Standard Model group, one must add more
scalars.

9There is a caveat. For every X, it is always possible to pick aG
and an R fulfilling steps 1 and 2. However, by itself this does not
ensure that the gauge bosons of G transforming as X will couple
to the important sub-representations in the F=F̄ fields (i.e., those
which can mix with the F’s). This should not be a concern as long
as X,G and R and not too exotic. However, in general, one has an
extra requirement which—it turns out again—can always be met.
I argued that an n-dimensional X is contained in the adjoint
representation of SUðnþ 2Þ, as shown by the branching rules
(42) and (43). Those decompositions do not ensure, as we would
like, that the down Higgs doublet Hd in Ω couples to anything
else through X. We can fix that in SUðnþ 3Þ with R ¼
fundamental rep → Hd ⊕ X0 ⊕ S0 where X0 is a representation
in the product Hd × X� and, as before, S0 makes Hd ⊕ X0 ⊕ S0
traceless under Uð1ÞY. With this choice of group embedding, the
Hd scalar in Ω couples to something else (X0) via the gauge
bosons transforming as X, and so do the other important
components in χ and the F=F̄ fermions.
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masses and interactions (see above), one can a assign an
unbroken baryon numberB to all fields:BðQ;Qu=d;uc;dcÞ¼
−BðQu=d;uc;uc;dc;dcÞ¼1=3. The same holds for lepton
number. A model constructed along these lines should
therefore predict a stable proton, even if the SUð5Þ ×
SUð3Þ × SUð2Þ ×Uð1Þ symmetry breaking scale is as
low as a few TeV. This is true also for other groups and
other X’s: more fields are needed in order to break baryon
and/or lepton number.

VI. SUMMARY

Avector fieldW1 with the quantum numbers (3,1) under
SUð2ÞL ×Uð1ÞY cannot couple to pairs of Standard Model
fermions, yet in principle it could interact with two Higgs
doublets. While this is true, I have argued in this paper that
such coupling will not be generated in a Yang-Mills theory,
ifW1 is a gauge boson. As a consequence, the suggestion in
[3,10] that such a field could explain the recent CDF
measurement of theW-boson mass becomes less appealing.
Notwithstanding the lack of the above interaction, in this

paper I considered a minimal model containing W1 as a
gauge boson, potentially with a TeV scale mass. In fact, I
considered two closely related models: one where this field
does not interact with fermions at all, and another where it
does. In the latter, due to its quantum numbers, the W1

coupling to Standard Model fermions involves necessarily
exotic ones as well. The two models are based on an
SOð5Þ × SUð2Þ ×Uð1Þ extended electroweak group, and
therefore they predict the existence of aW0 and a Z0, with a

mass hierarchy mW1
< mZ0 < mW0. Incidentally, these two

vector fields are known to affect the W mass (see
Refs. [3,8,10,37–40]): W0 pulls it down and Z0 has the
opposite effect. Since the Z0 is lighter, it could in principle
explain the CDF data. The two models also contain new
scalars (shown in Tables I and II).
Finally, in the last part of this work I have argued that it is

possible to extend the argument used here for W1—and
elsewhere for the Uμ leptoquark [31–34]—to gauge bosons
with arbitrary quantum numbers. Some phenomenological
limitations do apply: for example, models with a colorless
and fractionally charged field contain necessarily a stable
electrically charged particle, which is a problem in astro-
physics and cosmology. However, even with this kind of
consideration, many viable possibilities remain, and there-
fore the existence of TeV-scale gauge bosons with a wide
variety of quantum numbers cannot be ruled out.
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