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An analysis of the geometry and structure of center vortices in the presence of dynamical fermions is
performed. A variety of metrics are used to measure the matrix structure of the vortex-modified gauge
fields. Visualizations of center vortices are presented and percolating clusters are identified. The size of
secondary vortex clusters is analyzed, with substantial differences observed between the pure Yang-Mills
and dynamical fermion case. Vortex fields are represented as directed graphs, with branching points
acting as the vertices. This representation leads to a novel picture of vortex branching as a binomial
process. These results elucidate the change in the center vortex vacuum induced by the introduction of
dynamical fermions.
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I. INTRODUCTION

There is now a wealth of literature exploring the impact
of center vortices on pure Yang-Mills gauge theory
[1–26]. These results have consistently shown that center
vortices play an important role in the emergence of
nonperturbative properties. However, there have also been
consistent discrepancies between original and vortex-only
calculations. Recent results [27,28] have, for the first time,
considered center vortices in the presence of dynamical
fermions. These results demonstrated the dramatic effect
dynamical fermions have on the behavior of center
vortices. In contrast to prior pure Yang-Mills studies
[19,21,22,25,29–31], the static quark potential can be
fully recreated from center vortices alone [27], and vortex
removal results in complete suppression of the infrared
Landau-gauge gluon propagator [28]. In light of these
unexpected results, it is natural seek a deeper under-
standing of these effects by directly analyzing the struc-
ture of the vortices themselves.
In this work, we first look for changes in the bulk

properties of the lattice configurations by analyzing
the norms and traces of the gauge links, as well as the
values of the maximal center gauge functional. Bulk
discrepancies between pure-gauge and dynamical ensem-
bles may suggest where the differences in vortex structure
arise from.

We then expand upon the visualization techniques
developed in Ref. [32] to analyze the geometric structure
of center vortices. New developments allow us to split the
vortex structure into individual disconnected clusters. From
these clusters we may examine the degree of vortex
percolation present in the vacuum.
In the supplemental material located at [33], visualiza-

tions of these center vortex clusters are presented as
interactive 3D models embedded in the document.
Instructions on viewing these models are also included
therein. Figures with a corresponding interactive model
that can be found in the supplemental material are marked
as Interactive in the caption. Interactive models in the
Supplementary Material are also referenced as Figs. S-x in
the text. A selection of preset views that highlight regions
of interest is also available.
Following cluster identification, we present a novel

perspective that considers each cluster as a directed graph
of vortex branching points, with the weight of each graph
edge corresponding to the number of vortex plaquettes
between branching points. This data structure enables us
to develop quantitative measures of the size and shape of
center vortex clusters, facilitating a detailed comparison of
vortex structure between pure-gauge and dynamical QCD.
This paper is structured as follows. In Sec. II we detail

the center vortex model and how center vortices are
identified on the lattice. We then present the analysis of
the bulk gauge-link properties in Sec. III. In Sec. IV our
visualization conventions are introduced. In Sec. V we
discuss the cluster identification algorithm and subsequent
findings. In Sec. VI we introduce the method by which
vortex clusters can be converted to a graph, and discuss the
analysis performed on these graphs. Finally, the findings of
this work are summarized in Sec. VII.
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II. CENTER VORTICES

In QCD, center vortices are regions of a gauge field that
carry flux associated with Z3, the center of the SUð3Þ
gauge group. Z3 consists of the three elements,

Z3 ¼
�
exp

�
m
2πi
3

�
I; m ¼ −1; 0;þ1

�
: ð1Þ

For the purposes of our discussion, m will be referred to as
the center charge of the vortex. On the lattice, thin center
vortices appear as closed sheets in four dimensions, or as
closed lines on three-dimensional slices of the lattice.
Center vortices are identified on the lattice through a

well-known procedure [32,34], briefly summarized here.
First, the configurations are rotated to the maximal center
gauge (MCG) by determining a gauge rotation, ΩðxÞ, that
maximizes the functional [23,31,34]

Φ ¼ 1

VNdimn2c

X
x;μ

jTrUΩ
μ ðxÞj2: ð2Þ

This process brings each gauge link as close as possible
to one of the elements of Z3. Once the ensemble has
been fixed to maximal center gauge, each link is projected
onto the nearest center element, UμðxÞ → ZμðxÞ, as
defined by the phase of the trace of each link. Center
vortices are then identified by the location of nontrivial
plaquettes Pμν ¼ exp ðm 2πi

3
ÞI, in the μ-ν plane with

m ¼ �1. This process of center projection defines the
vortex-only ensemble, ZμðxÞ. Using these identified vor-
tices, we also construct the vortex-removed ensemble by
computing RμðxÞ ¼ Z†

μðxÞUμðxÞ. Hence, this procedure
results in three ensembles:
(1) Original, untouched (UT) fields, UμðxÞ,
(2) Vortex-only (VO) fields, ZμðxÞ,
(3) Vortex-removed (VR) fields, RμðxÞ,
Visualizations of vortices are naturally constructed from

the vortex-only ensembles, and as such the ZμðxÞ fields will
be of primary focus in this work. However, the effective-
ness of vortex removal is also of great interest as it has been
observed that the vortex removed ensembles also vary in
behavior depending on the presence or absence of dynami-
cal fermions [27,28].
For this work, we continue the analysis performed in our

previous work [27,28] and make use of three original (UT)
ensembles. Each ensemble has dimensions 323 × 64 and is
comprised of 200 lattice configurations. Two of the
ensembles are (2þ 1)-flavor dynamical ensembles from
the PACS-CS Collaboration [35]. We choose the heaviest
and lightest pion mass ensembles, with masses of 701 MeV
and 156 MeV, respectively. This allows us to observe the
greatest differentiation between the dynamical ensembles.
The third ensemble is pure Yang-Mills, generated with the
Iwasaki gauge action [36]. The lattice spacing is tuned to be

similar to that of the PACS-CS ensembles. A summary of
the lattice parameters is provided in Table I.

III. BULK PROPERTIES

In understanding the impact dynamical fermions have
on the center-vortex vacuum, it is natural to first look for
bulk changes in the SUð3Þ lattice gauge fields upon the
introduction of dynamical fermions. The first measure we
examine is the distribution of the local MCG functional

ϕμðxÞ ¼
1

n2c
jTrUΩ

μ ðxÞj2 ð3Þ

defined such that the total MCG functional given in Eq. (2)
can be written as

Φ ¼ 1

VNdim

X
x;μ

ϕμðxÞ ð4Þ

The distribution of RμðxÞ values is presented for the
untouched ensembles in Fig. 1.
We observe that the pure gauge ensemble achieves a

typically larger value of ϕμðxÞ, indicating that the links
have been brought closer to the center of SUð3Þ. The two
dynamical ensembles follow each other rather closely,
although the heavier pion mass appears to achieve slightly
larger Φ values than its lighter counterpart. It should be

TABLE I. A summary of the lattice ensembles used in this
work [35].

Type a (fm) β κu;d mπ (MeV)

Pure gauge 0.100 2.58 � � � � � �
Dynamical 0.102 1.9 0.13700 701
Dynamical 0.093 1.9 0.13781 156

FIG. 1. Distribution of the local maximal center gauge func-
tional, RμðxÞ, as defined in Eq. (3).
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noted however that larger values of ϕμðxÞ do not neces-
sarily indicate that the MCG algorithm has performed
better on these ensembles. As was determined in
Refs. [19,37,38], there are a number of methods that can
be used to increase the typical values of ϕμðxÞ obtained
from maximal center gauge. However, these methods do
not necessarily improve the vortex-finding abilities of the
procedure and in some cases actually degrade the vortex-
finding performance. As such, it should be understood that
the results presented in Fig. 1 are simply showing a
noticeable change in behavior as we transition from pure
gauge to dynamical ensembles, and not necessarily a
worsening of vortex identification.
Next, we wish to compare the distribution of the trace

phases, arg ðTrUμðxÞÞ, from each ensemble both before and
after fixing to maximal center gauge. These results are
presented in Fig. 2. As intended, the phases are tightly
packed about the three center values after fixing to maximal
center gauge. However, the pure-gauge results are distrib-
uted slightly closer to the center elements than the
dynamical ensembles.
In conjunction with the trace phases, we can also look at

the magnitude of the traces, jTrUμðxÞj. These values are
presented in Fig. 3. Note that a center element will have
jTrUμðxÞj ¼ 3. MCG then clearly serves to not only bring
the phases close to that of a center element, but also the
magnitude. However, the effect on the magnitude is less
than that on the phase. This suggests that there is still
significant off-diagonal strength in the original ensembles
after fixing to maximal center gauge. Again, the pure gauge
values are distributed closer to the center value of three
when compared with the dynamical results.
The next bulk measures we examine are two matrix

norms designed to determine the residual off-diagonal

strength present in the vortex-removed fields in MCG.
The norms are

LμðxÞ ¼
�X

i;j

jUij
μ ðxÞ − δijj2

�1
2

; ð5Þ

and

MμðxÞ ¼
�X

i;j
i≠j

jUij
μ ðxÞj2

�1
2

; ð6Þ

where i, j denote the SUð3Þ color indices. We find for the
untouched configurations that the results for both norms are
identical across all ensembles, as shown in Figs. 4 and 5.
However, after vortex removal we notice that differences
appear in both norms. The results for LμðxÞ and MμðxÞ on
the vortex removed ensembles are shown in Figs. 6 and 7,
respectively.

FIG. 2. Distribution of trace phases before (top) and after
(bottom) fixing to MCG. We plot the bins for the dynamical
ensembles side-by-side as they are similar to one another, with
the pure gauge results overlayed.

FIG. 3. Distribution of trace magnitudes before (top) and after
(bottom) fixing to MCG.

FIG. 4. The LμðxÞ norm calculated prior to fixing to MCG.
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We observe that the dynamical ensembles retain a greater
proportion of their off-diagonal strength. This is interesting,
as it has been shown in Ref. [28] that vortex removal results
in a more significant loss of infrared strength in the Landau-
gauge gluon propagator when dynamical fermions are
present. This indicates that the residual strength as mea-
sured by our norms in MCG does not coincide with
enhancement as measured via the Landau-gauge gluon
propagator.
These measures indicate that there is a substantial

difference in behavior between the pure-gauge and dynami-
cal ensembles when considering their MCG matrix sub-
structure. Both the trace phases and magnitudes are further
from the center elements and the dynamical ensembles
retain more off-diagonal strength.

IV. VISUALIZATIONS

Motivated by the difference in the bulk structure of the
gauge fields in maximal center gauge, we now wish to look
more closely at the fine-grained structure of the vortex
vacuum. We do this by extending the visualization tech-
niques first developed in Ref. [32]. Given that vortices are
associated with nontrivial plaquettes, vortices themselves
exist on the dual lattice. Hence, for a vortex-only ensemble
we write the plaquette as [15,26]

PμνðxÞ ¼ exp

�
πi
3
ϵμνκλmκλðx̄Þ

�
; ð7Þ

where mκλðx̄Þ ∈ f−1; 0; 1g defines the directed vortex
charge orthogonal to the plaquette and based at x̄ ¼
xþ a

2
ðμ̂þ ν̂ − κ̂ − λ̂Þ. Note also that mκλðx̄Þ is antisym-

metric under index permutation, such that there is a
natural association between the sign of m and the vortex
orientation.
To produce a 3D visualization, one fixes the value of λ in

Eq. (7) to be the dimension upon which slices are taken.
The remaining three dimensions comprise the slice, such
that the plaquettes now may be written as

PijðxÞ ¼ exp

�
2πi
3

ϵijkmkλðx̄Þ
�
; ð8Þ

where the Latin indices enumerate the three dimensions
orthogonal to the fixed λ. Using this definition, a vortex is
rendered as a jet of length a, pointing in the mkλðx̄Þk̂
direction that pierces the PijðxÞ plaquette. For example, if
we choose λ ¼ 4, a m ¼ þ1 vortex identified by PxyðnÞ
would be rendered in the þẑ direction. This rendering
convention is illustrated in Fig. 8.
A notable feature of SUð3Þ center vortices is the

presence of vortex branching. Due to the periodicity of
the nontrivial center phases in Z3, one unit of positive
center charge is equivalent to two units of negative center

FIG. 5. The MμðxÞ norm calculated prior to fixing to MCG.

FIG. 6. The LμðxÞ norm calculated on the VR ensembles. Here
we see the change in behavior after the introduction of dynamical
fermions.

FIG. 7. The MμðxÞ norm calculated on the VR ensembles. A
trend similar to that seen in Fig. 6 is observed.
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charge. Hence, within a 3D slice a vortex line carrying
m ¼ þ1 charge may branch into two m ¼ −1 vortex lines.
Note that this process is indistinguishable from three
m ¼ þ1 vortex lines converging to the vacuum, as illus-
trated in Fig. 11. Recall that our visualizations illustrate
the directed flow of m ¼ þ1 charge. This is why these
branching points are also sometimes referred to as vortex
monopoles and antimonopoles in the literature [26]. This
ambiguity in charge assignment has important ramifica-
tions for center vortex topology, as discussed in Ref. [9].
For the purposes of this work, we will refer to inter-

sections of three or five vortices as branching points.
Intersections of four vortices occur at the intersection of
vortex lines and do not constitute vortex branching. They
are thus excluded from the branching-point analysis.
Finally, intersections of six vortices could arise from either
vortex branching or the intersection of three vortex lines.
As these situations are indistinguishable, for this work we
will consider these points to be branching points. However,
it must be noted that the occurrence of six-way branching
points is so infrequent that this choice has an insignificant
impact on branching-point statistics.
A straightforward nomenclature for referring to branch-

ing points [26] is to define the branching genus ncubeðxjμ̂Þ.
Here, μ̂ denotes the direction along which the lattice has
been sliced and hence identifies the remaining three
coordinates, {̂; |̂; k̂, that describe the location within the
3D slice. Within the selected slice, we define x0 to denote
the dual lattice site, x0 ¼ xþ a

2
ðîþ ĵþ k̂Þ. ncubeðxjμ̂Þ then

counts the number of vortices piercing the elementary cube
around x0. Thus, we have the following interpretation for
the possible values of ncubeðxjμ̂Þ:

ncubeðxjμ̂Þ ¼

8>>><
>>>:

0 No vortex

2 regular vortex line

3; 5; 6 branching point

4 touching point

ð9Þ

The normalized distribution of values of ncube across the
three ensembles is shown in Fig. 9. We observe that the

distribution of the higher genus values decreases mono-
tonically for all ensembles. The dynamical ensembles
feature a greater probability of high-multiplicity branching
points. This predicts a greater vortex density for these
ensembles relative to the pure gauge case, as will be
discussed in the next section.

V. CLUSTER IDENTIFICATION

It is well-known that for SUð2Þ gauge fields in the
confining phase, percolation of center vortices can be used
as an order parameter for the transition from the confined
phase to the deconfined phase [6,8]. At a glance, the
visualizations constructed in Ref. [32] support this assess-
ment, with a single large connected vortex cluster clearly
visible in each visualization and only a handful of separate
smaller secondary clusters present. Studying the confine-
ment phase transition at the critical temperature will be the
subject of future work. However, it is of interest to build the
necessary tools to perform such a study. This requires us to
quantitatively understand the degree to which a vortex
ensemble is dominated by a primary percolating cluster, as
opposed to a collection of smaller secondary clusters. To do
this, it is necessary to develop an algorithm that can trace
these vortex lines and identify disconnected clusters.
Such an analysis is quite straightforward in SUð2Þ, as

SUð2Þ vortices do not permit branching points. This
simplifies the algorithm, as each vortex cluster consists
of a single line that may be followed until it arrives back at
its starting location. In SUð3Þ, vortex branching demands
that the algorithm track multiple branching paths, and only
terminates when there are no continuations for every path.
We describe such an algorithm here.
The starting point for the algorithm is to have all vortices

in a 3D slice stored along with their associated tip and
base coordinates. With this setup, the algorithm proceeds
as follows:

FIG. 9. The distribution of branching-point genera as defined in
Eq. (9).

FIG. 8. The spacial vortex plotting convention with λ ¼ 4. An
m ¼ þ1 vortex (left) identified by the plaquette PxyðnÞ is
rendered in the ẑ direction. An m ¼ −1 vortex (right) identified
by the same plaquette is rendered in the −ẑ direction.
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(1) Choose an arbitrary vortex to start at. Mark it as
visited and record it as belonging to an incomplete
line segment.

(2) Considering the last vortex in each incomplete line
segment, produce a list of all unvisited vortices
touching this vortex (both base and tip, accounting
for periodicity). Then mark them all as visited

(3) Append one of the found vortices to the current
segment. For all others, begin a new segment.

(4) If there are incomplete segments, repeat from step 2
for each incomplete segment.

(5) Once there are no unvisited touching vortices, mark
the segment as complete.

(6) If all segments are complete, the cluster is complete.
Record all vortices in all segments as belonging to
this cluster. Return to step 1, selecting an unvisited
vortex.

(7) If there are no unvisited vortices, all clusters have
been identified and the algorithm is complete.

This algorithm can then be applied to each 3D slice to
isolate all independent vortex clusters.

Employing this algorithm and our visualization con-
ventions defined in Sec. IV, the pure-gauge vortex
vacuum on a single slice appears as in top-left panel
of Fig. 10. The interactive version of this visualization
may be found in Fig. S-1 Supplemental Material (SM)
[33]. As our investigation takes place at zero temperature
on a large volume lattice, the choice of slice direction
does not impact most intrinsic measurements, and as such
we choose to present plots obtained from slicing in the x̂
direction. The only notable exception is the size of the
percolating cluster as it fills the 3D volume and is
therefore smaller for t̂ slices. The choice of x̂ will be
assumed for the remainder of this work unless stated
otherwise. Numerical values presented in tables will be
averaged across all slice dimensions, where applicable.
We observe that indeed the vacuum is dominated by a

single primary percolating cluster, with an assortment of
small secondary clusters also present. Branching points
are readily observed within the visualization, as can be
seen in Fig. 11 and in the interactive view ‘Branching
Points’ Fig. S-1 in SM [33].

FIG. 10. (Top left) The center vortex structure of a pure-gauge configuration. (Top right) The pure-gauge vortex vacuum as shown in
the top left panel with the primary percolating vortex cluster removed. (Bottom left) The center-vortex structure of a (2þ 1)-flavor
dynamical-fermion configuration from themπ ¼ 156 MeV ensemble. (Bottom Right) The dynamical vortex structure in the bottom-left
panel with the primary percolating vortex cluster removed. Note the increased abundance of elementary vortex paths and the prevalence
of branching points. In each panel, separate vortex clusters are rendered with different colors. These 3D models are generated with AVS
scientific visualization software [39]. (Interactive in the supplemental material [33].).
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The transition to full QCD leads to a marked shift in the
behavior of the center vortices, as can be seen from the
vortex vacuum of the lightest-pion mass ensemble shown in
the bottom-left panel of Fig. 10. The interactive version of
this visualization may be found in Fig. S-2 in SM [33]. The
total number of vortices has increased significantly.
The dominance of a single vortex cluster is even more

pronounced once it is removed, as shown in the right-hand
panels of Fig. 10 for the pure-gauge (top) and dynamical-
fermion (bottom) slices. Almost all the vortex matter is
associated with the percolating cluster. However, if we
focus on the dynamical-fermion secondary clusters in the
bottom-right panel of Fig. 10, we see that the number of
secondary clusters has increased substantially when com-
pared to the pure gauge ensemble. Moreover, an increase in
the complexity of the secondary structures through branch-
ing-point clusters is also evident.
These secondary clusters may also be explored in the

interactive models given in Figs. S-3 and S-4 in SM [33] for
the pure-gauge and dynamical-fermion cases. There several
features are highlighted in the “Views” menu and these
views are also available in the full vortex illustrations of
Figs. S-1 and S-2 in SM [33].
To gauge the relative sizes of the primary and secondary

clusters, we calculate the average total number of vortices
per slice, Nslice, the average number of vortices associated
with the primary cluster, Nprimary, and the average number
of vortices associated with a secondary cluster, Nsecondary.
Nslice, Nprimary, and Nsecondary for all three ensembles are
presented in Table II. Note that the spatial values are
obtained by averaging across the three spatial dimensions
acting as the slice dimension. When t̂ is selected for slicing
the four-dimensional volume, the spatial volume is half
that when a spatial direction is selected. As such, the

percolating cluster values in the t̂ column are expected to be
half those in the spatial slicing column.
Interestingly, we observe that Nsecondary decreases in the

presence of dynamical fermions, indicating that the sec-
ondary clusters are smaller on average. This is due to a
proliferation of elementary plaquette vortex paths in
dynamical fermion QCD, as illustrated in the bottom-right
panel of Fig. 10.
We also see that Nslice and Nprimary from the heavier

quark-mass ensemble are larger than the values calculated
on the light ensemble. This is likely a result of the fact that
the heavier pion mass configurations have a slightly larger
physical volume. We can determine if this is the case by
considering the vortex density, ρvortex.
The vortex density is calculated by considering the

proportion of plaquettes that are pierced by a vortex,
Pvortex. This is best calculated by first defining an indicator
function,

vμνðxÞ ¼
(
1; PμνðxÞ ¼ exp

�
�2πi
3

�
I

0; PμνðxÞ ¼ I:
ð10Þ

We then calculate the proportion of pierced plaquettes as

Pvortex ¼
1

6V

X
μ;ν
μ<ν

X
x

vμνðxÞ; ð11Þ

where the value 6 counts the number of plaquettes
associated with site x in four dimensions and V ¼
NxNyNzNt counts the number of sites in the sum over
x. The physical density is then given by

FIG. 11. A collection of branching points (red ovals), a
touching point (green circle) and a secondary loop (red jets)
as they appear in our visualizations. Each jet illustrates the flow of
m ¼ þ1 center charge.

TABLE II. The average number of vortices associated with the
total per 3D slice (Nslice), the primary cluster (Nprimary), and a
secondary cluster (Nsecondary), as calculated on the three ensem-
bles. Separate averages are listed for the slicing dimension μ̂
being temporal or spatial.

t̂ x̂; ŷ; ẑ

Pure gauge
Nslice 1673(3) 3347(6)
Nprimary 1638(3) 3277(6)
Nsecondary 7.32(5) 7.40(3)
701 MeV
Nslice 3651(4) 7302(8)
Nprimary 3366(4) 6731(8)
Nsecondary 5.047(5) 5.057(3)
156 MeV
Nslice 3227(4) 6452(8)
Nprimary 2964(4) 5926(9)
Nsecondary 5.011(5) 5.018(3)
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ρvortex ¼
Pvortex

a2
: ð12Þ

In the case where the vortex distribution is isotropic,
the density derived in four dimensions is equal to the
mean of the three-dimensional density when averaged
over slices (such as in Fig. 10). We can decompose the
lattice coordinates into a 1þ 3-dimensional notation,
x ¼ ðw;xjμ̂Þ, with w corresponding to the index in the
slicing dimension μ̂ and x specifying the location within the
corresponding hyperplane. Then the vortex density for slice
w along the dimension μ̂ is

P3ðw; μ̂Þ ¼
1

3V3ðμ̂Þ
X
i;j

i<j;≠μ

X
x

vijðw;xjμ̂Þ; ð13Þ

where vijðw;xjμ̂Þ is the restriction of the indicator function
in Eq. (10) to the relevant slice, V3ðμ̂Þ is the corresponding
3-volume (e.g. V3ðx̂Þ ¼ NyNzNt), and the division by 3
averages the number of plaquettes associated with each site
in three dimensions.
Upon averaging over all w slices in a given dimension

and then averaging over the four slice directions, one finds
the following for the mean density

P̄3 ¼
1

3V
1

4

X
μ

X
i;j

i<j;≠μ

X
w;x

vijðw;xjμ̂Þ: ð14Þ

Noting that each plaquette has been counted twice in the
sum over i, j and μ, one recovers Pvortex of Eq. (11). Of
course, in both cases, the physical density is governed by
the area of the plaquette as in Eq. (12).
The vortex densities from the three ensembles are shown

in Table. III. We see that the ρvortex is indeed larger on the
ensemble with the lightest pion mass, indicating a con-
sistent trend of increasing vortex density as the physical
pion mass is approached from above.
Another quantity of interest is the branching-point

density. This is obtained by considering the fraction of
elementary cubes within each 3D slice that contain a
branching point, Pbranch. Again, this is best calculated by
first considering the indicator function

bðxjμ̂Þ ¼
�
1; ncubeðxjμ̂Þ ¼ 3; 5; 6

0; otherwise:
ð15Þ

The branching-point proportion is then given by

Pbranch ¼
1

4V

X
μ

X
x

bðxjμ̂Þ; ð16Þ

where μ sums over all four dimensions. As this density is
defined as an average over 3D cubes, the associated
physical density is

ρbranch ¼
Pbranch

a3
: ð17Þ

The branching-point density is shown in Table III. Here we
observe that the branching-point density follows the same
trend as the vortex density, namely that it increases with
decreasing dynamical quark mass.
To quantify the change in the behavior of Nsecondary

recorded in Table II we count the number of clusters of a
given size and average across slices and the ensemble.
These results are shown in Fig. 12. There are a number of
interesting features present here. Firstly, it is clear that it is
not possible to have clusters containing less than four
vortices, and that it is also not possible to have five vortices
in a cluster. There is an interesting trend that the number of
clusters containing an even number of vortices is higher
than the number containing an odd number of vortices,
especially at small cluster sizes. This results in the alter-
nating comb pattern present in Fig. 12. This is a result of the
fact that a branching point is necessary for a cluster to
contain an odd number of vortices. Hence, this alternating
pattern speaks to the presence of a ‘cost’ associated with a
branching point, resulting in clusters containing branching
points being less probable than those without. This effect is

TABLE III. The vortex density as calculated on the three
ensembles. The proportion of pierced plaquettes, Pvortex, the
physical vortex density, ρvortex, the proportion of branching
points, Pbranch and the physical branching-point density, ρbranch
are presented.

Ensemble Pvortex

ρvortex
(fm−2) Pbranch

ρbranch
(fm−3)

Pure gauge 0.01702(3) 1.702(3) 0.00249(1) 2.49(1)
701 MeV 0.03714(4) 3.556(4) 0.00897(1) 8.41(1)
156 MeV 0.03282(4) 3.770(5) 0.00753(1) 9.27(2)

FIG. 12. Average number of secondary clusters of a given size
per slice, up to a cutoff size of 60.
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mitigated as the cluster size increases and the number of
vortex arrangements leading to that cluster size increases.
Comparing the different ensembles, we find that the

number of clusters at each size on the dynamical ensembles
exceed almost all of the pure gauge clusters. However, if we
normalize the histogram by the total number of clusters
found in the ensemble, as shown in Fig. 13, we find that
the pure gauge ensembles have a comparable or greater
proportion of larger secondary clusters present, perhaps due
to the low vortex density. We observe that the dynamical
ensembles still retain a larger proportion of the smallest
secondary clusters.
We can measure the size of a cluster by defining

the cluster extent as the largest pairwise distance
between vortices belonging to the same cluster, as done
in Ref. [8]. The cluster extents are binned, and the content
of each bin represents the average number of vortices in the
associated cluster, relative to the total number of vortices in
the ensemble. The cluster extents are normalized by the
greatest distance on a Ny × Nz × Nt slice of a periodic
lattice,

Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNy=2Þ2 þ ðNz=2Þ2 þ ðNt=2Þ2

q
: ð18Þ

The results of this analysis for our three ensembles is shown
in Fig. 14.
The cluster extents shown in Fig. 14 clearly demonstrate

that at zero temperature the SUð3Þ vortex vacuum is
dominated by a single percolating vortex cluster, with only
a minority of vortices comprising smaller secondary loops.
It is expected that this situation will change as the temper-
ature exceeds the critical temperature, as has been observed
in SUð2Þ gauge theory [8]. We also observe that the
pure gauge secondary clusters tend to be larger than their
dynamical counterparts.

We find that the vortex and branching-point density
significantly increases upon the introduction of dynamical
fermions. However, relative to the total number of vortices
present, the pure gauge sector contains a greater proportion
of larger secondary clusters than the dynamical case. Aside
from the primary vortex cluster, the dynamical vortex
vacuum is dominated by an excess of very small secondary
clusters. The visualizations reveal significant branching-
point complexity in the large secondary clusters of the
dynamical-fermion vortex vacuum. Several features are
highlighted in the “Views” menu of the interactive figures
provided in the supplemental material [33].

VI. BRANCHING-POINT GRAPHS

The cluster analysis presented in Sec. V enables us to
gain insight into the size of the primary and secondary
vortex clusters. It is also of interest to study the relationship
between branching points, as these structures are absent in
SUð2Þ where much of the analysis of vortex structure has
previously been performed. Furthermore, it is helpful to
abstract the vortex clusters such that we need not be
concerned with their precise 3D coordinates. To that
end, we seek to represent vortex clusters as a directed
graph, with branching points acting as vertices and the
edges being given by vortex lines, with each edge weighted
by the number of vortices in the line.
The algorithm to perform this graph construction starts

with an identified vortex cluster as defined in Sec. V. First,
for each vortex we evaluate whether it touches a point
with ncubeðxjμ̂Þ ≥ 3 at its tip, base, both or neither. Each
branching or touching point should also have a unique ID.
The algorithm proceeds as follows:

FIG. 14. Histogram of both primary and secondary cluster
extents relative to Lmax for all three ensembles, as described in the
text. It is clear that the vortex vacuum at zero temperature is
dominated by a single percolating cluster, as can be seen by the
dominance of the bin containing the clusters of maximal extent.
Bin widths are 0.1 and are centered at the tick marks of the x-axis.

FIG. 13. Proportion of secondary clusters of a given size per
slice, normalized by the total number of clusters, both primary
and secondary, in their respective ensemble.
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(1) Find an untraversed vortex with a branching/touching
point at its base. If no untraversed vortex can be
found, then we are done. Otherwise, set the found
vortex to be the current vortex and mark it as
traversed. Set the current interbranching point dis-
tance to 1 and record the ID of the branching/touching
point at the base.

(2) Check if the current vortex has a branching/touching
point at its tip. If it does, create an edge between the
saved branching/touching point ID and the ID of
the branching/touching point at the tip with weight
equal to the current interbranching point distance.
Return to step 1.

(3) Otherwise, find the vortex with its base touching the
tip of the current vortex and mark it as traversed. Set
the new vortex to be the current vortex and add 1 to
the interbranching point distance. Return to step 2.

The resulting graph encodes the separations between all
branching and touching points within a cluster without
reference to the specific cluster geometry.
Applying this algorithm to the primary clusters shown in

Fig. 10 for pure gauge and dynamical vacuum fields, we
produce the graphs shown in Figs. 15 and 16 respectively.
These visualizations clearly demonstrate the significant
increase in vortices and branching points present on the
dynamical configurations.
Utilising this new construction, we wish to determine a

measure of the separation between connected branching
points. A pair of branching points may be connected via
multiple vortex lines, and these lines may also pass through
touching points that we wish to exclude from the

calculation. The presence of these touching points makes
it impossible to devise a unique distance between two
branching points, as this distance will depend on the
manner in which the touching point is traversed, as shown
in Fig. 17. Instead, we devise an algorithm for calculating
the interbranching point distance that enables a random
selection of directions with which to traverse these touch-
ing point vertices. The algorithm proceeds as follows:
(1) Randomly choose a branching-point vertex with

untraversed outgoing edges. Record the vertex as
the first in a path. Set the current path length to 0.

FIG. 15. The pure-gauge primary vortex cluster from the slice
shown in the top-left panel of Fig. 10 rendered as a graph.
Branching/touching points are the vertices and connecting vortex
lines are the edges. Blue vertices indicate three-way branching
points and orange vertices indicate four-way touching points.
Visualizations were generated with the Pyvis visualization pack-
age [40].

FIG. 16. The mπ ¼ 156 MeV primary vortex cluster from the
slice shown in the bottom-left panel of Fig. 10 rendered as a
graph. Plotting conventions are as described in Fig. 15.

FIG. 17. An example of how the touching point T1 introduces
ambiguity into the distance between branching points, Bi. B1 can
connect to either B3 or B4, with B2 then connecting to B4 or B3,
respectively. This would result in either distances of 4, 2 or 3, 3
being recorded by our algorithm, depending on the order of
traversal.
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If there is no vertex with an untraversed outgoing
edge then we are done.

(2) Randomly choose an untraversed outgoing edge to
follow to a new vertex. Mark the chosen edge as
traversed, add the new vertex to the current path and
add its length to the path length.

(3) If this edge arrives at a branching point, store the
path and the current path length and return to step 1.

(4) If the edge arrives at a touching point, repeat from
step 2 with the new vertex as the starting vertex.

The end result of this algorithm is a list of paths between
branching points that permit the ability to pass through
touching points. However, not all edges will be traversed
by this method, as the presence of touching points allows
for cycles to emerge from these paths. Fortunately, due to
conservation of vortex flux, any cycle emerging from a
given path will return to that same path. Hence to rectify the
algorithm, we simply need to traverse all cycles on a given
path and add their length to the existing length. This is done
by performing a modified depth-first search on each vertex
to traverse any cycles that were omitted from the above
method. Pseudocode for this search on a single vertex is as
follows:

The path lengths now accurately represent the distance
between branching points. This concludes our determi-
nation of the branching-point separations. Note that
because of the inherent ambiguities in the branching-
point graphs, the solution is not unique. We determine
whether the impact of this randomness is significant in the
ensemble average choosing a single calculation of the
distances as a reference, then repeating the distance
calculation nine further times with different random seeds.

We then use the Kolmogorov-Smirnov test [41] to
determine the equality of the different distributions. We
find that the test statistic for all ensembles is of order 10−5,
with corresponding p-values consistent with 1. Thus we
are satisfied that the variance in this distance measure is
negligible in the ensemble average, and we are therefore
justified in considering it a useful measure of branching-
point separation.
The average separation, d, for each ensemble is pre-

sented in Table IV. The physical separation Δ ¼ ad is also
determined. Here we see that there is a consistent trend of
decreasing average separation with decreasing pion mass.
This coincides with our determination of the branching-
point and vortex densities, as a higher density suggests a
smaller separation between points.
We also present the average number of edges in the

graphs, nedges, and the average number of edges per node,
nedges=nnodes in Table IV as measures of the complexity
and structure of the graphs. We observe that, as expected,
the number of edges substantially increases upon the
introduction of dynamical fermions. The number of
edges per node is close to 1.5 for all ensembles, as the
majority of edges emerge from a three-way branching
point and terminate at another three-way branching
point. However, the number of edges per node is larger
on the dynamical ensembles, likely due to the increase in
vortex density resulting in a higher number of vortex
intersections.
The distribution of branching-point separations is shown

in Fig. 18. The results are normalized by the total number of
vortex paths considered, such that the histogram has unit
area. Apart from an enhancement of the smallest branching-
point separations, the distances are exponentially distrib-
uted. This distribution is consistent with a constant
branching probability, i.e., the probability of branching
at the next link of a vortex chain is independent of the
length of the vortex chain.
This supports a previous conjecture for the interpre-

tation of vortex branching [26,31]: that a vortex can be
considered to have some fixed rate of branching as it
propagates through spacetime. This interpretation
allows for vortex branching on the lattice to be consid-
ered as a binomial random variable X with some
probability of branching, q. Thus, the probability of
branching after k lattice plaquettes is given by the
geometric distribution

Algorithm 1.

function dfs (this_vertex, path):
for edge in this_vertex. edges:

if (edge is not traversed
and edge is outgoing):

path:lengthþ¼ edge:length
edge:traversed¼ True
next vertex¼ edge:end
if next_vertex is not this_vertex:
dfs (next_vertex, path)

TABLE IV. The average distance between branching points, d, the same distance in physical units,Δ, the average number of edges per
graph, nedges, and the average number of edges per node, nedges=nnodes.

Ensemble d Δ (fm) nedges ρedges (fm−3) nedges=nnodes

Pure gauge 13.55(2) 1.355(2) 238(1) 4.14(1) 1.53849(8)
701 MeV 7.691(4) 0.7860(4) 970(1) 15.84(2) 1.58667(6)
156 MeV 8.082(5) 0.7541(5) 807(1) 17.32(3) 1.58332(7)
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Pk ¼ qð1 − qÞk−1: ð19Þ

Typically, one estimates the rate of a binomial random
variable by evaluating q ¼ 1=X̄, where X̄ ¼ P

k kPk.
However, due to the deviations from linearity found at

small separations in the log-distributions shown in Fig. 18,
this measure fails to capture the true rate of branching. To
account for this, we instead fit a linear function,

fðkÞ ¼ α − βk; ð20Þ

FIG. 18. Normalized branching-point (BP) separations from all ensembles, along with the corresponding fit to fðkÞ given in Eq. (20).
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to the log of the distribution of branching-point separations
for k > 3. The result of this fit for each ensemble is plotted
in Fig. 18.
Of course, for a normalized distribution, α is constrained

by β. However, the significant nonexponential behavior for
k ≤ 3 spoils the exponential normalization constraint. Thus
α is introduced to accommodate for this, and we refer to β
describing the k dependence to determine the branching
probability q.
The parameters of this fit are related to the log of the

binomial rate

logðPkÞ ¼ logðqÞ − logð1 − qÞ þ logð1 − qÞk ¼ α − βk:

ð21Þ

Equating the coefficients of the terms linear in k, we resolve
the branching rate

q ¼ 1 − e−β: ð22Þ

Note, for small β, q ¼ β. This rate can be converted to a
physical quantity by then considering the rate per unit
length, λ ¼ q=a. All fitted parameters are calculated on 200
bootstrap ensembles, with errors determined via the boot-
strap variance.
The rate described above can then be compared to the

naive rate, qnaive, calculated by considering the number of
cubes containing branching points divided by the number
of cubes pierced by two or more vortices. Defining

cðxjμ̂Þ ¼
�
1; ncubeðxjμ̂Þ ≠ 0

0; otherwise;
ð23Þ

and recalling the branching-point indicator defined in
Eq. (15), we define the naive rate to be

qnaive ¼
P

μ

P
x bðxjμ̂ÞP

μ

P
x cðxjμ̂Þ

: ð24Þ

The associated physical quantity is the rate per unit length,
λnaive ¼ qnaive=a. The calculated rate parameters from both
methods are shown in Table V. We observe that with both
measures the physical branching rate increases as the
physical pion mass is approached. We emphasize, only q
contains the detailed information on the path geometry.

The difference between the fitted and naive rates is
an interesting finding. The naive rate will include the
short-range nonexponential behavior, inconsistent with a
constant branching rate. At larger separations, vortex
branching follows a constant rate. However, there are
clearly short-range effects that result in clustering of
branching points, which in turn necessitates the more
sophisticated approach detailed above for q. These cluster-
ing effects appear to be amplified upon introduction of
dynamical fermions. Whether this clustering radius is a
physical effect or the result of finite lattice-spacing effects
is an interesting avenue for future study.
It should be noted that whilst the distributions shown in

Fig. 18 take into account all primary and secondary
clusters, the results are minimally affected if the secondary
clusters are removed due to the vast majority of branching
points belonging to the primary cluster.
An interesting correlation we observe is that the ratio

between the pure gauge and dynamical branching rates is
similar to the corresponding ratio of the vortex-only string
tensions calculated in Ref. [27]. The vortex density is
naturally correlated with the branching rate. In SU(2) at
least, it has been shown through simple combinatoric
arguments that the Wilson-loop area law and hence the
string tension can be related to the density of percolating
random vortices [42]. It seems reasonable to infer then that
the correlation we observe between the branching-rate and
string-tension ratios is not simply a coincidence but a
reflection of the differing structure of the vortex fields in the
pure-gauge and dynamical sectors.

VII. CONCLUSION

In this work we have explored of the impact of
dynamical fermions on the center-vortex structure of the
vacuum ground-state fields.
Examining the bulk properties of the original gauge

fields, we find that dynamical fermions lead to greater off-
diagonal strength in the lattice gauge links. The presence of
dynamical fermions gives rise to an increased abundance of
center vortices and branching points, as reflected by the
increasing vortex and branching-point densities as the
physical pion mass is approached.
We construct cluster identification algorithms to identify

independent vortex clusters and use this identification to
construct visualizations of the vortex vacuum. These reveal
that the vacuum is dominated by a single percolating

TABLE V. The naive and fitted branching rates, qnaive and q, and their physical counterparts λnaive and λ obtained through the methods
described in the text. The fit parameter β is also presented. Only q and λ are associated with a constant branching probability.

Ensemble qnaive λnaive (fm−1) q λ (fm−1) β

Pure gauge 0.05010(6) 0.5010(6) 0.0690(2) 0.690(2) 0.0715(2)
701 MeV 0.08526(5) 0.8342(5) 0.1005(3) 0.984(3) 0.1059(3)
156 MeV 0.08062(6) 0.8641(7) 0.0952(2) 1.020(3) 0.1000(3)
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cluster. Our results show that dynamical fermions lead to an
abundance of smaller clusters as compared to their pure-
gauge counterparts.
We employ a novel method of reducing vortex clusters to

directed graphs, with vertices defined by branching points
and edges connecting them weighted by the number of
vortex links. Using this construction, we render the graphs
to illustrate the radical change in the number of vortices
and branching points after the introduction of dynamical
fermions. We define a measure of branching-point sepa-
ration, and observe that the distribution of separations
follows an approximate geometric distribution. We estimate
the rate of this distribution and find that there is a tendency
for branching points to cluster at small separations.
Understanding the role of dynamical quarks in the QCD

vacuum continues to be an interesting area of study. The
effect of matter fields on the vacuum phase structure has
been explored elsewhere within the gauge-Higgs model
[43–46]. The extension of these ideas to QCD may shed
further light on the nature of confinement. In particular,
investigations that further our understanding of string
breaking in terms of QCD vacuum structure is desirable.
The findings of this paper illustrate the substantial

impact dynamical fermions have on the geometry and

structure of the center vortex vacuum. These results add to
the growing body of evidence [27,28] for the effect of
dynamical fermions on center vortices as compared to the
well-established pure-gauge sector. The relationship
between the vortex geometry analyzed here and the shift
in observable behavior is still a subject of great interest.
Future work is also intended to explore how this geometry
changes in the finite-temperature regime.
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