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Semidefinite programs can be constructed to provide a nonperturbative view of the zero-temperature
behavior of quantum systems. Past work has found that small semidefinite programs (relative to the
dimension of Hilbert space) yield quantitatively accurate estimates for the ground-state energy and
expectation values. This paper examines the properties of these semidefinite programs when applied to
lattice-regulated field theories exhibiting fermion sign problems. Specifically on the finite-density
Thirring model, small semidefinite programs still yield quantitatively accurate results, and there is no
indication that these methods encounter exponential costs (analogous to the fermion sign problem) at
finite chemical potential.
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I. INTRODUCTION

Monte Carlo methods, in the framework of lattice field
theory, are often the only technique available for non-
perturbative computations of expectation values in quantum
field theories. These methods generally proceed by trans-
forming a quantum expectation value to an equivalent
classical expectation value in one higher space-time dimen-
sion. Unfortunately, for a wide variety of systems (notably
including relativistic fermions at finite density and the
Hubbard model away from half filling), the resulting
classical expression possesses a Boltzmann factor which
is generally complex, and therefore cannot be viewed as a
probability distribution for Monte Carlo sampling. Under
standard complexity-theoretic assumptions, a theorem of
Troyer and Wiese states that there is no fully general
solution to these fermion sign problems [1].
Despite the nonexistence of a general solution to

fermion sign problems, individual systems may be ana-
lyzed with a variety of approaches: complex Langevin [2],
the density of states method [3], canonical methods [4,5],
reweighting methods [6], series expansions in the chemical
potential [7], fermion bags [8], analytic continuation from
imaginary chemical potentials [9], and contour deforma-
tion methods [10]. These methods are frequently success-
ful for low-dimensional (typically 1þ 1-dimensional)
systems, but none have yet been able to provide reliable
information about e.g. cold, dense quark matter.

A separate family of approaches to the zero-temperature
behavior of quantum systems has recently been developed:
the quantum-mechanical bootstrap [11–14]. Here we use
the observation that, for any quantum mechanical operator
O, the expectation value TrρO†O must be non-negative in
any state ρ. As a direct consequence, if we select a basis of
operators fOig and a particular state ρ, we may construct a
matrix guaranteed to be positive semidefinite1:

Mij ≡ hO†
iOji≽ 0: ð1Þ

That is, for any vector v, we have vTMv ≥ 0. When the
chosen basis of operators is complete—when any operator
in the Hilbert space can be obtained as a linear combination
of the elements of the basis—any set of expectation values
consistent with Eq. (1) and the system’s commutation
relations is obtainable by some quantum state. In other
words, every possible inequality describing the quantum
system is captured by Eq. (1).
This bound by itself is not usually sufficient to provide

interesting information about the ground state: after all,
high-temperature states (and indeed far-from-equilibrium
states) necessarily obey this bound as well. To do better we
must include information about the Hamiltonian of interest.
For a chosen Hamiltonian H, the ground state jΩi is by
definition the state that minimizes hΩjHjΩi≡ E0. Because
the above bound captures every possible inequality, the
relation TrρH ≥ E0 can be derived from that bound.
The computational strategy of the quantum-mechanical

bootstrap is to use Eq. (1) to derive lower bounds on the
expectation value hHi, which must be obeyed by all states.
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1Here and throughout, the notationM≽ 0 is used to denote that
a matrix is positive semidefinite.
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These are bounds on the ground-state energy, and as more
operators are used in the construction of M, the bounds
converge to the true ground-state energy. Concretely, we
can cast the task of finding the ground-state energy as an
optimization problem over the space of expectation values,
as follows. For a given basis of operators Oi, we consider
all expectation values of the form hO†

iOji. This defines the
positive semidefinite matrix Mij of Eq. (1). The commu-
tation relations furnish a set of linear constraints on the
matrix elements of M—that is, a sequence of matrices CðkÞ
such that we require

0 ¼ TrCðkÞM: ð2Þ

We also impose that the expectation value of the identity
operator is 1. This is equivalent to enforcing the correct
normalization of the quantum states being looked at. Note
that all of these constraints are linear in the expectation
values, which is the space in which our optimization
problem takes place.
Finally, as long as the Hamiltonian is obtainable by a

linear combination of our chosen basis, there is a matrix G
such that TrGM represents the expectation value of the
Hamiltonian. We seek to minimize this linear combination
of elements of M subject to the above constraints. Because
this optimization problem is convex, the minimum obtained
is guaranteed to be the global minimum, and therefore a
lower bound on hHi that is valid for all states.
This type of optimization is termed a semidefinite

program (SDP). This method provides a rigorous lower
bound on the ground-state energy. As a result, this method
is essentially dual to variational methods, which provide
similarly rigorous upper bounds on the ground-state energy.
The combination is particularly powerful when applied to
systems for which the ground-state energy is a quantity of
central physical concern—for example in the study of
quantum-mechanical bound states.
Separate from the explicit bound on the ground-state

energy, we also obtain estimates of all expectation values
used in the construction of the SDP. In situations where the
ground-state energy is not of direct physical interest (most
relevantly here, lattice-regularized field theories), these
estimates are central to the utility of SDP-based methods.
When the basis of operators is complete, performing this

minimization requires manipulating objects of size expo-
nential in the volume of the physical system being studied.
The same is true of attempting to exactly diagonalize the
Hamiltonian, and so SDP-based methods appear to have no
advantage. However, in practice it has been found that
operator bases that are far from complete nevertheless result
in remarkably tight bounds on simple quantum systems.
This was reported early on for few-matrix mechanics [11]
and various one-body systems [12]. The power of the
quantum-mechanical bootstrap derives from this observa-
tion: it is often possible to construct a polynomial-sized

truncated basis for which the bootstrapped bound and many
inferred expectation values are close to their true values.
Semidefinite programs have played an important role in

quantum field theory before the advent of the quantum-
mechanical bootstrap being used in this work. Most
prominently, the conformal bootstrap provides the most
precise constraints available so far on the critical expo-
nents of many conformal field theories [15–17] (see [18]
for a review of these methods). Bootstrap methods applied
to the S matrix, historically important [19], have also been
recently revived [20,21].
This work applies SDP-based methods to quantum field

theories by first regularizing the field theories on a spatial
lattice (in the Hamiltonian formalism). The resulting
system is a (many-body) quantum-mechanical system to
which the methods of [11–13] are directly applicable. A
similar approach was first used in [22] to treat the Hubbard
model, and demonstrated directly on field theories in [23].
The hierarchy of positive-definiteness constraints so central
to all quantum mechanical bootstrap methods is known as
the Navascues-Pironio-Acin hierarchy [24,25].
The remainder of the paper is organized as follows.

Section II introduces the Thirring model, a frequent test
bed of methods targeting the fermion sign problem. The
algorithms used to construct semidefinite programs, and
extract from them expectation values, are detailed in
Sec. III. Because the SDPs related to a space of expect-
ation values, they can be constructed either at finite
volumes or directly at infinite volume. The convergence
behavior at finite volume, where direct diagonalization of
the Hamiltonian is possible for comparison purposes, is
examined in Sec. IV. Results at infinite volume are
presented in Sec. V. Finally, Sec. VI discusses various
aspects of the performance of this method, lays out open
questions, and suggests avenues for future work.

II. THIRRING MODEL

The Thirring model is one of many afflicted by the
fermion sign problem. Variants of this model have
long been used as testbeds for methods to tackle sign
problems [2,26–31]. This work is in keeping with that
tradition.
A lattice Thirring model with staggered fermions is

defined by the Hamiltonian

HThirring ¼
X
x

½ð−1Þxmc†ðxÞcðxÞ þ μc†ðxÞcðxÞ�

þ
X
hxyi

�
ð−1Þx c

†ðxÞcðyÞ þ c†ðyÞcðxÞ
2

− g2cðxÞc†ðxÞc†ðyÞcðyÞ
�
: ð3Þ

Here the second sum is taken over all pairs of adjacent
sites on an L-site lattice with periodic boundary conditions.
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The operators cðxÞ are defined to obey anticommutation
relations according to

fcðxÞ; cðyÞg ¼ 0; and fc†ðxÞ; cðyÞg ¼ δx;y: ð4Þ

The lattice parameters m, μ, and g2 are the mass, chemical
potential, and coupling respectively. In the continuum limit,
this model has emergent Lorentz invariance, and describes
a single two-component fermionic field.
For positive g2, this model has a repulsive interaction

between fermions (attractive between a fermion and anti-
fermion), producing a fermion-antifermion bound state
analogous to mesons in quantum chromodynamics. The
mass ratio mB

mF
of the boson to the meson may be taken as a

measure of the strength of the coupling—at weak coupling
mB ∼ 2mF, and studies of the strong-coupling sign problem
typically aim for mB ∼mF [32]. This ratio mB

mF
is shown in

Fig. 1 across a range of couplings, with the fermion mass
always tuned to be mF ¼ 0.2 in lattice units, and the
calculation performed by exact diagonalization of the
Hamiltonian on a ten-site lattice. Calculations in this paper
will typically be performed at g2 ¼ 0.5, well into the strong-
coupling regime.

III. ALGORITHM

The basic algorithm to study a quantum system via a
semidefinite program proceeds in four steps. First, a basis
of operators fOig is chosen. We will study the quantum
system only by looking at expectation values of the form
hO†

iOji; all other properties are to be ignored.
The axioms of our quantum system imply two sets of

facts about these expectation values. First, the positive
definiteness of the inner product on the Hilbert space
implies that the matrix Mij ≡ hO†

iOji is positive semi-
definite. Second, the commutations relations imply
certain linear relations between the expectation values.

For example, for any sites x, y, we have hc†ðxÞcðyÞi ¼
δxy − hcðyÞc†ðxÞi. In the second step of the algorithm,
these two sets of constraints are combined to construct a
semidefinite program. The quantity to be minimized is
the expectation value of the Hamiltonian, which can be
expressed as a linear combination of matrix elements of
M. The constraints are the linear relations between
elements of M derived from commutation relations, and
the nonlinear requirement M≽ 0.
Once the SDP has been constructed, the third step of the

algorithm is to perform the constrained minimization. For
this work, the minimization is done using the MOSEK
toolkit [33], which implements an interior-point method to
perform the optimization [34].
Finally, in the fourth step we wish to extract physical

information from the solution of the SDP. For a simple
quantum-mechanical system, the lower bound on the
ground state is of intrinsic interest. In the context of
(lattice-regularized) field theories, the ground-state energy
density at a single value of μ has no physically meaningful
continuum limit. For zero-temperature, finite-chemical-
potential models, the observable of greatest interest is
typically the number density nðμÞ. Alternatively, the
difference between ground-state energies2 at two different
values of μ provides the integral of nðμÞ according to

EðμiÞ − EðμfÞ ¼
Z

μf

μi

nðμÞ: ð5Þ

When solving an SDP, typical algorithms (including the
interior-point methods used by MOSEK) return not only
the optimal value of the objective function (in this case
corresponding to the ground-state energy), but also a value
of the positive semidefinite matrix M that obtains that
optimum. Any observable encoded in the matrix M can
therefore be directly estimated once the optimization is
complete. In the case of the Thirring model, because a term
μN̂ appears in the Hamiltonian, the fermion number will
always be accessible from the expectation values present
in M.
The fermion number could also be obtained, in principle,

from solving two SDPs for slightly different values of the
chemical potential μ, and computing hN̂i ¼ − ∂

∂μ hĤ − μN̂i.
In fact this yields the same result as simply reading off the
value of hN̂i from the matrix M in the solution to the SDP.
To see this, consider the positive semidefinite matrix M
obtained after solution. Generically, this matrix will have
exactly one vanishing eigenvalue. The corresponding
eigenvector v defines some operator B̂≡ viOi such that
the expectation value hB̂†B̂i is estimated to be 0. Using the
linear part of the SDP (i.e. the commutation relations), it

FIG. 1. Ratio of the fermion mass to the boson mass across
couplings. The fermion mass is tuned tomF ¼ 0.2 in all cases, on
a ten-site lattice. The dotted gray line marks the point at which
mB ¼ mF, and heuristically, the crossing between the strong and
weak coupling regimes.

2Note that in a relativistic theory, care must be taken to define
EðμÞ to exclude the contribution from the Fermi sea.
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may be shown that B̂†B̂ ¼ Ĥ − E, where E is the SDP-
obtained estimate of the ground-state energy. Now let us
consider what happens after perturbing the Hamiltonian by
a term ϵN̂. Again generically, B̂ is also perturbed by some
term of the same order B̂ → B̂þ ϵĈ. We now see that
(expanding to first order in ϵ)

B̂†B̂þ ϵðB̂†Cþ Ĉ†BÞ ¼ Ĥ þ ϵN̂ − E; ð6Þ

where again the equality B̂†Ĉþ Ĉ†B̂ ¼ N̂ follows from the
commutation relations. As a result, the change in the
estimated ground-state energy is equal to the expectation
value of this operator, which is constrained by the com-
mutation relations to be equal to the estimate hN̂i.
Typical computational methods (e.g. lattice Monte Carlo

methods) arrive at the infinite-volume limit by performing
calculations at a sequence of finite volumes and then
extrapolating to obtain the infinite-volume result. As
discussed in [23], because SDP-based methods work
directly with operators and make no reference to the
Hilbert space itself, it is natural to perform calculations
directly in the infinite-volume limit. This is accomplished
with two modifications to the algorithm described above.
First, instead of minimizing the Hamiltonian expectation
value (which is no longer well-defined), we minimize the
Hamiltonian density. Second, we impose translational
invariance3 by including in the formulation of the SDP
additional linear constraints of the form hOi ¼ hT†OTi for
any unitary translation operator T.
The core of the quantum-mechanical bootstrap is the

choice of an incomplete basis of operators—in many ways
this parallels the need for a choice of basis when explicitly
diagonalizing a truncated Hamiltonian. The time required
to solve an SDP scales roughly as the cube of the size of the

basis, so it is critical to keep the basis small. At the same
time, a poor choice of basis (including an insufficiently
large basis) will not yield a tight bound on the ground-state
energy. Finally note that, although the approximation to E0

obtained via a hierarchy of SDPs is systematically improv-
able in the sense that, with a sufficiently large basis,
the approximated E0 can be brought within any desired
tolerance of the exact result, in principle the cost may be
exponential in the precision requested. An efficient algo-
rithm depends on a well-chosen basis.
For this paper, we define a hierarchy of four bases. Each

basis is both translationally invariant and Hermitian (mean-
ing that for any operator O in the basis,O† is also present).
The first, labeled H0, consists of cðxÞ, c†ðxÞ, and c†ðxÞcðxÞ
for all lattice sites x. On an L-site lattice, counting the
identity, this has 3Lþ 1 elements. Note that although the
Hamiltonian is not in the span of this basis, it is in the span
of operators obtained by taking a product O†

iOj of two
elements of this basis, and so the SDP is able to provide a
nontrivial constraint on the ground-state energy.
The next basis, H1, adds to H0 the L operators of the

form cðxÞc†ðxþ 1Þ, and their L complex conjugates. This
basis has a total of 5Lþ 1 elements.
To the elements of H1 we can add the L operators found

in the interaction term of the Hamiltonian: for each site x,
c†ðxÞcðxÞcðxþ 1Þc†ðxþ 1Þ. The basis obtained in this
way is labeled H2.
These first three bases are of course inspired by terms

found in the Hamiltonian of Eq. (3). The final basis,
termed C1, adds to H2 the L operators of the form
c†ðxÞcðxþ 1Þc†ðxþ 2Þcðxþ 2Þ, and their complex con-
jugates. The size of this largest basis is 8Lþ 1.
To check the correctness of these methods, Fig. 2 provides

a comparison on a ten-site lattice with ground-state energy
information obtained by exact diagonalization of the
Hamiltonian. The left panel shows the ground-state energy
bound proven via SDP. Although the bound itself is not
meaningful, an estimate of the integral of number density

FIG. 2. SDP estimation of ground-state energy and fermion number for the Thirring model on ten sites, with m ¼ 0.05 and g2 ¼ 0.5,
across the full range of chemical potentials. The left panel shows the estimate of the ground-state energy; the right compares the
estimates of fermion number. The four bases used are described in the text.

3Note that this embeds an additional assumption, namely that
translational symmetry is not spontaneously broken in the finite-
density ground state of the Thirring model.
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between two chemical potentials may be obtained from the
difference of energies at those values of μ. (The extra term
proportional to μ ensures that the Fermi sea is not counted in
the estimated fermion number.) Alternatively, the right panel
compares the estimated fermion number to the exact result.
For all four bases, the energy bounds are seen to lie below (or
on) the exact value, as they should.
Moreover, significant convergence toward the true value

is seen as the basis is expanded. On this lattice, the largest
basis (C1) has 81 elements. By comparison, a complete
basis of operators on the 1024 states would require 220

operators.
The next section will consider the convergence proper-

ties of the SDPs obtained from these bases more carefully.
Already from Fig. 2, we can see that the basis H0 provides a
qualitatively accurate equation of state everywhere away
from the step at μ ∼ 1.8. The mechanism for this is visible
in the left panel of that figure: for μ ∈ ½0; 1.5Þ, the error in
the energy is roughly constant.

IV. CONVERGENCE

It has previously been demonstrated that semidefinite
programs can yield efficient and accurate approximations
for the ground-state properties of quantum lattices [22,23].
Other methods, notably lattice Monte Carlo methods, suffer
at finite chemical potentials and strong couplings due to the
fermion sign problem. The purpose of this section is to
investigate to what extent the same is true of the SDPs
defined in the previous section.
Figure 3 shows the error in the ground-state energy

estimate for all four bases described above. The most
striking feature of this figure is that all SDPs perform best
at large chemical potentials—this is the opposite of the
“traditional” behavior of Monte Carlo methods. This
success is due to the fact that at large chemical potential,
the true ground state of the system is saturated, with all
fermionic modes being occupied. Any SDP will, at

sufficiently large μ, prefer this state to all others and
therefore agree with the exact result.
As more operators are added to the basis, the SDP

approximation improves. Again, the largest and easiest
improvements are achieved at larger chemical potentials. In
fact, of the bases considered, only the largest (C1) is
substantially different at μ ¼ 0.
The news is not all good. Early attempts to resolve the

fermion sign problem of lattice QCD and related models
frequently struggled to replicate the so-called silver blaze
phenomenon [35]. (Contour deformations methods—such
as those based on Lefschetz thimbles—were a notable
exception, e.g. [36].) In the infinite-volume limit, this term
refers to the fact that the number density remains constant
for some interval of chemical potentials μ ∈ ½0; μcÞ before
suddenly beginning to increase. In QCD, this increase
begins slightly below the proton mass—faulty algorithms
for alleviating the sign problem would characteristically
begin to increase far too early. We see that the SDPs
investigated here mostly (H2 is a striking exception) have a
similar flaw: the density begins to increase near the bare
fermion mass of 0.05, rather than the correct physical
mass mF ≈ 0.20.
Moreover, at a finite volume, all increases in the fermion

number ought to be discontinuous jumps: the fermion
number in a nondegenerate eigenstate of the Hamiltonian is
always an integer. The semidefinite programs do not
generally have this behavior, instead appearing to smooth
out these jumps. Again, the basis H2 is a striking exception,
indicating that there may be some condition on the basis
which is sufficient to enforce this desired behavior.
The performance of the SDPs as coupling is changed is

more consistent. The left panel of Fig. 3 shows the error in
the estimate of the ground-state energy at μ ¼ 0.5, for a
sequence of theories of increasing coupling g2. All com-
putations are done on a ten-site lattice, with the bare massm
tuned such that the renormalized fermion mass (measured
on the same lattice) is mF ¼ 0.2. As the coupling is
increased, the SDP’s error increases roughly linearly.

FIG. 3. Convergence of SDPs constructed from the four bases described in the text, across chemical potentials and couplings. The left
panel shows the error in the ground-state energy estimate as g2 is changed, on ten-site lattices, with the bare mass tunes to be mF ¼ 0.2,
and at μ ¼ 0.5. All calculations in the right panel are performed at g2 ¼ 0.5 on a ten-site lattice, with a bare mass of m ¼ 0.05.
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All bases considered give an exact bound for the free
theory. For this theory, the raising and lowering operators
that diagonalize the Hamiltonian can be constructed via the
discrete Fourier transform of the position-space creation
and annihilation operators c†ðxÞ; cðxÞ. Therefore, these
operators diagonalizing the Hamiltonian are in the span
even of the smallest basis, H0. This is sufficient for the SDP
estimate to be exact.

V. INFINITE VOLUME

As noted in [22], because the semidefinite programs
constraining expectation values work in terms of operators
rather than configurations or states in Hilbert space, these
calculations can be performed directly in the infinite volume
limit. Of course, even for a system (like the Thirring model)
with a finite-dimensional local Hilbert space, the set of
operators available in this limit is infinite. As a result, any
finite basis chosen to construct the SDP will yield only an
approximation. Nevertheless, each estimate of the ground-
state energy density will be a rigorous lower bound to the
infinite-volume result, and we may hope that the estimates
of the number density provide a good approximation in
practice.
In the infinite-volume limit, it is no longer possible to

speak of the expectation value of the Hamiltonian. Instead,
we must work with a Hamiltonian density ĥð0Þ, defined so
that the Hamiltonian is Ĥ ¼ P

r ĥð2rÞ:

ĥðxÞ ¼ mðc†ðxÞcðxÞ − c†ðxþ 1Þcðxþ 1ÞÞ þ 1

2
ðc†ðxÞcðxþ 1Þ þ H:c:Þ − 1

2
ðc†ðxþ 1Þcðxþ 2Þ þ H:c:Þ

− g2ðcðxÞc†ðxÞc†ðxþ 1Þcðxþ 1Þcðxþ 1Þc†ðxþ 1Þc†ðxþ 2Þcðxþ 2ÞÞ − μðc†ðxÞcðxÞ þ c†ðxþ 1Þcðxþ 1ÞÞ: ð7Þ

The optimization objective for the SDP will be the
expectation value hĥð0Þi. In order to close out the SDP, we
must include some information about how the energy
density around site x ¼ 0 is related to the energy density
elsewhere on the lattice. In this case we will assume
translational invariance. In particular, for any operator O
and even displacement 2r (r ∈ Z), we assume that

hOðxÞi ¼ hOðxþ 2rÞi: ð8Þ

All linear constraints of this form are added to the SDP.
At finite volume, the free theory is exactly solved by an

SDP constructed from a basis consisting only of all
available creation and annihilation operators. At infinite
volume that basis already must be truncated in order to
obtain a finite SDP. Any such truncation will have some
maximum radius of operators L, and will be an approxi-
mation that improves as L is taken to be larger.
The difference between the truncated SDP and the exact

result can be thought of as a finite-volume effect. Consider

an SDP constructed from the operators að−LÞ;…; aðLÞ
and their complex conjugates—or, in the case of a theory at
nonzero coupling, an SDP consisting of all possible
operators with support only on ½−L;L�. Such an SDP
captures all quantum mechanical constraints on expectation
values that arise on that range, but has no information about
the boundary conditions. As a result, the obtained bound on
the energy density can only be as tight as the lowest energy
density achievable with any boundary conditions.
The performance of ever-larger SDPs for the free theory

is shown in Fig. 4. Each SDP is constructed only from the
operators að−LÞ;…; aðLþ 1Þ, and their complex conju-
gates. The SDP-estimated number density is compared to
the exact lattice result

nexactðμÞ ¼
2

π
sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q
: ð9Þ

The most notable feature is that the approximation con-
verges much faster, as a function of L, when the fermion

FIG. 4. Number density estimated via SDPs for free theories.
The basis used to construct the SDP, described in the text, grows
linearly with the parameter L. For all bare masses the SDP
converges to the exact number density, but the convergence is
somewhat faster for larger masses, where only short-distance
correlations are relevant. All calculations are performed at μ

m ¼ 4
3
.

To make the differences in convergence more apparent, the
bottom panel shows the relative error on a log scale.
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mass is larger. Physically, this is a result of the fact that
finite volume effects decay parametrically with the dimen-
sionless mL.
To perform calculations with a nonzero interaction, it is

necessary to return to larger bases of the sort considered in
the previous two sections. Infinite-volume equivalents of the
bases H0, H1, H2, and C1 are defined by simply requiring
−L ≤ x ≤ Lþ 1. Figure 5 shows calculations performed in
the infinite volume limit for interacting theories. The left
panel shows a weakly coupled theory (g2 ¼ 0.1), and the
right a strongly coupled theory (g2 ¼ 0.5).
In both theories, the number of visible plateaus increases

as the permitted separation L of operators is increased. This
again shows the manner in which the finite-L effects are
analogous to finite-volume effects: calculations at finite
volume will also show a number of plateaus proportional to
the volume of the system.
The weakly coupled theory in particular shows good

qualitative agreement between the various approximations.
Although no extrapolation is performed here, both show
signs of convergence as larger bases are considered.

VI. DISCUSSION

This paper has explored the performance of SDP-based
methods in analyzing the Thirring model in two spacetime
dimensions, at finite fermion density. The SDPs used are
small relative to the size of the Hilbert space of the system
under study, and there is no indication that the method
encounters any obstacles analogous to a fermion sign
problem. While Monte Carlo methods perform best at
μ ¼ 0 and worst when μ is large enough for the lattice to be
saturated, the SDPs have the reverse behavior, with tight
bounds most easily achieved for chemical potentials at or
near lattice saturation density.
Fermion sign problems are most often alleviated while

remaining within a Monte Carlo framework. It is difficult
to construct a fair performance comparison between SDPs
and these Monte Carlo-based methods. For example, if we

consider the asymptotics of the algorithm when the answer
is required to be accurate to within ϵ, we see that SDP
methods formally outperform Monte Carlo methods. For a
system with a finite-dimensional Hilbert space, a Monte
Carlo method requires time exponential in the requested
number of significant figures. Since, for a fixed finite-
dimensional system, there is an SDP that obtains the exact
answer, the time required for the SDP to perform a
computation to within that precision is of order 1, for-
mally4—but that observation provides us with no practical
information about the performance of SDPs.
The SDPs considered here provide qualitatively accurate

equations of state at finite volumes, across the entire range
of chemical potentials. However, the equations of state
obtained fail a few important tests. Most notably, the
estimated number density, and the “silver blaze” phenome-
non at small chemical potentials is not correctly reproduced.
As with other methods along the lines of the “quantum-

mechanical bootstrap” [11–14,23], the method in this paper
is in a sense dual to the usual variational principle. Whereas a
variational study of a quantum-mechanical system yields a
rigorous upper bound on the energy, the solution to an SDP
yields a rigorous lower bound to the same quantity. As a
result, and as demonstrated explicitly in [23], the two may be
profitably used in conjunction to yield both rigorous bounds
on the energy, and a heuristic estimate of how well either
algorithm is doing at approximating the true ground state.
In the course of thiswork, themain obstacle encountered to

using larger SDPs was the memory required to store and
manipulate the SDP, rather than the time required during
solving. The largest SDP consideredwas based on an 81 × 81
positive semidefinite matrix, requiring around 2 GB and
90 seconds5 to solve. It has been noted before [23] that
improved software might enable larger bases to be used;

FIG. 5. Number density as a function of chemical potential in the Thirring model, in the infinite volume limit, at weak (g2 ¼ 0.1, left)
and strong (g2 ¼ 0.5, right) couplings. Both are simulated at a bare fermion massm ¼ 0.05. Note that the qualitative agreement between
different approximations improves as the basis of operators is enlarged.

4Strictly speaking, there is a term logarithmic in ϵ to account
for floating-point precision.

5Timed on a 4-core AMD Ryzen 3 5300U.

SEMIDEFINITE PROGRAMS AT FINITE FERMION DENSITY PHYS. REV. D 107, 094511 (2023)

094511-7



indeed, major advances in the study of the conformal boot-
strap over the last decade were made possible by the
development of a specialized software package optimized
for the sorts of convex optimization problems encountered in
that context [16]. The fact that the results in this paper are
constrained more by memory than by time—and that the
memory use is dominated by bookkeeping for the interior
point method, rather than the size of the matrix itself—
suggests that similar advances in the quantum mechanical
bootstrap might be achieved by making a different memory-
time tradeoff.
It is also possible to work with dramatically larger SDPs

by obtaining only an approximate solution [37,38]. This
sacrifices the rigor of the obtained lower bound. However,
for field theory calculations the lower bound on the energy
is not physically relevant, potentially making this a worth-
while tradeoff.
SDP-based methods in the infinite volume limit display

a phenomenon analogous to finite-volume effects due to
the finite spatial extent of operators used in the basis.
This suggests that standard techniques for extrapolating to
the infinite-volume limit may be helpful in improving the
accuracy of the approximation. This is particularly appli-
cable to field theories, where the fact that an SDP yields a

bound on the energy (rather than just an estimate) is not
particularly helpful.
This work has indicated that SDPs may represent a

practical approach to analyzing the ground-state behavior
of fermions at finite density. The application of SDPs to
pure-gauge systems has been explored in [39] (although in
the path-integral, rather than Hamiltonian, formalism). A
natural next step, therefore, is to test these methods on a
gauge theory with a finite fermionic chemical potential.

Code and data availability. All code for this paper is
openly available at Ref. [40]. SDPs are solved using the
MOSEK toolkit [33].
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