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In extended Higgs models, a discrete symmetry is needed in the quark sector to avoid tree-level flavor-
changing neutral currents. However, this is not necessarily the case in the lepton sector. We consider a
model in which one Higgs couples to quarks and three others couple to the electron, muon, and tau,
respectively. This four-doublet model is presented with the full scalar potential and the gauge and
Yukawa couplings. The constraints from boundedness, perturbativity and oblique parameters are
incorporated as well as constraints from meson-antimeson mixing, radiative B-decays, and the diphoton
Higgs decay rate. We also consider bounds from searches for heavy neutral and charged scalars at the
LHC. Since the Standard Model Higgs couplings match predictions very well, we focus on the alignment
limit of the model. It is shown that for a wide range of parameters, the lightest additional scalar,
pseudoscalar and charged scalar can have substantial decays into electrons and muons (in contrast
to the usual leptonic decays into taus). An interesting signature in the neutral sector would be the
production, through vector boson fusion, of a pair of scalars, each of which decays into an electron or
muon pair.
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I. INTRODUCTION

The Higgs boson was initially discovered [1,2] through
its decay into gauge bosons. Since then, the coupling of the
Higgs to third-generation fermions has also been deter-
mined with increasing accuracy [3–7].
However, while there is evidence [8] of the Higgs decay

into muons, there remains large uncertainties and the discov-
ery has not yet been made. This leads one to ask if there are
viable models in which the muon and tau couple to different
Higgs bosons. It is often claimed that models in which
fermions of a given charge couple to different Higgs bosons
contain tree-level flavor changing neutral currents (FCNC).
However, the seminal papers of Glashow and Weinberg [9]
and of Paschos [10] explicitly referred to the quark sector. As
wewill see, FCNC can be avoided in the lepton sector even if
different leptons couple to different Higgs bosons.
The first such model, called the muon-specific two-

Higgs-doublet (2HDM) model, was developed by Abe,

Sato, and Yagyu [11] (ASY). They use a Z4 symmetry,
under which the muon and tau have different quantum
numbers, and break this softly. The model has no tree-level
FCNC and the Yukawa couplings for the muon and tau are
no longer simply proportional to their masses with the
proportionality coefficient being the same for all flavors;
the ASY model can substantially enhance or suppress the
muon interactions of scalars relative to those with tau
leptons. The purpose of their model was to attempt an
explanation of the muon g-2 anomaly, and for the param-
eters they considered, the dimuon coupling of the 125 GeV
Higgs is not suppressed. Their model can address the g-2
anomaly, but only for a very narrow region of parameter
space. A more detailed analysis was carried out in Ref. [12]
where the phenomenology of the model was studied.
The ASY muon specific 2HDM used a Z4 discrete

symmetry in which the left-handed muon doublet and
right-handed singlet have charge i, and Φ1 has charge −1;
all other fields have chargeþ1. This then hasΦ1 coupling to
muons and Φ2 coupling to all other fermions. Ivanov and
Nishi pointed out [13] that the actual symmetry group of the
model is a softly broken Z2 in whichΦ1 and μR are negative
and with a Uð1Þ corresponding to muon number. This does
not affect the ASY Lagrangian. In this model, the mass
matrix of the charged leptons breaks into a 2 × 2 submatrix,
corresponding to e − τ and a 1 × 1 corresponding to the
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muon. One might be concerned about how the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix is generated if the
muon andmuon neutrinomass matrices decouple. However,
even if the charged lepton and neutrino mass matrices are
diagonal, one will still obtain a PMNS matrix using the
seesaw (type-1) mechanism. The light neutrino mass matrix
is then mij ¼ ðMDÞikðMNÞ−1kl ðMDÞlj, where MD is the
diagonal Dirac neutrino mass matrix and MN is the super-
heavy Majorana right-handed neutrino mass matrix. The
latter is arbitrary and so the light neutrino mass matrix is not
diagonal, leading to a nontrivial PMNSmatrix. Note that this
will not work in the quark sector.
In this paper, we take the ASY model one step further

and suppose that each of the charged leptons couples to a
different Higgs doublet, which we will label as Φe, Φμ,
andΦτ. This can be achieved with a ðZ4Þe × ðZ4Þμ × ðZ4Þτ
symmetry in which Ll and lR have quantum number
under ðZ4Þl of i and the Φl has quantum number −1.
Equivalently, one can replace the Z4 with Z2 ×Uð1Þ as
discussed above—the Lagrangian in either case is iden-
tical. To achieve a nontrivial PMNS matrix, the symmetry
must be softly broken in the superheavy Majorana
neutrino mass matrix. The simplest implementation of
this model would be a 4HDM in which the fourth Higgs
Φq couples to the quarks. This is similar to the lepton-
specific model. Certainly one could have one of Φl be the
same as Φq, leading to a 3HDM. However, if the Φq is Φτ,
then the resulting model is very similar to the muon-
specific model with the only difference being the very
small interaction of the Higgs with the electron. For
simplicity, we assume they are separate. One could also
adopt a type-II structure, with 5HDM, but that brings in
additional complications and the type-II parameter space
is much narrower than the type-I. So, we will focus on the
4HDM with Φq, Φe, Φμ, and Φτ.
Although there are hundreds of papers that study models

with three Higgs doublets, very few look at models with
four. A recent paper with 4HDM in which each Higgs
couples to sets of fermions with similar masses has been
proposed [14] and a special ansatz, “singular alignment”, is
needed to suppress FCNC. A supersymmetric model [15]
had one doublet each coupling to up-quarks, down-quarks
and leptons, with the fourth needed for anomaly

cancellation. A similar nonsupersymmetric model was
proposed [16](with the fourth Higgs needed to relax some
tight constraints). An early discussion that mentions
4HDMs [17] studied Abelian symmetries in multidoublet
models. There are also many studies of symmetries and
vacuum states of N doublet models. An extremely exten-
sive 2017 review of Ivanov [18], with over 500 references,
studied numerous extended scalar sectors (including two
doublet models, N doublet models, singlet and triplet
extensions). Most relevant papers before that time are
referred to in this review. A more recent paper [19] looked
at the interesting issue of nondecoupling in multiscalar
models. Related work [20] dealt with large discrete
symmetry groups in N doublet models. Additionally, the
“Private Higgs” model of Porto and Zee [21,22] had one
Higgs doublet for every fermion. In contrast to the model
we propose, their model had numerous discrete symmetries
and included several “darkon” scalars.
We see that there are many models with more than two

Higgs doublets in the literature. All of these treat the three
charged leptons identically, except for the “Private Higgs”
model which treated quarks and leptons in the same manner.
Yet the lepton sector is one of the most mysterious, given the
large mixing angles and small masses in the neutrino sector.
In this paper, we are treating the lepton and quark sectors
differently, but not treating the charged leptons identically,
coupling each lepton to a separate Higgs.
In Sec. II, the model is presented, including the full

scalar potential and the gauge and Yukawa couplings. In
Sec. III, we discuss the constraints on the potential from
boundedness and constraints from oblique parameters. In
Sec. IV, two benchmark models are presented. In the first
model, the potential is divided into two 2 × 2 subsections
and in the second, the full 4 × 4 model is discussed in the
experimentally indicated alignment limit. Section V con-
tains our results and conclusions.

II. THE MODEL

A. Scalar sector

The potential can be written as a sum of quadratic and
quartic terms, V ¼ V2 þ V4. We allow for soft breaking of
the discrete symmetry in the quadratic terms,

V2 ¼ m2
qqΦ

†
qΦq þm2

eeΦ
†
eΦe þm2

μμΦ
†
μΦμ þm2

ττΦ
†
τΦτ þ ½m2

qeðΦ†
qΦeÞ þm2

qμðΦ†
qΦμÞ þm2

qτðΦ†
qΦτÞ

þm2
eμðΦ†

eΦμÞ þm2
eτðΦ†

eΦτÞ þm2
μτðΦ†

μΦτÞ� þ H:c: ð1Þ

and
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V4 ¼ λq1ðΦ†
qΦqÞ2 þ λe1ðΦ†

eΦeÞ2 þ λμ1ðΦ†
μΦμÞ2 þ λτ1ðΦ†

τΦτÞ2 þ λqe3 ðΦ†
qΦqÞðΦ†

eΦeÞ þ λqμ3 ðΦ†
qΦqÞðΦ†

μΦμÞ
þ λqτ3 ðΦ†

qΦqÞðΦ†
τΦτÞ þ λeμ3 ðΦ†

eΦeÞðΦ†
μΦμÞ þ λeτ3 ðΦ†

eΦeÞðΦ†
τΦτÞ þ λμτ3 ðΦ†

μΦμÞðΦ†
τΦτÞ þ λqe4 ðΦ†

qΦeÞðΦ†
eΦqÞ

þ λqμ4 ðΦ†
qΦμÞðΦ†

μΦqÞ þ λqτ4 ðΦ†
qΦτÞðΦ†

τΦqÞ þ λeμ4 ðΦ†
eΦμÞðΦ†

μΦeÞ þ λeτ4 ðΦ†
eΦτÞðΦ†

τΦeÞ þ λμτ4 ðΦ†
μΦτÞðΦ†

τΦμÞ

þ 1

2
½λqe5 ðΦ†

qΦeÞ2 þ λqμ5 ðΦ†
qΦμÞ2 þ λqτ5 ðΦ†

qΦτÞ2 þ λeμ5 ðΦ†
eΦμÞ2 þ λeτ5 ðΦ†

eΦτÞ2 þ λμτ5 ðΦ†
μΦτÞ2 þ H:c:� ð2Þ

Here, we have labeled the quartic couplings to be similar to
the standard 2HDM potential.
If them2

ij and λ
ij
5 have imaginary components, one would

have CP violation in the scalar sector. There are six CP-
violating parameters from the m2

ij and another six from the

λij5 parameters. Two can be eliminated through rescaling,
but that would leave ten additional parameters. A detailed
analysis of CP violation in the 3HDM [23] considered the
effects on the neutron and electron electric dipole moments
as well as CP-violating effects in B decays. They also
discuss mixing of scalars and pseudoscalars which would
complicate the analysis. In our model, one would expect
very similar effects. For simplicity, we will assume that
these parameters are real and refer the reader to Ref. [23]
for details.
We can write the Higgs doublets as

Φi ¼
�

ϕþ
i

ðvi þ ϕi þ iχiÞ=
ffiffiffi
2

p
�
; ði ¼ q; e; μ; τÞ ð3Þ

where the vi=
ffiffiffi
2

p
are the vacuum values of the neutral

components. To discuss diagonalizing mass matrices and
the various angles involved, we follow the procedure of
Boto, Romão, and Silva [24] closely.
Without loss of generality, we can define the angles that

rotate the fields into the Higgs basis in which only one
scalar field gets a vacuum expectation value (VEV) by

vq ¼ v cos β2 cos β3 cos β4;

ve ¼ v sin β2 cos β3 cos β4;

vμ ¼ v sin β3 cos β4;

vτ ¼ v sin β4; ð4Þ

giving

0
BBBBB@

h0
H1

H2

H3

1
CCCCCA

¼ Oβ

0
BBBBB@

ϕq

ϕe

ϕμ

ϕτ

1
CCCCCA
; ð5Þ

where

Oβ ¼

0
BBBBB@

cβ2cβ3cβ4 sβ2cβ3cβ4 sβ3cβ4 sβ4
−sβ2 cβ2 0 0

−cβ2cβ3 −sβ2sβ3 cβ3 0

−cβ2cβ3sβ4 −sβ2cβ3sβ4 −sβ3sβ4 cβ4

1
CCCCCA
: ð6Þ

Here, h0 is the field that gets the entire VEV, v, and cθ (sθ)
are cos θ (sin θ).
From this basis, we can now diagonalize the mass

matrices of the various scalars. In the neutral scalar sector,
the physical neutral Higgs masses are given by

0
BBBBB@

h1
h2
h3
h4

1
CCCCCA

¼ Oα

0
BBBBB@

ϕq

ϕe

ϕμ

ϕτ

1
CCCCCA
; ð7Þ

where h1 is the 125 GeV Higgs particle. For Oα, we use

Oα ¼ R34R24R23R14R13R12: ð8Þ

Here, for example, R24 is given by

R24 ¼

0
BBBBB@

1 0 0 0

0 cα24 0 sα24
0 0 1 0

0 −sα24 0 cα24

1
CCCCCA

ð9Þ

and the other R matrices follow. We see that there are six
rotation angles.
In the pseudoscalar sector, one has

0
BBBBB@

G0

A1

A2

A3

1
CCCCCA

¼ OγOβ

0
BBBBB@

χq

χe

χμ

χτ

1
CCCCCA
; ð10Þ

where Oγ ¼ P34P24P23 and, as before, for example
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P24 ¼

0
BBBBB@

1 0 0 0

0 cγ24 0 sγ24
0 0 1 0

0 −sγ24 0 cγ24

1
CCCCCA
: ð11Þ

Note that there are only three matrices here, since the
Goldstone boson direction is fixed.
Finally, in the charged sector

0
BBBBB@

Gþ

Hþ
1

Hþ
2

Hþ
3

1
CCCCCA

¼ OδOβ

0
BBBBB@

ϕþ
q

ϕþ
e

ϕþ
μ

ϕþ
τ

1
CCCCCA
; ð12Þ

where Oδ ¼ Q34Q24Q23 and, as before, for example

Q24 ¼

0
BBBBB@

1 0 0 0

0 cδ24 0 sδ24
0 0 1 0

0 −sδ24 0 cδ24

1
CCCCCA
: ð13Þ

B. Gauge and Yukawa couplings

1. Gauge couplings

The scalar kinetic Lagrangian, Lk, defined as

Lk ¼
X4
i¼1

jDμΦij2 ð14Þ

with the usual expression for the covariant derivative Dμ,
contains the terms relevant to obtain the trilinear couplings
of the scalars and gauge bosons. The couplings ZZhi and
W�W∓hi are written in the form

�X4
i¼1

Cihi

��
g

2cW
mZZμZμ þ gmWW−

μWþμ

�
: ð15Þ

The Ci factors are included in Appendix A. It is possible to
check that, when the set of conditions α1j ¼ βj is verified
(for j ¼ 2, 3, 4), one gets C1 ¼ 1 together with Ck ¼ 0, for
k ≠ 1, which defines the alignment limit in this model.

2. Yukawa couplings

Following the notation of Branco et al. [25], the
couplings of the scalar and pseudoscalar Higgs are defined
through

LS
Y ¼ −

X
f∈fq;e;μ;τg

mf

v
ðξfh1 f̄fh1 þ ξfh2 f̄fh2 þ ξfh3 f̄fh3 þ ξfh4 f̄fh4Þ;

LP
Y ¼ −

X
f∈fq;e;μ;τg

�
−i

mf

v

�
ðξfA1

f̄γ5fA1 þ ξfA2
f̄γ5fA2 þ ξfA3

f̄γ5fA3Þ; ð16Þ

where ξfhj and ξfAj
are given by

ξqhj ¼
Oαj;1

v̂1
; ξehj ¼

Oαj;2

v̂2
; ξμhj ¼

Oαj;3

v̂3
; ξτhj ¼

Oαj;4

v̂4

ξqAj
¼

ðOγOβÞj;1
v̂1

; ξeAj
¼

ðOγOβÞj;2
v̂2

; ξμAj
¼

ðOγOβÞj;3
v̂3

; ξτAj
¼

ðOγOβÞj;4
v̂4

ð17Þ

using v̂i ≡ vi=v. Similarly, the couplings of the charged Higgs are defined through

LC
Y ¼ −

X
j

�X
u;d

ffiffiffi
2

p
Vud

v
ūðmuξ

qL
Hþ

j
PL þmdξ

qR
Hþ

j
PRÞdHþ

j þ
X
l

ffiffiffi
2

p
ml

v
ξlLHþ

j
ν̄LlRH

þ
j

�
þ H:c:; ð18Þ

where ξfHþ
j
are given by

ξqLRHþ
j

¼ ðOδOβÞj;1
v̂1

; ξeLHþ
j
¼ ðOδOβÞj;2

v̂2
; ξμLHþ

j
¼ ðOδOβÞj;3

v̂3
; ξτLHþ

j
¼ ðOδOβÞj;4

v̂4
: ð19Þ

A table of general Yukawa couplings are included in Appendix B.
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III. THEORETICAL CONSTRAINTS ON THE
SCALAR POTENTIAL

A. Bounded from below constraints

In extensions of the scalar sector, one needs to choose
quartic parameters such that the potential is bounded from
below (BFB).1 While this is straightforward in the 2HDM,
it can be quite complicated in models with more than two
doublets. An added complication in models with doublets
is that there can be an instability in the charged scalar
direction even if there is stability in the neutral scalar
direction (see Ref. [26] for an example). A recent dis-
cussion of these conditions for a three-doublet model can
be found in the work of Boto, Romão, and Silva [27]. They
showed that while necessary and sufficient conditions are
known for the neutral direction, only sufficient conditions
are known for stability in the charged direction, and they
discuss a general strategy. We will first discuss the neutral
directions.
Looking at the neutral direction, the 2HDM potential can

be written as V4 ¼ a11H4
1 þ a22H4

2 þ a12H2
1H

2
2, where the

matrix is symmetric. The conditions for copositivity (where
the potential is positive for all values of H2

1 and H2
2) are

given by a11 ≥ 0; a22 ≥ 0; a12 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p ≥ 0. As shown
in Refs. [28,29], for the neutral sector of the 3HDM, the
conditions are

a11 ≥ 0; a22 ≥ 0; a33 ≥ 0; ð20Þ

a12 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
≥ 0; ð21Þ

a13 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a33

p
≥ 0; ð22Þ

a23 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a22a33

p
≥ 0; ð23Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22a33

p þ a12
ffiffiffiffiffiffiffi
a33

p þ a13
ffiffiffiffiffiffiffi
a22

p þ a23
ffiffiffiffiffiffiffi
a11

p
≥ 0; ð24Þ

det A ≥ 0; ð25Þ

where A is the matrix with entries aij. Clearly, the first line
is needed for stability along the axes, the next three lines are
needed for stability in the three planes, and the last two
lines ensure stability for all directions. For the 4HDM that
we consider, the corresponding conditions must be satisfied
for every three-dimensional subspace. The remaining con-
ditions are extremely complicated, but are given in full in
Ref. [28]. We have incorporated the conditions in that paper
to ensure stability in the neutral directions.

As shown by Boto, Romão, and Silva [27], even in the
3HDM there are no straightforward necessary and suffi-
cient conditions for stability in the charged directions. In
the 2HDM, with a quartic potential

V4 ¼ λ1ðΦ†
1Φ1Þ2 þ λ2ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4jΦ†
1Φ2j2 þ

1

2
λ5½ðΦ†

1Φ2Þ2 þ ðΦ†
2Φ1Þ2�; ð26Þ

the condition for stability is [30,31] λ3 þ λ4 − jλ5j ≥
−2

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
. Rather than attempt a detailed numerical study

of stability in the 4HDM case, we will require that this
condition be satisfied for all 2 × 2 subspaces of the 4HDM.
This requirement is, of course, necessary but may not be
sufficient.

B. Oblique parameters

To discuss the S, T, U oblique parameters, we follow the
methods and results in Grimus, et al. [32]. To do this, we can
write thematrices Ũ and Ṽ fromGrimus, et al. [32] using our
notation in the previous section. Ṽ is defined through

0
BBBBB@

ϕ1 þ iχ1
ϕ2 þ iχ2
ϕ3 þ iχ3
ϕ4 þ iχ4

1
CCCCCA

¼ Ṽðh1 h2 h3 h4 G0 A1 A2 A3 ÞT;

ð27Þ

where

Ṽ ≡
�

O−1
α

iðOγOβÞ−1
�
: ð28Þ

Notice in Eq. (27), our notation slightly differs from Grimus
et al. [32] by keeping the Goldstone boson with the
pseudoscalar mass eigenstates.
Ũ is defined as

0
BBBBB@

ϕþ
1

ϕþ
2

ϕþ
3

ϕþ
4

1
CCCCCA

¼ Ũ

0
BBBBB@

Gþ

Hþ
1

Hþ
2

Hþ
3

1
CCCCCA
; ð29Þ

where

Ũ ≡ ðOδOβ Þ: ð30Þ

1We require that the potential be bounded at scales where the
quartic terms dominate. The case in which the potential turns over
at very high scales due to renormalization group running will not
be considered. In fact, the Standard Model itself would not satisfy
that latter condition.
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We take the values of S, T from [33] with

S ¼ −0.02� 0.10;

T ¼ 0.03� 0.12: ð31Þ

We will not include the detailed calculation of the
unitarity and perturbativity bounds, due to the large number
of scalar couplings. Rather, we will simply require that all
of the quartic scalar couplings be less than 4π.

IV. BENCHMARK MODELS

As is clear from examining the scalar potential and the
appendixes, the model contains a large number of free
parameters. To focus on the most important aspects of the
model, we will consider two benchmark models. In the
first, we will assume that the ðqτÞ sector of the Higgs
potential decouples from the ðμeÞ sector. In that case, the
4 × 4 scalar mass matrices decouple into two 2 × 2
matrices which can be trivially diagonalized analytically.
In the second benchmark model, we will take the alignment
limit. In the conventional 2HDMs, this is equivalent to
cosðα − βÞ ¼ 0, with tan β≡ v2=v1 and α diagonalizes the
scalar mass matrix. This limit is often chosen since it means
that the couplings of the 125 GeV Higgs boson are identical
to that in the Standard Model (which seems to be preferred
by LHC data). In this case, it is easy to see from
Appendixes A and B that the alignment limit corresponds
to α1j ¼ βj, as previously stated. Since the coupling of the
125 GeV Higgs is the same as the Standard Model, there is
no need to study Higgs production and tree-level decays in
this case.

A. The model without ðqτÞ− ðμeÞ mixing

In this model, the absence of ðqτÞ − ðμeÞ mixing means
that the matrix that diagonalizes the scalar mass matrix,Oα,
is broken into two 2 × 2 matrices. The upper 2 × 2 matrix
looks very similar to the lepton-specific 2HDM. The only
difference involves the coupling to the muon, which is not
well-measured. However, in this case, unlike the lepton-
specific model, the value of v2q þ v2τ is not v2 ¼
ð246 GeVÞ2 but will be smaller. As a result, all Yukawa
couplings will be increased. This will affect the decays of
the 125 GeV Higgs boson as well as the production.
We define the parameter μX as

μX ≡ σðpp → HÞBRðH → XÞ
σðpp → HÞSMBRðH → XÞSM

ð32Þ

and look at X ¼ gg; μμ; ττ; c̄c; b̄b; t̄t; γγ; γZ;WW;ZZ. The
results are in Fig. 1, where we have plotted, in the usual
way for 2HDMs, the allowed region in the tan β − cosðβ −
αÞ plane. We require all μX to be consistent with unity

within 20% at 95% C.L., which is a rough approximation to
the precision of current data.2

We see that if the ratio of ðv2q þ v2τÞ1=2 to v is less than
0.85, that the entire parameter space practically disappears.
Thus much of the VEV is saturated by vq and vτ. Clearly
the coupling here to the muon vanishes and thus in the full
model, the muonic decay of the Standard Model Higgs, if
confirmed, will be a strong constraint.
The shrinking of the parameter-space in the cosðβ −

αÞ < 0 allowed region occurs mainly due to the combina-
tion of g2HVV , measured from Higgs production, and g2Hll,
measured from Higgs decay. The shrinking of the param-
eter space in the cosðβ − αÞ > 0 allowed region mainly
occurs due to g2HQQ, from Higgs production, now combined
with both g2Hqq and g2Hll.
In itself, this benchmark model is phenomenologically

unacceptable. Each 2 × 2 submatrix will have a zero
eigenvalue in the pseudoscalar and in the charged scalar
sectors, leading to two zero eigenvalues in each sector.
Only one can be absorbed by the W and Z gauge bosons.
The additional massless scalars arise due to an additional
accidental SUð2Þ symmetry. Thus, there must be some off-
diagonal terms. We can include these terms but assume they
are small and do a perturbative expansion.
For simplicity, let us add a single off-diagonal term, λqμ5 .

This will allow for nonzero masses for the lightest charged

FIG. 1. Allowed regions in the tan β − cos ðβ − αÞ plane, in the
model without ðqτÞ − ðμeÞ mixing, for different values of
r≡ ðv2q þ v2τ Þ1=2=v, namely r ¼ 1 in orange, r ¼ 0.95 in purple,
r ¼ 0.90 in blue and r ¼ 0.85 in cyan.

2We are looking in the context of the lepton-specific 2HDM,
but now the combination of vacuum values, ðv2q þ v2τ Þ1=2 no
longer is equal to the Standard Model vacuum value, v.
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and pseudoscalar Higgs.3 This term will modify the Yukawa
couplings of the Standard Model 125 GeV Higgs. For the
couplings of the quarks, for example, the Yukawa coupling
gYq̄qΦq is

ffiffiffi
2

p
mq=vq. Writing Φq ¼ V11h1 þ V12h2 þ…,

where h1 is the 125 GeVHiggs, one sees that the coupling is
modified by a factor of v

vq
V11. One can perturbatively

calculate the eigenvalues and eigenvectors of themassmatrix
and we find that

V11 ¼ 1 −
1

2
ϵ21

��
c34s12

m2
h1
−m2

h3

�
2

þ
�

c12s34
m2

h1
−m2

h4

�
2
�
; ð33Þ

where ϵ1 ¼ λqμ5 vqvμ, cij ¼ cos αij (sij ¼ sin αij) and the
masses are the masses of the neutral scalars. The relevant
point here is that V11 is reduced, which counters the effect of
the smaller vq. In order for the lightest chargedHiggs to have
an acceptable mass, there is a minimum value of λqμ5 , but the
masses of the neutral scalars can be large enough that the
reduction (proportional to ðvμ=mh3Þ2) is quite small.

B. The aligned model

The full 4HDM has a large number of parameters in the
scalar potential: 10 quadratic terms and 22 quartic terms.
Not surprisingly, many of these parameters will have little
effect on phenomenology. As noted earlier, the fact that the
125 GeV Higgs has decays consistent with the Standard
Model implies that multidoublet models must be near the
alignment limit in which the Standard Model Higgs
interactions are unaffected. From Appendix A, we see that
this will occur if α1j ¼ βj. Parameters that might be of
phenomenological relevance are then the βj, α23;24;34, the
three γ parameters, the three δ parameters, the four scalar
masses, the three charged masses and the three pseudo-
scalar masses, in addition to the SM Higgs VEV. Instead of
the potential’s couplings, we can choose to describe the
model in terms of the previously mentioned parameters and
six additional parameters, namely the remaining six m2

ij,
giving a total of 29 parameters.4 As we will see, many of
these parameters will not be relevant for particular
processes.
One might wonder about relaxing the alignment limit

assumption. Since the Higgs properties match Standard
Model expectations, one would expect deviations from the
alignment limit to be small (of the order of 10% or less).
Since we are not including other similar size effects, such as
radiative corrections to scalar masses, we do not anticipate
any substantial effects on our plots.

Choosing values for the rotation angles and the squared
masses, it is possible to define the scalar, pseudoscalar, and
charged squared-mass matrices as M2

s;p;c ¼ R−1Ds;p;cR,
considering the corresponding R matrix for each case
and D as the diagonal matrix with the squared masses in
its entries. The quartic parameters of the Lagrangian can be
expressed in terms of elements of such matrices, the VEVs
and the m2

ij parameters as the following:

λi1 ¼
1

2v3i

�
viM2

s;ii þ
X
j≠i

vjm2
ij

�
;

λij3 ¼ 1

vivj
ðM2

s;ij − 2M2
c;ij þm2

ijÞ;

λij4 ¼ 1

vivj
ð2M2

c;ij −M2
p;ij −m2

ijÞ;

λij5 ¼ 1

vivj
ðM2

p;ij −m2
ijÞ; ð34Þ

in which i; j ¼ q, e, μ, τ. In the 2HDM limit, these
equations give rise to the well-known expressions for the
λ parameters in terms of masses, angles, the electroweak
VEV v and the soft-breaking terms m2

ij [25,34]. For every
possible set of parameters, we require the following:

(i) The bounded-from-below conditions are satisfied.
(ii) The perturbativity condition that the absolute values

of λ parameters are less than 4π is maintained.
(iii) The previous condition also applies to Yukawa

couplings.
(iv) The values of the S and T parameters are within the

range given by Eq. (31).
(v) Charged Higgs masses must exceed 80 GeV [35].
(vi) Contributions from the charged scalars to the loop-

induced Higgs diphoton decay h → γγ are compat-
ible with experimental bounds. This is achieved by
checking the value of the diphoton signal strength
μγγ [36,37] for each set of parameters.

(vii) Bounds coming from new physics contributions to B
meson oscillations, ΔMBd;s

, as well as K mesons,
ΔMK , are within the experimental allowed range for
each case [33,38]. Such nonstandard contributions
come from charged scalars through one-loop proc-
esses [39,40].

(viii) Contributions to b → sγ [40], again from charged
Higgs particles, are acceptable. In the Type II 2HDM,
this gives the strongest constraint on charged Higgs
bosons.

(ix) At the LHC, CMS [41] has searched for a heavy
neutral Higgs decaying into τ pairs. Although done
in the context of the MSSM, the results are very
similar in this model (with adjusted Yukawa cou-
plings, of course) and the production cross section
times branching ratio varies from 10 pb to 10 fb over
the range of masses from 150 GeV to 1000 GeV.

3One can decouple the masses of the charged and pseudoscalar
Higgs by adding a λqμ4 term and can easily satisfy any BFB
concerns with a λqμ3 term.

4With the addition of the three α parameters which are defined
through the alignment limit, we get 32 parameters, just like the
scalar potential.
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More recently, ATLAS [42] has done a similar
analysis. Note that one usually assumes that the
decay into top quarks will dominate for masses
above 350 GeV, but that might not be the case here
due to the lepton-specific nature of the model. We
impose these experimental bounds on our parameter
space, which, up to small differences due to form
factors, apply to neutral scalars and pseudoscalars.

(x) Finally, we can consider LHC direct searches for
heavy charged Higgs bosons. Searches fall into two
categories—those in which the charged Higgs mass
is greater than mt þmb and those in which it is less.
(a) If it is greater, then the predominant decay mode

will be into tb̄, except for the narrow window of
parameter-space in which the charged Higgs in
question has essentially zero overlap with Φq.
The production cross section for a charged Higgs
mass of 200,300,600 GeV is [43] within a factor
of 2 (scaling the Yukawa coupling appropriately
to a lepton-specific or Type I model) of
0.4,0.1,0.01 picobarns. ATLAS [44] has found
bounds from Run II on the product of the
production rate and the Hþ → tb̄ branching
ratio. Their result is below our production cross

section by a factor of a few, and thus the model is
not yet constrained by the nonobservation at
the LHC.

(b) If the charged Higgs is lighter, then a major
decay mode is into τντ. In this case the pre-
dominant production mode is through t → bHþ.
Since top production is well understood,
searches at ATLAS [45] and CMS [46] place
bounds on BRðt → bHþÞBRðHþ → τντÞ. This
bound may not be too restrictive, since a charged
Higgs that is either quarkphobic or leptophobic
will not contribute and thus it will depend on
mixing angles. Nonetheless, we have incorpo-
rated the results of these searches in bounding
our parameter-space.

We will primarily focus on the lightest neutral scalar
(other than the 125 GeV Higgs), the lightest pseudoscalar
and the lightest charged scalar. Results from these scalars
will also apply to the heavier scalars by appropriate choice
of mixing angles (with the exception of heavy scalar decays
into lighter scalars, which we will not consider). The
lepton-specific 2HDM has one scalar coupling to quarks
and another to leptons. The primary difference between our
model and the lepton-specific model is that different scalars

FIG. 2. These scatterplots show allowed points for h2 decays. Results are shown for h2 masses below 350 GeV and above that mass
scale (at which point the t̄t channel opens up). The upper figures plot ee and μμ decays and the lower figures plot μμ and ττ decays. The
decay branching ratio of the SM Higgs to μμ is approximately 2 × 10−4.
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couple to the muon and the electron (note that the muon-
specific model [11,12] has the same scalar coupling to the
quarks and the τ, which is more like an extension of the
type I 2HDM). As a result, we will focus on decays
involving muons and electrons.
We first consider the decay of the lightest neutral scalar

(other than the 125 GeV Higgs, which has Standard Model
couplings in the alignment limit) into electrons, muons and
taus. Since the heavier masses aren’t relevant in the analysis,
the parameter-space is substantially reduced. We consider
two mass regions, in which the scalar mass is below and
above 350 GeV, respectively. In the latter case, decays to top
quarks can be substantial, even if themixing angles are small.
As noted above, given the masses, soft-breaking mass

parameters and mixing angles, the quartic couplings are
determined. We scan the full parameter space and check
each of the conditions above. Typically, we find several
million parameter sets that are acceptable. The results are
plotted in Fig. 2. Note that in the Standard Model the
branching ratio of the dimuon decay of the Higgs is
2 × 10−4 and this level (and somewhat below) is certainly
experimentally accessible. One can see that for a scalar
mass below 350 GeV, the dielectron decay branching ratio
can be much, much larger than the Standard Model and the
dimuon decay branching ratio can approach unity. Above

350 GeV, the opening of the top decay channel, even if the
mixing angle is very small, substantially reduces the
leptonic branching ratios.
It is not surprising that this can occur. If one chose

parameters such that there was no mixing at all between
Φee and the other scalars, then the only decay of the Φee
would be into electrons. This would require extreme fine-
tuning, since no symmetry will eliminate mixing in the
quartic sector of the potential and even very small values of
the quartic mixing terms would allow for other decays that
could dominate. Nonetheless, we see many sets of param-
eters for which the dielectron and dimuon decays of this
lightest neutral scalar (other than the StandardModel Higgs)
can be substantial.
In Fig. 2, we also show the branching ratios to muons and

to taus.Again, one can see that the absolute branching ratio to
dimuons can be substantially more than that into two taus.
Thus, we find that searches for heavy neutral Higgs bosons
decaying into leptons, which generally focus on tauonic
decays, should also study muonic and electronic decays.
Since we are in the alignment limit, there is no three-

point coupling of these scalars to two gauge bosons. They
could be produced in a collider through WW or ZZ fusion
to two Φs. The signature would be two electron-positron or
muon pairs each coming from a Φ. The electron-positron

FIG. 3. These scatterplots show allowed points for H� decays. Results are shown for H� masses below 180 GeVand above that mass
scale (at which point the t̄b channel opens up). The upper figures plot eν and μν decays and the lower figures plot μν and τν decays.
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pair rate will be smaller, but more distinctive. While four
lepton events have been searched for [47], we know of no
analysis of this particular signature. An approximate
production cross section can be obtained by comparison
with the inert doublet model [48] which has a similar
production process. Typical production cross sections at the
LHC are approximately 0.5 fb. With an integrated lumi-
nosity of 3 ab−1, this means that branching fractions of
Oð10−3Þ or less will be difficult to detect until the next-
generation colliders.
We have also studied the decays of the pseudoscalar into

leptons and find very similar results. For the charged Higgs
decays, we show the branching ratios to eν versus μν
decays in Fig. 3 as well as the branching ratios for μν versus
τν decays. Here, we consider mass ranges below and above
180 GeV, at which point the tb̄ opens up. Note that there are
more points in the region above 180 GeV since below that
mass a much higher proportion of points are experimentally
excluded. There is a large number of points in which the
electronic decays are substantial and the muonic decay
branching ratios can approach unity.
In Appendix C we show several benchmark points.

These points satisfy all of the various constraints listed
earlier in this section. For point S1, one can see that the
h2 → μμ branching ratio is almost 47% and the electronic
branching ratio is over 0.25%. Clearly, the signature would
most likely be two muon pairs, each coming from a neutral
scalar, most of the other decays being tau pairs or b̄b, with
an occasional electron-positron pair. In benchmark point
S2, the dimuon decay of the scalar is smaller than that of the
electron. Here, one would see the ditau decays dominate,
but the electron-positron decays might be measurable.
We also consider some benchmark points for the lightest

charged Higgs, looking at the region in which the mass is
below 180 GeV so the top-bottom channel is not available.
For point C1, the decay into muons is slightly bigger than
the decay into taus, and the electronic decay is 0.2%. For
C2, the muon decay is the smallest of three branching ratios
and the electron decay is as high as 1.7%. Again, this shows
that decays into muons and electrons might be much, much
higher than in traditional 2HDMs.

V. CONCLUSION

It is often believed that all fermions of a given charge
must couple to the same Higgs multiplet in order to avoid

tree-level flavor-changing neutral currents. However this is
only true in the quark sector and need not be true in the
lepton sector. The quark mass matrix cannot be diagonal
without eliminating CKMmixing, however the lepton mass
matrix can be diagonal, since PMNSmixing can come from
the superheavy Majorana neutrino sector. We have studied
a 4HDM in which one scalar doublet couples to quarks and
the other three couple to the electron, muon and tau
families, respectively.
There are numerous constraints on such a model,

including bounded from below constraints, perturbativity,
S and T parameters, the diphoton decay of the Higgs, limits
from meson-antimeson oscillations, radiative b decays and
various LHC constraints from heavy scalar searches.
Scanning the parameter space, we find numerous accept-
able points in which the dielectron and dimuon decays of
the lightest neutral scalar (other than the 125 GeV Higgs)
can be much, much larger than expected. The results for the
lightest pseudoscalar and charged scalar are also presented.
Generally, searches for heavier Higgs bosons focus (in

the lepton sector) on decays into τs. However, this model
shows that decays into electrons and muons can be
substantial (and certainly easier to detect). An interesting
signature at either a linear collider or a hadron collider
arises from vector boson fusion into two such Higgs
bosons, each of which decays into an electron or muon
pair. We know of no bounds on such a process and hope to
see searches in the near future.
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APPENDIX A: GAUGE COUPLINGS

APPENDIX B: GENERAL YUKAWA COUPLINGS

TABLE I. Ci factors of the trilinear gauge couplings ZZhi and W�W∓hi as defined in Eq. (15) in the main text.
Here cij ¼ cos αij (sij ¼ sin αij) and ci ¼ cos βi (si ¼ sin βi). In this notation, sij−k stands for sinðαij − βkÞ.

Trilinear gauge couplings ZZhi and W�W∓hi
C1 c12c13c14c2c3c4 þ c13c14c3c4s12s2 þ c14c4s13s3 þ s14s4

C2
−c12c2c3c4ðc24s13s23 þ c13s14s24Þ − c23c24c3c4s12−2 − c24c3c4s12s13s23s2

−c13c3c4s12s14s24s2 þ c13c24c4s23s3 − c4s13s14s24s3 þ c14s24s4

C3

−c12c3c4½c13c24c2s14s34 þ s23ð−c2s13s24s34 þ c34s2Þ þ c23ðc34c2s13 þ s24s34s2Þ�
þc34c4½c2c3s12s23 þ c23ð−c3s12s13s2 þ c13s3Þ� þ s34½c23c2c3c4s12s24

þc3c4s12s13s23s24s2 − c24c4s13s14s3 − c13c4ðc24c3s12s14s2 þ s23s24s3Þ þ c14c24s4�

C4

−c2c3c4s12s23s34 − c13c24c34c3c4s12s14s2 þ c34c3c4s12s13s23s24s2
þc12c3c4½−c13c24c34c2s14 þ c34s24ðc2s13s23 − c23s2Þ

þs34ðc23c2s13 þ s23s2Þ� − c24c34c4s13s14s3 − c13c34c4s23s24s3
þc23c4½c34c2c3s12s24 þ s34ðc3s12s13s2 − c13s3Þ� þ c14c24c34s4

TABLE II. General Yukawa couplings of the scalar Higgs particles to quarks and charged leptons, as defined in
Eqs. (16) and (17) in the main text. Here cij ¼ cos αij (sij ¼ sin αij) and ci ¼ cos βi (si ¼ sin βi).

General Yukawa neutral scalar

ξudh c12c13c14=c2c3c4
ξeh s12c13c14=s2c3c4
ξμh s13c14=s3c4
ξτh s14=s4

ξudh2 −ðc23c24s12 þ c12ðc24s13s23 þ c13s14s24ÞÞ=c2c3c4
ξeh2 ðc12c23c24 − s12ðc24s13s23 þ c13s14s24ÞÞ=s2c3c4
ξμh2 ðc13c24s23 − s13s14s24Þ=s3c4
ξτh2 c14s24=s4

ξudh3 ðs12ðc34s23 þ c23s24s34Þ − c12ðc13c24s14s34 þ s13ðc23c34 − s23s24s34ÞÞÞ=c2c3c4
ξeh3 −ðc12ðc34s23 þ c23s24s34Þ þ s12ðc13c24s14s34 þ s13ðc23c34 þ s23s24s34ÞÞÞ=s2c3c4
ξμh3 ð−c24s13s14s34 þ c13ðc23c34 − s23s24s34ÞÞ=s3c4
ξτh3 c14c24s34=s4

ξudh4 ðs12ðc23c34s24 − s23s34Þ − c12ðc13c24c34s14 − s13ðc34s23s24 þ c23s34ÞÞÞ=c2c3c4
ξeh4 −ðc12ðc23c34s24 − s23s34Þ þ s12ðc13c24c34s14 − s13ðc34s23s24 þ c23s34ÞÞÞ=s2c3c4
ξμh4 −ðc24c34s13s14 þ c13ðc34s23s24 þ c23s34ÞÞ=s3c4
ξτh4 c14c24c34=s4
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TABLE III. General Yukawa couplings of the pseudoscalar Higgs particles to quarks and charged leptons, as
defined in Eqs. (16) and (17) in the main text. Here cij ¼ cos γij (sij ¼ sin γij) and ci ¼ cos βi (si ¼ sin βi).

General Yukawa pseudoscalar

ξqA1
−ðc23c24s2 þ c2ðc24s3s23 þ c3s4s24ÞÞ=c2c3c4

ξeA1
ðc2c23c24 − s2ðc24s3s23 þ c3s4s24ÞÞ=s2c3c4

ξμA1
ðc3c24s23 − s3s4s24Þ=s3c4

ξτA1
s24c4=s4

ξqA2
ðs2ðc34s23 þ c23s24s34Þ − c2ðc3c24s4s34 þ s3ðc23c34 − s23s24s34ÞÞÞ=c2c3c4

ξeA2
−ðc2ðc34s23 þ c23s24s34Þ þ s2ðc3c24s4s34 þ s3ðc23c34 − s23s24s34ÞÞÞ=s2c3c4

ξμA2
ð−c24s3s4s34 þ c3ðc23c34 − s23s24s34ÞÞ=s3c4

ξτA2
c24s34c4=s4

ξqA3
ðs2ðc23c34s24 − s23s34Þ − c2ðc3c24c34s4 − s3ðc34s23s24 þ c23s34ÞÞÞ=c2c3c4

ξeA3
−ðc2ðc23c34s24 − s23s34Þ þ s2ðc3c24c34s4 − s3ðc34s23s24 þ c23s34ÞÞÞ=s2c3c4

ξμA3
−ðc24c34s3s4 þ c3ðc34s23s24 þ c23s34ÞÞ=s3c4

ξτA3
c24c34c4=s4

TABLE IV. General Yukawa couplings of the charged Higgs particles to quarks and leptons, as defined in
Eqs. (18) and (19) in the main text. Here cij ¼ cos δij (sij ¼ sin δij) and ci ¼ cos βi (si ¼ sin βi).

General Yukawa charged

ξqLRHþ
1

−ðc23c24s2 þ c2ðc24s3s23 þ c3s4s24ÞÞ=c2c3c4
ξeLHþ

1

ðc2c23c24 − s2ðc24s3s23 þ c3s4s24ÞÞ=s2c3c4
ξμLHþ

1

ðc3c24s23 − s3s4s24Þ=s3c4
ξτLHþ

1

s24c4=s4

ξqLRHþ
2

ðs2ðc34s23 þ c23s24s34Þ − c2ðc3c24s4s34 þ s3ðc23c34 − s23s24s34ÞÞÞ=c2c3c4
ξeLHþ

2

−ðc2ðc34s23 þ c23s24s34Þ þ s2ðc3c24s4s34 þ s3ðc23c34 − s23s24s34ÞÞÞ=s2c3c4
ξμLHþ

2

ð−c24s3s4s34 þ c3ðc23c34 − s23s24s34ÞÞ=s3c4
ξτLHþ

2

c24s34c4=s4

ξqLRHþ
3

ðs2ðc23c34s24 − s23s34Þ − c2ðc3c24c34s4 − s3ðc34s23s24 þ c23s34ÞÞÞ=c2c3c4
ξeLHþ

3

ðc2ðs23s34 − c23c34s24Þ − s2ðc3c24c34s4 − s3ðc34s23s24 þ c23s34ÞÞÞ=s2c3c4
ξμLHþ

3

−ðc24c34s3s4 þ c3ðc34s23s24 þ c23s34ÞÞ=s3c4
ξτLHþ

3

c24c34c4=s4
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APPENDIX C: BENCHMARK POINTS
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TABLE V. Benchmark points for the leptonic decays of the lightest neutral scalar (other than the Standard Model
Higgs) from Fig. 2, for a h2-mass range below 350 GeV.

Scalar benchmark points S1 S2

β2=π; β3=π; β4=π 0.05,0.16,0.18 0.04,0.14,0.21
α23=π; α24=π; α34=π −0.09;−1.00;−0.70 −0.02;−0.05, 0.10
γ23=π; γ24=π; γ34=π 0.50, 0.59, 0.80 0.16, 0.52, 0.39
δ23=π; δ24=π; δ34=π 0.08;−0.26;−0.96 0.62;−0.93;−0.95
mh2 ; mh3 ; mh4 (GeV) 269, 396, 483 175, 359, 360
mA1

; mA2
; mA3

(GeV) 439, 454, 484 265, 351, 369
mH�

1
; mH�

2
; mH�

3
(GeV) 438, 441, 443 289, 352, 370

m2
qe; m2

qμ; m2
qτ ðGeV2Þ −17700; 71700;−340000 16000;−34600;−168000

m2
eμ; m2

eτ; m2
μτ ðGeV2Þ −18600; 20700;−53600 14000;−31200;−57400

BRðh2 → eeÞ 2.72 × 10−3 1.63 × 10−4

BRðh2 → μμÞ 4.68 × 10−1 7.85 × 10−6

BRðh2 → ττÞ 1.22 × 10−1 7.42 × 10−1

TABLE VI. Benchmark points for the leptonic decays of the lightest charged scalar from Fig. 3, for a H�
1 -mass

range below 180 GeV.
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mh2 ; mh3 ; mh4 (GeV) 127, 187, 208 180, 237, 240
mA1

; mA2
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mH�

1
; mH�

2
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3
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1 → τ�ντÞ 4.55 × 10−1 5.23 × 10−1
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