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The nuclear liquid-gas transition from a gas of hadrons to a nuclear phase cannot be determined
numerically from conventional lattice QCD due to the severe sign problem at large values of the baryon
chemical potential. In the strong coupling regime of lattice QCD with staggered quarks, the dual
formulation is suitable to address the nuclear liquid gas transition. We determine this first order transition at
low temperatures and as a function of the quark mass and the inverse gauge coupling β. We also determine
the baryon mass and discuss the nuclear interactions as a function of the quark mass, and compare to mean
field results.
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I. INTRODUCTION

It is known from experiments [1] that at low temper-
atures, there is a phase transition between dilute hadron gas
and dense nuclear matter as the baryon chemical potential
increases. This transition is of first order and terminates at
about Tc ¼ 16 MeV in a critical endpoint. The value of the
chemical potential μ1stB at zero temperature is given roughly
by the baryon massmB, where the difference of μ1stB −mB is
due to nuclear interactions. For a review on nuclear
interactions see [2].
As the nuclear force between baryons to form nuclear

matter is due to the residual strong interactions between
quarks and gluons, it should be accurately described by
QCD.We choose to study the nuclear transition and nuclear
interaction via lattice QCD [3], with its Lagrangian being a
function of the quark mass and the inverse gauge coupling.
In order to understand the nature of the transition, it is
helpful to study its dependence on these parameters.
However, at finite baryon density, lattice QCD has the

infamous sign problem which does not allow us to perform
direct Monte Carlo simulations on the lattice. Various
methods have been proposed to overcome the numerical
sign problem, but they are either limited to μB=T ≲ 3 [4–7]
or cannot yet address full QCD in 3þ 1 dimensions in the

whole μB-T plane [8,9], in particular the nuclear transition
is out of reach.
An alternative method is to study lattice QCD via the

strong coupling expansion. There are two established
effective theories for lattice QCD based on this: (1) the
3-dim. effective theory for Wilson fermions in terms of
Polyakov loops, arising from a joint strong coupling and
hopping parameter expansion [10], (2) the dual represen-
tation for staggered fermions in 3þ 1 dimensions, with
dual degrees of freedom describing mesons and baryons.
Both effective theories have their limitations: (1) is limited
to rather heavy quarks (but is valid for large values of β)
whereas (2) is limited to the strong coupling regime β ≲ 1
(but is valid for any quark mass). We study lattice QCD in
the dual formulation, both at infinite bare gauge coupling,
β ¼ 0, and at leading order of the strong coupling expan-
sion in the regime β < 1, which is far from the continuum
limit. But since strong coupling lattice QCD shares
important features with QCD, such as confinement, and
chiral symmetry breaking and its restoration at the chiral
transition temperature, and a nuclear liquid gas transition,
we may get insights into the mechanisms, in particular as
the dual variables give more information in terms of its
world lines, as compared to the usual fermion determinant
that depends on the gauge variables.
To establish a region of overlap of both effective theories,

we have chosen to perform the Monte Carlo simulations in
the dual formulation extending to rather large quark
masses.
This paper is organized as follows: in the first part we

explain the dual formulation in the strong coupling regime,
in the second part we provide analytic results based on
exact enumeration and mean field theory, in the third part
we explain the setup of our Monte Carlo simulations and
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present result on the mq- and β-dependence of the nuclear
transition. Since the strong coupling regime does not have a
well-defined lattice spacing, we also determine the baryon
mass amB to set the parameters of the grand-canonical
partition function, aT and aμB, in units of amB. We
conclude by discussing the resulting nuclear interactions,
and compare our findings with other results.

A. Staggered action of strong coupling QCD
and its dual representation

In the strong coupling regime, the gauge integration is
performed first, followed by the Grassmann integration to
obtain a dual formulation. This was pioneered for the
strong coupling limit in [11] and has been extended by one
of us to include gauge corrections [12,13]. The sign
problem is mild in the strong coupling limit and still under
control for β < 1, where we can apply sign reweighting.
The dual degrees of freedom are color-singlet mesons and
baryons, which are pointlike in the strong coupling limit,
and become extended about a lattice spacing by incorpo-
rating leading order gauge corrections.
The partition function of lattice QCD is given by

Z ¼
Z

DUDχ̄Dχe−SG½U�−SF ½χ̄;χ;U� ð1Þ

where DU is the Haar measure, U ∈ SUð3Þ are the gauge
fields on the lattice links (x; μ̂) and fχx; χxg are the
unrooted staggered fermions at the lattice sites x. The
gauge action SG½U� is given by the Wilson plaquette action

SG½U� ¼ −
β

2Nc

X
p

Tr½Up� þ Tr½U†
p� ð2Þ

and the staggered fermion action SF½χ; χ;U� is

SF½χ̄; χ;U�
¼
X
x;μ̂

ημ̂ðxÞðeþaμqδμ̂;0̂ χ̄xUx;μ̂χxþμ̂ − e−aμqδμ̂;0̂ χ̄xþμ̂U
†
x;μ̂χxÞ

þ 2amqχ̄xχx; ð3Þ

where the gauge action depends on the inverse gauge
coupling β ¼ 2Nc

g2 and the fermion action depends on the

quark chemical potential aμq which favors quarks in the
positive temporal direction, and the bare quark mass amq.
First we consider the strong coupling limit where the

inverse gauge coupling β ¼ 0 and hence the gauge action
SG½U� drops out from the partition function in this limit.
The gauge integration is over terms depending only on the
individual links (x; μ̂) so the partition function factorizes
into a product of one-link integrals and we can write it as:

Z ¼
Z Y

x

�
dχxdχxe

2amq χ̄xχx
Y
μ̂

zðx; μ̂Þ
�
;

zðx; μ̂Þ ¼ dUμ̂;xe
ημ̂ðxÞðχ̄xUμ̂;xχxþμ̂−χ̄xþμ̂U

†
μ̂;xχxÞ; ð4Þ

with zðx; μ̂Þ the one-link gauge integral that can be
evaluated from invariant integration, as discussed
in [11,14], where we write the one-link integral in terms
of new hadronic variables:

MðxÞ ¼ χ̄xχx; BðxÞ ¼ 1

N!
εi1…iNc

χx;i1 � � � χx;iNc
ð5Þ

Only terms of the form ðMðxÞMðyÞÞkx;μ̂ (with kx;μ̂ called
dimers which count the number of meson hoppings) and
B̄ðyÞBðxÞ and B̄ðxÞBðyÞ (called baryon links) are present in
the solution of the one-link integral. The sites x and y ¼
xþ μ̂ are adjacent lattice sites. It remains to perform the
Grassmann integral of the fermion fields χ̄, χ. This requires
to expand the exponential containing the quark mass in
Eq. (4) (left), which results in the terms ð2amqMðxÞÞnx
(with nx called monomers). To obtain nonvanishing results,
at every site, the 2Nc Grassman variables χx;i and χ̄x;i have
to appear exactly once, resulting in the Grassmann con-
straint (GC):

nx þ
X
�μ̂

�
kx;μ̂ þ

Nc

2
jlx;μ̂j

�
¼ Nc; ð6Þ

where nx is the number of monomers, kx;μ̂ is the number of
dimers and the baryons form self-avoiding loops lx;μ̂,
which due to the constraint cannot coexist with monomers
or dimers.
With this, we obtain an exact rewriting of the partition

function Eq. (4) for Nc ¼ 3, in terms of integer-valued dual
degrees of freedom fn; k;lg:

Z ¼
XGC

fk;n;lg

Y
b¼ðx;μ̂Þ

ð3 − kbÞ!
3!kb!

γ2kbδ0;μ̂
Y
x

3!

nx!
ð2amqÞnx

Y
l

wðlÞ;

ð7Þ

where the sum over valid configurations has to respect the
constraint (GC). The first term in the partition function is
the contribution from dimers and the second term is the
contribution from monomers. The weight factor wðlÞ for
each baryon loop l depends on the baryon chemical
potential μB ¼ 3μq and induces a sign factor σðlÞ which
depends on the geometry of l:

wðlÞ ¼ 1Q
x∈l3!

σðlÞγ3N 0̂ðlÞ exp ðωlNtatμBÞ: ð8Þ

Here, ωl is the winding number of the loop l. Both Eq. (7)
and Eq. (8) have as an additional parameter the bare
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anisotropy γ, that is related to the anisotropy a
at
¼ ξðγÞ in a

nonperturbative way. We restrict here to γ ¼ 1 (at ¼ a) as
we are interested in low temperatures and focus on the
dependence on the baryon chemical potential. The total
sign factor

Q
l σðlÞ ∈ f�1g is explicitly calculated for

every configuration. We apply sign reweighting as the dual
formulation has a mild sign problem: baryons are non-
relativistic and usually have loop geometries that have a
positive signs. The dual partition function of the strong
coupling limit is simulated with the worm algorithm (see
Sec. III A) and the sign problem is essentially solved in
this limit.
All observables of interest can be obtained in terms of

dual variables, e.g.
(i) the baryon density:

a3ρB ¼ a3
T
V
∂ logZ
∂μB

����
V;T

¼ hΩi
N3

σ
¼ hωi; ð9Þ

depends on the spatial density ω of the total baryon
winding number Ω ¼Pl ωl,

(ii) the chiral condensate:

a3hχ̄χi ¼ a3
hNMi

N3
σNτa4

¼ 1

amq
hnMi; ð10Þ

depends on the space-time density nM of the total
monomer number nM ¼Px nx,

(iii) the energy density:

a4ϵ ¼ μBρB −
a4

V
∂ logZ
∂T−1

����
V;μB

¼ ξ

γ

dγ
dξ

����
γ¼1

hnqi − hnMi: ð11Þ

depends on the space-time densities nq of the dual
variables on temporal bonds Nq ¼ 2NDtþ 3NBt,
with NDt ¼

P
kbδμ;0 and NBt ¼

P
l N0̂ðlÞ.

The last observable depends on the function ξðγÞ even for
γ ¼ 1, as its derivative is nontrivial, see Sec. III C.

B. Extension to finite β

The leading order gauge corrections OðβÞ to the strong
coupling limit are obtained by expanding the Wilson gauge
action Eq. (2) before integrating out the gauge links. A
formal expression is obtained by changing the order of
integration (first gauge links, then Grassmann-valued
fermions) within the QCD partition function:

ZQCD¼
Z

dχdχ̄DUe−SG½U�−SF ½U�

¼
Z

dχdχ̄ZFhe−SG½U�iZF
; ZF¼

Z
DUe−SF½U�: ð12Þ

With this the OðβÞ partition function is

Zð1Þ ¼
Z

dχdχ̄ZFh−SG½U�iZF
; ð13Þ

h−SG½U�iZF
¼ β

2Nc

R
DU
P

Pðtr½UP þU†
P�Þe−SF½U�

ZF
: ð14Þ

The challenge in computing Zð1Þ is to address the SUðNcÞ
integrals that receive contributions from the elementary
plaquette UP. Link integration no longer factorizes, how-
ever the tr½UP� can be decomposed before integration:

Z
DUtr½UP�e−SF½U� ¼ JabJbcJcdJda;

JijðM;M†Þ ¼
Z

DUetr½UM†þMU†�Uij ð15Þ

Integrals of the type Jij with two open color indices—as
compared to link integration at strong coupling—have been
derived from generating functions

Za;b½K; J� ¼
Z
G
DUtr½UK�atr½U†J�b ð16Þ

for either J ¼ 0 [14] or for G ¼ UðNcÞ [15,16]. The SUð3Þ
result was discussed in [12], in terms of the dual variables,
neglecting rotation and reflection symmetries, there are 19
distinct diagrams to be considered. The resulting partition
function, valid to OðβÞ, is

ZðβÞ ¼
X

fn;k;l;qPg

Y
x

ŵx

Y
b

ŵb

Y
l

ŵl

Y
P

ŵP;

ŵx ¼ wxvx; ŵb ¼ wbk
qb
b ; ŵl ¼ wl

Y
l

wBi
ðlÞ;

ŵP ¼
�

β

2N

�jqPj
; ð17Þ

with qP ∈ f0;�1g, and the site weights wx ↦ ŵx, bond
weights wb ↦ ŵb and baryon loop weights wl ↦ ŵl
receive modifications compared to the strong coupling
limit Eq. (7) for sites and bonds adjacent to an excited
plaquette qP ¼ 1. The weights are given in [12], and are
rederived for any gauge group in [13]. The configurations
fn; k;l; qpg must satisfy at each site x the constraint
inherited from Grassmann integration:

nx þ
X

ν̂¼�0̂;…;�d̂

�
kν̂ðxÞ þ

Nc

2
jlν̂ðxÞj

�
¼ Nc þ qx; ð18Þ

which is the modified version of Eq. (6) with qx ¼ 1 if
located at the corner of an excited plaquette qp ≠ 0,
otherwise qx ¼ 0.
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A more general expression that we obtained via group
theory and is valid to higher orders of the strong coupling
expansion is discussed in terms of tensor networks [13]. A
typical 2-dimensional configuration that arises at β ¼ 1 in
the Monte Carlo simulations is given in Fig. 1. Note that if a
baryon loop enters a nontrivial plaquette, one quark is
separated from the two other quarks, resulting in the baryon
being extended object, rather being pointlike in the strong
coupling limit.
The OðβÞ partition function has been used in the chiral

limit [12] to study the full μB-T plane via reweighting from
the strong coupling ensemble. Whereas the second order
chiral transition for small values of the aμB decreased up to
the tricritical point, the first order nuclear transition was
invariant: aμ1stB ≃ 1.78ð1Þ at zero temperature has no
β-dependence. For the ratio TðμB ¼ 0Þ=μ1stB ðT ≃ 0Þ we
found the values 0.787 for β ¼ 0 and 0.529β ¼ 1, which
should be compared to Tc= ≃ 0.165 for full QCD [17].
However, since reweighting cannot be fully trusted

across a first order boundary, direct simulations at nonzero
β are necessary. The Monte Carlo technique to update
plaquette variables is discussed in Sec. III A.

II. ANALYTIC RESULTS

In this section, we provide analytic results from exact
enumeration for small volumes, and mean field results
based on the 1=d expansion, valid in the thermodynamic

limit. The main purpose is to compare our Monte Carlo
results to these analytic predictions.

A. Exact enumeration

To establish that our Monte Carlo simulations indeed
sample the partition functions Eq. (7) and Eq. (17), we have
obtained analytic results on a 24 volume at strong coupling,
and at finite beta in two dimensions on a 4 × 4 volume,
comparing OðβÞ and Oðβ2Þ truncations.
Our strategy to obtain an exact enumeration of the

partition function Z is to enumerate plaquette configura-
tions first, then fixing the fermion fluxes which together
with the gauge fluxes that are induced by the plaquettes
form a singlet, a triplet or antitriplet, i.e., on a given bond b,
gb þ fb ∈ f−3; 0; 3g, and last we perform the monomer-
dimer enumeration on the available sites not saturated by
fermions yet by a depth-first algorithm [18]. At strong
coupling, with no plaquettes, gb ¼ 0 and fb are baryonic
fluxes.
All observables that can be written in terms of derivatives

of logðzÞ, such as the baryon density, the chiral condensate,
the energy density Eqs. (9)–(11), and also the average sign,
are shown in Fig. 3 in the full μB-T plane. A detailed
comparison of Monte Carlo data with exact enumeration is
shown in Fig. 2.

B. Expectations from mean field theory

Another analytical method to study strong coupling
lattice QCD is the mean field approach, where the partition
function is expanded in 1

d (d is the spatial dimension)
and then a Hubbard-Stratonovich transformation per-
formed [19]. After this procedure, the free energy is a
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FIG. 2. Chiral susceptibility on a 24 volume for various quark
masses, as a function of the bare anisotropy γ (with aT ¼ γ2=2),
analytic results from exact enumeration (solid lines), compared to
numerical data from simulations via the worm algorithm, with the
error bars purely statistical. Left: zero chemical potential, right:
finite chemical potential.

FIG. 1. Typical 2-dimension configuration at β ¼ 1.0, at non-
zero quark mass, temperature, chemical potential. The black dots
are monomers, the blue lines are dimers, the red arrows are
baryon loop segments (or triplets gb þ fb ¼ �3 if adjacent to a
nontrivial plaquette), and the green squares are plaquette occu-
pations �1. The actual configurations are 3þ 1-dimensional.
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function of temperature T, the chiral condensate σ and
chemical potential μB:

Feff ½σ;T;m;μB�

¼Ncd
4

σ2−T log

�
2cosh ½μB=T� þ

sinh ½ðNcþ 1ÞE=T�
sinh½E=T�

�
;

E½m� ¼ arcsinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ

�
dσ
2

�
2

þmdσ

s 	
; ð19Þ

hereE½m� is one-dimensional quark excitation energywhich
is a function of the quark mass m ¼ amq. For Nc ¼ 3 and
d ¼ 3 we determined the minimum of the free energy with
respect to the chiral condensate. This gives us the equilib-
rium chiral condensate as a function of ðT;m; μBÞ.
The chiral condensate and the baryon density as a

function of the baryon chemical potential in lattice units
aμB and for various temperatures at quark mass m ¼ 1.5 is
shown in Fig. 4. We have determined the critical temper-
ature to be aTc ¼ 0.23ð1Þ, which is characterized by an
infinite slope of the chiral condensate. For lower temper-
atures, there is a clear discontinuity of the chiral conden-
sate, separating the low density phase from the high density

phase. For temperatures above and in the vicinity of aTc
the chiral condensate and baryon density has no disconti-
nuity but rapidly changes, corresponding to a crossover
transition.
With this method, the phase diagram is plotted for

different quark masses in Fig. 5. The second order phase
transition in the chiral limit is plotted in solid blue line, the
dotted lines show the first order phase transition for
different quark masses and the solid red line indicates
the critical endpoint for the different quark masses. The first
order phase transitions for large quark masses (amq > 1.5)
have a systemic uncertainty due to numerical instabilities
when determining the roots for the corresponding param-
eters ðaμB; aTÞ.
Mean field theory also gives an expression for the pion

mass amπ and the baryon mass amB [20]:

ðamπÞ2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dþ 2

p
m ¼d¼3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dþ 2

p
m; ð20Þ

sinhðamBÞ ¼
ð2dþ 2ÞNc=2

2

 
mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dþ 2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2dþ 2
þ 1

s !Nc

¼d¼3;Nc¼3
4
ffiffiffi
8

p �
mffiffiffi
8

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

8
þ 1

r �3

: ð21Þ
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FIG. 3. Various observables as defined in Eqs. (9)–(11) in the μB-T plane as obtained from exact enumeration of the partition function
on a 24 volume at amq ¼ 0.1, displayed as a heat map with the gray contour lines in intervals of 0.1 of the corresponding observable. The
back-bending of the first order transition at temperatures below aT ¼ 0.5 in all observables is an artifact of the small volume, and
vanishes in the thermodynamic limit. The temperature aT ¼ 1=2 corresponds to the isotropic lattice here.
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Themean field baryonmass forNc ¼ 3,d ¼ 3 is also plotted
in red in Fig. 18.Whereas the baryonmass is aroundNc in the
chiral limit (amB ≃ 3.12 for Nc ¼ 3), it approximately
doubles at m ¼ 3.5 (amB ≃ 6.28) which corresponds to

the pion mass amπ ¼ 4.45, i.e. mπ=mB ¼ 0.708. Hence,
at around bare massm ¼ 3.5, the valence quark mass of the
baryon corresponds roughly to1=3 of the chiral limit value of
the baryon mass.

III. NUMERICAL INVESTIGATION

A. Monte Carlo simulations

The first Monte Carlo simulations that could extend in
the μB-T plane was the MDP algorithm [21], but it required
the introduction of the worm algorithm [22] to make
substantial progress. First studies of the worm algorithm
applied to the strong coupling limit QCD [with gauge
group U(3)] are [23], and [24,25] for gauge group SUð3Þ.
Monte Carlo simulations to extend the worm to incorporate
leading order corrections were first proposed in [12]. We
will shortly review the setup of or Monte Carlo strategy for
the nuclear transition, with an emphasis on the challenges
to address large quark masses.

1. Strong coupling

In order to sample the dual variables in Eq. (7), the worm
algorithm performs much better concerning critical slowing
down as other local algorithms. Although the worm (in spin
models) is based on a high-temperature expansion (in our
context this corresponds to the expansion in baryon and
meson hoppings), it is valid for any temperatures (in our
context: for all quark masses). The main idea of the worm is
to sample an enlarged configuration space by introducing
two sources known as worm tail xT and head xH, and by
proposing local updates to either move both head and tail,
or shift the worm head xH until it recombines again with the
tail, xT ¼ xH. During worm evolution, the 2-point mono-
mer correlation function is measured, and after the worm
update has completed, a global update has occurred.
We use two types of worm evolutions, one for the

mesonic sector (not touching baryonic sites), and one worm
to modify, construct or deconstruct baryonic loops as
explained in detail in [24]. This can be readily used to
perform simulations at nonzero temperature and baryon
density.
Simulations in the chiral limit are particularly cheap with

the worm algorithm. Finite quark masses also requires to
include a monomer-dimer update that change the monomer
number. This update is sufficient for small quark masses,
but not for large quark masses amq > 1.0, in particular at
low temperatures and densities around aμB; c: the reason is
that the quark mass favors monomers, the chemical
potential favors baryons, which makes it difficult to
pinpoint the first order transitions between the hadron
gas and the nuclear phase, due to large autocorrelation
times for baryonic observables.
To overcome this limitation, we propose an additional

update, a “static update,” that is based on the 1-dim
QCD partition function [26] and applies to all spatial

FIG. 4. The chiral condensate (left) and the baryon density
(right) for quark mass m ¼ 1.5 as a function of the chemical
potential and for various temperatures. The lines connecting the
results from the minimization of Eq. (19) serve to guide the eye.

FIG. 5. Phase diagram with mean field approach. The second
order chiral transition is shown in blue (solid line). The phase
transition for different quark masses are the plotted with dotted
lines. The critical endpoint for different quark masses is plotted in
red (solid line).
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sites with no spatial dimers or baryons attached at any
τ ∈ ½0; 1;…Nτ − 1�. This additional update drastically
reduced the autocorrelation time by effectively mixing
monomers and static baryons.
The particular quark masses, volumes, chemical poten-

tials and the statistics in terms of the number of worm
updates is given in Table I.

2. Finite β

Whereas the reweighting result could not answer the
question about the β-dependence of the nuclear transition,
direct simulations at finite β could in principle resolve this
issue. This required to implement a plaquette update based
on the plaquette and anti-plaquette occupation numbers np,
n̄p, which is essentially a Metropolis-Hasting algorithm.
We have restricted here to np − np ¼ qp ∈ f0;�1g as
given in Eq. (17) to have a manageable update strategy: The
mesonic and baryonic worm algorithms need to be mixed
with plaquette updates sufficiently to have an ergodic
algorithm valid for sufficiently large β. In practice, after
the worm closes, a plaquette update is proposed on random
plaquette coordinates p. Typical configurations in terms of
monomers, dimers, fermion world-lines and plaquette
excitations as shown in Fig. 1 are based on Eq. (17). In
practice, such simulations are limited by the sign problem
which already becomes severe for β > 1, see Sec. III B 2.
The particular quark masses, values of β, volumes,

chemical potentials and the statistics in terms of the number
of worm updates is given in Sec. VA 2.

B. Residual sign problem

Although it is possible to resum the sign problem at
strong coupling with a resummation of baryon and pion
world lines, this is not possible when including gauge
corrections. In order to compare both sign problems, we
kept the original dual formulation to monitor the severity of
the sign problem. This is done via the relation

hσi ¼ e−V=TΔf; Δf ¼ f − fjj ð22Þ

between the average sign hσi and the difference of the free
energy density Δf between the full ensemble f and of the
sign-quenched ensemble fjj.

1. Strong coupling

Without any further resummation, there is a mild sign
problem in the dual formulation of lattice QCD in the
strong coupling limit. When the average sign hσi is not too
small (close to zero), it implies that most of the configu-
rations have a positive weight thus allowing us to perform
sign reweighting strategies. In Fig. 6, Δf is plotted as a
function of the baryon chemical potential and the quark
masses. It is seen that Δf is close to zero for most cases
except near the critical chemical potential and for small

quark masses, but never exceeds 5 × 10−4. Hence sign
reweighting can be performed in the full parameter space.
The result that the sign problem becomes even milder when
increasing the mass is related to the fact that larger critical
chemical potentials result in a larger fraction of static
baryons (spatial baryon hoppings become rare).

2. Finite β

Whereas baryons are point-like in the strong coupling
limit, they become resolved as fermions split around
plaquettes with nonzero plaquette occupation number.
The fermion world lines no longer have simple geometries
and introduce an additional sign problem. This is shown in
Fig. 7: up to β ¼ 1 the sign problem is still manageable: the
nuclear transition weakens, however the sign problem gets
more severe for all values of the chemical potential.

FIG. 6. ΔF at strong coupling as a function of chemical
potential and quark mass on a 63 × 8. The sign problem becomes
milder as the quark mass increases.

FIG. 7. Δf at amq ¼ 0.2 as a function of chemical potential and
β the on a 63 × 4 lattice.

NUCLEAR LIQUID-GAS TRANSITION IN THE STRONG … PHYS. REV. D 107, 094514 (2023)

094514-7



C. Determination of the baryon mass

We have argued above that the onset of the nuclear
transition is roughly of the order of the nucleon mass. Since
we limit ourselves in this paper to one staggered flavor, and
there is no distinction between protons and neutrons (but
see [27] for the Nf ¼ 2 generalization), we refer to the
nucleon mass as baryon mass. We will see below that it is
strongly quark mass dependent.
While it is not straight forward to measure the pion mass

(it requires temporal extends larger than Nτ ¼ 8 and has
been studied only in the continuous time limit by one
of us [28].
In contrast to the 3-dim. effective theory with Wilson

fermions [10], we also cannot rely on a joint hopping
parameter and character expansion to obtain analytic
predictions for the baryon mass. Hence we determine it
numerically.
In the dual formulation, a closed baryon loop in the

temporal direction is called a static baryon which has links
BðxÞBðyÞ. This is a baryon hopping where a baryon is
annihilated at site x and created at site y. The probability for
the hopping depends on the baryon mass amB and is
proportional to e−amB at low temperatures (aT ¼ 1

Nt
).

Therefore, the probability for having a static baryon loop
with Nτ links is proportional to e−amBNt ¼ e

−mB
T .

We can express this probability as e
−ΔF
T withΔF being the

difference in free energy between configuration with a
static baryon and configuration without. Equating this with
the previous expression for the probability, we have
mB ¼ ΔF. This has been used to calculate the baryon
mass previously [24]. The free energy (F ¼ E − TS) is
approximately equal to the energy at low temperatures
which allows us to calculate the baryon mass with ΔE
instead, which is better suited to cover the whole quark
mass range.
Observables like the energy density can be numerically

determined as an expectation values of dual variables, for
Nc ¼ 3:

a4ϵ ¼ ξ

γ

∂γ

∂ξ
h2NDt þ 3NBti − hNMi ð23Þ

with NDt the number of temporal dimers, NBt the number
of temporal baryon segments and NM the number of
monomers. It also has a nontrivial dependence dependence
on the bare anisotropy γ and the physical anisotropy ξ ¼
a=at due to the derivative ∂γ=∂ξjγ¼1 even for isotropic
lattices γ ¼ 1. We have determined the relation between ξ
and γ for various quark masses [29] to determine the
derivative.
Using the expression for energy density, we have

calculated the baryon mass from the energy difference of
an ensemble with and without a static baryon at the origin.
Simulations of both ensembles were obtained via the worm

algorithm on a 83 × 8 lattice, i.e., for aT ¼ 0.125, which is
low enough to mimic zero temperature. The baryon mass is
plotted as a function of the bare quark mass amq in Fig. 8. It
is found that the baryon mass increases drastically with the
quark mass. This figure also show the contributions from
different dual degrees of freedom on the baryon mass:
whereas the main contribution in the chiral limit stems from
the static baryon (with a minor contribution from temporal
dimers), the main contribution for large quark masses is due
to the monomers, whereas the contribution from dimers
turn negative.
As we did not find a strong β-dependence concerning the

nuclear transition, it is well justified that the baryon mass
will also not depend much on β, and we will benchmark all
results with this strong coupling baryon mass.

D. Determination of the nuclear transition

1. Strong coupling

For low quark masses at intermediate temperatures, the
nuclear transition is established at the strong coupling
limit [30]. In this paper, we have extended the results to
larger quark masses and lower temperatures. In this region
the nuclear critical endpoint is at much larger values of aμB.
All simulations are carried out on isotropic lattices with
aT ¼ 0.125. This temperature is low enough to have an
approximate silver blaze property, i.e., up to the nuclear
transition, all observables are independent of aμB.
With the dual formulation, we can calculate the baryon

density and the baryon susceptibility as a function of the
baryon chemical potential for different quark masses. For a
first order transition, the baryon density shows a disconti-
nuity as shown in Fig. 10 for am1 ¼ 1.5. Note that the
resolution is high enough to obtain aμ1stB to high accuracy,
the error in aμ1stB is mainly due to this resolution ΔaμB ¼
0.003 (see Table I). However, since the first order transition

FIG. 8. Baryon mass from ΔE as a function of the quark mass
amq, and contributions from different dual variables: monomers,
dimers and baryon segments.
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is strong, not all peaks of the susceptibility could be
resolved. The skewness B3 becomes zero at the transition,
and the Binder cumulant gets close to the first order value
B4 ¼ 3. At sufficiently large larger quark masses, this

transition becomes continuous (a rapid crossover) as seen
in Fig. 11 for amq ¼ 1.9. For a crossover transition there is
no well defined value for μBc, so we take the critical
chemical potential to be the value at which the baryon
density is nB ¼ 0.5. We find that the first order transition
has a smaller gap beyond quark mass amq ¼ 1.5 and it has
vanished at amq ¼ 1.8. In Fig. 9 we show the baryon
density in the full μB −mq plane, where it can seen how the
transition broadens in the crossover region. We have
extrapolated the pseudocritical chemical potentials to the
thermodynamic limit to obtain the phase boundary and the
order of the transition as a function of the quark mass, as
shown in Fig. 12. The best guess for the nuclear critical
endpoint at aT ¼ 0.125 is amc

q ¼ 1.7ð1Þ, which corre-
sponds to amc

π ≃ 3.10 or mc
π=mB ≃ 0.64.

2. Finite β

The extension to finite β requires more statistics, and
each simulation takes longer due to the inclusion of the
plaquette occupation numbers. Hence we could only
address the temperature aT ¼ 0.25 (Nτ ¼ 4), which is
not low enough to find the silver blaze property as in
the strong coupling limit. As a consequence, the nuclear

FIG. 9. Baryon density for volume 43 × 8 in the full μB −mq
plane, illustrating the strong quark mass dependence of the onset
to nuclear matter.

FIG. 10. Baryonic observables on various volumes in the first order region amq ¼ 1.5. Vertical bands indicate the mean and error of
the nuclear transition.
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transition is weaker and the values of am1st
B and amc

B will
not coincide with the lower temperature counterpart. But
here we will now get insight into the β-dependence of the
nuclear transition.
In Fig. 13 we show the baryon density as a function of

the baryon chemical potential for two sets of quark masses

amq ¼ 0.1, amq ¼ 1.0 and inverse gauge couplings
β ¼ 0.1, β ¼ 1.0. For small quark masses, there is a strong
first order phase transition. It is slightly weaker for β ¼ 1.0
compared to β ¼ 0.1, but still strong with roughly the same
value of μ1stB ¼ 1.85ð5Þ. At large quark masses however, the
transition is crossover. The blue bands in the figures are

FIG. 11. Baryonic observables on various volumes in the crossover region amq ¼ 1.9. Vertical bands indicate the mean and error of
the nuclear transition.

FIG. 12. Left: extrapolation of the pseudocritical values of μB for the various volumes into the thermodynamic limit. Right: critical
baryon chemical potential for different quark masses, obtained from thermodynamic extrapolation. The first order transition region is
shown in blue, the crossover region is shown in red and the range for critical endpoint is marked in black.
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used to determine the pseudocritical baryon chemical
potentials aμpcB for each parameter in each finite volume.
We determine the uncertainty of the critical baryon chemi-
cal potential from the range of the data points below/above
the blue band. Since the shape of the transition is

asymmetric at finite temperature, we chose the band also
asymmetric, ranging from nB ¼ 0.4 to nB ¼ 0.8.
The quark mass dependence is shown in Fig. 14 for two

values, β ¼ 0.0 and β ¼ 0.9. While the location of the
critical point moves to lower quark masses at larger values

FIG. 13. The baryon density at small quark mass amq ¼ 0.1 (top) and large quark mass amq ¼ 1.0 (bottom), and small inverse gauge
coupling β ¼ 0.1 (left) and a large value β ¼ 1.0 (right). The β ¼ 0.1 results still show a strong first order transition for both quark
masses, which turns into a crossover for β ¼ 1.0. The blue bands indicate how the error on the onset aμpcB was obtained, which is
particularly relevant in the crossover region.

FIG. 14. The critical baryon chemical potential as a function of quark mass at β ¼ 0 (left) and at β ¼ 0.9 (right) for three different
volumes and a range for the location of the critical endpoint, which was obtained from the histogram analysis as shown in Fig. 15.

NUCLEAR LIQUID-GAS TRANSITION IN THE STRONG … PHYS. REV. D 107, 094514 (2023)

094514-11



of β, there is only a very weak dependence of the actual
phase boundary on β. Essentially, the quark mass depend-
ence of the phase boundary is the same.
More information on the intermediate range between the

strong first order transition at small β and the crossover at
larger β can be obtained by a histogram analysis: If the
transition is first order, then at aμ1stB there should be two
peaks in the histogram of baryon density. As the quark
mass increases, the transition eventually becomes second
order, and a small bump appears at intermediate baryon
density. At large quark mass, a broad peak forms in the
middle which indicates crossover transition. This is shown
in Fig. 15. The values of aμB can be fine-tuned to yield a
histogram which has approximately same peak height at
low and high density. From this, aμ1stB can be reliably
extracted, and an estimate of the critical point aμcB obtained.
This is shown in Fig. 16. Note that this analysis was not
possible at strong coupling as the very low temperature did
not yield histograms with enough structure.

E. Nuclear interactions

We have found that aμ1stB is very different from the
baryon mass. This must be due to strong attractive

interactions of nucleons. In contrast to continuum physics,
in the strong coupling limit there is no pion exchange due to
the Grassmann constraint. Instead, nucleons are pointlike
and hard core repulsive. However, the pion bath, which is
modified by the presence of static baryons, results in an
attractive interaction. In [25], this has been analyzed in the
chiral limit using the snake algorithm, and it has been found
that the attractive force is of entropic origin.
Here, we do not quantify the nuclear interaction via the

nuclear potential, but via the difference between critical
baryon chemical potential and baryon mass, in units baryon
mass, as shown in Fig. 17, given the amB as measured in
Sec. III C. This compares better to the 3-dim. effective
theory. The nuclear interaction is maximal and more than
40% in the chiral limit, which is related to pions being
massless: the modification of the pion bath is maximal. We
clearly find that the nuclear interaction decreases drastically
and almost linearly until it almost approaches zero at about
amq ¼ 2.0, corresponding to a pion mass amπ ¼ 3.36, see
Sec. II B. The large error bars for larger quark masses, that
are due to the subtraction of almost same magnitudes,
makes it difficult to extract a nonzero nuclear interaction at
the largest quark masses.

FIG. 15. Histogram of baryon density for various parameters: Left: at the first order phase transition with two peaks (β ¼ 0.9,
amq ¼ 0.02, aμq ¼ 0.559). Center: at the second order phase transition with two peaks and small bump between them at (β ¼ 0.9,
amq ¼ 0.24, aμq ¼ 0.748). Right: at the crossover transition with one peak in the middle at (β ¼ 0.9, amq ¼ 0.48, aμq ¼ 0.926).

FIG. 16. The critical baryon chemical potential aμcB of the critical endpoint as a function of β (left) and the critical quark masses amc
q

(right). The blue bands are based on a linear assumption due to the mild β dependence of aμcB.
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IV. CONCLUSION

In this work, we have determined the baryonmass and the
nuclear transition via Monte Carlo: the worm algorithm
based on the dual formulation, at finite β equipped with
additional updates. All those numerical results and various
analytic expressions are summarized in Fig. 18. We find that
as the quark mass becomes large, spatial mesons hoppings
(i.e. spatial dimers) become rare, which makes this 3þ 1-
dimensional system closer to 1-dim. QCD [26]. Also, both
the baryon mass and the baryon chemical potential obtained
in our dual representation, i.e. for staggered fermions,
approaches the baryon mass [31] of the 3-dim. effective
theory which is based on Wilson fermions.

Another comparison that summarizes the validity of the
mean field approach discussed in Sec. II B is shown in
Fig. 19. It is evident that mean field theory has strong
deviations for small quark masses, but this discrepancy
becomes smaller for larger quark masses.
The extension of the study of the nuclear transition to

finite inverse gauge coupling β is summarized in Fig. 20,
which shows the β-dependence of aμcB for various quark
masses. For all quark masses ranging from amq ¼ 0 to
amq ¼ 1.0, there is only a very weak β-dependence,
confirming the expectation from mean field theory [32].
This works was restricted to isotropic lattices

ξ ¼ a=at ¼ 1, i.e., we performed simulations at fixed
temperature. Non-isotropic lattices are necessary to vary

FIG. 19. Phase diagram obtained from the mean field approach
and the critical chemical potential obtained from the dual
formulation at strong coupling for aT ¼ 0.125.

FIG. 20. The baryon chemical potential at fixed quark masses
as a function of β, including a linear interpolation. As amq
increases, the phase transition changes from the first order to
crossover. In the crossover region, The curve in black the critical
value, replotted from Fig. 16 (left) to indicate which values of the
quark mass are first order or crossover.

FIG. 18. Quark mass-dependence of the critical baryon chemi-
cal potential and baryon mass from different approaches: our data
(dual MC) are compared to the baryon 1-dim QCD [26] where
μBc ¼ mB, the mean field expression for mB from Eq. (21) and
μBc from the mean field analysis [19], the analytic expression of
the baryon mass for Wilson fermions based on the hopping
parameter expansion [31]. All approaches converge as the quark
mass becomes large.

FIG. 17. Nuclear interaction scaled with baryon mass. As the
quark mass increases, it tends to zero.

NUCLEAR LIQUID-GAS TRANSITION IN THE STRONG … PHYS. REV. D 107, 094514 (2023)

094514-13



the temperature at fixed values of β. This requires to
include two bare anisotropies, γ for the fermionic action
and γG for the gauge action. Finite β has only been
studied by us in the chiral limit [33]. Clearly, it is
interesting to study the location of the nuclear critical
point also including higher order gauge corrections and at
finite quark mass. Simulations including Oðβ2Þ are under
preparation.
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APPENDIX

1. Statistics

a. Strong coupling

All runs at strong coupling have been obtained for
Nτ ¼ 8, which corresponds to a rather low temperature
aT ¼ 0.125 compared to the value of the chiral transi-
tion aT ≃ 1.54.

b. Finite β

All runs at finite β have been obtained for Nτ ¼ 4,
which corresponds to a moderately low temperature aT ¼
0.25 compared to the value of the chiral transition
aT ≃ 1.54. Those simulations were too expensive to
attempt Nτ ¼ 8 runs, in particular as a higher statistics
was required.
The spatial volumes are 43, 63 and 83. For β values are

from 0.0 to 1.0 with step size 0.1, and for amq values from
0.00 to 1.00 with step size 0.01. The values of aμ were
chosen close to the nuclear transition, the scanning range is
shifted to large values as amq increases. At small quark
masses the scanning range is from aμ ¼ 0.4 to 1.0 and for
the large quark masses, it is from 0.6 to 1.2 with step size
0.01. The statistics used for are 15 × 104 measurements and
between measurement, 40 × N3

s worm updates.

TABLE I. Parameters for the Monte Carlo runs to determine
the nuclear transition at strong coupling, with statistics after
thermalization.

amq Volume aμq Steps Worm updates

0.0 43 × 8 [0.3–0.7] 0.01 100 × 107

63 × 8 [0.3–0.7] 0.01 100 × 107

83 × 8 [0.3–0.7] 0.01 100 × 107

0.1 43 × 8 [0.5–0.7] 0.01 100 × 107

63 × 8 [0.5–0.7] 0.01 100 × 107

83 × 8 [0.5–0.7] 0.01 100 × 107

0.2 43 × 8 [0.5–0.8] 0.01 100 × 107

63 × 8 [0.5–0.8] 0.01 100 × 107

83 × 8 [0.5–0.8] 0.01 100 × 107

0.3 43 × 8 [0.6–1.0] 0.01 100 × 107

63 × 8 [0.6–1.0] 0.01 100 × 107

83 × 8 [0.6–1.0] 0.01 100 × 107

0.4 43 × 8 [0.6–1.0] 0.01 100 × 107

63 × 8 [0.6–1.0] 0.01 100 × 107

83 × 8 [0.6–1.0] 0.01 100 × 107

0.5 43 × 8 [0.6–1.0] 0.01 100 × 107

63 × 8 [0.6–1.0] 0.01 100 × 107

83 × 8 [0.6–1.0] 0.01 100 × 107

0.6 43 × 8 [0.6–0.8] 0.01 100 × 106

63 × 8 [0.6–0.8] 0.01 100 × 106

83 × 8 [0.6–0.8] 0.01 100 × 106

0.7 43 × 8 [0.7–0.9] 0.01 100 × 106

63 × 8 [0.7–0.9] 0.01 100 × 106

83 × 8 [0.7–0.9] 0.01 100 × 106

0.8 43 × 8 [0.8–0.9] 0.01 100 × 106

63 × 8 [0.8–0.9] 0.01 100 × 106

83 × 8 [0.8–0.9] 0.01 100 × 106

0.9 43 × 8 [0.9–1.0] 0.01 100 × 106

63 × 8 [0.9–1.0] 0.01 100 × 106

83 × 8 [0.9–1.0] 0.01 100 × 106

1.0 43 × 8 [0.9–1.1] 0.01 100 × 106

63 × 8 [0.9–1.1] 0.01 100 × 106

83 × 8 [0.9–1.1] 0.01 100 × 106

1.1 43 × 8 [1.0–1.1] 0.01 100 × 106

63 × 8 [1.0–1.1] 0.01 100 × 106

83 × 8 [1.0–1.1] 0.01 100 × 106

1.2 43 × 8 [1.1–1.2] 0.01 100 × 106

63 × 8 [1.1–1.2] 0.01 100 × 106

83 × 8 [1.1–1.2] 0.01 100 × 106

1.3 43 × 8 [1.1–1.3] 0.01 100 × 106

63 × 8 [1.1–1.3] 0.01 100 × 106

83 × 8 [1.1–1.3] 0.01 100 × 106

1.4 43 × 8 [1.2–1.3] 0.01 100 × 106

63 × 8 [1.2–1.3] 0.01 100 × 106

83 × 8 [1.2–1.3] 0.01 100 × 106

(Table continued)
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83 × 8 [1.28–1.31] 0.001 100 × 106

103 × 8 [1.28–1.31] 0.001 100 × 105

123 × 8 [1.28–1.31] 0.001 100 × 105

1.6 43 × 8 [1.33–1.36] 0.001 100 × 106

63 × 8 [1.33–1.36] 0.001 100 × 106

83 × 8 [1.33–1.36] 0.001 100 × 106

103 × 8 [1.33–1.36] 0.001 100 × 105

123 × 8 [1.33–1.36] 0.001 100 × 105

1.7 43 × 8 [1.37–1.41] 0.001 100 × 106

63 × 8 [1.37–1.41] 0.001 100 × 106

83 × 8 [1.37–1.41] 0.001 100 × 106

103 × 8 [1.37–1.41] 0.001 100 × 105

123 × 8 [1.37–1.41] 0.001 100 × 105

1.8 43 × 8 [1.42–1.45] 0.001 100 × 106

63 × 8 [1.42–1.45] 0.001 100 × 106

83 × 8 [1.42–1.45] 0.001 100 × 106

103 × 8 [1.42–1.45] 0.001 100 × 105

123 × 8 [1.42–1.45] 0.001 100 × 105

(Table continued)

TABLE I. (Continued)

amq Volume aμq Steps Worm updates

1.9 43 × 8 [1.46–1.50] 0.001 100 × 106

63 × 8 [1.46–1.50] 0.001 100 × 106

83 × 8 [1.46–1.50] 0.001 100 × 106

103 × 8 [1.46–1.50] 0.001 100 × 105

123 × 8 [1.46–1.50] 0.001 100 × 105

2.0 43 × 8 [1.50–1.53] 0.001 100 × 106

63 × 8 [1.50–1.53] 0.001 100 × 106

83 × 8 [1.50–1.53] 0.001 100 × 106

103 × 8 [1.50–1.53] 0.001 100 × 105

123 × 8 [1.50–1.53] 0.001 100 × 105

2.5 43 × 8 [1.50–1.53] 0.001 100 × 106

63 × 8 [1.50–1.53] 0.001 100 × 106

83 × 8 [1.50–1.53] 0.001 100 × 106

3.0 43 × 8 [1.50–1.53] 0.001 100 × 106

63 × 8 [1.50–1.53] 0.001 100 × 106

83 × 8 [1.50–1.53] 0.001 100 × 106

3.5 43 × 8 [1.50–1.53] 0.001 100 × 106

63 × 8 [1.50–1.53] 0.001 100 × 106

83 × 8 [1.50–1.53] 0.001 100 × 106
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