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In this paper we study I ¼ 0 bottomonium in S, P, D and F waves considering five coupled channels,

one confined quarkonium and four open Bð�ÞB̄ð�Þ and Bð�Þ
s B̄ð�Þ

s meson-meson channels. To this end we use
and extend a recently developed novel approach utilizing lattice QCD string breaking potentials for the
study of quarkonium bound states and resonances. This approach is based on the Born-Oppenheimer
approximation and the unitary emergent wave method and allows to compute the poles of the T matrix. We
compare our results to existing experimental results for I ¼ 0 bottomonium and discuss masses, decay
widths and the assignment of angular momentum quantum numbers. Moreover, we determine the
quarkonium and meson-meson composition of these states to clarify, which of them are ordinary
quarkonium, and which of them should rather be interpreted as tetraquarks.

DOI: 10.1103/PhysRevD.107.094515

I. INTRODUCTION

In the last decade a whole new class of hadrons has been
discovered experimentally, so-called tetraquarks, which are
composed of two quarks and two antiquarks [1–21]. In
particular, a larger number of such tetraquarks observed in
the last couple of years at Belle, BESIII and LHCb have at
least one heavy quark, as anticipated in Refs. [22,23]. From
the onset of QCD the existence of tetraquarks was expected
[24]. However, a quantitative first principles prediction of
their properties, e.g. quark composition, quantum numbers,
masses and decay widths, using e.g. lattice QCD, remains
to be achieved. The main reason, why this has not been
successful yet, is that the majority of observed heavy
tetraquarks are resonances high in the quarkonium spec-
trum (the only exception is the Tcc tetraquark recently
found by LHCb at CERN [25,26]). Studying such reso-
nances with lattice QCD is possible in principle using the

Lüscher phase shift method [27], but practically feasible
only for a single or a small number of decay channels. For
several open channels, as it is the case for some of the
recently observed heavy tetraquarks, following this path
seems tremendously difficult.
Because of these difficulties we recently started to

develop another approach [28,29], utilizing lattice QCD
results for static potentials, to study bottomonium as well as
tetraquark resonances with the same nonexotic quantum
numbers high in the spectrum. We start with lattice QCD
potentials computed with static quarks and light quarks in
the context of string breaking [30–32], which provide
information on the interactions between a two-quark
quarkonium channel and several four-quark meson-meson
channels. We use the Born-Oppenheimer diabatic approxi-
mation as in Refs. [33,34], i.e. include the kinetic energy of
the heavy quarks, and study the dynamically coupled
quarkonium and meson-meson channels with techniques
from quantum mechanics.
In our previous work [28,29] we applied this method to

systems with an S wave bottomonium channel coupled to a

Bð�ÞB̄ð�Þ and a Bð�Þ
s B̄ð�Þ

s channel. In this work we extend our
studies toPwave,Dwave andFwave quarkoniumchannels,

again coupled to Bð�ÞB̄ð�Þ and Bð�Þ
s B̄ð�Þ

s channels. Because of
the intrinsic parity of quarks, the relative orbital angular
momentum of ourmeson-meson channels differs by one unit
from the quarkonium orbital angular momentum. Compared
to the Swave case, this doubles the number of meson-meson
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channels, and, thus, we have to take into account five coupled
channels. As mentioned in the previous paragraph, such
a large number of coupled channels seems currently inacces-
sible for fully dynamical lattice QCD studies of resonances.
Using our approach we were already able to address

claims in the literature, from studies with different hadronic
models, on the nature of some of the bottomonium
resonances observed at Belle. For example, it has been
discussed, which of the observed excited bottomonium
resonances are S wave or D wave states [35–37], since the
total angular momentum is not yet experimentally deter-
mined, and whether they have a large meson-meson content
[38–41]. Of particular interest is the nature of the newly
discovered resonance ϒð10753Þ recently observed at Belle
with mass ð10.753� 0.007Þ GeV [42]. Model and effec-
tive field theory calculations suggest for instance this
resonance to be either a tetraquark [43,44], a hybrid meson
[45–47] or the more canonical and so far missing ϒð3DÞ
[35–37]. With our lattice QCD based approach we found a
pole of the T matrix in the Swave channel corresponding to
the mass 10.773 GeV [29], very similar to the Belle
measurement. Moreover, we found a large meson-meson
component for that state. Thus, we proposed that the
recently observed ϒð10753Þ is a dynamical state, com-
posed mostly of a meson-meson pair.
By extending our work to P wave, D wave and F wave

channels, we can now check, whether there is also a
candidate for the ϒð10753Þ in the D wave channel.
Moreover, we will obtain a complete picture of the
I ¼ 0 bottomonium spectrum. In particular we can identify
states with a large meson-meson component, which can be
interpreted as tetraquarks. Finally, it is interesting to
explore the possible existence of a bottomonium counter-
part of Xð3872Þ discovered at Belle and CDF [48,49],
which is extremely close to the DD̄� and D�D̄ thresholds.
In our case, this would correspond to a resonance very close

to either the Bð�ÞB̄ð�Þ or the Bð�Þ
s B̄ð�Þ

s thresholds.
This paper is organized as follows. In Sec. II we detail

our approach, where we use lattice QCD potentials com-
puted for string breaking in a coupled channel Schrödinger
equation. In particular we carry out a partial wave decom-
position and derive 5 × 5 Schrödinger equations for the P
wave, D wave and F wave channels. Using the emergent
wave method, we also show, how the T matrix can be
computed, leading to both the phase shifts and, after a pole
search, to masses and decay widths. In Sec. III we show and
discuss corresponding numerical results. We also determine
the quarkonium and meson-meson composition for all
states. Finally, in Sec. IV, we conclude on the points raised

in this Introduction and discuss possibilities for future
research within our formalism.

II. QUARKONIUMRESONANCES FROMLATTICE
QCD STATIC POTENTIALS

A. Quantum numbers

We consider a heavy quark-antiquark pair and either no
light quarks (Q̄Q) or a light quark-antiquark pairwith isospin
I ¼ 0 (Q̄Qðūuþ d̄dÞ≡ M̄M or Q̄Qs̄s≡ M̄sMs). Heavy
quark spins become less and less relevant for increasing
heavy quark masses, as e.g. reflected by the mass dif-
ferences mD� −mD ≈ 140 MeV…145 MeV and mB� −
mB ≈ 45 MeV [50]. Thus, we expect that neglecting heavy
quark spins is a reasonable approximation and we character-
ize our system by the following quantum numbers:

(i) JPC: total angular momentum, parity and charge
conjugation.

(ii) SPCQ : spin of the heavy quark-antiquark pair and
corresponding parity and charge conjugation.

(iii) J̃PC: total angular momentum excluding the heavy
quark spins and corresponding parity and charge
conjugation. (For quarkonium J̃PC coincides with
the orbital angular momentum LPC of the heavy
quark-antiquark pair.)

Moreover, the majority of observables, in particular energy
levels, do not depend on SPCQ . Thus, the relevant quantum
numbers in our context are J̃PC and not, as usual, JPC.
For rather heavy b quarks we expect that our approach,

which is based on static symmetries and quantum numbers,
will yield reasonably accurate results, possibly even for c
quarks.

B. The coupled channel Schrödinger equation

Now we discuss the coupled channel Schrödinger equa-
tion, which we have derived in detail in our previous papers
[28,29]. We take the two lowest meson decay channels into
account, where each channel contains two negative parity
heavy-lightmesons, either M̄M or M̄sMs. The corresponding
light spin is SPCq ¼ 1−− [28]. In addition to these decay
channels there is, of course, also the quarkonium channel
Q̄Q. This amounts to a seven-component wave function
ψðrÞ ¼ ðψ Q̄QðrÞ; ψ⃗ M̄MðrÞ; ψ⃗ M̄sMs

ðrÞÞ, where the first com-
ponent represents the Q̄Q channel and the remaining six
components the spin-1 triplets of the M̄M and the M̄sMs
channel, respectively. rdenotes the relative coordinates of the
heavy quark-antiquark pair.
The coupled channel Schrödinger equation reads

0
B@−

1

2
μ−1
�
∂
2
r þ

2

r
∂r −

L2

r2

�
þ VðrÞ þ

0
B@

Ethreshold 0 0

0 2mM 0

0 0 2mMs

1
CA − E

1
CAψðrÞ ¼ 0; ð1Þ
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where μ−1 ¼ diagð1=μQ;1=μM;1=μM;1=μM;1=μMs
;1=μMs

;
1=μMs

Þ is a 7 × 7 diagonal matrix with the reduced masses
of the heavy quarks and the heavy mesons, μQ ¼ mQ=2,
μM ¼ mM=2 and μMs

¼ mMs
=2. In the static limit the

pseudoscalar and the vector heavy-light meson masses are
identical. For finite heavy quark mass there is a small
difference in these meson masses, e.g. for heavy b quarks

mB� −mB ≈ 45 MeV and mB�
s
−mBs

¼ 49 MeV. We take
the spin-averaged masses for mM and mMs

(see Sec. III B).
L ¼ r × p denotes the orbital angular momentum operator
and Ethreshold is the threshold energy corresponding to two
negative parity static-light mesons in the same lattice setup,
where the static potentials are computed (for more details see
Sec. III B andRef. [29]).The potentialmatrixVðrÞ is givenby

VðrÞ ¼

0
B@

VQ̄QðrÞ VmixðrÞð1 ⊗ erÞ ð1= ffiffiffi
2

p ÞVmixðrÞð1 ⊗ erÞ
VmixðrÞðer ⊗ 1Þ VM̄MðrÞ 0

ð1= ffiffiffi
2

p ÞVmixðrÞðer ⊗ 1Þ 0 VM̄MðrÞ

1
CA ð2Þ

with

VM̄MðrÞ ¼ VM̄M;kðrÞðer ⊗ erÞ þ VM̄M;⊥ðrÞð1 − er ⊗ erÞ; ð3Þ

where we have assumed that meson-meson interactions
vanish. VQ̄QðrÞ, VM̄M;kðrÞ, VM̄M;⊥ðrÞ and VmixðrÞ can be
expressed in terms of QCD static potentials, which can be
computed with lattice QCD (see Refs. [28,30] for details).
VQ̄QðrÞ represents the potential of a heavy quark-antiquark
pair, VM̄M;kðrÞ, VM̄M;⊥ðrÞ the interaction between a pair of
heavy-light mesons and VmixðrÞ describes the mixing of the
quarkonium channel and the meson-meson channels. We
use the same potentials both for the M̄M channel and the
M̄sMs channel and expect this to be reasonable, because the
light quark dependence of static potentials is known to be
rather mild. We confirmed this expectation by carrying out
a consistency check with a recent 2þ 1-flavor lattice study
of string breaking [31] (for more details see our previous
work [29]). Note that, the mixing between the Q̄Q channel
and the M̄sMs channel is suppressed by 1=

ffiffiffi
2

p
, because

there is only a single strange quark flavor in comparison to
the two degenerate light flavors corresponding to the M̄M
channel.

We use lattice QCD data from Ref. [30] to determine
continuous functions VQ̄QðrÞ, VM̄M;kðrÞ, VM̄M;⊥ðrÞ and
VmixðrÞ. The data points for VQ̄QðrÞ and VmixðrÞ are
consistently parametrized by

VQ̄QðrÞ ¼ E0 −
α

r
þ σrþ

X2
j¼1

cQ̄Q;jr exp

 
−

r2

2λ2Q̄Q;j

!
ð4Þ

VmixðrÞ ¼
X2
j¼1

cmix;jr exp

 
−

r2

2λ2mix;j

!
ð5Þ

with parametersE0, α, σ, cQ̄Q;j, λQ̄Q;j, cmix;j, λmix;j collected
in Table I. The data points for VM̄M;kðrÞ are consistent with

VM̄M;kðrÞ ¼ 0: ð6Þ

For VM̄M;⊥ðrÞ no lattice data is available yet. We assume

VM̄M;⊥ðrÞ ¼ 0 ð7Þ

(see also Ref. [28]). In Fig. 1 we show the data points for
VQ̄QðrÞ, VM̄M;kðrÞ and VmixðrÞ together with the para-
metrizations (4)–(6). Note that, the definition and deter-
mination of these potentials from lattice QCD data requires
that the lattice creation operators for Q̄Q and for M̄M
generate trial states, which are orthogonal and exclusively
overlap to the ground state and the first excitation. For the
lattice QCD data we are using in this work this assumption
has been checked and confirmed by confronting the
resulting correlation matrix with simple mixing scenarios
(see Sec. VA of Ref. [30]). Additionally, in Sec. III C 3 we
explore the dependency of our resulting bottomonium
masses on the amount of mixing between the quarkonium
channel and the meson-meson channels. We find this

TABLE I. Parameters of the potential parametrizations (4)
and (5).

Potential Parameter Value

VQ̄QðrÞ E0 −1.599ð269Þ GeV
α þ0.320ð94Þ
σ þ0.253ð035Þ GeV2

cQ̄Q;1 þ0.826ð882Þ GeV2

λQ̄Q;1 þ0.964ð47Þ GeV−1

cQ̄Q;2 þ0.174ð1.004Þ GeV2

λQ̄Q;2 þ2.663ð425Þ GeV−1

VmixðrÞ cmix;1 −0.988ð32Þ GeV2

λmix;1 þ0.982ð18Þ GeV−1

cmix;2 −0.142ð7Þ GeV2

λmix;2 þ2.666ð46Þ GeV−1
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dependency to be rather mild, which supports the validity
of our approach.

C. The coupled channel Schrödinger equation
for total angular momentum J̃

Now we specialize the coupled channel Schrödinger
equation (1) to study quarkonium bound states and reso-
nances and meson-meson scattering for arbitrary given J̃.
For details we refer to Sec. II D of Ref. [28], where the
mathematical formalism is discussed for J̃ ¼ 0.
At first, each of the meson-meson components of the

wave function ψðrÞ is written as sum of an incident
wave, which is a solution of the free Schrödinger
equation, i.e. Eq. (1) with VðrÞ ¼ 0, and an emergent
wave. This will allow us to define and determine
scattering amplitudes for energies above the lowest
meson-meson threshold. In contrast to our previous
work [28], we do not restrict the scattering problem
to an incident plane wave, but allow arbitrary regular

solutions of the free Schrödinger equation, including
superpositions of M̄M and M̄sMs waves. We expand
ψðrÞ ¼ ðψ Q̄QðrÞ; ψ⃗ M̄MðrÞ; ψ⃗ M̄sMs

ðrÞÞ in terms of eigen-
functions of J̃2 and J̃z,

ψQQðrÞ ¼
u0;0ðrÞ

r
Y0;0ðΩÞ þ

X∞
J̄¼1

XþJ̃

J̃z¼−J̃

uJ̃;J̃zðrÞ
r

YJ̃;J̃zðΩÞ ð8Þ

ψ⃗ M̄ðsÞMðsÞ ðrÞ ¼ αM̄ðsÞMðsÞ;0;0j0ðkðsÞrÞZ1→0;0ðΩÞ þ
X∞
J̄¼1

XþJ̃

J̃z¼−J̃

X
L¼J̃−1;J̃;J̃þ1

αM̄ðsÞMðsÞ;J̃;J̃z jLðkðsÞrÞZL→J̃;J̃zðΩÞ ð9Þ

þ
χM̄ðsÞMðsÞ;1→0;0

r
Z1→0;0ðΩÞ þ

X∞
J̄¼1

XþJ̃

J̃z¼−J̃

X
L¼J̃−1;J̃;J̃þ1

χM̄ðsÞMðsÞ;L→J̃;J̃z

r
ZL→J̃;J̃zðΩÞ; ð10Þ

where YJ̃;J̃zðΩÞ are the spherical harmonics and a detailed definition of ZL→J̃;J̃zðΩÞ can be found in our previous work [28].
αM̄ðsÞMðsÞ;J̃;J̃z denotes the expansion coefficient for an incoming M̄ðsÞMðsÞ wave with angular momentum J̃ and jLðkðsÞrÞ
denote spherical Bessel functions.
The Schrödinger equation (1) can then be projected in a straightforward way to definite J̃,

0
BBBBBB@
1

2
μ−1
�
∂
2
r þ

1

r2
L2
J̃

�
þ VJ̃ðrÞ þ

0
BBBBBB@

Ethreshold 0 0 0 0

0 2mM 0 0 0

0 0 2mM 0 0

0 0 0 2mMs
0

0 0 0 0 2mMs

1
CCCCCCA

− E

1
CCCCCCA

0
BBBBBB@

uJ̃ðrÞ
χM̄M;J̃−1→J̃ðrÞ
χM̄M;J̃þ1→J̃ðrÞ
χM̄sMs;J̃−1→J̃ðrÞ
χM̄sMs;J̃þ1→J̃ðrÞ

1
CCCCCCA

¼

0
BBBBBB@

VmixðrÞ
0

0

0

0

1
CCCCCCA
�
αM̄M;J̃−1

J̃

2J̃ þ 1
rjJ̃−1ðkrÞ þ αM̄M;J̃þ1

J̃ þ 1

2J̃ þ 1
rjJ̃þ1ðkrÞ

þ αM̄sMs;J̃−1
J̃

2J̃ þ 1

rjJ̃−1ðksrÞffiffiffi
2

p þ αM̄sMs;J̃þ1

J̃ þ 1

2J̃ þ 1

rjJ̃þ1ðksrÞffiffiffi
2

p
�

ð11Þ

FIG. 1. Data points for VQ̄QðrÞ, VM̄M;kðrÞ and VmixðrÞ. The
curves represent the parametrizations (4)–(6).
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with μ−1 ¼ diagð1=μQ; 1=μM; 1=μM; 1=μMs
; 1=μMs

Þ, L2
J̃
¼ diagðJ̃ðJ̃ þ 1Þ; ðJ̃ − 1ÞJ̃; ðJ̃ þ 1ÞðJ̃ þ 2Þ; ðJ̃ − 1ÞJ̃;

ðJ̃ þ 1ÞðJ̃ þ 2ÞÞ and

VJ̃ðrÞ ¼

0
BBBBBBBBBBBBB@

VQ̄Q

ffiffiffiffiffiffiffiffi
J̃

2J̃þ1

q
Vmix

ffiffiffiffiffiffiffiffi
J̃þ1
2J̃þ1

q
Vmix

1ffiffi
2

p
ffiffiffiffiffiffiffiffi
J̃

2J̃þ1

q
Vmix

1ffiffi
2

p
ffiffiffiffiffiffiffiffi
J̃þ1
2J̃þ1

q
Vmixffiffiffiffiffiffiffiffi

J̃
2J̃þ1

q
Vmix 0 0 0 0ffiffiffiffiffiffiffiffi

J̃þ1
2J̃þ1

q
Vmix 0 0 0 0

1ffiffi
2

p
ffiffiffiffiffiffiffiffi
J̃

2J̃þ1

q
Vmix 0 0 0 0

1ffiffi
2

p
ffiffiffiffiffiffiffiffi
J̃þ1
2J̃þ1

q
Vmix 0 0 0 0

1
CCCCCCCCCCCCCA
: ð12Þ

Note that, Eq. (11) is degenerate with respect to J̃z thus we
dropped the index. The confining Q̄Q channel is repre-
sented by the radial wave function uJ̃ðrÞ with the following
boundary conditions:

(i) For r → 0:

uJ̃ðrÞ ∝ rJ̃þ1: ð13Þ

(ii) For r → ∞:

uJ̃ðrÞ ¼ 0: ð14Þ

The incident wave becomes a superposition of spherical
waves represented by Bessel functions jLin

. These include
M̄M waves with Lin ¼ J̃ − 1 as well as Lin ¼ J̃ þ 1 and
M̄sMs waves with Lin ¼ J̃ − 1 as well as Lin ¼ J̃ þ 1,
where Lin denotes orbital angular momentum. Spherical
waves with Lin ¼ J̃ are excluded, because of parity. For
example, an incident M̄M wave with Lin ¼ J̃ − 1 trans-
lates to α⃗ ¼ ðαM̄M;J̃−1; αM̄M;J̃þ1; αM̄sMs;J̃−1; αM̄sMs;J̃þ1Þ ¼
ð1; 0; 0; 0Þ. The momenta of these waves, k and ks, are
related to the energy E via

E ¼ 2mM þ k2

2μM
; E ¼ 2mMs

þ k2s
2μMs

: ð15Þ

The emergent wave is described by the four radial wave
functions χM̄ðsÞMðsÞ;Lout→J̃ðrÞ with M̄ðsÞMðsÞ ∈ fM̄M; M̄sMsg

and Lout ∈ fJ̃ − 1; J̃ þ 1g, where the subscript indicates
the meson content and the coupling of orbital angular
momentum Lout and light quark spin Sq ¼ 1 to total angular
momentum J̃. The boundary conditions for the emergent
wave can be formulated as follows:

(i) For r → 0:

χM̄ðsÞMðsÞ;Lout→J̃ ∝ rLoutþ1: ð16Þ

(ii) For r → ∞:

χM̄M;Lout→J̃ ¼ itM̄ðsÞMðsÞ;Lin;M̄M;Lout
rhð1ÞLout

ðkrÞ ð17Þ

χM̄sMs;Lout→J̃ ¼ itM̄ðsÞMðsÞ;Lin;M̄sMs;Lout
rhð1ÞLout

ðksrÞ; ð18Þ

where
– M̄ðsÞMðsÞ ≡ M̄M for α⃗ ¼ ð1; 0; 0; 0Þ and α⃗ ¼
ð0; 1; 0; 0Þ, i.e. an incident M̄M wave with Lin ¼
J̃ − 1 and Lin ¼ J̃ þ 1, respectively, and

– M̄ðsÞMðsÞ≡M̄sMs for α⃗¼ ð0;0;1;0Þ and α⃗¼
ð0;0;0;1Þ, i.e. an incident M̄sMs wave with
Lin ¼ J̃ − 1 and Lin ¼ J̃ þ 1, respectively.

These boundary conditions define 16 quantities,
tM̄ðsÞMðsÞ;Lin;M̄ðsÞMðsÞ;Lout

, which represent scattering amplitudes
and can be combined to the 4 × 4 T matrix

TJ̃ ¼

0
BBB@

tM̄M;J̃−1;M̄M;J̃−1 tM̄M;J̃þ1;M̄M;J̃−1 tM̄sMs;J̃−1;M̄M;J̃−1 tM̄sMs;J̃þ1;M̄M;J̃−1

tM̄M;J̃−1;M̄M;J̃þ1 tM̄M;J̃þ1;M̄M;J̃þ1 tM̄sMs;J̃−1;M̄M;J̃þ1 tM̄sMs;J̃þ1;M̄M;J̃þ1

tM̄M;J̃−1;M̄sMs;J̃−1 tM̄M;J̃þ1;M̄sMs;J̃−1 tM̄sMs;J̃−1;M̄sMs;J̃−1 tM̄sMs;J̃þ1;M̄sMs;J̃−1

tM̄M;J̃−1;M̄sMs;J̃þ1 tM̄M;J̃þ1;M̄sMs;J̃þ1 tM̄sMs;J̃−1;M̄sMs;J̃þ1 tM̄sMs;J̃þ1;M̄sMs;J̃þ1

1
CCCA: ð19Þ
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The T matrix is related to the S matrix in the usual way,

SJ̃ ¼ 1þ 2iTJ̃ : ð20Þ

For J̃ ¼ 0 one has to discard the contributions to the
incident wave with Lin ¼ J̃ − 1 and to the emergent wave
with Lout ¼ J̃ − 1. The Schrödinger equation (11) is then
reduced from five to three channels and TJ̃ from a 4 × 4 to a
2 × 2 matrix. This J̃ ¼ 0 equation is extensively discussed
in Ref. [29].
In analogy to a single channel scattering problem, where

the phase shift δ is defined via 1þ 2iT ¼ S ¼ expð2iδÞ,
one can define the eigenphase sum [51–53] for multichan-
nel scattering via

detðSJ̃Þ ¼ expð2iδJ̃Þ: ð21Þ

The eigenphase sum δJ̃ is identical to a sum of phase shifts,
where each phase shift corresponds to one of the eigen-
values of the S matrix.

III. NUMERICAL RESULTS

A. Numerical methods to solve the coupled
channel Schrödinger equation and to determine

the poles of the T matrix

In Sec. II C we defined the entries of the T matrix (19) as
the a priori unknown coefficients tM̄ðsÞMðsÞ;Lin;M̄ðsÞMðsÞ;Lout

appearing in the r→∞ boundary conditions (17) and (18).
To determine these coefficients, one has to solve the
coupled channel Schrödinger equation (11). To cross-check
our results, we used two rather different numerical methods.
The first method corresponds to discretizing the radial
coordinate by a uniform grid and solving the resulting
system of linear equations using methods from standard
textbooks (for details see Ref. [28]). The second method
corresponds to using an ordinary 4th order Runge-Kutta
algorithm.
To find the poles of TJ̃ in the complex energy plane,

characterized by at least one of its eigenvalues approaching
infinity, we applied the Newton-Raphson method to find
the roots of 1=detðTJ̃Þ.

FIG. 2. Eigenphase sum δJ̃ as function of the energy E. Narrow resonances are indicated by pronounced steps. We also show the real
parts of the positions of the poles of TJ̃ using green dotted lines (the line at ≈10.798 GeV in the lower left plot does not correspond to the
real part of a pole, but to a fit to the eigenphase sum; see the technical discussion in Sec. III C 1). A pale red dotted line indicates the spin

averaged Bð�Þ
s Bð�Þ

s threshold, the light blue solid line Ethreshold. Results for energies inside the light-blue shaded region, i.e. above
≈11.025 GeV, should not be trusted, since we neglect decay channels containing a negative and a positive parity heavy-light meson.
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B. Input parameters and propagation
of statistical errors

In the following we present results for heavy b quarks, i.e.
Q≡ b. We use mQ ¼ 4.977 GeV from quark models [54]
and the spin-averaged mass of the B meson and the B�
meson, i.e.mM ¼ ðmB þ 3mB�Þ=4 ¼ 5.313 GeV, as well as
of theBsmeson and theB�

s meson, i.e.mMs
¼ðmBs

þ3mB�
s
Þ=

4¼5.403GeV. The lattice data from Ref. [30] we are using
to determine the parameters of the potential parametrizations
(see Sec. II B) was generated with a light quarkmass slightly
below the physical strange quark mass. This is reflected
by Ethreshold ¼ 10.790 GeV, which is much closer to the

spin-averaged Bð�Þ
s Bð�Þ

s threshold than to the spin-averaged
Bð�ÞBð�Þ threshold.
The statistical uncertainties of the lattice data provided in

Ref. [30] are propagated via resampling. We generated
1000 statistically independent samples and repeated our
computations on each of them. For our results we quote
asymmetric errors, defined by the 16th and 84th percentile.

C. Eigenphase sums and poles of the T matrix

We have computed the eigenphase sum δJ̃ defined in
Eq. (21) for J̃ ¼ 0, 1, 2, 3 as a function of the energy above
the spin-averaged Bð�ÞBð�Þ threshold at 10.627 GeV.

We show the respective plots in Fig. 2. For rather stable
resonances, which are clearly separated in their energies,
such plots show pronounced steps of order π. The locations
of these steps then correspond to the resonance masses and
the slopes are inversely proportional to the associated decay
widths. In our case, however, where some resonances have
large decay widths and their energy levels are close, it is
hard to identify them in a clear and unique way.
To define and to compute masses and decay widths of

bottomonium resonances in a clearer and more definite
way, we have analytically continued our scattering problem
to the complex energy plane. Then we have determined the
poles of the T matrix (19) in the complex energy plane
numerically. The positions of these poles can be related to
masses and decay widths according to

m ¼ ReðEpoleÞ; Γ ¼ −2ImðEpoleÞ; ð22Þ

where Epole denotes the complex pole energy.
In Fig. 3 we show all poles of the T matrix (19) for J̃ ¼ 0,

1, 2, 3 up to 11.2 GeV. Colored point clouds represent 1000
independent computations with resampled lattice data
from Ref. [30]. These point clouds are used to determine
statistical errors, which is straightforward, because there
are clear gaps between the point clouds. Bound states

FIG. 3. Positions of the poles of the T matrix (19) in the complex energy plane for J̃ ¼ 0 (top left), J̃ ¼ 1 (top right), J̃ ¼ 2 (bottom
left) and J̃ ¼ 3 (bottom right) representing bound states and resonances up to 11.2 GeV. Colored point clouds represent 1000
independent computations with resampled lattice data, while black dots correspond to the mean values and error bars. The pale red

dotted lines indicate the spin-averaged Bð�ÞBð�Þ and Bð�Þ
s Bð�Þ

s thresholds, the light blue solid line Ethreshold. Results for energies inside the
light-blue shaded region, i.e. above ≈11.025 GeV, should not be trusted, since we neglect decay channels containing a negative and a
positive parity heavy-light meson.
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correspond to poles located on the real axis below the
Bð�ÞBð�Þ threshold, while resonances correspond to poles
above this threshold with a nonvanishing negative imagi-
nary part. The pole positions and their statistical errors are
indicated by the black crosses. The Bð�ÞBð�Þ threshold at

10.627 GeV and the Bð�Þ
s Bð�Þ

s threshold at 10.807 GeV are
indicated by pale red dotted lines. Our results can only be
trusted up to the threshold of one negative parity heavy-
light meson and one positive parity heavy-light meson at
around 11.025 GeV, because the corresponding decay

channel is not included in our Schrödinger equation (1).
The region above this threshold is shaded in light blue.
We summarize these theoretical predictions of bottomo-

nium masses and decay widths in Table II, together with
available experimental results. Additionally, we show the
same data in a graphical way in Fig. 4.

1. Technical aspects of pole finding

In addition to the physical poles of the T matrix, which
correspond to bottomonium bound states and resonances,

TABLE II. Masses and decay widths of I ¼ 0 bottomonium with J̃PC ¼ 0þþ; 1−−; 2þþ; 3−− obtained from the
poles of the T matrix (19), where errors are purely statistical. An exception is the n ¼ 3 resonance for J̃ ¼ 2, which
was extracted by a fit to the eigenphase sum δ2 (see the technical discussion in Sec. III C 1). Results for energies
above the threshold of one negative and another positive heavy-light meson at ≈11.025 GeV are marked by a gray
background and should not be trusted, since we neglect the corresponding decay channels. (Results for J̃PC ¼ 0þþ
were already presented in Ref. [29].)

Theory Experiment

J̃PC n m [GeV] Γ [MeV] Name m [GeV] Γ [MeV] IGðJPCÞ
0þþ 1 9.618þ10

−15 ηbð1SÞ 9.399(2) 10(5) 0þð0þ−Þ
ϒbð1SÞ 9.460(0) ≈0 0−ð1−−Þ

2 10.114þ7
−11 ηbð2SÞBELLE 9.999(6) 0þð0þ−Þ

ϒð2SÞ 10.023(0) ≈0 0−ð1−−Þ
3 10.442þ7

−9 ϒð3SÞ 10.355(1) ≈0 0−ð1−−Þ
4 10.629þ1

−1 49.3þ5.4
−3.9 ϒð4SÞ 10.579(1) 21(3) 0−ð1−−Þ

5 10.773þ1
−2 15.9þ2.9

−4.4 ϒð10750ÞBELLEII 10.753(7) 36(22) 0−ð1−−Þ
6 10.938þ2

−2 61.8þ7.6
−8.0 ϒð10860Þ 10.890(3) 51(7) 0−ð1−−Þ

7 11.041þ5
−7 45.5þ13.5

−8.2 ϒð11020Þ 10.993(1) 49(15) 0−ð1−−Þ

1−− 1 9.930þ43
−52 χb0ð1PÞ 9.859(1) 0þð0þþÞ

hbð1PÞ 9.890(1) ??ð1þ−Þ
χb1ð1PÞ 9.893(1) 0þð1þþÞ
χb2ð1PÞ 9.912(1) 0þð2þþÞ

2 10.315þ29
−40 χb0ð2PÞ 10.233(1) 0þð0þþÞ

χb1ð2PÞ 10.255(1) 0þð1þþÞ
hbð2PÞBELLE 10.260(2) ??ð1þ−Þ
χb2ð2PÞ 10.267(1) 0þð2þþÞ

3 10.594þ32
−28 χb1ð3PÞ 10.512(2) 0þð0þþÞ

4 10.865þ37
−21 67.5þ5.1

−4.9
5 10.932þ33

−54 101.8þ7.3
−5.1

6 11.144þ52
−75 25.0þ1.1

−1.3

2þþ 1 10.181þ35
−46 ϒð1DÞ 10.164(2) 0−ð2−−Þ

2 10.486þ32
−36

3 10.799þ2
−2 13.0þ2.1

−2.0

4 11.038þ30
−44 40.8þ2.0

−2.8

3−− 1 10.390þ28
−39

2 10.639þ31
−25 2.4þ1.5

−0.9
3 10.944þ20

−29 46.8−4.6þ6.2

4 11.174þ51
−69 1.9þ2.1

−1.4
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there are also unphysical poles, which are caused by
numerical inaccuracies. Such unphysical poles can be
identified, by varying numerical parameters [e.g. the
spacing of the grid, the Runge-Kutta step size or the large,
but finite value of r replacing r → ∞ in the boundary
conditions (17) and (18)]. If a pole is unstable with respect
to these parameters, it is clearly an unphysical pole.
In cases, where a physical pole and unphysical poles are

close, pole finding might become a delicate task. To verify
that we did not miss any of the physical poles with our pole
finding algorithm, we have also determined the poles after

removing the B̄ð�Þ
s Bð�Þ

s decay channels. In general, the pole
positions in the 3-flavor case are similar to those in the

2-flavor case and consistent with the steps observed in
the eigenphase sums shown in Fig. 2. An exception is the
n ¼ 3 resonance in the J̃ ¼ 2 sector, which our pole finding
algorithm was unable to identify in the 3-flavor case.
It seems to be masked by unphysical poles. Thus, to
determine the corresponding resonance parameters, we
have used the eigenphase sum δ2. We have performed a
4-parameter fit with αþ β arctanðð2=ΓÞðE −mÞÞ to the
data points for δ2 in the region of the step at ≈10.798 GeV
(see Fig. 5). In this way we have obtained the resonance
mass m ¼ 10.799þ2

−2 GeV and the decay width Γ ¼
13.0þ1.8

−2.0 MeV, where error bars are determined by resam-
pling lattice data from Ref. [30] and by varying the fit
range. As a cross check we have also determined
the parameters of the n ¼ 4 resonance in the J̃ ¼ 2

sector in the same way and find m ¼ 11.038þ5
−3 GeV and

Γ ¼ 42.29þ2.0
−1.2 MeV. These results are fully consistent with

those obtained from our pole search (cf. Table II).

2. Comparison to experimental results

For the predicted low-lying states it is straightforward to
assign experimental counterparts.

(i) The J̃ ¼ 0 states with n ¼ 1, 2, 3, 4 correspond to
ηbð1SÞ≡ϒð1SÞ, to ϒð2SÞ, to ϒð3SÞ and to ϒð4SÞ.

(ii) The J̃ ¼ 1 states with n ¼ 1, 2, 3 correspond to
hbð1PÞ≡χb0ð1PÞ≡χb1ð1PÞ≡χb2ð1PÞ, to hbð2PÞ≡
χb0ð2PÞ≡ χb1ð2PÞ≡ χb2ð2PÞ and to χb1ð3PÞ.

(iii) The J̃ ¼ 2 state with n ¼ 1 corresponds to ϒð1DÞ.
Our masses exhibit a pattern, which is quite similar to
that found in experiments. The largest discrepancies are
observed for the lowest states, most prominently for the

FIG. 4. Graphical summary of theoretical predictions and experimental results for masses of I ¼ 0 bottomonium with
J̃PC ¼ 0þþ; 1−−; 2þþ; 3−−. We also show the quarkonium and meson-meson composition as discussed in Sec. III D: %Q̄Q in orange,
ð%M̄MÞJ̃−1 þ ð%M̄MÞJ̃þ1 in blue and ð%M̄sMsÞJ̃−1 þ ð%M̄sMsÞJ̃þ1 in green.

FIG. 5. Fits of αþ β arctanðð2=ΓÞðE −mÞÞ to the data points
for the eigenphase sum δ2 in the region of the steps at
≈10.798 GeV and ≈11.038 GeV.
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ground state ηbð1SÞ≡ϒð1SÞ. This, however, does not
indicate particular problems with these states, but is rather
a consequence of choosing Ethreshold ≈ 2mMs

as reference
point to introduce the energy scale. Compared to this
reference point the errors of our predicted states are of order
10%. To a large part these errors can be compensated by a
global multiplicative factor. A possible reason for this error
might be the scale setting in the lattice QCD computation of
Ref. [30], which is based on defining r0 ¼ 0.5 fm, while
more recent lattice investigations indicate a smaller value for
r0 [55]. Using e.g. r0 ¼ 0.45 fm instead of r0 ¼ 0.5 fm
reduces the error for ηbð1SÞ≡ϒð1SÞ by around 50%.
Moreover, our potentials were determined from lattice
QCD data obtained at a single coarse lattice spacing and
with only two light quark flavors close to the mass of the
physical strange quark. Thus, for precise quantitative pre-
dictions a more accurate lattice QCD computation of the
relevant potentials and mixings will be necessary (see also
the outlook in Sec. IV). For a more detailed discussion on the
discrepancies observed for the lowest states see Sec. III C 3.
The J̃ ¼ 0 resonance with n ¼ 5 has a mass close to the

experimental result for ϒð10753Þ, which was recently
reported by Belle [56]. In a previous publication we
investigated the structure of this state within the same
setup and found that it is meson-meson dominated with just
a small quark-antiquark component [29] (see also Sec. III D,
in particular Table IV). Thus, since it is not an ordinary
quarkonium state and the heavy quark spin can be 1−−, it can
be classified as a Y type crypto-exotic state. Note that we
found another resonance in that energy region with quantum
numbers J̃ ¼ 2 and n ¼ 3. This state is, however, farther
away from the experimental result forϒð10753Þ (≈46 MeV
difference for J̃ ¼ 2, n ¼ 3 compared to ≈20 MeV differ-
ence for J̃ ¼ 0, n ¼ 5) and, thus, an identification with
ϒð10753Þ seems less likely. On the other hand, since our
results exhibit certain systematic errors, as discussed in the
previous paragraph, we are not in a position to fully exclude
such an identification.
The resonances ϒð10860Þ and ϒð11020Þ are typically

interpreted as ϒð5SÞ and ϒð6SÞ. However, from the
experimental perspective they could as well correspond

to D wave states. The J̃ ¼ 0 S wave resonance with n ¼ 6
is rather close to the mass ofϒð10860Þ, whereas there is no
J̃ ¼ 2 D wave resonance in that energy region. Thus, our
results support the interpretation of ϒð10860Þ as ϒð5SÞ.
Concerningϒð11020Þ, the J̃ ¼ 0 resonance with n ¼ 7 and
the J̃ ¼ 2 resonance with n ¼ 4 have almost the same mass
and are both close to the mass ofϒð11020Þ. Moreover, that
mass is already close to the threshold of a negative parity B
or B� and a positive parity B�

0 or B�
1 meson, a channel we

have not yet included in our approach. Thus, we cannot
decide, whether theϒð11020Þ is indeed an Swave or rather
a D wave state.

3. Comparison to other theoretical predictions and
discussion of systematic errors

Recently, two independent groups have also computed
the I ¼ 0 bottomonium spectrum [57–59]. In particular
Ref. [59] is based on the same lattice QCD data [30] we are
using, but the predicted low-lying bound states are signifi-
cantly closer to their experimental counterparts. The main
reason for that is that Ref. [59] ignores that the u and d
quark masses in Ref. [30] are unphysically heavy, quite
close to the physical s quark mass. We account for the
unphysically heavy u and d quark masses by setting
Ethreshold ¼ 10.789 GeV in our Schrödinger equation (11),
which is the Bð�ÞBð�Þ threshold in the lattice setup from
Ref. [30] (see Sec. II B). An exception are results col-
lected in the second column of Table III, where we have
set Ethreshold ¼ 2mM ¼ 10.627 GeV, which is the spin-
averaged physical threshold, a choice comparable to what
has been done in Ref. [59]. With this choice the corre-
sponding bottomonium masses are significantly closer to
experimental data. Nevertheless, we consider Ethreshold ¼
10.789 GeV as theoretically more appropriate and, thus,
we use this value for all our predictions.
A second important difference between our work and

Ref. [59] is that we resample and modify the lattice data
from Ref. [30] to correct for improperly chosen creation
operators, which do not only probe the Σþ

g sector, but also
the Σ−

u , Πþ
g and Π−

g sectors. Such a correction is necessary
to obtain physically meaningful potentials, as discussed in

TABLE III. Masses of J̃ ¼ 0 (i.e. S wave) bound states. From left to right: our predictions as listed in Table II; our predictions, when
ignoring the unphysically heavy lattice quark masses from Ref. [30]; our predictions, when not correcting the lattice data from Ref. [30]
as discussed in Ref. [28], Sec. III; experimental results.

Ethreshold ¼ 10.789 GeV
corrected lattice data

Ethreshold ¼ 2mM ¼ 10.627 GeV
corrected lattice data

Ethreshold ¼ 10.789 GeV
uncorrected lattice data Experiment

m½GeV� m½GeV� m½GeV� Name m½GeV�
n ¼ 1 9.618þ10

−15 9.480þ11
−15 9.679þ8

−12 ηbð1SÞ 9.399(2)
ϒbð1SÞ 9.460(0)

n ¼ 2 10.114þ7
−11 9.975þ8

−10 10.168þ6
−9 ηbð2SÞBELLE 9.999(6)

ϒð2SÞ 10.023(0)
n ¼ 3 10.442þ7

−9 10.308þ7
−9 10.497þ5

−7 ϒð3SÞ 10.355(1)
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detail in Sec. III of Ref. [28]. The correction generates a
pronounced bump in VQ̄QðrÞ (see Fig. 1, red data points),
which might be unexpected, but which is a consequence of
the sizable mixing between the quarkonium and the meson-
meson channels at small r found in Ref. [30]. Correcting
the lattice data appropriately in such a way leads to results,

which are closer to experiment, as shown in Table III, first
and third column. This might be surprising at first glance,
since VQ̄QðrÞ is larger at small r, because of the afore-
mentioned bump. If one just considers a single channel
Schrödinger equation with potential VQ̄QðrÞ the uncor-
rected lattice data indeed leads to more deeply bound states

FIG. 6. Percentages of quarkonium and of meson-meson pairs for I ¼ 0 bottomonium with J̃PC ¼ 0þþ as functions of Rmax. Note that
Rmax denotes the upper bound of the integral in Eqs. (26)–(28) and not the quark-antiquark separation.
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than the properly corrected lattice data. However, in our
coupled channel Schrödinger equation the corrected lattice
data also leads to a stronger mixing potential VmixðrÞ,
ultimately resulting in lower energies.
As already discussed in Sec. III C 2, another issue, which

contributes to the discrepancies between our theoretical
predictions for the low-lying bound states and the corre-
sponding experimental results is scale setting. We follow
Ref. [30] and set the scale by identifying r0 ¼ 0.5 fm.
More recent lattice studies, however, suggest that r0 ¼
0.47 fm…0.48 fm is more realistic (see e.g. Ref. [55]).
We explored the effect of choosing such a more up to date
value for r0 on our results and found an improvement by
≈ − 50 MeV on the lowest bound state (the state with n ¼ 1
in Table III).
Another source of uncertainty might be the amount of

mixing between the Q̄Q channel and the meson-meson

channels, in particular because of the previously discussed
and necessary resampling and correction of the lattice data
from Ref. [30]. To quantify this uncertainty, we varied the
mixing angle θ [defined in Ref. [30], Sec. VA and our
previous article [28], e.g. Eq. (17)] by 10% and find a rather
mild dependence of around 10 MeV…15 MeV in the
predicted bottomonium masses.
We close this subsection by noting that the main purpose

of this paper is to develop, to present and to explore a
framework, based on lattice QCD static potentials, which
allows us to predict and to study I ¼ 0 bottomonium bound
states and resonances. At the moment there is only lattice
data available from simulations with two unphysically
heavy quark flavors and creation operators, which do
not fully respect the symmetries of a static-antistatic system
[30]. This lattice data is very helpful to carry out a proof of
concept within our framework, as done in this section.

FIG. 7. Percentages of quarkonium and of meson-meson pairs for I ¼ 0 bottomonium with J̃PC ¼ 1−− as functions of Rmax. Note that
Rmax denotes the upper bound of the integral in Eqs. (26)–(28) and not the quark-antiquark separation.
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FIG. 8. Percentages of quarkonium and of meson-meson pairs for I ¼ 0 bottomonium with J̃PC ¼ 2þþ as functions of Rmax. Note that
Rmax denotes the upper bound of the integral in Eqs. (26)–(28) and not the quark-antiquark separation.

FIG. 9. Percentages of quarkonium and of meson-meson pairs for I ¼ 0 bottomonium with J̃PC ¼ 3−− as functions of Rmax. Note that,
Rmax refers to the upper bound of the integral in Eqs. (26)–(28) and is not the quark-antiquark separation.
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However, for fully reliable quantitative predictions, which
can be confronted with experimental data in a rigorous way,
up-to-date lattice results for the potentials appearing in
Eqs. (2) and (3) are required with u, d and s quarks at the
physical point.

D. Quarkonium and meson-meson composition

Using techniques developed in Ref. [29] we also study
the structure and quark content of bound states and
resonances, to clarify, whether they are conventional
quarkonia or there are sizable Q̄Qq̄q four-quark compo-
nents. To this end, we compute for each state the percent-
ages of quarkonium with L ¼ J̃ and of M̄M and M̄sMs

meson-meson pairs with Lout ¼ J̃ − 1; J̃ þ 1,

%Q̄Q ¼ Q
QþMJ̃−1 þMJ̃þ1 þMs;J̃−1 þMs;J̃þ1

ð23Þ

ð%M̄MÞLout
¼ MLout

QþMJ̃−1þMJ̃þ1þMs;J̃−1þMs;J̃þ1

ð24Þ

ð%M̄sMsÞLout
¼ Ms;Lout

QþMJ̃−1 þMJ̃þ1 þMs;J̃−1 þMs;J̃þ1

;

ð25Þ
where

Q ¼
Z

Rmax

0

drjuJ̃ðrÞj2 ð26Þ

MLout
¼
Z

Rmax

0

drjχM̄M;Lout→J̃ðrÞj2 ð27Þ

Ms;Lout
¼
Z

Rmax

0

drjχM̄sMs;Lout→J̃ðrÞj2: ð28Þ

uJ̃ðrÞ, χM̄M;Lout→J̃ðrÞ and χM̄sMs;Lout→J̃ðrÞ are the solutions of
the radial Schrödinger equation (11) for real energy
ReðEpoleÞ, where Epole is the position of the corresponding
pole of the T matrix in the complex energy plane.
In case of a bound state, Q, MLout

and Ms;Lout
approach

constants for Rmax ≳ 2.0 fm as indicated by Figs. 6–9. The
corresponding asymptotic values of%Q̄Q, ð%M̄MÞLout

and
ð%M̄sMsÞLout

for bound states are collected in Table IV.
In case of a resonance, MLout

and Ms;Lout
are linearly

rising functions for large Rmax, because in that region
χM̄M;Lout→J̃ðrÞ and χM̄sMs;Lout→J̃ðrÞ represent emergent
spherical waves. The corresponding slopes, however, are
rather small and result in changes of only a few percent
in %Q̄Q, ð%M̄MÞLout

and ð%M̄sMsÞLout
in the interval

1.8 fm < Rmax < 3.0 fm. At such separations Rmax the
quarkonium component uJ̃ðrÞ is already negligible and
χM̄M;Lout→J̃ðrÞ and χM̄sMs;Lout→J̃ðrÞ are almost pure emergent
spherical waves. Thus the corresponding resonance is
contained inside a sphere of radius Rmax. We evaluate
%Q̄Q, ð%M̄MÞLout

and ð%M̄sMsÞLout
at the center of

this interval, i.e. at Rmax ¼ 2.4 fm, but assign asym-
metric systematic uncertainties j%Q̄QðRmax ¼ 1.8 fmÞ −
%Q̄QðRmax ¼ 2.4 fmÞj and j%Q̄QðRmax ¼ 3.0 fmÞ −
%Q̄QðRmax ¼ 2.4 fmÞj to %Q̄Q and in an analogous
way also to ð%M̄MÞLout

and to ð%M̄sMsÞLout
. These results

are collected in Table IV. Moreover,%Q̄Q, ð%M̄MÞLout
and

ð%M̄sMsÞLout
as functions of Rmax are shown in Figs. 6–9.

The majority of bound states have masses significantly
below the Bð�ÞBð�Þ threshold with binding energies of the
order of 100 MeV or larger (J̃ ¼ 0, n ¼ 1, 2, 3; J̃ ¼ 1,
n ¼ 1, 2; J̃ ¼ 2, n ¼ 1, 2; J̃ ¼ 3, n ¼ 1). These states
consist mostly of quarkonium, %Q̄Q ≈ 74%…84%. The
largest quarkonium components are present for the lowest
states with orbital angular momentum L ¼ 0, i.e. for J̃ ¼ 0
and n ¼ 1, 2. Because of the nonvanishing mixing angle
θ ≈ 0.35…0.40 for r≲ 1.0 fm obtained by a full lattice
QCD computation (see Ref. [30] and our previous article
[28], in particular Sec. III), larger quarkonium percentages
%Q̄Q are excluded. The reason is that for two light quark
flavors the ground state potential in the Σþ

g sector, which is
of central importance for bound states, is a linear super-
position of 1 − sin2ðθÞ ≈ 85%…88% quarkonium and of
θ2 ≈ 12%…15% meson-meson. Thus, a very similar com-
position is generated dynamically for the deeply bound
states by our Schrödinger equation (1), which was derived
to be consistent with the lattice QCD potentials from
Ref. [30] and the corresponding mixing angle.
However, there is one bound state (J̃ ¼ 1, n ¼ 3) with

m ≈ 10.594 GeV, rather close to the Bð�ÞBð�Þ threshold
at 10.627 GeV, where the quarkonium component is
already significantly reduced, %Q̄Q ≈ 58%. A reason for
that could be that the components of the radial wave
functions are significantly farther extended, up to r ≈
1.5 fm…2.0 fm (see Fig. 7). Close to the string breaking
distance rsb the mixing angle changes rapidly from θ ≈
0.35…0.40 to θ ≈ π=2. Thus, for r≳ rsb ≈ 1.25 fm the
ground state potential in the Σþ

g sector corresponds almost
exclusively to a Bð�ÞBð�Þ pair. Consequently, ð%M̄MÞLout

is
significantly enhanced for such a spatially extended state
compared to the more tightly bound states discussed in the
previous paragraph.
The resonances with J̃ ¼ 0, n ¼ 4 and J̃ ¼ 3, n ¼ 2 are

slightly above the Bð�ÞBð�Þ threshold, i.e. energetically they
are extremely close to bound states. In both cases this is
reflected by a roughly equal mix of the quarkonium

component and the Bð�ÞBð�Þ component(s). Bð�Þ
s Bð�Þ

s con-
tributions, on the other hand, are almost negligible, because
the corresponding threshold is more than 160 MeV above.
For higher resonances the meson-meson components

start to dominate and the quarkonium component is some-
where between 8%…35%. The corresponding widths tend
to be sizable and the resonances are rather unstable. Thus, it
is not surprising that these resonances are mostly meson-
meson states.

BICUDO, CARDOSO, MUELLER, and WAGNER PHYS. REV. D 107, 094515 (2023)

094515-14



For resonances above ≈11.025 GeV, which is the
threshold of one negative and another positive heavy-
light meson, the quarkonium components start to increase
again. We interpret this, however, rather as a consequence
of our neglect of decay channels in that energy region
than as a solid and meaningful physics result. We note
again that also energy levels above ≈11.025 GeV should
not be trusted or at least be taken with extreme caution,
as e.g. discussed already in Sec. III C.

IV. CONCLUSIONS AND OUTLOOK

We extended our previous work for J̃ ¼ 0 [28,29]
and derived a coupled channel Schrödinger equation for
arbitrary J̃ to investigate bottomonium bound states and
resonances with I ¼ 0 using lattice QCD static poten-
tials. For each J̃ > 0 we take into account five coupled
channels and, thus, have developed an approach to study
complicated resonances based on lattice QCD. We
solved the coupled channel Schrödinger equation for

J̃ ¼ 0, 1, 2, 3 and found multiple bound states and
resonances for all values of J̃. We also explored the
structure of these states by computing their quarkonium
and meson-meson percentages. It is important to note
that in our framework we only consider and distinguish
Q̄Q and M̄M states, where the latter represent tetra-
quarks. In nature there is also the possibility that some
of the studied resonances contain gluonic excitations,
i.e. are hybrid mesons. Hybrid excitations are not yet
included in our approach. They have, however, been
studied in similar Born-Oppenheimer setups for quite
some time [60–71].
Our results for masses of bound states and resonances are

consistent with experimentally observed states within
expected errors, which arise from resorting to several
approximations. We find several bound states in the sectors
J̃ ¼ 0, 1, 2, which all have a clear experimental counterpart.
The resonance ϒð10753Þ, which was recently found by

Belle [56] also appears in our S wave spectrum as J̃ ¼ 0,

TABLE IV. Percentages of quarkonium and of meson-meson pairs for I ¼ 0 bottomonium with J̃PC ¼ 0þþ; 1−−; 2þþ; 3−−.
In addition to statistical errors we also provide systematic uncertainties, which are discussed in Sec. III D. Results for
energies above the threshold of one negative and another positive heavy-light meson at ≈11.025 GeV are marked by a gray
background and should not be trusted, since we neglect the corresponding decay channels. (Results for J̃PC ¼ 0þþ were already
presented in Ref. [29].)

J̃PC n m [GeV] Γ [MeV] %Q̄Q [%] ð%M̄MÞJ̃−1 [%] ð%M̄MÞJ̃þ1 [%] ð%M̄sMsÞJ̃−1 [%] ð%M̄sMsÞJ̃þ1 [%]

0þþ 1 9.618þ10
−15 84ðþ1

−1 Þðþ0
−0 Þ 12ðþ0

−0 Þðþ0
−0 Þ 4ðþ0

−0 Þðþ0
−0 Þ

2 10.114þ7
−11 84ðþ0

−0 Þðþ0
−0 Þ 12ðþ0

−0 Þðþ0
−0 Þ 4ðþ0

−0 Þðþ0
−0 Þ

3 10.442þ7
−9 79ðþ0

−0 Þðþ0
−0 Þ 17ðþ0

−0 Þðþ0
−0 Þ 4ðþ0

−0 Þðþ0
−0 Þ

4 10.629þ1
−1 49.3þ5.4

−3.9 67ðþ5
−0 Þðþ1

−1 Þ 29ðþ5
−0 Þðþ1

−1 Þ 4ðþ0
−0 Þðþ0

−0 Þ
5 10.773þ1

−2 15.9þ2.9
−4.4 24ðþ3

−3 Þðþ1
−1 Þ 60ðþ4

−4 Þðþ1
−2 Þ 16ðþ1

−2 Þðþ1
−1 Þ

6 10.938þ2
−2 61.8þ7.6

−8.0 35ðþ11
−7 Þðþ4

−3 Þ 40ðþ3
−6 Þðþ3

−3 Þ 25ðþ5
−6 Þðþ0

−0 Þ
7 11.041þ5

−7 45.5þ13.5
−8.2 35ðþ4

−4 Þðþ5
−4 Þ 30ðþ3

−2 Þðþ2
−2 Þ 35ðþ1

−2 Þðþ2
−3 Þ

1−− 1 9.930þ4
−5 76ðþ0

−0 Þðþ0
−0 Þ 10ðþ0

−0 Þðþ0
−0 Þ 8ðþ0

−0 Þðþ0
−0 Þ 3ðþ0

−0 Þðþ0
−0 Þ 3ðþ0

−0 Þðþ0
−0 Þ

2 10.315þ3
−4 78ðþ0

−0 Þðþ0
−0 Þ 9ðþ0

−0 Þðþ0
−0 Þ 8ðþ0

−0 Þðþ0
−0 Þ 3ðþ0

−0 Þðþ0
−0 Þ 2ðþ0

−0 Þðþ0
−0 Þ

3 10.594þ3
−3 58ðþ1

−1 Þðþ0
−0 Þ 23ðþ1

−1 Þðþ0
−0 Þ 15ðþ0

−0 Þðþ0
−0 Þ 2ðþ0

−0 Þðþ0
−0 Þ 2ðþ0

−0 Þðþ0
−0 Þ

4 10.865þ4
−2 67.5þ4.9

−5.1 8ðþ1
−1 Þðþ2

−1 Þ 5ðþ3
−1 Þðþ0

−0 Þ 29ðþ2
−4 Þðþ1

−1 Þ 44ðþ2
−4 Þðþ1

−1 Þ 14ðþ3
−2 Þðþ0

−1 Þ
5 10.932þ3

−5 102.0þ5.0
−7.3 18ðþ2

−1 Þðþ3
−2 Þ 20ðþ1

−1 Þðþ0
−0 Þ 21ðþ1

−1 Þðþ1
−1 Þ 36ðþ2

−3 Þðþ1
−2 Þ 5ðþ1

−1 Þðþ0
−0 Þ

6 11.144þ5
−8 24.6þ1.3

−1.0 40ðþ3
−2 Þðþ4

−3 Þ 23ðþ1
−2 Þðþ2

−3 Þ 8ðþ0
−0 Þðþ0

−0 Þ 20ðþ1
−1 Þðþ1

−1 Þ 9ðþ0
−0 Þðþ0

−0 Þ
2þþ 1 10.181þ4

−5 76ðþ0
−0 Þðþ0

−0 Þ 12ðþ0
−0 Þðþ0

−0 Þ 6ðþ0
−0 Þðþ0

−0 Þ 4ðþ0
−0 Þðþ0

−0 Þ 2ðþ0
−0 Þðþ0

−0 Þ
2 10.486þ3

−4 74ðþ0
−0 Þðþ0

−0 Þ 13ðþ0
−0 Þðþ0

−0 Þ 8ðþ0
−0 Þðþ0

−0 Þ 3ðþ0
−0 Þðþ0

−0 Þ 2ðþ0
−0 Þðþ0

−0 Þ
3 10.798þ0

−0 12.3−3.0−4.0 21ðþ1
−1 Þðþ4

−3 Þ 51ðþ1
−1 Þðþ3

−3 Þ 22ðþ0
−0 Þðþ1

−1 Þ 4ðþ0
−0 Þðþ1

−1 Þ 2ðþ0
−0 Þðþ0

−0 Þ
4 11.038þ3

−4 40.8þ2.8
−2.0 9ðþ1

−1 Þðþ2
−1 Þ 49ðþ0

−1 Þðþ2
−3 Þ 9ðþ0

−0 Þðþ1
−1 Þ 31ðþ0

−1 Þðþ0
−0 Þ 2ðþ0

−0 Þðþ0
−0 Þ

3−− 1 10.390þ3
−4 77ðþ0

−0 Þðþ0
−0 Þ 12ðþ0

−0 Þðþ0
−0 Þ 5ðþ0

−0 Þðþ0
−0 Þ 3ðþ0

−0 Þðþ0
−0 Þ 2ðþ0

−0 Þðþ0
−0 Þ

2 10.639þ3
−2 2.4þ0.9

−1.5 43ðþ3
−3 Þðþ3

−3 Þ 47ðþ3
−3 Þðþ3

−4 Þ 7ðþ0
−0 Þðþ0

−0 Þ 2ðþ0
−0 Þðþ0

−0 Þ 1ðþ0
−0 Þðþ0

−0 Þ
3 10.944þ2

−3 46.9þ6.2
−4.6 8ðþ1

−0 Þðþ2
−1 Þ 23ðþ1

−1 Þðþ1
−1 Þ 25ðþ0

−0 Þðþ0
−0 Þ 35ðþ0

−0 Þðþ0
−1 Þ 8ðþ0

−0 Þðþ0
−0 Þ

4 11.174þ5
−7 1.9þ2.1

−1.4 43ðþ3
−2 Þðþ5

−4 Þ 27ðþ2
−2 Þðþ1

−1 Þ 6ðþ0
−0 Þðþ0

−0 Þ 13ðþ1
−1 Þðþ2

−2 Þ 11ðþ1
−1 Þðþ2

−2 Þ
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n ¼ 5. See our last publication [29], where we discuss in
detail that this is a meson-meson dominated state, which
can be classified as an ϒ type crypto-exotic state. We now
find another state with a comparable mass and decay width
in our D wave spectrum as J̃ ¼ 2, n ¼ 3, i.e. there are two
distinct resonances very close in the spectrum. This is not
surprising and can be observed already in constituent quark
models, since D wave quarkonium states have energies
comparable to radially excited S wave quarkonium
states [72].
We find support for the interpretation of ϒð10860Þ as

ϒð5SÞ. Concerning ϒð11020Þ we find indications of
corresponding resonances in both the S wave sector
(J̃ ¼ 0, n ¼ 7) as well as the D wave sector (J̃ ¼ 2,
n ¼ 4). We interpret these two resonances as two states
as briefly discussed in the previous paragraph. We note that
it would be very interesting, if experiments studying
bottomonium could disentangle these two states.
In what concerns a possibly existing bottomonium state

close to theBð�ÞBð�Þ threshold, as counterpart to theXð3872Þ
charmonium state, we do not find one. However, we find a

J̃ ¼ 2,n ¼ 3 state very close to theBð�Þ
s Bð�Þ

s threshold,which
could have similarities toXð3872Þ [48,49] and its composite
nature proposed by lattice QCD computations [73] and by
data analysis [74]. This state has a meson-meson component
significantly larger than its quarkonium component, 79%
versus 21%.
Our aim for the future is to reduce systematic errors as

much as possible, to be able to reproduce the experimen-
tally observed states not only on a qualitative level, but
rather precisely with combined statistical and systematic
errors of only a few MeV. To reduce the systematic errors,
we plan to compute the necessary potentials VQ̄QðrÞ,
VmixðrÞ, VM̄M;kðrÞ and VM̄M;⊥ðrÞ via lattice QCD explic-
itly, avoiding to perform algebraic operations on string
breaking potentials from Ref. [30]. This should eliminate
several sources of uncertainty and additionally create
opportunities for new and interesting results:

(i) With up-to-date lattice results we might also obtain a
more accurate scale setting, i.e. a more precise value
for the lattice spacing a or, equivalently, the Sommer
parameter r0. Moreover, we should be in a position
to calibrate the bottom quark mass mb rather
precisely and, thus, avoid using a value from quark
models.

(ii) There is a discrepancy between our lightest bound
states and the corresponding experimental results.
We expect that this can be resolved by a precise

computation of the mixing angle θðrÞ, which has a
strong impact on the potential matrix (see Sec. II A
of Ref. [28] for details).

(iii) Related to the previous item is a precise determi-
nation of the mixing potentials between quarkonium
and meson-meson pairs, providing quantitative first
principles results for quantities estimated and used in
a large number of quark models for many years
[75–80].

(iv) The details of the short range and the long range
parts of the entries of the potential matrix, if
computed with sufficient precision, should be of
interest for models based on hadron-hadron inter-
actions.

Another significant source of systematic error is the
neglect of heavy spin effects. To achieve the desired level of
precision, we plan to include them using methods devel-
oped in a related project [81] and possibly carry out a lattice
QCD computation of 1=mb and 1=m2

b corrections at least
for the confining potential VQ̄QðrÞ (see e.g. Refs. [82–87]).
Finally, it might be interesting to include decay channels

to a negative and a positive parity heavy-light meson pair,
to make solid predictions up to the threshold of two positive
parity mesons at around 11.525 GeV. This would allow us
to obtain information about several states, which are not yet
measurable by experiments.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Gunnar Bali,
Eric Braaten, Marco Cardoso, Francesco Knechtli, Vanessa
Koch and Sasa Prelovsek. P. B. and N. C. acknowledge the
support of Centro de Física e Engenharia de Materiais
Avançados (CeFEMA) under the FCT contract for R&D
Units UIDB/04540/2020. N. C. acknowledges the FCT
contract SFRH/BPD/109443/2015. L. M. acknowledges
support by a Karin and Carlo Giersch Scholarship of the
Giersch Foundation. M.W. acknowledges support by the
Heisenberg Programme of the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)—
Project No. 399217702. Calculations on GPU servers of
CeFEMA partly supported by NVIDIAwere conducted for
this research. Calculations on the GOETHE-HLR and on
the FUCHS-CSC high-performance computer of the
Frankfurt University were conducted for this research.
We would like to thank HPC-Hessen, funded by the
State Ministry of Higher Education, Research and the
Arts, for programming advice.

BICUDO, CARDOSO, MUELLER, and WAGNER PHYS. REV. D 107, 094515 (2023)

094515-16



[1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 127,
082001 (2021).

[2] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
126, 102001 (2021).

[3] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 125,
242001 (2020).

[4] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 102,
112003 (2020).

[5] A. Rodas et al. (JPAC Collaboration), Phys. Rev. Lett. 122,
042002 (2019).

[6] R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 78,
1019 (2018).

[7] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 92,
112009 (2015).

[8] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 92,
092006 (2015).

[9] K. Chilikin et al. (Belle Collaboration), Phys. Rev. D 90,
112009 (2014).

[10] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112,
222002 (2014).

[11] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
112, 022001 (2014).

[12] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
111, 242001 (2013).

[13] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
112, 132001 (2014).

[14] K. Chilikin et al. (Belle Collaboration), Phys. Rev. D 88,
074026 (2013).

[15] T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Phys.
Lett. B 727, 366 (2013).

[16] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110,
252002 (2013); 111, 019901(E) (2013).

[17] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
110, 252001 (2013).

[18] B. Ketzer, Proc. Sci. QNP2012 (2012) 025 [arXiv:1208
.5125].

[19] A. Bondar et al. (Belle Collaboration), Phys. Rev. Lett. 108,
122001 (2012).

[20] R. Mizuk et al. (Belle Collaboration), Phys. Rev. D 80,
031104 (2009).

[21] S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 100,
142001 (2008).

[22] J. P. Ader, J. M. Richard, and P. Taxil, Phys. Rev. D 25, 2370
(1982).

[23] J. l. Ballot and J. M. Richard, Phys. Lett. 123B, 449 (1983).
[24] R. L. Jaffe, Phys. Rev. D 15, 267 (1977).
[25] R. Aaij et al. (LHCb Collaboration), Nat. Phys. 18, 751

(2022).
[26] R. Aaij et al. (LHCb Collaboration), Nat. Commun. 13,

3351 (2022).
[27] M. Luscher, Nucl. Phys. B354, 531 (1991).
[28] P. Bicudo, M. Cardoso, N. Cardoso, and M. Wagner, Phys.

Rev. D 101, 034503 (2020).
[29] P. Bicudo, N. Cardoso, L. Müller, and M. Wagner, Phys.

Rev. D 103, 074507 (2021).
[30] G. S. Bali, H. Neff, T. Dussel, T. Lippert, and K. Schilling

(SESAM Collaboration), Phys. Rev. D 71, 114513 (2005).
[31] J. Bulava, B. Hörz, F. Knechtli, V. Koch, G. Moir, C.

Morningstar, and M. Peardon, Phys. Lett. B 793, 493
(2019).

[32] C. Bonati and S. Morlacchi, Phys. Rev. D 101, 094506
(2020).

[33] P. Bicudo and M. Wagner (European Twisted Mass Col-
laboration), Phys. Rev. D 87, 114511 (2013).

[34] Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506
(2012).

[35] Q. Li, M.-S. Liu, Q.-F. Lü, L.-C. Gui, and X.-H. Zhong, Eur.
Phys. J. C 80, 59 (2020).

[36] W.-H. Liang, N. Ikeno, and E. Oset, Phys. Lett. B 803,
135340 (2020).

[37] J. F. Giron and R. F. Lebed, Phys. Rev. D 102, 014036
(2020).

[38] C. Meng and K.-T. Chao, Phys. Rev. D 77, 074003 (2008).
[39] Y. A. Simonov and A. I. Veselov, Phys. Lett. B 671, 55

(2009).
[40] M. B. Voloshin, Phys. Rev. D 85, 034024 (2012).
[41] J. Y. Süngü, A. Türkan, H. Dağ, and E. Veli Veliev, Adv.

High Energy Phys. 2019, 8091865 (2019).
[42] R. Mizuk et al. (Belle Collaboration), J. High Energy Phys.

10 (2019) 220.
[43] Z.-G. Wang, Chin. Phys. C 43, 123102 (2019).
[44] A. Ali, L. Maiani, A. Y. Parkhomenko, and W. Wang, Phys.

Lett. B 802, 135217 (2020).
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