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We consider the issue of vacuum misalignment induced by four-Fermi couplings in a generic strongly
coupled four-dimensional gauge theory. After briefly reviewing the general formalism, we focus on the case
of partial compositenesslike operators at leading order, which is relevant in applications to phenomenology.
We show that the interactions between an elementary fermion and composite spin-1=2 operators in various
representations contribute to the effective potential with relative sign differences. Thus the correct sign
required to misalign the vacuum is guaranteed to occur for some representations but not all of them. The
overall sign dictating the specific representations responsible for misalignment can in principle be determined
on the lattice. We also comment on the likely sign for some simple cases.
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I. INTRODUCTION

The dynamics of strongly coupled gauge theories is at
the heart of many unsolved problems in theoretical physics.
Even understanding the vacuum structure of such theories
has proven challenging in general. Motivated by applica-
tion to electroweak symmetry breaking (EWSB), we
consider the issue of vacuum misalignment in composite
Higgs-like theories. This phenomenon occurs when the
theory is deformed by a weak perturbation invariant under a
subgroup of the unbroken symmetries, but the vacuum of
the strong dynamics does not allow us to preserve the whole
invariance and some weak generators are spontaneously
broken. This is to be contrasted with Technicolor [1,2],
where the symmetry of the weak sector cannot be fully
embedded into the unbroken subgroup and thus some of its
generators are guaranteed to be broken. In this work we
refer to vacuum misalignment only in the former sense.
Given what we now know about the Higgs sector, this

type of vacuum misalignment is a plausible way to achieve
EWSB via a strongly coupled theory. It was proposed by
Kaplan and Georgi in [3], although their original realization
still involves elementary scalars, so it is less appealing as a
solution to the hierarchy problem. It was quickly pointed
out, e.g., in [4] that in scalarless theories, gauge fields
are not enough to achieve misalignment. This fact is
closely related to the impossibility of breaking a vectorlike

symmetry in vector-like theories [5–7]. A way around
this problem was suggested in [8] where EWSB was
achieved with only gauge fields by gauging an additional
(chiral) group.
The solution of [8] comes at the cost of introducing

gauge anomalies that need to be canceled by additional
spectator fermions. Moreover, it does not allow to have
nonzero hyperquark masses, and it predicts additional
heavy vector bosons that are now severely constrained
by direct searches at LHC. Finally, in [9–11] it was shown
that one could use couplings between the Standard Model
fermions and composite fermions of the strong sector to
achieve the goal of misalignment, a proposal inspired by
Kaplan’s idea of partial compositeness [12]. Although this
was initially framed in the context of extradimensional
theories, purely four-dimensional gauge theories that have a
chance of realizing both mechanisms [3,12] were con-
structed more recently in [13,14] and following works.
In this work we ask the question of what can be said in

general about vacuum misalignment induced by fermionic
interactions in the case of four-dimensional gauge theories.
The main hurdle is the difficulty to estimate the sign of
the contribution to the pseudo-Nambu–Goldstone boson
(pNGB) masses. This sign cannot be determined in the
effective theory and requires a study of the underlying
dynamics. So far, the only result we are aware of is that of
Golterman and Shamir [15] showing that misalignment
may occur (for sufficiently large coupling and anomalous
dimensions) in a SUð5Þ=SOð5Þ global symmetry breaking
coset [16] with composite fermions in the 5 representation
at NLO. (Since the leading contribution vanishes by
symmetry arguments.)
Here we would like to discuss the cases where the LO

contribution to the pNGB potential does not vanish. We are
facing the problem that the overall sign to the pNGB
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masses is determined by the strong dynamics and therefore
hard to pin down. However we show that composite
fermions in different representations contribute to the
masses with different relative signs, purely at the group
theory level. This means that, regardless of the overall
sign of the effective Hamiltonian, there will always be
some representation that misaligns the vacuum. A further
dynamical assumption, that we find reasonable, namely
that singlet fermions should not misalign the vacuum,
allows to speculate some positivity constraints on the
overall coefficients, leading to conjectural inequalities
between spectral functions in various channels.
There are plenty of models with only one irrep of

hyperfermions where some of these issues could be
investigated on the lattice, the main one being Spð2NÞ
hypercolor with hyperfermions in the antisymmetric. Of
course, the actual occurrence of misalignment in a specific
model still hinges on the dynamical issue of whether the
dimension six operators responsible for it are sufficiently
enhanced in the infra-red, an issue that has so far only been
addressed perturbatively [17,18].
In fact, existing lattice results for phenomenologically

interesting scenarios with two irreps of hyperfermions can
be of help to estimate the overall sign of the pNGB masses.
For SUð4Þ [19] and Spð4Þ [20] hypercolor theories, the
lattice calculations of the spectrum of chimera baryons can
provide a heuristic understanding of which representations
of the fermions may misalign the vacuum in composite
Higgs models.
The paper is organized as follows. After briefly review-

ing the general formalism in Sec. II, we discuss the case
of interest in Sec. III and provide illustrative examples in
Sec. IV. We conclude with some more general comments
and an outlook for future developments.

II. GENERAL FORMALISM

In this section we briefly review some well-known facts
about the dynamics of strongly coupled gauge theories
in order to set up the notation. The theories of interest are
four-dimensional gauge theories with a simple “hyper-
color” gauge group GHC and a set of left-handed Weyl
fermionsΨ in a nonchiral (self-conjugate) representation of
GHC. These fermions may thus belong to a real (R) or
pseudoreal (PR) representation, in which case we write Ψi

where the flavor index i runs from 1 to N for the R or 2N
for the PR. Alternatively, they may belong to a complex (C)
representation Ψi ¼ ψ i and its conjugate ΨðiþNÞ ¼ ψ̃ i,
where i ¼ 1…N.
In the UV, the hypercolor invariant Lagrangian can be

written as

LUV ¼ iΨ†
i σ̄

μDμΨi − ðmijΨiΨj þm†ijΨ†
iΨ

†
jÞ; ð2:1Þ

where m is a GHC invariant mass term for the hyper-
fermions that can always be brought to the form

m ¼

8
>><

>>:

1
2
diagðm1;…; mNÞ ðRÞ;

1
2
diagðm1;…; mNÞ ⊗ iσ2 ðPRÞ;

σ1 ⊗ diagðm1;…; mNÞ ðCÞ;
ð2:2Þ

where mi ≥ 0, for all i ¼ 1…N. In this work we consider
only CP preserving theories, corresponding to choosing
a hypercolor theta angle θ ¼ 0 with the above choice of
masses.
There may be other fermions in the theory, but we focus

on the symmetry breaking pattern associated to the Ψs.
In the case where all Ψ are massless it is well known that,
in the appropriate dynamical region, the global symmetry
breaking patterns associated to the three choices of
representation are SUðNÞ=SOðNÞ, SUð2NÞ=Spð2NÞ and
SUðNÞ × SUðNÞ=SUðNÞ respectively. In all three cases we
are dealing with a symmetric coset G=H where the
generators TA of G can be divided into the broken Tâ

and unbroken Ta generators satisfying the algebra

½Ta; Tb� ¼ ifabcTc; ½Tâ; Tb̂� ¼ ifâ b̂ cTc;

½Ta; Tb̂� ¼ ifab̂ ĉTĉ: ð2:3Þ

The currents and corresponding charges (operators in the
Fock space of the QFT) can be written as

JAμ ¼ Ψ†
i σ̄μðTAÞijΨj; QA ¼

Z

d3x JA0 : ð2:4Þ

The charges obey exactly the same commutation relations
as (2.3). Let the vacuum state annihilated by the Qa be
denoted by jvaci0. The first well known fact is that
the explicit embedding of H into G is arbitrary and one
could use any isomorphic subgroup gHg†, where g ∈ G.
Equivalently, one could rotate the vacuum state to

jvaciΠ ¼ exp ðiΠâQâÞjvaci0; ð2:5Þ

and conjugate all the operators accordingly. For conven-
ience we use dimensionless fields Πâ ¼ πâ=f, where π are
the pseudo-Nambu–Goldstone bosons (pNGBs) and f their
decay constant.
The invariant tensor Iij0 associated with the H invariant

vacuum jvaci0 is defined through

0hvacjΨiΨjjvaci0 ¼ −BIij0 ; ð2:6Þ

with

I0 ¼ 1ðRÞ; 1 ⊗ iσ2ðPRÞ; σ1 ⊗ 1ðCÞ ð2:7Þ

for the three cases and B a low energy constant of
dimension ½M�3. Having chosen this specific expression
for I0, the broken/unbroken generators are identified by
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the relations TâI0 − I0TâT ¼ 0 and TaI0 þ I0TaT ¼ 0
respectively.
If we were to perturb the theory by a fully G invariant

Hamiltonian H, obeying ½QA;H� ¼ 0, no potential for
the Πs would be generated since ΠhvacjHjvaciΠ ¼
0hvacjHjvaci0 ¼ const. If, on the other hand, the
Hamiltonian is invariant under H but does not fully
commute with the broken generators, by expanding the
exponentials one obtains [21,22]

VðΠÞ ¼ ΠhvacjHjvaciΠ
¼ 0hvacjHjvaci0 − iΠâ

0hvacj½Qâ;H�jvaci0
−
1

2
ΠâΠb̂

0hvacj½Qâ; ½Qb̂;H��jvaci0 þ… ð2:8Þ

In order for jvaci0 to be an acceptable vacuum we need the
potential to be minimized at Π ¼ 0, i.e.

0hvacj½Qâ;H�jvaci0¼0; ð“no-tadpole condition”Þ ð2:9Þ

ðM2Þâ b̂ ¼ −
1

f2 0hvacj½Qâ; ½Qb̂;H��jvaci0 ≥ 0

ð“no-tachyon condition”Þ: ð2:10Þ

The mass term in (2.1) can also be interpreted as a
perturbation Hamiltonian Hmass ¼ mijΨiΨj þm†ijΨ†

iΨ
†
j ,

breaking H to the subalgebra generated by Ta leaving m
invariant. In other words ½Qa;Hmass� ¼ 0 ⇒ Tamþ
mTaT ¼ 0, where Ta spans a subset of the unbroken
generators Ta. The choices (2.2) and (2.7) are compatible
with the absence of tadpoles and tachyons (2.9) and (2.10),
so no pNGB acquires a vacuum expectation value and
their masses are given by the Gell-Mann–Oakes–Renner
formula [23].
If one choose instead to perturb by a generic complex

symmetric mass mij, the vacuum (2.7) would no longer be
suitable, since it would fail some of the criteria (2.9), and
(2.10). However it would always be possible to redefine I0
and the generators TA by a global G transformation and,
possibly, by an additional anomalous Uð1Þ: Ψi → eiαΨi.
Another important source of perturbation comes from

the weak gauging of a subgroup Gw of H. The hyper-
fermion mass term should at least preserve the gauge
symmetry, implying that the gauged generators are also
given by Ta or a subset of them. The perturbed Hamiltonian
arising from the gauge contribution, pictorially depicted in
the left panel of Fig. 1, can be written as [22,24–26]

Hgauge ¼ −
i
2
GAaGBb

Z

d4xΔμνðxÞδabTfJAμ ðxÞJBν ð0Þg;

ð2:11Þ

where Tf…g denotes time ordering and ΔμνðxÞδab is the
propagator of the massless weak gauge fields Aa

μ. The
couplings GAa transform in the adjoint representations of G
and Gw and their physical values are given by GAa ¼ gδAa.
The joint expectation values of the product of two current

can be written as

0hvacjTfJaμðxÞJbνð0Þgjvaci0 ¼ GμνðxÞδab ð2:12Þ

0hvacjTfJâμðxÞJb̂νð0Þgjvaci0 ¼ ĜμνðxÞδâ b̂ ð2:13Þ

0hvacjTfJâμðxÞJbνð0Þgjvaci0 ¼ 0; ð2:14Þ

where the two-point functions GμνðxÞ and ĜμνðxÞ can be
expressed in terms of their spectral representations [27].
The no-tadpole condition (2.9) can be realized by noticing
that the joint expectation value of a broken and unbroken
current is zero (2.14). The pNGB mass matrix arising from
Hgauge is given by [22,24–26]

ðM2Þâ b̂ ¼ i
g2

f2
fâ ĉ afb̂ ĉ a

Z

d4xΔμνðxÞ½GμνðxÞ − ĜμνðxÞ�;

ð2:15Þ

which has positive eigenvalues only, as shown in [6].
Thus, the vacuum jvaci0 is not destabilized by weakly
gauging Gw. This is a positive feature in the case of QCD,
since one does not want it to break electromagnetic
interactions.

III. VACUUM MISALIGNMENT VIA PARTIAL
COMPOSITENESS

Contrary to QCD, in applications to composite Higgs
models [3] a dynamical mechanism to “misalign” the
vacuum and trigger EWSB is necessary. As discussed in

FIG. 1. Leading order diagrams contributing to the pNGB
potential. Left: Contribution from the gauge interactions; Right:
contribution from four-Fermi interactions. Similar diagrams are
referred to as “cat graphs” in [3] although we would like to
suggest the more accurate description of “Cosmic cat diagrams.”
Thick lines represent hyperfermions and each pNGB insertion,
corresponding to a commutator with the charges, is represented
by a whisker.
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the previous section, the mass terms or the gauge con-
tributions cannot misalign the vacuum in a vectorlike gauge
theory. The interactions of GHC singlet elementary fermions
provide another source of explicit breaking of G. In this
section we show that four-Fermi interactions between
composite fermions of the strong sector and elementary
chiral fermions can in fact misalign the vacuum. There is a
close analogy between the currents and the gauge fields of
the previous section and the composite and elementary
fermions considered here.
The composite fermions are hypercolor singlet bound

states of three hyperfermions (schematically ΨΨΨ) which
may transform as a one-, two- or three-index representa-
tions of G. Note that the bound state may also involve
hyperfermions in other irreps of GHC as in the case of top-
partners in the composite Higgs models. For the purpose
of our analysis, the exact composition of the bound state
fermions is not relevant, only the G-irrep under which
they transform is important. We denote the GHC singlet
composite fermions by BR

α, B
†
R _α where the index R spans a

specific irrep of G which we also denote by R for brevity.
Weyl indices are denoted as α and _α.
Commutation relations between BR

α and the charges can
be written as

½QA;BR
α � ¼ −ðTAÞRSBS

α; ½QA;B†
_αR� ¼ B†

_αSðTAÞSR: ð3:1Þ

In the above equation, the generators TA [with A ¼
1;… dimðGÞ] are in the dimðRÞ dimensional representation
of G.
In addition to the composite states, we consider elemen-

tary chiral fermions λiα charged under an irrep “i” of a
subgroup of H. A particularly interesting example is when
the fermions are charged under the weakly gauged sub-
group Gw, in which case one might have to introduce
additional spectator fermions to cancel gauge anomalies.
Though we discuss this specific scenario, our results are
valid even in the absence of gauging.
The linear mixing of elementary fermions with their

composite counterpart through four-Fermi interactions
(λΨΨΨ), referred to as partial compositeness [12], generi-
cally break the global symmetry G of the strong sector.
The low energy Lagrangian describing partial composite-
ness is given by

LPC ¼ yP†
Riλ

iαBR
α þ H:c: ð3:2Þ

where PRi is a projector matrix and y is a real dimensionful
interaction strength. For simplicity we consider a single
coupling y, for a more general case see Ref. [28].
The effective pNGB potential generated from (3.2) at LO

can be constructed using the operators in the last column of
Table I. However, the signs of the coefficients associated
with these operators, which are determined by the strong
dynamics, cannot be fixed using this effective construction.

Our main objective is to estimate these signs in a manner
similar to the gauge contribution discussed in the previous
section.
The perturbed Hamiltonian arising from (3.2) as shown

in the right panel of Fig. 1 is

HPC ¼ −
i
2
y2

Z

d4xΔ _ααðxÞδijTfP†
RiB

R
α ðxÞB†

Q _αð0ÞPQj

þ H:c:g; ð3:3Þ

where Δ _ααðxÞδij is the λ propagator.
While the composite fermion operators transform under

R of G, the vacuum breaks spontaneously G to H. Thus,
the vacuum correlation functions hBB†i are classified by
H-irreps and we must decompose R into H-irreps. We
consider the decomposition R → rþ r0, which captures all
the relevant cases for the three types of cosets up to two-
index representations of R as shown in Table I.
Using this notation, the hBB†i correlators are given by

0hvacjTfBr
αðxÞB†

q _αð0Þgjvaci0 ¼ Gα _αðxÞδrq ð3:4Þ

0hvacjTfBr0
α ðxÞB†

q0 _αð0Þgjvaci0 ¼ G0
α _αðxÞδr

0
q0 ð3:5Þ

0hvacjTfBr
αðxÞB†

q0 _αð0Þgjvaci0 ¼ 0: ð3:6Þ

Similarly to the currents, the two point functions Gα _αðxÞ
and G0

α _αðxÞ can be expressed in terms of their spectral
functions ρGðμ2Þ and ρG0 ðμ2Þ. The Fourier transform of
Gα _αðxÞ is given by

Z

d4x eikxGα _αðxÞ ¼ ikμðσμÞα _α
Z

dμ2
ρGðμ2Þ

k2 − μ2 þ iϵ
; ð3:7Þ

TABLE I. List of the G-irreps up to two indices that split in two
H-irreps. The symbols 1, S2, A2, Ad, F, F̄ stand for the singlet,
symmetric, antisymmetric, adjoint, fundamental, and antifunda-
mental of the respective groups. The last column shows the LO
operators contributing to the effective pNGB potential, where U
is the unitary matrix denoting the nonlinear realization of the
pNGBs around Π ¼ 0.

SUðNÞ → SOðNÞ
Ad Adþ S2 trðPUP�U�Þ
S2 1þ S2 trðPU�ÞtrðP�UÞ

SUð2NÞ → Spð2NÞ
Ad AdþA2 trðPUP�U�Þ
A2 1þA2 trðPU�ÞtrðP�UÞ

SUðNÞ × SUðNÞ → SUðNÞ
ðF;FÞ A2 þ S2 trðUPTU�P†Þ
ðF; F̄Þ 1þAd trðPU†ÞtrðP†UÞ
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and similarly for G0
α _αðxÞ. In the short distance limit,

restoration of the global symmetry G implies for the
correlators Gα _αðxÞ −G0

α _αðxÞ → 0. If we assume that the
composite fermion operators behave as free fermion fields
in this limit (k2 → ∞) a sum rule for the spectral functions,
analogous to the Weinberg’s sum rules [27,29,30], can be
obtained as

Z

dμ2½ρGðμ2Þ − ρG0 ðμ2Þ� ¼ 0: ð3:8Þ
The remaining task is to check the conditions (2.9)

and (2.10). We start with the tadpole equation which
implies

P†
riðTâÞrq0Pq0i − P†

r0iðTâÞr0qPqi ¼ 0: ð3:9Þ

Similarly, the pNGB mass matrix at the H-invariant
vacuum jvaci0 is given by

ðM2Þâ b̂ ¼ y2

f2
K½P†

rifðTb̂Þrq0 ðTâÞq0s þ ðTâÞrq0 ðTb̂Þq0s gPsi

−P†
r0ifðTb̂Þr0q ðTâÞqs0 þ ðTâÞr0q ðTb̂Þqs0 gPs0i

−P†
rifðTb̂ÞrqðTâÞqs0 − ðTâÞrq0 ðTb̂Þq0s0 gPs0i

þP†
r0ifðTb̂Þr0q0 ðTâÞq0s − ðTâÞr0q ðTb̂ÞqsgPsi�: ð3:10Þ

The overall coefficient K can be expressed in terms of the
spectral functions ρGðμ2Þ and ρG0 ðμ2Þ as

K≡ i
Z

d4xΔ _ααðxÞ½Gα _αðxÞ −G0
α _αðxÞ�

¼ 2

Z
d4kE
ð2πÞ4

Z

dμ2
½ρGðμ2Þ − ρG0 ðμ2Þ�

k2E þ μ2
; ð3:11Þ

where kE denotes Euclidean momentum. Few comments
regarding (3.10) and (3.11) are necessary. First of all, the
second line of (3.10) vanishes if one chooses to couple λiα

only with Br
α or Br0

α which implies either Pri or Pr0i is zero.
This choice manifestly satisfies (3.9) as well. The remain-
ing positive definite terms in the first line of (3.10) appear
with a relative sign difference between them. Thus,
irrespective of the sign of K, we conclude that (3.10)
violates the no-tachyon condition for one of the two
H-irreps. Which of the two irreps misaligns the vacuum
depends on the sign of K which can in principle be
determined using lattice gauge theory.
Note that the gauge contribution (2.15) is a special

case of the more generic (3.10) with appropriate modifi-
cations of K. The weak gauge bosons transform under the
adjoint of Gw which forces one to couple them with
the unbroken currents in the adjoint of H, leading to a
unique choice of the projector (GAa ¼ gδAa in the notation
of previous section). Thus, in contrast to the partial

compositeness, gauge contributions yield a single term
which is shown to be positive [6], satisfying the no-tadpole
condition.
To illustrate further, consider the SUðNÞ=SOðNÞ coset

and assume that BR
α transforms under the symmetric S2 of

SUðNÞ which decomposes into a 1 (B1
α) and a S2 (B

S2
α ) of

SOðNÞ (see Table I). The expression for the pNGB mass
matrix is given by

ðM2Þâ b̂ ¼ 8y2

Nf2
K½trðP†

i T
âTb̂ÞtrðPiÞ þ trðP†

i ÞtrðTb̂TâPiÞ

− trðP†
i T

âÞtrðTb̂PiÞ − trðP†
i T

b̂ÞtrðTâPiÞ�;
ð3:12Þ

where now we express both P and the generators Tâ as
N × N matrices and the trace is over the SUðNÞ indices.
The expression for K is given by (3.11) with ρGðμ2Þ≡
ρ1ðμ2Þ and ρG0 ðμ2Þ≡ ρS2ðμ2Þ being the spectral functions

associated with B1
α and BS2

α , respectively.
The choice of the projector matrix depends on how λiα

transforms under Gw ⊂ SOðNÞ. If λα is a singlet of Gw, P
can be considered to be a diagonal matrix, P1 ¼ 1N=

ffiffiffiffi
N

p
.

This choice corresponds to coupling λα with B1
α. In this

case, the last two terms within square brackets of (3.12)
vanish due to the traceless nature of the SUðNÞ generators,
while the first two terms are positive definite. In contrast, if
λiα transforms nontrivially under Gw one can choose PS2 as
a N × N traceless symmetric matrix such that λiα couples
to BS2

α . For this choice, the first two terms within square
brackets of (3.12) are zero. The presence of an overall sign
difference with respect to the previous case indicates the
possibility of tachyonic mass eigenvalues and therefore
misalignment of the vacuum jvaci0. In passing we note
that the effective operator trðPU�ÞtrðP�UÞ (see Table I)
expanded around Π ¼ 0 leads to the same mass matrix
as in (3.12), however, the relative sign difference between
the P1 and PS2

contributions cannot be predicted using the
effective formalism.
Although the sign of K is not directly calculable

from (3.11), in this specific case we could argue that it
is a positive quantity. We do not expect the linear mixing
between a H-singlet B1

α and a Gw-singlet λα to misalign the
vacuum. This leads us to expect the following inequality
involving the spectral functions ρ1ðμ2Þ and ρS2

ðμ2Þ
Z

d4kE
ð2πÞ4

Z

dμ2
½ρ1ðμ2Þ − ρS2ðμ2Þ�

k2E þ μ2
> 0: ð3:13Þ

Assuming the dominance of the leading resonance and
considering the sum rule (3.8), one can approximate the
spectral functions as ρ1ðμ2Þ ≃ Cδðμ2 −M2

1Þ and ρS2ðμ2Þ≃
Cδðμ2 −M2

S2
Þ, where C is a positive constant. This ansatz
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for the spectral functions soften the UV divergence of K
from quadratic to logarithmic. Further, the condition (3.13)
implies that MS2 > M1.
It is worth mentioning that couplings of the elementary

fermion with a BF
α or BA2

α of G do not generate a potential
for the pNGBs at the leading order. If instead, we choose
to couple λiα with BAd

α of G, a possibility of vacuum
misalignment with either S2 or A2 of H will arise. In this
case, however, it is less clear what to expect the sign of K
to be.

IV. EXAMPLES AND APPLICATIONS

In this section we give two simple examples of misalign-
ment with cosets SUð3Þ=SOð3Þ and SUð2Þ×SUð2Þ=SUð2Þ
and then move on to discuss some phenomenological
applications in the context of composite Higgs models.

A. SUð3Þ=SOð3Þ
The coset G=H ¼ SUð3Þ=SOð3Þ is the simplest case

where all the issues discussed above can be illustrated. This
coset can be realized with hyperfermionsΨ in any real irrep
of a hypercolor group GHC. Only few irreps can be used
after requiring asymptotic freedom and the presence of a
GHC singlet in Ψ3. The adjoint irrep is always a possibility,
although it is likely that these models fall into the
conformal window. A safer option is to chose the
antisymmetric irrep of GHC ¼ Spð2NÞ with N > 2,
which has been already put on the lattice without
hyperfermions [31].
In the vacuum jvaci0 the generators of SUð3Þ can be split

into real symmetric broken generators T 1̂;2̂;3̂;4̂;5̂ ¼ λ1;3;4;6;8

and unbroken imaginary antisymmetric T1;2;3 ¼ λ2;5;7,
where λ are the Gell-Mann matrices. The mass matrix of
Ψ, as shown in (2.2), can introduce explicit breaking,
reducing the exact global symmetry group Sw to

Sw ¼

8
>>><

>>>:

SUð3Þ for m1 ¼ m2 ¼ m3 ¼ 0

SOð3Þ for m1 ¼ m2 ¼ m3 ≠ 0

Uð1Þ for m1 ¼ m2 ≠ m3

f1g for m1 ≠ m2 ≠ m3:

ð4:1Þ

As discussed above, neither masses, nor gauging SOð3Þ or
Uð1Þ, will misalign the vacuum.
One can misalign using only gauge coupling, by the

method of [8], gauging two commuting generators
of SUð3Þ, i.e. T1 and T 5̂. (The group being gauged is
necessarily partly chiral. Thus one must set the masses to
zero and introduce additional spectator fermions to cancel
the anomaly.) The squared mass matrix for the five pNGBs
turn out to be proportional to

M2 ∝ diagð4g2; 4g2; g2 − 3ĝ2; g2 − 3ĝ2; 0Þ ð4:2Þ

where g and ĝ are associated to the generators T1 and T 5̂

respectively. Varying the two gauge couplings, we see that
as soon as g2 − 3ĝ2 < 0 the two pNGBs associated with T 3̂

and T 4̂ become tachyonic, the vacuum jvaci0 is misaligned,
and both gauge bosons acquire a mass.
Alternatively, more relevant for this work, one can use

fermionic couplings as in the previous section. For defi-
niteness, let us take m1 ¼ m2 ¼ m3 ≡m ≠ 0, and gauge
the Uð1Þ generator T1, with coupling g. The hyperquark
mass contributes the same positive constant term to each of
the five pNGBs, the gauge coupling contributes as in (4.2)
with ĝ ¼ 0, i.e. M2 ∝ g2diagð4; 4; 1; 1; 0Þ, and neither of
these contribution misaligns the vacuum.
Consider now a four-Fermi interaction involving a

composite fermion operator in the symmetric (6) of SUð3Þ
and an elementary fermion λ charged under the gaugedUð1Þ.
The decomposition SUð3Þ→SOð3Þ→Uð1Þ is 6→1þ5→
ð01Þþð05Þþð�15Þþð�25Þ. Considering one elementary
fermion characterized by the above Uð1Þ quantum number,
the induced pNGB mass matrices are

M2ð01Þ ∝ y2diagð2; 2; 2; 2; 2Þ
M2ð05Þ ∝ y2diagð0; 0; 0; 0;−2Þ

M2ð�15Þ ∝ y2diagð0; 0;−1;−1; 0Þ
M2ð�25Þ ∝ y2diagð−1;−1; 0; 0; 0Þ: ð4:3Þ

The overall sign of these contributions, given by the sign
of K in (3.11) is not determined, although in cases like this
one could speculate that the H-singlet should not misalign,
thus the overall signs should be as in (4.3). One could
further speculate a mass hierarchy M5 > M1 between the
composite fermions, assuming the dominance of the lead-
ing resonance in the spectral functions.
If a gauge coupling is also present (as it must in

phenomenologically relevant applications), one must also
assume that the perturbatively irrelevant dimension-six
operators are sufficiently enhanced in the infrared in order
to compete with the marginal gauge couplings. This is a
crucial dynamical question about the hypercolor gauge
theory, but may not be so far-fetched when the theory lies
close to the strongly coupled edge of the conformal window.
The same discussion applies to all subsequent cases.

B. SUð2Þ × SUð2Þ=SUð2Þ
This is just the case of two-flavors QCD, so the

contribution of masses and gauging are well known.
Here too, gauging a chiral group larger than SUð2Þ
misaligns the vacuum. In QCD, this is the well-known
statement that even in the absence of a Higgs field the W
and Z bosons would acquire a small mass from the QCD
quark condensate. This coset, however, can arise in other
beyond the Standard Model scenarios addressing the
dynamics of EWSB. Consider now composite fermionic
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operators in the ð2; 2Þ and gauge a Uð1Þ subgroup
(generated by σ3) of the unbroken SUð2Þ. The decom-
position SUð2Þ × SUð2Þ → SUð2Þ → Uð1Þ is ð2; 2Þ →
1þ 3 → ð01Þ þ ð03Þ þ ð�13Þ yielding

M2ð01Þ ∝ y2diagð2; 2; 2Þ
M2ð03Þ ∝ y2diagð0; 0;−2Þ

M2ð�13Þ ∝ y2diagð−1;−1; 0Þ: ð4:4Þ

Once again the overall sign of the pNGB masses cannot
be determined without an understanding of the strong
dynamics. There are some estimates from the lattice on
the spectrum of chimera baryons in a GHC ¼ SUð4Þ gauge
theory with four (Weyl) antisymmetric Q and two (Dirac)
fundamental q of SUð4Þ [19]. The hyperfermions q lead to
the SUð2Þ × SUð2Þ=SUð2Þ coset. The chimera baryons are
SUð4Þ singlet spin-1=2 states with mixed representations,
denoted by Qqq which can be decomposed into 1þ 3
of the unbroken SUð2Þ. The results from [19] show that the
masses of 1 and 3 are almost overlapping with each other
within numerical uncertainties. In this case it is difficult to
determine the overall sign of the pNGB masses using the
lattice results.

C. Phenomenological applications

The main application of vacuum misalignment is in the
context of composite Higgs models. The three minimal
cosets arising from 4D confining gauge theories that can
generate a Higgs doublet and preserve custodial symmetry
are SUð4Þ=Spð4Þ [13,14,16,32–35], SUð5Þ=SOð5Þ
[15,16,28,36,37] and SUð4Þ × SUð4Þ=SUð4Þ [36,38]. In
these models, the elementary top quark is assumed to
couple with the composite top-partners through partial
compositeness interactions. The projector matrices
are chosen in such a way that the left handed quark
doublet (qL) is embedded in ð2; 2Þ and the right handed
top quark (tR) in ð1; 1Þ or ð1; 3Þ under the unbroken
SUð2ÞL × SUð2ÞR subgroup. Detailed constructions of
these models can be found in [39].
Consider the coset SUð4Þ=Spð4Þ which gives rise to a

Higgs doublet and a Standard Model gauge singlet η. A
composite top-partner in the antisymmetric 6 of SUð4Þ
decomposes as 6 → 1þ 5 under Spð4Þ. The singlet 1 can
couple to tR at leading order, while the 5 → ð2; 2Þ þ ð1; 1Þ
under Spð4Þ → SUð2ÞL × SUð2ÞR can couple to both qL or
tR. As discussed earlier, we expect that the singlet 1 should
not misalign the vacuum. Thus we expect a tachyonic mass
term for the Higgs doublet to arise from the ð2; 2Þ ∈ 5
contribution, while the ð1; 1Þ ∈ 5 destabilizes the η direc-
tion at LO.
The adjoint 15 → 5þ 10 of SUð4Þ → Spð4Þ can also

misalign the vacuum. In contrast to the antisymmetric case,
here qL and tR can couple to both the 5 and 10 components.
The qL generates mass terms for both the Higgs and η,

while tR contributes only to the Higgs mass at LO. Without
any input from the lattice, it is harder to identify if the
misalignment is caused by the couplings of 10 or 5.
However, for this particular scenario, recent preliminary
results in the quenched approximation from [20] provide
more insight. The results in [20] indicate that the chimera
baryons transforming as 5 (denoted by Λ) could be heavier
than the ones transforming as 10 (denoted by Σ) in a Spð4Þ
hypercolor theory. Thus, the analysis presented in the
previous section, together with this input from the lattice,
suggests that the contribution from 5 is more likely to
misalign the vacuum.
Similar arguments can be offered for the 15 and 24 in the

SUð5Þ=SOð5Þ, and for ð4; 4Þ and ð4; 4̄Þ in the SUð4Þ ×
SUð4Þ=SUð4Þ cosets.

V. CONCLUSIONS AND OUTLOOK

In this paper we shed some new light on the vacuum
misalignment mechanism in strongly coupled gauge the-
ories. In particular, we discussed the role of four-Fermi
interactions between elementary fermions and composite
fermionic operators in destabilizing the reference vacuum.
We reviewed the well known results that hyperfermion
masses or weak gauging of a subgroup of the unbroken
global H cannot misalign the vacuum. Therefore, intro-
ducing the four-Fermi interactions is of particular impor-
tance for the models of dynamical EWSB in strongly
coupled theory. We focused specifically on the partial
compositeness couplings where an elementary fermion
couples chirally to a composite spin-1=2 operator created
by three hyperfermions. The potential generated at LO by
these couplings can lead to a tachyonic mass term for the
pNGBs, destabilizing the vacuum.
We showed that different representations of the

composite operators contribute to the pNGB masses with
different relative signs. Thus, irrespective of the overall
sign of the effective Hamiltonian, there is always some
representation that misaligns the vacuum. We further
pointed out that in case of a symmetric (antisymmetric)
irrep for the real (pseudoreal) coset, the expectation that
the H-singlet operator does not misalign the vacuum can
be used to predict the overall sign of the strong sector
contributions. Lattice gauge theory calculations can help to
test these expectations.
As a next step toward understanding the vacuum

structure of the theory, one also needs to identify the
directions on vacuum misalignment and the associated
symmetry breaking pattern. The main interest for EWSB
lies in showing the existence of acceptable vacua only
slightly misaligned from the unbroken one. This suggests
that one should compute the full pNGB mass matrix M2 in
the unbroken vacuum (2.10) (that depends on the hyper-
quark masses, the weak gauge couplings, and the partial
compositeness couplings) and look for regions where one
or more of its eigenvalues is on the verge of becoming
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tachyonic. This indicates which pNGB is going to acquire a
vacuum expectation value once the eigenvalue becomes
tachyonic, from which one can read off the pattern of
spontaneous symmetry breaking.
A generalization of the discussion presented in Secs. II

and III to other composite operators, for instance with
different spin, is possible. Instead of the partial compos-
iteness one may also consider four-Fermi interaction
between two elementary fermions and two hyperfermions
(λλΨΨ). In the low energy theory this would lead to a
Yukawa type interaction among two elementary fermions
and a composite scalar operator. The commutators
between the charges and these scalar operators can be
written in the same way as (3.1). In this scenario the

leading order Hamiltonian simply renormalizes the
hyperfermion propagator. Therefore it cannot misalign
the vacuum. The next-to-leading order contributions can
also be analyzed by extending the discussions presented
in the Sec. III.
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