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We perform the first lattice study on the mixing of the isoscalar pseudoscalar meson η and the
pseudoscalar glueball G in the Nf ¼ 2 QCD at the pion mass mπ ≈ 350 MeV. The ηmass is determined to
be mη ¼ 714ð6Þð16Þ MeV. Through the Witten-Veneziano relation, this value can be matched to a mass
value of ∼981 MeV for the SU(3) counterpart of η. Based on a large gauge ensemble, the η − G mixing
energy and the mixing angle are determined to be jxj ¼ 107ð15Þð2Þ MeV and jθj ¼ 3.46ð46Þ° from the
η − G correlators that are calculated using the distillation method. We conclude that the η − G mixing is
tiny and the topology induced interaction contributes most of η mass owing to the QCD UAð1Þ anomaly.
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I. INTRODUCTION

Chiral symmetry is an intrinsic symmetry of quantum
chromodynamics (QCD) in the massless limit of quarks
and is spontaneously broken due to the nonzero quark
condensate. The spontaneous symmetry breaking (SSB) of
the SULð3Þ × SURð3Þ into the flavor SU(3) generates eight
Goldstone particles sorted into the pseudoscalar octet
composed of fπ; K; η8g which are slightly massive due
to the small u, d, s quark masses. If SSB also applies to the
ULð1Þ × URð1Þ sector of the chiral symmetry, it breaks into
UVð1Þ that corresponds to the baryon number conservation
expects the existence of an additional Goldstone particle,
namely, a light flavor singlet pseudoscalar meson. The η0
meson is predominantly a flavor singlet but is too massive
to be taken as a candidate for this Goldstone particle. The η0
mass puzzle has a direct connection with the QCD UAð1Þ
anomaly that the anomalous gluonic term, the topological
charge density, breaks the conservation of the flavor singlet
axial current even in the chiral limit. Even though the
anomalous axial vector relation can be written as the
divergence of a gauge variant axial vector, which is zero

and implies a UAð1Þ symmetry, Kogut and Susskind [1]
pointed out that its spontaneous breaking generates a mass-
less mode that violates the Gell-Mann-Okubo relation and
then renders η0 more massive. With respect to the nontrivial
topology of QCD vacuum, Witten [2] and Veneziano [3]
proposed a mechanism for the original of η0 mass that the
nonperturbative coupling of the topological charge density
and the flavor singlet pseudoscalar induces a self energy
correction m2

0, which is proportional to the topological
susceptibility χ of gauge fields. Using the physical mass
of η0, the value of χ is estimated to be around ð180 MeVÞ4,
which is supported by lattice QCD calculations [4]. Another
interesting property of η0 is its large production rate in the
J=ψ radiative decays [5], which are abundant in gluons and
are expected to favor the production of glueballs. This
observation along with the original mechanism of η0 mass
manifests the strong coupling of η0 to gluons and thereby
prompts the conjecture that η0 may mix substantially with
pseudoscalar glueballs since they have the same quantum
number. The KLOE Collaboration analyzed the processes
ϕ → γη and ϕ → γη0 and found that the η0-glueball mixing
might be required and the mixing angle can be as large as
ð22� 3Þ° [6]. In contrast, another phenomenological analy-
sis of the KLOE result gave the mixing angle ð12� 13Þ°
which is consistent with zero within the large error [7].
A phenomenological analysis of the processes J=ψðψ 0Þ
decaying into a pseudoscalar and a vector final states
obtained the η0-glueball mixing angle to be around 9° by
considering the η − η0-glueballmixingmodel [8]. Obviously,
the determined mixing angle varies in a fairly large range.
Based on the η0-glueball mixing picture, there have been
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theoretical discussions on the possibility of ηð1405Þ as a
pseudoscalar glueball candidate [8–12]. However, the
quenched lattice QCD studies [13–15] predict that the mass
of the pseudoscalar glueball is around 2.4–2.6 GeV, which is
confirmed by lattice simulations with dynamical quarks [16–
19]. This raised a question on ηð1405Þ as a glueball candidate
because of its much lighter mass. On the other hand, the
strong hint for ηð1405Þ to be a glueball candidate is the
observation that there exist three isoscalar pseudoscalar
mesons ηð1295Þ, ηð1405Þ and ηð1475Þ such that one of
them is surplus according to the quark model. If ηð1405Þ and
ηð1475Þ are the same state [20], there is no need for a
pseudoscalar glueball state in this mass region. Somemixing
model studies also favor the pseudoscalar glueball to have a
mass heavier than 2 GeV [21,22].
In this work, we will investigate the possible mixing of

isoscalar pseudoscalar meson and the pseudoscalar glueball
in Nf ¼ 2 lattice QCD. The isoscalar pseudoscalar meson
is named η throughout this work, which is the SU(2)
counterpart of the SU(3) flavor singlet (approximately η0) in
the Nf ¼ 3 case. We have generated a large ensemble of
gauge configurations with Nf ¼ 2 degenerated u, d quarks
at a pion mass mπ ≈ 350 MeV, so we can make a precise
determination of ηmass. The calculation of η0 mass (and the
η0 − η mixing) has been performed in several Nf ¼ 2þ 1

lattice QCD studies, whose results are in agreement with
the physical value after the chiral extrapolation [23–26]. A
systematic and comprehensive lattice study on the proper-
ties of η and η0 is presented in Ref. [27], where the masses,
the decay constants and the gluonic matrix elements of η
and η0 have been derived to a high precision. There are also
many studies on the η mass from Nf ¼ 2 lattice QCD
[19,28–30]. According to the Witten-Veneziano mecha-
nism (WV), in the Nf ¼ 2 case, pion mass and η mass are
related as m2

η ¼ m2
π þm2

0, where m
2
0 is the correction from

the topology induced interaction and is proportional to Nf.
As a check of WV, we would like to take a look at this
relationship and use the obtained m2

0 to predict the η0 mass
in the physical case (a pioneering work following this way
in the quenched approximation can be found in Ref. [31]).
After that, we calculate the correlation functions of the η
operator and the glueball operator, from which the mixing
angle can be extracted. The strategy of the study is similar
to that used in the ηc-glueball mixing [32]. As an explor-
atory study, we tentatively treat the pseudoscalar glueball
as a stable particle and ignore its resonance nature in the
presence of light sea quarks. Obviously, the numeric task
involves the calculation of the annihilation diagrams of u, d
quarks, so we adopt the distillation method [33] which
enables the gauge covariant smearing of quark fields and
the all-to-all quark propagators (perambulators) simulta-
neously. Since we also have the perambulators of the
valence charm quark, we also calculate the η − ηc corre-
lation functions and explore their properties.

This paper is organized as follows: In Sec. II we describe
the lattice setup, operator construction and formulation of
correlation functions. Section III gives the theoretical
formalism of the meson-glueball mixing, where the data
analyses and the results can be found. The discussion and
summary are given in Sec. IV, and the preliminary results
from η − ηc correlation functions are presented here.

II. NUMERICAL DETAILS

A. Lattice setup

We generate gauge configurations with Nf ¼ 2 degener-
ate u, d on an L3 × T ¼ 163 × 128 anisotropic lattice.
We use the tadpole-improved Symanzik’s gauge action for
anisotropic lattices [13,15] and the tadpole-improved aniso-
tropic clover fermion action [19,34]. The parameters in the
action are tuned to give the anisotropy ξ ¼ as=at ≈ 5.3,
where at and as are the temporal and spatial lattice spacings,
respectively. The anisotropy ξ ≈ 5.3 is checked by the
dispersion relation of the pseudoscalar π (along with that
of η calculated using the distillation method, see Sec. III),
which takes the continuum form

E2
Xðp⃗Þa2t ¼ m2

Xa
2
t þ

1

ξ2
jp⃗j2a2s ; ð1Þ

where X refers to a specific hadron state and p⃗ is the spatial
momentum p⃗ ¼ 2π

Las
n⃗ on the lattice, and n⃗ is the mode of

spatial momentum. Figure 1 shows the energies obtained
from the correlation functions of π, η and ρ at different spatial
momentum modes up to n⃗ ¼ ð1; 2; 2Þ. The data points of π

FIG. 1. The dispersion relations of π (blue) and η (red). The
data points are lattice results and the shaded lines illustrate the
fitted results using Eq. (1). The best fit values of ξ are 5.365(5)
and 5.34(3) for π and η, respectively. The cyan points are ground
state energies obtained from the ρ correlators at different spatial
momentum p⃗, and the cyan line is the fitted result with ξ ¼
5.58ð1Þ which deviates from 5.3 drastically due to the interfer-
ence with nearby ππ states.
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and η fall on straight lines perfectly and can bewell described
by Eq. (1) with ξ ¼ 5.365ð5Þ and 5.34(3), respectively
(illustrated as shaded lines in the figure). The fit to energies
in the ρ channel using Eq. (1) gives ξ ¼ 5.58ð1Þ which
deviates from5.3 drastically. This can be definitely attributed
to the influence of nearby P-wave ππ scattering states that
have the same center-of-mass momentum as ρ. Sowe do not
use ρ meson to check the ξ value.
There are subtleties in the determination of the lattice

spacing for our lattice setup. We intend to generate gauge
configurations at a pion mass mπ ∼ 300 MeV. As the first
step, we calculate the static potential

VðrÞ ¼ V0 −
ec
r
þ σr ð2Þ

throughWilson loops to determine ec and the string tension
σa2s (in lattice units). Then the spatial lattice spacing as is
determined in the unit of the Sommer’s scale parameter r0
according to the condition r2 dV

dr jr¼r0
¼ 1.65, namely

as
r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σa2s
1.65 − ec

s
¼ 0.334ð2Þ: ð3Þ

We tentatively use the value r0 ¼ 0.491ð9Þ fm, which is
determined at the physical point (in the chiral, continuum
and infinite volume limits) [35], to set as of our lattice, from
which the quark mass is tuned to give mπ ≈ 300 MeV.
However, given this value of as, the mass of the vector
meson ρ is determined to be around 750 MeV, which is
obviously lower than expected (note that mρ is 770 MeVat
the physical pion mass mπ ∼ 135 MeV). This can be
understood as follows. The measured value of r0=as
actually also depends on the quark mass for a given lattice,
such that an additional quark mass dependence is intro-
duced to the values of mπ and mρ in terms of r0. Since our
quark mass is substantially far from the chiral limit, it is
more reasonable to use the value of r0 that is extrapolated
from the physical pion mass to the comparable one in our
situation.
An alternative scale setting scheme is to choose another

quantity that is insensitive to quark masses. Experimentally,
there is an interesting relation between pseudoscalar meson
masses mPS and the vector meson masses mV of the quark
configuration qlq̄,

Δm2 ≡m2
V −m2

PS ≈ 0.56 − 0.58 GeV2 ð4Þ

where ql stands for the u, d, s quark and q stands for u, d, s,
c quarks. The PDG results of the masses of these vector and
pseudoscalar mesons [5] are collected in Table I along with
their mass squared differences. Even though the reason is
still unknown for this relation, empirically these values
are insensitive to quark masses. On the other hand, the mass

of ηs, the ss̄ counterpart of π (not considering the ss̄
annihilation effects in the calculation), is determined to be
mηs ¼ 0.686ð4Þ GeV from lattice QCD by the HPQCD
collaboration [36]. Even though ηs is not a physical state, the
mass squared difference m2

ϕ −m2
ηs ≈ 0.570 GeV2 also sat-

isfies the empirical relation in Eq. (4). In this study, the
dimensionless masses of π and ρ is determined to bemπat ¼
0.05055ð13Þ and mρat ¼ 0.12046ð20Þ. In this sense, we
assume the relation of Eq. (4) is somewhat general for heavy-
light mesons and use it to set the scale parameter at. Of
course, one should take caution to use this relation since ρ is
experimentally a wide resonance and decays intoP-wave ππ
states by 99%. On our lattice the lowest P-wave ππ energy
threshold in the rest frame of ππ is 2EπðpÞat ≈ 0.1795 with
ξ ≈ 5.3, which is substantially higher thanmρat. This means
ρ in its rest frame is a stable particle, such that the mass value
mρ is reliable. In practice, wemake the least squares fitting to
the mass squared differences over the nn̄, ns̄, nc̄ and sc̄
systems where n refers to the u, d quarks, and get the value

Δm2 ¼ 0.568ð8Þ GeV2, which serves as an input to give the
lattice scale parameter a−1t ¼ 6.894ð51Þ GeV and the cor-
responding spatial lattice spacing as ≈ 0.1517ð11Þ fm. We
emphasize that the errors quoted in the values of at and as
include only the statistical errors ofmπat andmρat, aswell as

the uncertainty ofΔm2.Accordingly, theu,dmass parameter
in this study gives mπ ¼ 348.5ð1.0Þð2.6Þ MeV and
mρ ¼ 830.5ð6.3Þð6.1Þ MeV, where the second error is
due to the uncertainty of a−1t . For most of this paper, we
will not show the second error when listing our physical
values. This means that most of the errors below are just
statistical errors. Wewill bring the a−1t error back to physical
values in conclusion. Using the mπ above, we have mπLs ≈
3.9 for this lattice setup, which warrants the small finite
volume effects. The number of configurations of our gauge
ensemble is 6991, which is crucial for the glueball-relevant
studies. The details of the gauge ensemble are given in
Table II.

TABLE I. Experimental values of the masses of the pseudo-
scalar (P) and vector mesons (V) of quark configurations nq̄, ns̄,
nc̄, sc̄, nb̄ and sb̄ [5]. Here n refers to the light u, d quarks. The
right most column lists the m2

V −m2
PSðGeV2Þ. In the row of ss̄

states, the mass of the ss̄ pseudoscalar ηs is determined by the
HPQCD collaboration from lattice QCD calculations [36].

qlq̄ mV (GeV) mPS (GeV) m2
V −m2

PSðGeV2Þ
nn̄ 0.775 0.140 0.581
ns̄ 0.896 0.494 0.559
ss̄ 1.020 0.686 [36] 0.570
nc̄ 2.010 1.870 0.543
sc̄ 2.112 1.968 0.588
nb̄ 5.325 5.279 0.481
sb̄ 5.415 5.367 0.523

η-GLUEBALL MIXING FROM Nf ¼ 2 LATTICE QCD PHYS. REV. D 107, 094510 (2023)

094510-3



For the valence charm quark, we adopt the clover fermion
action in Ref. [37], and the charm quark mass parameter
is tuned to give ðmηc þ 3mJ=ψÞ=4 ¼ 3.069 GeV. With the
tuned charm quark mass parameter, we generate the peram-
bulators of charm quark on our ensemble, from which the
masses of ηc and J=ψ are derived precisely to be mηc ¼
2.9750ð3Þ GeV and mJ=ψ ¼ 3.0988ð4Þ GeV. The accord-
ing 1S hyperfine splitting is ΔHFS ¼ mJ=ψ −mηc ¼
123.8ð5Þ MeV. We also check the dispersion relation in
Eq. (1) for ηc and J=ψ up to the momentum mode
n⃗ ¼ ð1; 2; 2Þ. As shown in Fig. 2, the dispersion relation
is almost perfectly satisfied with ξ ¼ 5.341ð2Þ and 5.307(5)
for ηc and J=ψ , respectively.
As a further check of our scale setting scheme, we also

calculate the masses of D and D� and get mD ¼
1.882ð1Þ GeV and m�

D ¼ 2.023ð1Þ GeV on a fraction of
configurations of our ensemble. The hyperfine splitting
ΔHFSðDÞ ¼ mD� −mD ¼ 0.141ð2Þ GeV almost reproduces
the experimental values mD�0 −mD0 ¼ 0.14201ð7Þ GeV
and mD�þ −mDþ ¼ 0.14060ð7Þ GeV [5]. This manifests
that our tuning of charm quark mass works well. The
dispersion relation Eq. (1) is also checked to be correct
forD andD�with ξ ¼ 5.32ð2Þ and5.31(3), respectively. The
figure is similar to Figs. 1 and 2 and is omitted here to
save space.
Table III collects the results of ηc, J=ψ , D and D�

mesons. Along with the values of ξ derived from the

dispersion relations of π and η, we can see that the values
of ξ for different mesons are in agreement with the value
ξ ¼ 5.30 during the parameter tuning and are consistent
with each other within 1%.

B. Operator construction and distillation method

The principal goal of this work is to investigate the
possible mixing of the pseudoscalar glueball and the
pseudoscalar qq̄ meson, therefore the quark annihilation
diagrams should be taken care of. For this to be done, we
adopt the distillation method [33] which provides a
smearing scheme for quark fields (Laplacian Heaviside
smearing) and the calculation strategy of the all-to-all
propagators of the smeared quark fields that are distilled
to be perambulators in the Laplacian Heaviside subspace
of the spatial Laplacian operator −∇2. Since we plan to
investigate the η − ηc correlation functions as well, we
calculate the perambulators of u, d and c quarks on our
large gauge ensemble in the Laplacian Heaviside space
spanned by the N ¼ 70 eigenvectors of −∇2 operator with
the lowest eigenvalues. For the pseudoscalar glueball
operator, we adopt the strategy in Refs. [14,15] to get
the optimized Hermitian operatorOGðtÞ ¼ O†

GðtÞ coupling
mainly to the ground state glueball based on different
prototypes of Wilson loops and gauge link smearing
schemes (see Appendix for the details).
For the isoscalar η, the interpolation field can be defined as

OΓ ¼ 1ffiffiffi
2

p ½ūðsÞΓuðsÞ þ d̄ðsÞΓdðsÞ�; ð5Þ

where Γ refers to γ5 or γ4γ5, uðsÞ and dðsÞ are Laplacian
Heaviside smeared u, d quark fields. Thus the correlation
function of OΓ can be expressed as

CΓΓðtÞ ¼
1

T

XT
ts¼1

X
xy

hOΓðx; tþ tsÞO†
Γðy; tsÞi

≡ CΓðtÞ þ 2DΓðtÞ ð6Þ

with CΓðtÞ and DΓðtÞ being the contributions from the
connected and disconnected diagrams, respectively. We also
consider the following correlation functions

TABLE II. Parameters of the gauge ensemble.

L3 × T β a−1t (GeV) ξ mπ (MeV) Ncfg

163 × 128 2.0 6.894(51) ∼5.3 348.5(1.0) 6991

FIG. 2. The dispersion relations of ηc and J=ψ . The data points
are lattice results and the shaded lines illustrate the fit results
using Eq. (1). The fitted results of ξ are 5.341(2), 5.307(5) for ηc
and J=ψ , respectively.

TABLE III. The masses of J=ψ , ηc, D and D�. The PDG value
of mDð�Þ is the average of masses of Dð�Þ0 and Dð�Þþ.

X ηc J=ψ D D�

mX (GeV) 2.9750(3) 3.0988(4) 1.882(1) 2.023(1)
PDG [5] 2.983 3.097 ∼1.867 ∼2.008
ξ 5.341(2) 5.307(5) 5.32(2) 5.31(3)
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CGGðtÞ ¼
1

T

XT
ts¼1

hOGðtþ tsÞOGðtsÞi

CGΓðtÞ ¼
1

T

XT
ts¼1

X
x

hOGðtþ tsÞO†
Γðx; tsÞi

CΓGðtÞ ¼
1

T

XT
ts¼1

X
x

hOΓðx; tþ tsÞOGðtsÞi

¼∓ CGΓðtÞ

CΓΓc
ðtÞ ¼ 1

T

XT
ts¼1

X
xy

hOΓðx; tþ tsÞO†
Γc
ðy; tsÞi ð7Þ

where the∓ sign comes from the Hermiticity ofOΓ, it takes
minus sign for Γ ¼ γ5 (anti-Hermitian) and plus sign for
γ4γ5 (Hermitian). The operatorOΓc

¼ c̄ðsÞΓccðsÞ whereΓc ¼
γ5; γ4γ5 is also defined in terms of the Laplacian Heaviside
smeared charm quark field cðsÞ. Obviously, all of these
correlation functions except for CGGðtÞ are contributed by
quark annihilation diagrams and can be dealt with conven-
iently in the framework of the distillation method.

C. η mass as a further calibration

We calculate two types of correlation functions for η,
namely Cγ5γ5ðtÞ and Cðγ4γ5Þðγ4γ5ÞðtÞ. We do observe the finite
volume artifact that Cγ5γ5ðtÞ approaches to a nonzero
constant when t is large, as shown in Fig. 3. It has been
argued that this constant term comes from the topology of
QCD vacuum and can be approximately expressed as
a5ðχtop þQ2=VÞ=T where a is the lattice spacing (in the
isotropic case), χtop is the topological susceptibility, Q is
the topological charge, V is the spatial volume and T is the

temporal extension of the lattice [30,38,39]. This can be
understood from the anomalous axial vector current rela-
tion that the Oγ5 has a direct connection with the topo-
logical charge density operator. It is interesting to observe
that Cðγ4γ5Þðγ4γ5ÞðtÞ has normal large t behavior that it damps
to zero for large t. As usual, the t-behavior of these
correlation functions can be seen more clearly through
their effective mass functions defined as

meffðtÞ ¼ ln
CΓΓðtÞ

CΓΓðtþ 1Þ ð8Þ

where Γ refers to γ5 or γ4γ5. Figure 4 shows these effective
mass functions. Benefited from the large statistics of our
gauge ensemble, the effective mass plateau starts from
t ∼ 10, and the signal-to-noise ratio keeps good for t
beyond 20 in the case Γ ¼ γ4γ5. By a combined fit of
Cγ5γ5ðtÞ and Cðγ4γ5Þðγ4γ5ÞðtÞ using two mass terms, we obtain
the best-fit mass of η to be

mη ¼ 714.1ð5.8Þ MeV: ð9Þ

where the error is obtained through the jackknife analysis.
Considering the uncontrolled systematic uncertainties in
our calculation (the continuum extrapolation and the chiral
extrapolation have not been performed), this value is
compatible with other determinations [28–30]. According
to WV, the large mass of the flavor singlet pseudoscalar
meson has a direct connection with the topology of QCD
vacuum. In the Nf ¼ 2 case, to the leading order of chiral
perturbation theory, mη is related to mπ

m2
η ¼ m2

π þm2
0; ð10Þ

FIG. 3. The correlation function of η with Γ ¼ γ5. We can see
the function contains a nonzero constant with a large error
near t ¼ T=2.

FIG. 4. The effective masses of π and η with different Γ
insertions. For η, the signal-to-noise ratio looks better in the case
Γ ¼ γ4γ5 because the corresponding correlation function doesn’t
contain a constant associated with the topology of QCD vacuum.
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where the parameter m2
0 is defined in terms of the

topological susceptibility χtop and the pion decay constant
fπ , namely

m2
0 ¼ m2

η −m2
π ≈

4Nf

f2π
χtop: ð11Þ

Usually, χtop is for the pure gauge case and is expected to be
independent of flavor numberNf. Using the values ofmπ ¼
348.5ð1.0Þ MeV andmη in Eq. (9),m2

0 can be derived to be
m2

0 ¼ 0.3885ð77Þ GeV2. According to the leading order
chiral perturbation theory for Nf ¼ 2, the mπ dependence
of fπ is [40]

fπ ¼
ffiffiffi
2

p
F

�
1þ ξ

�
ln
mphys;2

π

m2
π

þ l4

�
þOðξ2Þ

�
ð12Þ

where mphys
π ¼ 134.98 MeV is the physical pion mass, ξ is

approximated by m2
π=ð4πFÞ2, the pion decay constant in

the chiral limit F ¼ 86ð1Þ MeV and the low energy
constant l4 ¼ 4.40ð28Þ are taken from FLAG 2019 [41].
For our mπ ¼ 348.5ð1.0Þ MeV, we have

fπ
fphysπ

¼ 1.17ð1Þþ0.03
−0.02 ð13Þ

where the first error comes from the error of F and
the second one is due to the uncertainty of l4. Using this
value and fphysπ ¼ 130.2ð8Þ MeV [41–44], χ1=4top is estimated

to be χ1=4top ¼ 183ð3Þ MeV, which is very close to the
phenomenological value 180 MeV and the lattice value
185.3(5.6) MeV [4]. In the physical Nf ¼ 3 case at
physical pion mass, the GMOR relation implies the mass
of the singlet counterpart of the pseudoscalar octet should
be m2

1 ¼ ð2m2
K þm2

πÞ=3 ¼ 0.170 GeV2. Thus using the
topological susceptibility we obtained, we can estimate the
mass of the flavor singlet pseudoscalar meson to be

m2
η1 ¼ m2

1 þ
12χtop
f2π

≈ 0.961 GeV2; ð14Þ

which corresponds to mη1 ≈ 0.981ð29Þ GeV and is not far
from the experimental valuemη0 ¼ 0.958 GeV. The GMOR
relation also implies m2

η8 ¼ ð4m2
K −m2

πÞ=3 ≈ 0.321 GeV2.
This confirms again that the Witten-Veneziano mechanism
for the flavor singlet pseudoscalar mass works fairly well
both for the SU(2) and SU(3) flavor symmetry.

III. TOWARD THE η-GLUEBALL MIXING

A. Theoretical consideration

In order to investigate the possible mixing between the
pseudoscalar glueball and η, we must parametrize the

correlation functions in Eq. (7). We adopt the following
theoretical logic. As usual in the lattice study, the corre-
lation function CXYðtÞ of operator OX and OY can be
parametrized as

CXY ≈
X
n≠0

½h0jOXjnihnjO†
Y j0iðe−Ent � e−EnðT−tÞÞ� ð15Þ

where the � sign is for the same and opposite Hermiticities
of OX and OY , respectively, and jni are the eigenstates of
the lattice Hamiltonian Ĥ defined as Ĥjni ¼ Enjni with
En being the corresponding eigen energies. For a given
quantum number, jni’s establish an orthogonal and com-
plete set, namely,

P
n jnihnj ¼ 1 with the normalization

condition hmjni ¼ δmn. In principle, Ĥ only exists heuris-
tically, so we do not know the exact particle configurations
of these eigenstates simply from the correlation function in
Eq. (15). As far as the flavor singlet pseudoscalar channel is
concerned in the Nf ¼ 2 QCD theory, each of the state jni
should be a specific admixture of bare η states and bare
glueballs if they exist theoretically (here we ignore the
multihadron states temporarily) and can be taken as the
states in the eigenstate set fjαni; n ¼ 1; 2;…g of the free
Hamiltonian Ĥ0. Since we are working in a unitary lattice
framework for u, d quarks, in principle this state set is
orthogonal and complete with the normalization condition
hαmjαni ¼ δmn. Now we introduce the interaction
Hamiltonian ĤI to account for the dynamics of the possible
mixing, such that jni of Ĥ ¼ Ĥ0 þ ĤI can be expanded in
terms of jαmi as

jni ¼
X
m

Cnmjαmi ð16Þ

with
P

m jCnmj2 ¼ 1. In this sense, one can say that jni is
an admixture of states jαmi whose fractions are jCnmj2,
respectively. Furthermore, if ĤI is small relative to Ĥ0, then
to the lowest order of the perturbation theory, one has

jni ¼ jαni þ
X
m≠n

hαmjĤIjαni
Eð0Þ
n − Eð0Þ

m

jαmi

En ¼ Eð0Þ
n þ

X
m≠n

jhαmjĤIjαnij2
Eð0Þ
n − Eð0Þ

m

ð17Þ

where Eð0Þ
n is the eigenenergy of jαni and is ordered from

low to high.
The experimentally observed isoscalar pseudoscalars are

η, η0, ηð1295Þ, ηð1405=1475Þ, etc. [5], which are identified
as I ¼ 0 members of different q̄q SU(3) nonets of different
radial quantum numbers. As for the SU(2) case of this
study, since there is only one isoscalar in each isospin
quartet, the spectrum can be simplified largely. Because the
smeared quark field suppresses the contribution of excited
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states in the correlation functions of η, as a simple
approximation, we can truncate the spectrum of η state
to be η and η� with η� taking account into all the excited η
states. On the other hand, quenched lattice QCD predicted
the mass of the lowest pseudoscalar glueball is around 2.4–
2.6 GeV. This seems to be confirmed by the correlation
function CGGðtÞ of the optimized operator OG, which is
expected to couple most to the ground state. So we include
the ground state pseudoscalar glueball jGi and another state
jG�i in the state basis fjαii; i ¼ 1; 2;…g with jG�i stand-
ing for all the excited states of the pseudoscalar glueball.
Finally, we have the following state basis

jαii ¼ jηi; jη�i;…; jGi; jG�i;…; ð18Þ

With this state basis, the free Hamiltonian Ĥ0 ¼
diagfmη; mη� ; mG;mG�g is diagonal with the matrix ele-
ments being the bare masses of the basis states, respec-
tively, and being ordered from low to high. Theoretically,
jηi and jη�i are orthogonal, so do the states jGi and jG�i.
Thus the interaction Hamiltonian ĤI can be expressed as

HI ¼

0
BBB@

0 0 x1 y1
0 0 x2 y2
x1 x2 0 0

y1 y2 0 0

1
CCCA; ð19Þ

where xi, yi are called mixing energies sometimes.
Accordingly, we have the following state expansion of jni

j1i ≈ jηi þ x1
mη −mG

jGi þ y1
mη −mG�

jG�i

j2i ≈ jη�i þ x2
mη� −mG

jGi þ y2
mη� −mG�

jG�i

j3i ≈ jGi þ x1
mG −mη

jηi þ x2
mG −mη�

jη�i

j4i ≈ jG�i þ y1
mG� −mη

jηi þ y2
mG� −mη�

jη�i: ð20Þ

B. The Γ = γ5 case

Now we explore the possibility of glueball-η mixing
through the correlation function CGγ5ðtÞ. Let us take a look
at the t-dependence of CGγ5ðtÞ shown in Fig. 5. We have the
following observations:
(1) CGγ5ðtÞ is anti-symmetric with respect to t ¼ T=2

and tends to 0 at t ¼ 0. This is understood because
OG is hermitian by construction (and even under the
time reversal transformation T ) while Oγ5 is anti-
Hermitian and T -odd. At t ¼ 0, since the product
OGð0ÞOγ5ð0Þ is T -odd, its vacuum expectation
value hOGOγ5ð0Þi certainly vanishes.

(2) CGγ5ðtÞ approaches a positive (negative) constant
when t < T

2
(t > T

2
). This may be due to the constant

contribution from the topology similar to the case of
Cγ5γ5ðtÞ discussed in Sec. II C. Since CGγ5ðtÞ is now
T -odd, so does the topology contribution.

(3) Even though its central value is smooth, the error of
CGγ5ðtÞ is almost constant throughout the time range.

In order to find a function form to describe the time
behavior of CGγ5ðtÞ, we take the following approximations

O†
Gj0i ≈

X
i≠0

ffiffiffiffiffiffiffi
ZGi

p jGii

O†
γ5 j0i ≈

X
i≠0

ffiffiffiffiffiffiffiffiffi
Zγ5;i

p jηii; ð21Þ

by the assumptions h0jOGjηii ≈ 0 and h0jOγ5 jGii ≈ 0 sim-
ilar to those adopted in the η − η0 mixing studies [23,24].
Consequently, we have the following coupling matrix

elements of the operators OG and Oγ5 ,

h0jOGj1i ¼
x1

ffiffiffiffiffiffi
ZG

p
mη −mG

þ y1
ffiffiffiffiffiffiffiffi
ZG�

p
mη −mG�

h0jOGj2i ¼
x2

ffiffiffiffiffiffi
ZG

p
mη� −mG

þ y2
ffiffiffiffiffiffiffiffi
ZG�

p
mη� −mG�

h0jOGj3i ¼
ffiffiffiffiffiffi
ZG

p
h0jOGj4i ¼

ffiffiffiffiffiffiffiffi
ZG�

p
ð22Þ

and

FIG. 5. The correlation function of η − G with Γ ¼ γ5, called
CGγ5 . The value of this correlator tends to zero at t ¼ 0 within
errors, and the error seems to be a constant independent of t. The
correlator approaches a positive(negative) constant when t <
T
2
ðt > T

2
Þ which might be due to the contribution from topology.
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h0jOγ5 j1i ¼
ffiffiffiffiffiffiffiffiffi
Zγ5;1

p
h0jOγ5 j2i ¼

ffiffiffiffiffiffiffiffiffi
Zγ5;2

p

h0jOγ5 j3i ¼ −
x1

ffiffiffiffiffiffiffiffiffi
Zγ5;1

p
mη −mG

−
x2

ffiffiffiffiffiffiffiffiffi
Zγ5;2

p
mη� −mG

h0jOγ5 j4i ¼ −
y1

ffiffiffiffiffiffiffiffiffi
Zγ5;1

p
mη −mG�

−
y2

ffiffiffiffiffiffiffiffiffi
Zγ5;2

p
mη� −mG�

ð23Þ

As an exploratory study and for the simplicity of the
future data analysis, we temporarily neglect η� contributes
to CGγ5ðtÞ. That is to say, we take the further approximation

O†
γ5 j0i ≈

ffiffiffiffiffiffiffiffiffi
Zγ5;1

p jηi. Thus after inserting Eqs. (20), (21),
(22), (23) to Eq. (15) and ignore the terms relevant to jη�i,
we have the approximate expression of CGγ5ðtÞ as

CGγ5ðtÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZGZγ5;1

p x1
mη −mG

ðe−m1t − e−m3tÞ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZG�Zγ5;1

p y1
mη −mG�

ðe−m1t − e−m4tÞ

− ðt → ðT − tÞ termsÞ: ð24Þ

The feature of this expression is CGγ5ðt ¼ 0Þ ¼ 0 and is in
accordance with the observation of item (1).
In order to understand the almost constant error of

CGγ5ðtÞ, we consider its variance [45]

δ2CGγ5ðtÞ≡ hO2
GðtÞO2

γ5ð0Þi − C2
Gγ5

ðtÞ: ð25Þ

The first term on the right-hand side can be viewed as a
correlation function of the operator O2

γ5 and O2
G, both of

which have the vacuum quantum number 0þþ (in the
continuum limit) and are expected to have nonzero vacuum
expectation values hO2

γ5i ≠ 0 and hO2
Gi ≠ 0. Thus we have

δ2CGγ5ðtÞ ¼ hO2
GðtÞO2

γ5ð0Þi − C2
Gγ5

ðtÞ þ hO2
GihO2

γ5i ð26Þ

where O2
i ðtÞ≡O2

i ðtÞ − hO2
i i. The almost constant error of

CGγ5ðtÞ implies that the constant term hO2
γ5ihO2

Gi is large
and dominate the variance. This is consistent with the
argument in Ref. [45] that the variance of a correlation
function is dominated by the possible lowest state, which
corresponds to the vacuum state with Evac ¼ 0 in our case.
This motivates us to consider the temporal derivative of
CGγ5ðtÞ, namely,

∂tCGγ5ðtÞ ¼
1

2at
ðCGγ5ðtþ atÞ − CGγ5ðt − atÞÞ; ð27Þ

such that the constant term in CGγ5ðtÞ and its constant
variance can be canceled. This is surely the case. We plot
∂tCGγ5ðtÞ in Fig. 6, where one can see that ∂tCGγ5ðtÞ goes to
zero when t is large and its relative error is much smaller.

In order for the mixing energies x1 and y1 to be extracted
by using Eq. (24), one has to know the parameters m1, m3,
m4, mη, mG, mG� , ZG, ZG� and Zγ5;1, which, based on the
assumptions of Eq. (21), are encoded in the correlation
functions Cγ5γ5ðtÞ and CGGðtÞ as

CGGðtÞ ¼
X
i

ZGi
ðe−mGi

t þ e−mGi
ðT−tÞÞ

Cγ5γ5ðtÞ ¼
X
i

Zγ5;iðe−mηi
t þ e−mηi

ðT−tÞÞ

≈ Zγ5;1ðe−mηt þ e−mηðT−tÞÞ ð28Þ

where we take i ¼ 1, 2 for CGGðtÞ and therefore G1;2 refer
to G and G�. It should be noted that the second state jG�i
should be considered even though we have built the optimal
operator OG based on a large operator set (seen in
Appendix), it turns out that there is still a substantial
contribution of higher states in CGG. To manifest this, we
plot the effective mass function meffðtÞ of CGGðtÞ in Fig. 7
by the definition in Eq. (8), where one can see that the
ground state glueball G has not saturated CGGðtÞ before the
signals are undermined by errors. With this observation, we
add the second term relevant to G� to the first equation in
Eq. (28) but do not consider its physical meaning.
Since the mixing effect is expected to be small (our final

results confirm this),we take the assumptionsm1 ≈mη,m3 ≈
mG and m4 ≈mG� . In the data analysis procedure, we first
rearrange the Nconf measurements into 139 bins with each
bin including 50 measurements, and then we perform the
one-eliminating jackknife analysis on these data bins. For
each time of jackknife resampling, we first extract mη, mG,
mG� , ZG, ZG� , Zγ4γ5;1 and Zγ5;1 from CGGðtÞ, Cγ5γ5ðtÞ and
Cðγ4γ5Þðγ4γ5ÞðtÞ in the fixed time windows ½tl; th�GG ¼ ½1; 14�,

FIG. 6. The temporal derivative of CGγ5 defined by Eq. (27).
The data points are lattice results and the shaded band illustrates
the fitting results using Eq. (24). The signal to noise ratio of
∂tCGγ5 is much better than that of CGγ5 in Fig. 5.
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½tl;th�γ5¼½9;30� and ½tl;th�γ4γ5 ¼½5;30�, as shown inTable IV.
Then we feed these parameters to ∂tCGγ5ðtÞ to determine the
parameters x1 and y1. The final results of mη, mG and jx1j
with jackknife errors are obtained to be

mηat ¼ 0.10358ð84Þ;
mGat ¼ 0.3607ð75Þ;
jx1jat ¼ 0.0155ð22Þ: ð29Þ

Note that the definitions in Eqs. (21), (22), (23) are up to a
plus or minus sign, we can only determine the absolute value
jx1j of x1. The parameters of the fitting procedure and fitting
results are collected in Table IV. The goodness of the fit of
Eq. (24) to ∂tCGγ5 using the function is reflected by the
χ2=d.o.f. ¼ 0.96 in the fitting window ½tl; th�Gγ5 ¼ ½3; 30�,
and is also illustrated in Fig. 6 by the shaded curve. In mean
time, making use of the T -odd property of CGγ5ðtÞ, we
average the t < T

2
part and t > T

2
part and find the errors can be

reduced drastically around t ¼ 0 except for CGγ5ðt ¼ 0Þ, as
shown in Fig. 8, where the function of Eq. (24) with fitted
parameters is also plotted with shaded curves. It is seen that
the function describes the t-dependence ofCGγ5ðtÞ very well
up to an unknown constant termwith opposite signs for t < T

2

and t > T
2
.

Since jx1j is much smaller than mG −mη, to the lowest
order of the perturbation theory, we can estimate the mixing
angle θ of η and the ground state glueball G as

jθj ≈ sin jθj ≈ jx1j
mG −mη

¼ 3.46ð46Þ°: ð30Þ

C. The Γ = γ4γ5 case

As a cross-check, we also carry a similar calculation by
using the Γ ¼ γ4γ5 for the interpolation field operator of η.
The corresponding correlation functions Cðγ4γ5Þðγ4γ5ÞðtÞ and
CGðγ4γ5ÞðtÞ are calculated using Eq. (7). In contrast to the case
of Γ ¼ γ5, the correlation function CGðγ4γ5ÞðtÞ does not go to
zerowhen t → 0. This is similar to the study of mixing of the
pseudoscalar charmonium and the pseudoscalar glueball
[32], which can be explained following the same logic that
the QCD UAð1Þ anomaly may play an important role here.
Obviously, the operatorOγ4γ5 has the same operator structure
as the temporal component of the isoscalar axial vector
current j5μðxÞ ¼ 1ffiffi

2
p ½ūðxÞγμγ5uðxÞ þ d̄ðxÞγμγ5dðxÞ�, which

satisfies the anomalous axial vector relation

FIG. 7. The effective mass of the pseudoscalar glueball. The
shaded band illustrates the fitting results using Eq. (28) with two
mass terms.

TABLE IV. Ground state mass and mixing angle fitted from operators with Γ ¼ γ5 and Γ ¼ γ4γ5 on the ensemble.
Values ofmη are the same in both cases because the value is derived from a combined fit to Cγ5γ5 and Cðγ4γ5Þðγ4γ5Þ. χ

2

are obtained from the fitting results of CGΓ.

Γ ½tl; th�Γ ½tl; th�GG ½tl; th�GΓ χ2=dof mηat mGat jx1jat jθj
γ5 [9, 30] [1, 14] [3, 30] 0.96 0.10358(84) 0.3607(75) 0.0155(22) 3.46(46)°
γ4γ5 [5, 30] [1, 14] [0, 30] 0.15 0.10358(84) 0.3607(75) 0.0112(55) 2.5(1.2)°

FIG. 8. CGγ5 , and used T -odd property to fold the data for every
gauge configuration. The blue band shows the fitted results. The
band doesn’t perfectly match the data point because we just fitted
temporal derivative ∂tCGγ5 instead of correlation function CGγ5 ,
so we dropped some constant in the fitting result. The T -odd
property makes the constant negative in −t direction. The x-axis
is shifted by 10 to show the near-zero behavior.
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∂μj5μðxÞ ¼ 2mqj5ðxÞ þ
ffiffiffi
2

p
qðxÞ; ð31Þ

where j5ðxÞ ¼ 1ffiffi
2

p ½ūðxÞγ5uðxÞ þ d̄ðxÞγ5dðxÞ� is the pseudo-
scalar density and qðxÞ ¼ g2

32π2
ϵαβρσGa

αβG
a
ρσ is the anomalous

term stemming from the UAð1Þ anomaly with g being the
strong coupling constant andGa

αβ being the strength of color

fields. Since j5ðxÞ also has the same structure as Oγ5 , based
on the assumption in Eq. (21) we expect

m2
Gi
fGi

¼ h0j∂μj5μð0ÞjGii ≈
ffiffiffi
2

p
h0jqð0ÞjGii ð32Þ

where fGi
is the decay constant of the pseudoscalar glueball

Gi. Accordingly we have

h0jj54ð0ÞjGiðp⃗ ¼ 0Þi ≈
ffiffiffi
2

p

mGi

h0jqð0ÞjGiðp⃗ ¼ 0Þi: ð33Þ

Previous lattice studies show that pseudoscalar states can be
accessed by the operator qðxÞ [15,16], thus the nonzero
matrix element h0jqð0ÞjGii implies the coupling
h0jOγ4γ5 jGii ≠ 0. If we insist the relation O†

Gj0i ¼P
i≠0

ffiffiffiffiffiffiffi
ZGi

p jGii still holds, then the correlation function
CGðγ4γ5ÞðtÞ can be parametrized as

CGðγ4γ5ÞðtÞ ≈ Ae−m3t

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZGZγ4γ5;1

p x1
mη −mG

ðe−m1t − e−m3tÞ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZG�Zγ4γ5;1

p y1
mη −mG�

ðe−m1t − e−m4tÞ

þ ðt → ðT − tÞ termsÞ; ð34Þ

which is similar to Eq. (24) apart from the first term due to
nonzero coupling h0jqð0ÞjGii (here we ignore the contribu-
tion of excited η states). Alongside the correlation function

Cðγ4γ5Þðγ4γ5ÞðtÞ ¼
X
i

Zγ4γ5;iðe−mηi
t þ e−mηi

ðT−tÞÞ ð35Þ

and the first equation of Eq. (28), we carry out a similar
jackknife data analysis to the case of Γ ¼ γ5 and get the
mixing energy jx1jat ¼ 0.0112ð55Þ and the corresponding
mixing angle θ1 ¼ 2.5ð1.2Þ°, which are consistent with the
results of Γ ¼ γ5 case but have larger errors. The parameters
of the fitting procedure and the fit results are also listed in
Table IV for comparison. In Fig. 9, the colored curves with
error bands are plotted using the fitted parameters. It is seen
that the function forms mentioned above also describe the
data very well. The fitted results are shown in Table IV and
can be compared with the γ5-case directly. On this ensemble,
it is clear that the results of the two cases are compatible with
each other within errors.

IV. DISCUSSION AND SUMMARY

We generate a large gauge ensemble with Nf ¼ 2

degenerated u, d dynamical quarks on a 163 × 128 aniso-
tropic lattice with the anisotropy ξ ¼ as=at ≈ 5.3. Based on
the experimental observation that the differences of mass
squares of the heavy-light vector and pseudoscalar mesons
are insensitive to quark masses, we propose a new scale
setting scheme that the temporal lattice spacing at can be
estimated by this quantity. In practice, we use the value
m2

V −m2
PS ¼ 0.568ð8Þ GeV2, which is a least squares fitting

ofnn̄, sn̄, ss̄, cn̄ and cs̄mesonswithn referring to the lightu,
d quarks. Our u, d quark mass parameter corresponds to a
pion mass mπ ≈ 350 MeV. We calculate the perambulators
of u, d quarks and the valence charm quark on our ensemble
using the distillation method where the quark annihilation
diagrams can be calculated efficiently.
We calculate the mass of the isoscalar pseudoscalar

meson η to be mη ¼ 714ð6Þð16Þ MeV. The error in the
latter bracket is introduced by the estimation of lattice
spacing in Sec. II A. This mass value can be matched,
through the Witten-Veneziano relation, to the SU(3) flavor
singlet pseudoscalar meson massmη1 ≈ 981 MeV, which is
in good agreement with the η0 mass mη0 ¼ 958 MeV if the
η − η0 mixing is considered.
The mixing of η and the pseudoscalar glueball is

investigated for the first time on the lattice. From the
correlation function of the glueball operator and η operator,
the mixing energy and the mixing angle are determined to
be jx1j ¼ 107ð15Þð2Þ MeV and jθj ¼ 3.46ð46Þ° given the
pseudoscalar glueball mass mG ≈ 2.5 GeV. This mixing
angle is so tiny that the mixing effects can be neglected
when the properties of η (and also η0 in the physical Nf ¼ 3

case) are explored.

FIG. 9. The correlation function of η − G with Γ ¼ γ4γ5, called
CGðγ4γ5Þ. The shaded band illustrates the fitting results using
Eq. (34). The fit window starts from t ¼ 0 in order to match the
near-zero behavior of the correlator. The x-axis is shifted by 5 to
show the near-zero behavior.
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With perambulators of light and charm quarks at hand,
we also checked correlation functions of η and ηc, which
are contributed only by annihilation diagrams. The Γ
insertion are chosen to be γ5 and γ4γ5. The signal-to-noise
ratios of these correlation functions are fairly good, and the
effective masses of them defined by Eq. (8) are presented in
Fig. 10, where the horizontal gray line illustrates the ηmass
in the lattice unit. Albeit the different behaviors at the small
t range, all the effective masses approach mη when t is
large. Because of the influence from excited states of η and
ηc, we cannot fit the curve by the simplification above, and
optimized operators for these states are required to get
better results. This kind of exploration can be performed in
the future.
To summarize, we find that there is little mixing between

the flavor singlet pseudoscalar (η is our case) and the
pseudoscalar glueball. The topology of the QCD vacuum
plays a crucial role in the origin of η mass due to the QCD
UAð1Þ anomaly. This is in accordance with the common
theoretical considerations [46].
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APPENDIX

1. Glueball operator construction

The interpolation field operators for the pseudoscalar
glueball are built based on the four prototypes of Wilson
loops shown in Fig. 11. TheWilson loops of each prototype
are calculated using smeared gauge links. We adopt six
different schemes to smear gauge links, which are different
combinations of single link smearing and double link
smearing [14,15]. The spatial symmetry group on the
lattice is the octahedral group O whose irreducible repre-
sentation A1 corresponds to the spin J ¼ 0; 4;… in the
continuum limit. It is expected the glueball of J ¼ 4 is
higher than the J ¼ 0 state in mass, so we can build
operators in the A−þ

1 representation to couple with the
ground state pseudoscalar glueball. Let Wαðx; tÞ be one
prototype of the Wilson loop under a specific smearing
scheme, then the A−þ

1 operator in the rest frame of a
glueball can be obtained by

ϕαðtÞ¼
X
x

X
R∈O

cA1

R ½R∘Wαðx; tÞ−PR∘Wαðx; tÞP−1� ðA1Þ

where R∘Wα refers to differently oriented Wilson loops
after one of the 24 elements of O (R) operated on Wα, P is
spatial reflection operation and cA1

R are the combinational
coefficients for the A1 representation. Thus we obtain a A

−þ
1

operator set fϕαðtÞ; α ¼ 1; 2;…; 24g based on the four
prototypes and six smearing schemes. In order to get an
optimized operator OG that couples most to the ground
state glueball, we first calculate the correlation matrix of the
operator set,

CαβðtÞ ¼
1

T

X
τ

hϕαðtþ τÞϕβðτÞi; ðA2Þ

FIG. 10. Effective mass functions of CΓΓc
defined by Eq. (8).

Different colors indicate different source Γc and sink Γ insertions.
The gray band shows the fitted result of mηat with error, and we
can see all four functions have plateaus near mηat at large t.

x

y

z

FIG. 11. Wilson loop prototypes used to construct the pseu-
doscalar glueball operator [14,15].
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and then solve the generalized eigenvalue problem

Cαβðt1Þwβ ¼ λCαβðt0Þwβ ðA3Þ

to get the eigenvector wα of the largest eigenvalue λ, which
serves as the combinational coefficients of OG, namely,

OGðtÞ ¼ wαϕαðtÞ: ðA4Þ

In practice, we take t0 ¼ 1 and t1 ¼ 2 for the optimized
operator coupling more to the ground state pseudoscalar
glueball.
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