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The decay rate of a metastable vacuum is usually calculated using a semiclassical approximation to the
Euclidean path integral. The extension to a complete Euclidean lattice Monte Carlo computation, however,
is hampered by analytic continuations that are ill-suited to numerical treatment, and the nonequilibrium
nature of a metastable state. In this paper we develop a new methodology to compute vacuum decay rates
from Monte Carlo simulations of Euclidean lattice theories. To test the new method, we consider simple
quantum mechanical systems systems with metastable vacua. This work can be extended to Euclidean field
theories, which we discuss in the Conclusions.
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I. INTRODUCTION

The decay of a metastable vacuum state is an old and
well-studied problem in quantum mechanics (QM) and
quantum field theory (QFT). It is well-known how to
compute the tunneling rate in QM using semiclassical
methods, and these techniques can be extended in a natural
way to QFT [1,2]. In recent years the theory of tunneling
has received renewed attention [3–11].
Since the standard semiclassical analysis is performed

using the Euclidean path integral, it is natural to ask whether
Euclidean lattice theory can also be used to study vacuum
decay. In addition to ordinary barrier penetration problems,
lattice methods could be useful for quantitative studies of
vacuum decay in situations where the semiclassical methods
are inadequate, such as the decay of vacua that emerge from
strong dynamics (see e.g. Ref. [12]). Formulating and
refining a lattice approach to these problems might also
yield methods of more general interest and applicability.
However, Euclidean Monte Carlo (MC) simulations of

false vacua are not without subtleties. A configuration which
begins in a metastable state, or in a false vacuum (FV), will
evolve inMonte Carlo time to eventually thermally fluctuate
over the barrier. In the semiclassical limit, the barrier “peak”
is a saddle point of the classical action, a solution known as
the bounce [1], and the Monte Carlo time evolution can be
thought of schematically as “false vacuum→ bounce→ true

vacuum.” If the true vacuum (TV) is deep, as a practical
matter, the system will never return to the false vacuum after
thermalization, so all configurations in the thermalized
ensemble describe the true vacuum. They are exponentially
more important than the bounce, and they are only rendered
innocuous after a final analytic continuation back to real
time, a point emphasized in the study of Ref. [3] which
sought to place the problem of vacuum decay on more
rigorous footing. This analytic continuation is more or less
straightforward in semiclassical analyses, but it is impractical
in an MC approach.
In this paper, we develop a new framework to compute

approximate but accurate decay rates from Euclidean lattice
simulations. To test the approach, we consider QM tunneling
problems as illustrated in Fig. 1. Our primary results are the
definition of a new observable that approximates the decay
rate of a quantum mechanical metastable vacuum, a pre-
scription for its computation in Euclidean Monte Carlo
simulations, and numerical simulations testing the accuracy
of the method.
The remainder of this paper is organized as follows.

In Sec. II we develop the necessary theoretical tools,
define our computational approach, and describe the
systematic uncertainties introduced by the associated
approximations. In Sec. III we apply the method to a
representative family of potentials. An advantage of study-
ing QM tunneling problems is the ability to compute the
decay rate by solving the time-dependent Schrödinger
equation (TDSE). We perform three-way comparisons
between results obtained from solving the TDSE (“exact”),
from Euclidean lattice Monte Carlo computations
(“lattice”), and from semiclassical analyses. We find good
agreement between the results over several decades in the
decay rate, thus establishing the accuracy of our lattice
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method. In Sec. IV we turn our attention to very long
lifetimes, where computing the rate from ensembles of
practical sizes requires a different approach. We propose
the “constrained ensemble reweighting” method and illus-
trate it with an example. Our conclusions are presented in
Sec. V, where we further outline how our framework can be
extended to Euclidean quantum field theories.

II. VACUUM DECAY IN EUCLIDEAN
LATTICE THEORY

A. Preliminaries

We consider single-particle quantum mechanics with a
tunneling potential. An example potential is shown in
Fig. 1. The continuum Euclidean action is

SE ¼
Z

dt

�
1

2

�
dx
dt

�
2

þ VðxÞ
�
: ð1Þ

In this normalization x is treated as a 0þ 1D field: the
kinetic term has a dimensionless coefficient 1=2, so that the
dimension of x is ½x� ¼ ½E−1=2�. This definition of x is used
throughout this paper. With the false vacuum positioned at
xFV ¼ 0, we parametrize the leading term in the expansion
of the potential around xFV as VðxÞ ¼ 1

2
m2x2 þ � � �. Since

this term has the same form as the mass term in scalar field
theories, we can consider the dimensionful parameter m as
the mass of the particle. A more detailed description of the
potential is given in Sec. III A.
The continuum Euclidean path integral facilitates a

convenient semiclassical treatment of false vacuum decay.
One first constructs the bounce, a solution xbðtÞ to the
Euclidean equations of motion that asymptotes to the
classical false vacuum at early and late times. The leading
order (LO) decay rate is governed by the bounce action,
Γ ∼ e−SE½xb�. The next-to-leading-order (NLO) correction is
given by the quadratic fluctuation integrals around the

bounce. In these integrals the low lying modes of the
fluctuation operator must be treated separately. Zero modes
associated with symmetries can be treated with a collective
coordinate method. More importantly, the bounce is always
associated with a single mode of negative eigenvalue. The
integral over the amplitude of this mode is divergent and is
generally defined by analytic continuation.
On the lattice, a simple choice for the discretized action is

Slat ¼ a
XNT

i¼1

�
−
1

2
xi
xiþ1 − 2xi þ xi−1

a2
þ VðxiÞ

�
; ð2Þ

where a is the lattice spacing and NT ¼ 2T=a is the total
number of sites (2T is the total time). The difference between
the lattice action and the continuumaction isOða2Þ due to the
discrete second-order derivative.
In order to study vacuum decay in Euclidean lattice

Monte Carlo simulations, we must first identify an observ-
able that can be related to the desired decay rate and
computed with Monte Carlo methods. We show that the
probability density to find the particle at the classical
turning point has the desired properties and describe its
computation with Euclidean path integrals and its relation
to the decay rate in Sec. II B.
Any continuum calculation in Euclidean time must be

analytically continued to real time. However, such contin-
uations are impractical in lattice Monte Carlo computations
because they require exponential sensitivity. We elaborate
on the problem in Sec. II C and define a procedure that
avoids the need for analytic continuation, removing the
exponential sensitivity requirement, at the cost of intro-
ducing a systematic error.

B. Probability densities from Euclidean path integrals

The probability density for the system to be in the state
jxi at time t, given that we started from a normalized state ψ
at t ¼ 0, is

ρðx; tÞ ¼ jhx; tjψ ; 0ij2: ð3Þ
When jψi ¼ jFVi, a metastable state localized near the
classical false vacuum, the decay rate is defined as

Γ ¼ − lim
T→∞

1

PðFV; TÞ
dPðFV; TÞ

dT
;

PðFV; TÞ≡
Z
FV

dxρðx; TÞ ¼
Z
FV

dxjhx; TjFV; 0ij2;

PðR; TÞ≡
Z
R
dxρðx; TÞ ¼ 1 − PðFV; TÞ: ð4Þ

The result for Γ should not be sensitive to the exact
definition of the FV region, as long as it reasonably
contains the point xFV and does not extend beyond b.
The long T limit of Eq. (4) is satisfied when T is large
compared to the “escape attempt time” ∼1=m in the false

x

V

xFV b
xTV

R

FIG. 1. Example potential VðxÞ. xFV is the local potential
minimum corresponding to the false vacuum. xTV is the starting
position of a global-minimum plateau region of the potential. b is
the classical turning point that satisfies VðbÞ ¼ VðxFVÞ. R ¼
fxjVðxÞ < VFVg ¼ fxjx > bg is the classically allowed region.
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vacuum, 1=m ≪ T. If we consider times within the long T
limit that are short compared to 1=Γ, then the probability
PðFV; TÞ ≈ 1, and the decay rate can be estimated as

Γ ≈ − _PðFV; TÞ ¼ _PðR; TÞ; 1=m ≪ T ≪ 1=Γ ð5Þ
in this regime.
Now let us relate _PðR; TÞ to ρ. We have

_PðR; TÞ ¼
Z
R
dx_ρðx; TÞ ¼ jðb; TÞ: ð6Þ

Here jðb; TÞ is a probability current flowing through x ¼ b,
and we have used the continuity equation _ρðx; TÞ ¼
−∂xjðx; TÞ. We can also define a probability flow velocity
u through

jðx; TÞ≡ uðx; TÞρðx; TÞ: ð7Þ

Semiclassically, the probability flow velocity can be
estimated from the classical definition of the kinetic energy
EFV − VðxÞ ¼ ð1=2Þuclðx; TÞ2, where EFV ≈ ð1=2Þm is the
quantum vacuum energy of the approximate quadratic
potential centered at xFV. For 1=m ≪ T ≪ 1=Γ and
x ¼ b, we have uðb; TÞ ≈ ffiffiffiffi

m
p

.
The relationship uðb; TÞ ≈ ffiffiffiffi

m
p

is easily validated for
specific examples by the numerical solution of the time-
dependent Schrödinger equation (TDSE). In Fig. 2, we
compare u ¼ j=ρ from the full quantum mechanics and the
approximation ucl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEFV − VðxÞÞp

, exhibiting good
agreement when x≳ b. ucl is not expected to match j=ρ
in the classically forbidden region, i.e., when x is sub-
stantially smaller than b.
Therefore, if ρðb; TÞ can be computed by other means,

then the decay rate can be estimated as

Γ ≈ _PðR; TÞ ¼ jðb; TÞ ≈ ffiffiffiffi
m

p
ρðb; TÞ: ð8Þ

The advantage of this formulation is that ρðb; TÞ can be
evaluated with a Euclidean path integral and is approx-
imately independent of T in the time range of interest
1=m ≪ T ≪ 1=Γ described above. We define a Euclidean
transition amplitude,

Aðψ ; b;TÞ ¼ hbje−HT jψi ¼
Z

dyψðyÞKðy; b;TÞ; ð9Þ

where the Euclidean propagator over time T between some
y and z is

Kðy; z;TÞ ¼
Z

xðτ¼TÞ¼z

xðτ¼0Þ¼y
Dxe−

R
T

0
dτLE½x�: ð10Þ

The real-time probability density is

ρðψ ;0;b;TÞ≡ jhbje−iHT jψij2¼
Z

dyψðyÞ
�Z

xðt¼TÞ¼b

xðt¼0Þ¼y
Dxei

R
T

0
dtL½x�

�Z
dzψ�ðzÞ

�Z
xðt¼TÞ¼b

xðt¼0Þ¼z
Dxe−i

R
T

0
dtL½x�

�

¼
Z

dyψðyÞ
�Z

xðτ¼iTÞ¼b

xðτ¼0Þ¼y
Dxe−

R
iT

0
dτLE½x�

�Z
dzψ�ðzÞ

�Z
xðτ¼−iTÞ¼b

xðτ¼0Þ¼z
Dxe−

R
−iT
0

dτLE½x�
�

¼
Z

dyψðyÞ
�Z

xðτ¼TÞ¼b

xðτ¼0Þ¼y
Dxe−

R
T

0
dτLE½x�

�����
T→iT

Z
dzψ�ðzÞ

�Z
xðτ¼−TÞ¼b

xðτ¼0Þ¼z
Dxe−

R
−T
0

dτLE½x�
�����

T→iT

¼
�Z

dydzψðyÞψ�ðzÞKðy;b;TÞKðz;b;−TÞ
�����

T→iT

¼½Aðψ ;b;TÞAðψ�;b;−TÞ�jT→iT: ð11Þ

In the third line, we make variable changes t ¼ −iτ in the
first integral and t ¼ iτ in the second integral. At this point
there is no analytic continuation, and τ is imaginary.
Subsequently we analytically continue to real τ in the

clockwise direction in both integrals. The “jT→iT” operation
denotes a counterclockwise continuation back to Minkow-
ski time after the integrals are computed. The Euclidean
quantity Aðψ�; b;−TÞ is defined formally by computing

FIG. 2. A comparison between the probability flow velocity
u ¼ j=ρ and ucl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEFV − VðxÞÞp

for the potential of the form
in Fig. 1 [more precisely, the potential of Eq. (31) with α ¼ 0.9,
β ¼ 8.0], computed by numerically solving the TDSE. Agree-
ment occurs for x ≳ b, and uðbÞ ¼ jðbÞ=ρðbÞ is approximately
equal to uclðbÞ ¼

ffiffiffiffi
m

p
. Only the range of x with EFV − VðxÞ ≥ 0

near x ¼ b or in the classically allowed region is plotted.
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Aðψ�; b;TÞ and continuing T → −T, where jψ�i is the
complex conjugate of the state jψi in the position repre-
sentation. Generalizing to an unnormalized initial state ψ ,
we have

ρðψ ; 0; b; TÞ ¼
�

Aðψ ; b;TÞAðψ�; b;−TÞR
dyAðψ ; y;TÞAðψ�; y;−TÞ

�����
T→iT

: ð12Þ

Before the replacement T → iT, both the numerator and the
denominator are Euclidean path integrals, and the total
time extent is 2T. The numerator has a path constraint
xðτ ¼ 0Þ ¼ b while the denominator does not.
In the decay of a false vacuum, there is a range of

Lorentzian time over which we expect ρ is approximately
time-independent. This occurs on timescales 1=m ≪ T ≪
1=Γ. This is also true in the Euclidean picture if each
amplitude in the numerator of Eq. (12) is dominated by
localized events (similar to half of a single bounce solution, in
semiclassical language), so that again changing the duration
T does not appreciably change the amplitude. We nowmake
this assumption and interrogate it in Sec. III.
With both the Euclidean and Lorentzian amplitudes

approximately time-independent, the continuation in Eq. (12)
can be ignored.AnyT-dependence in thenormalization of the
initial state cancels with the T-dependence in the normali-
zation of the denominator. Another way to describe this time-
independence is to say that the false vacuum is almost an
energy eigenstate jϵi of the complete Hamiltonian. Therefore
on timescales short compared to 1=Γ, the state does not
change appreciably and

ffiffiffiffi
m

p
ρðb; TÞ ≈ Γ, a constant. The

dominant Euclidean time evolution in A,

Aðψ ; b;TÞ ≈ e−ϵThbjϵi; ð13Þ

cancels between the numerator and the denominator of ρ.
Equation (12) is still not in the formof an expectationvalue

of an observable, which would be convenient for computa-
tion in Euclidean MC simulations. To relate it to such an
observable, we exploit the time-independence described
above and the symmetry of the Euclidean amplitudes. We
consider real initial wave functions ψðyÞ ∈ R and write

ρ̂ðψ ;0;b;TÞ≡ Aðψ ;b;TÞAðb;ψ ;TÞR
dyAðψ ;y;TÞAðy;ψ ;TÞ¼

Aðψ ;b;TÞAðb;ψ ;TÞ
Aðψ ;ψ ;2TÞ

¼hfðb;0Þi; ð14Þ

where

fðb;0Þ≡ lim
δ→0

1

δ
Θ
��

xð0Þ−
�
b−

δ

2

����
bþ δ

2

�
−xð0Þ

��
:

ð15Þ

In practice, when δ is chosen finite and small enough, fðb; 0Þ
is an observable that returns 1=δ if a path is in a small region

[b − δ, b] at time t ¼ 0, and zero otherwise. In our calcu-
lation, we use δ ¼ 0.04

ffiffiffiffiffiffiffiffiffi
β=m

p
, since

ffiffiffiffiffiffiffiffiffi
β=m

p
is a character-

istic scale for x as is shown in Eq. (38).
The definition of ρ̂ differs from that of ρ byT → −T in the

second factors of A and the absence of analytic continuation
of T. However, if in the time regime of interest both ρ and ρ̂
are approximately T-independent, then

ρðψ ; 0; b; TÞ ≈ ρ̂ðψ ; 0;b; TÞ ð1=m ≪ T ≪ 1=ΓÞ: ð16Þ

Weexamine theT-dependence of ρ̂ below,wherewe find that
with one important modification we can indeed approximate
it as T-independent.
In the Monte Carlo simulation, we use periodic boun-

dary conditions (PBCs) xð−TÞ ¼ xðTÞ, _xð−TÞ ¼ _xðTÞ in
Euclidean timewith largeT, so that the stateψ intowhich the
ensemble initially thermalizes is approximately the pertur-
bative ground state in the false vacuum. This allows us to
exploit time translation symmetry and improve the ensemble
statistics. With PBCs, the rare events where xðtÞ ≳ b can
occur at a random Euclidean time t, and all random times
have an equal chance for such rare events. Therefore, we can
average the probability density at b over all Euclidean times
t ∈ ½−T; TÞ to approximate ρ̂ðFV; 0;b; TÞ.
To summarize, we have related the decay rate to an

observable ρ̂ðbÞ that can be computed in MC. There are
three primary approximations which introduce uncertain-
ties into the result. First, we assume that T can be chosen so
that 1=m ≪ T ≪ 1=Γ, which allows both the approxima-
tion Γ ≈ − _PðFVÞ and the analytic continuations described
above. Second, we approximate the probability flow
velocity by u ≈

ffiffiffiffi
m

p
, which is a fairly good approximation

in practice, as we verify by explicit comparison with the
TDSE solution. Third, we assume that the relevant
Euclidean amplitudes are dominated by trajectories that
probe beyond the barrier in localized, rare events, so that
they are insensitive to T. The T interval 1=m ≪ T ≪ 1=Γ is
necessary but not sufficient for this to be true, as we discuss
in the next subsection.
We note that our method is complementary to the “direct

method” of Ref. [3], which is also expressed using the
Euclidean path integral. The direct method involves taking
an imaginary part after the analytic continuation. Such a
procedure, when applied to a Monte Carlo calculation, may
be sensitive to the details of how the analytic continuation
is performed. Instead, our method avoids taking an imagi-
nary part by constructing an observable that is approx-
imately independent of T, so that the analytic continuation
T → iT is rendered innocuous.

C. Cuts in ensemble generation and postselection:
Controlling the negative mode

Although we have identified a useful lattice observable,
there is still an issue of the unwanted dominance of true-
vacuum-like configurations in MC that must be addressed
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before we can apply it to real simulations. We now illustrate
the problem in detail, using semiclassical language for
convenience, and describe a practical resolution for lattice
MC computations.
Let us briefly review the NLO semiclassical contribution

to the decay rate to establish notation and ideas. We
decompose paths near the bounce as

xðtÞ ¼ xbðtÞ þ
X∞
n¼0

cnxnðtÞ; ð17Þ

with the normalization condition,Z
T

−T
dtxmðtÞxnðtÞ ¼ δmn: ð18Þ

The basis fxng is chosen such that it diagonalizes the
Euclidean action expanded to the quadratic order as

�
−

d2

dt2
þ V 00ðxbðtÞÞ

�
xnðtÞ ¼ λnxnðtÞ; ð19Þ

with the ordering of n defined through λ0 ≤ λ1 ≤ λ2 ≤ � � �.
The NLO contribution to the path integral around the
bounce is

Y∞
n¼0

Z
dcn exp

�
−
1

2
λnc2n

�
ð20Þ

up to an overall normalization. However, the lowest eigen-
value is negative, λ0 < 0, and the second-lowest eigenvalue
is zero, λ1 ¼ 0. The zero-mode x1ðtÞ reflects the time
translation invariance of the bounce xbðtÞ, so the integral
of c1 can be replaced by an integral of the center time of the
bounce which gives a factor of 2T, still convergent for large
but finite T. The negative mode x0ðtÞ leads to an exponential
divergence. Qualitatively, this divergence can be explained
by the fact that a path xðtÞ that spends themajority of its time
near the true vacuum has an action about −2jVTVjT < 0,
much lower than the bounce action Sb ¼ S½xb� > 0.
Typically, an analytic continuation in the c0 contour is

taken to make the integral converge. However, in a
Monte Carlo simulation, an analogous procedure to “ana-
lytic continuation of the c0 contour” is not available. Once
the ensemble generation passes near the bounce saddle
point of the action, with high probability it will rapidly
evolve toward configurations that spend most of their time
near the true vacuum. The action of a typical configuration
in the above situation is then even lower than the action of a
typical false-vacuum-like configuration, so it is extremely
unlikely to fluctuate back over the saddle point. This
behavior is illustrated in Fig. 3. Starting with a false-
vacuum-like configuration enables the observation of two
distinct perturbative vacua, but the ensemble is not useful
for quantitatively computing the decay rate.

To obtain a useful result from Monte Carlo, we impose a
cut to discard configurations that go too far into the
direction of the true vacuum. First, let us return to the
semiclassical picture and see the effect of cutting off the c0
integral instead of continuing it.
On a finite interval c0 ∈ ½cmin

0 ; cmax
0 � ∼ ðcmin

0 < 0 < cmax
0 Þ

the negative mode integral is

(a)

(b)

FIG. 3. Some properties of configurations as a function of
Monte Carlo time in a simulation of an example potential like
in Fig. 1 (more precisely, a simulation with α ¼ 0.9, β ¼ 8.0,
a ¼ 0.1, NT ¼ 400, in the notation of Sec. III). Panel (a) shows x
averaged over Euclidean time (ET), i.e., hxiET ¼ R

dtxðtÞ= R dt.
Panel (b) shows the Euclidean action. The initial configuration is
taken to be xðtÞ ¼ xFV, no thermalization steps are taken, and the
adjacent MC times are relatively correlated. At early Monte Carlo
times, the configuration remains near the false vacuum, with hxi ≈
xFV ¼ 0 and a relatively high Euclidean action due to the quantum
fluctuations around the false vacuum. For MC times from about
500 to 1000, a transition starts which takes the configuration from
the false vacuum to the true vacuum region with x > xTV ¼
6.82=

ffiffiffiffi
m

p
in this example. The Euclidean action after the transition

is significantly lower than before the transition. In this example, the
difference in action∼100 implies an enormous suppression∼e−100
for the ensemble to ever return to the false vacuum. In other words,
if the ensemble reaches global equilibrium, then the FV-static
configuration is essentially never observed, and the thermalized
ensemble behaves like that of a free particle because of the flat
potential at x > xTV. [The free particle has equal probability to
move in both directions, which is responsible for the (random)
decrease in hxiET after the transition.]
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Z
cmax
0

cmin
0

dc0e−
1
2
λ0c20 ¼

ffiffiffiffiffiffiffiffiffiffi
π

2jλ0j
r �

Erfi

� ffiffiffiffiffiffiffi
jλ0j
2

r
cmax
0

�
þ Erfi

� ffiffiffiffiffiffiffi
jλ0j
2

r
jcmin

0 j
��

≈ e
1
2
jλ0jðcmax

0
Þ2
�

1

jλ0jcmax
0

þ…

�
þ e

1
2
jλ0jðcmin

0
Þ2
�

1

jλ0cmin
0 j þ…

�
� i

ffiffiffiffiffiffiffiffiffiffi
2

π

jλ0j
r

: ð21Þ

The constant pure imaginary term takes “þ” for the integral
limits deformed to argð−cmin

0 Þ ¼ argðcmax
0 Þ ∈ ð0; πÞ and “−”

for argð−cmin
0 Þ ¼ argðcmax

0 Þ ∈ ðπ; 2πÞ. At argð−cmin
0 Þ ¼

argðcmax
0 Þ ¼ 0 or π, the asymptotic expansion at large

jcmin
0 j and jcmax

0 j is ill-defined. For a finite T, with a
convention x0ð0Þ > 0, the increasing direction of c0 drives
the configuration xbðtÞ þ c0x0ðtÞ toward the true vacuum
region R. In fact, in the full functional integral, when T is
finite, there are always effective cutoffs on fluctuations in the
c0 direction, and these cutoffs are proportional to T. For
example, in the positive c0 direction, the lowest possible
action configuration is the true vacuum, where the action is
STV ¼ 2VTVT. cmax

0 is a function of T with an unknown
functional form, but cmax

0 → ∞ when T → ∞. In the other
direction there is an effective cutoff associated with the false
vacuum configuration. Therefore, if the integral in Eq. (21) is
analytically continued by replacing T → iT and with the
limit T → ∞ taken before computing the integral, then the
final result is−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=jλ0j

p
. Its imaginary part combined with

the fluctuation integrals of other modes gives theNLO decay
rate. This is why the continuation T → iT is both subtle and
important: it removes exponentially large T-dependent con-
tributions to the Euclidean amplitudes [3]. However, it is
impractical to numerically evaluate the path integral at large
T with such high precision that the finite constant term
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=jλ0j

p
can be resolved against a “background” term

that exponentially grows with T. We need a more aggressive
cut on configurations that fluctuate too far toward the true
vacuum.
Again we begin with the semiclassical computation.

When finite cuts cmax
0 and cmin

0 are imposed, then the c0
integral is a finite number that is generically unequal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=jλ0j

p
, but may be close to it for a suitable choice of

cuts. For example, ordinary Gaussian integrals are domi-
nated by the region within a standard deviation or so of the
peak. Let us therefore set ð1=2Þλ0ðcmin

0 Þ2 þ 1 ¼ 0. Then,

Z
0

cmin
0

dc0e−
1
2
λ0c20 ¼

ffiffiffiffiffiffiffiffiffiffi
π

2jλ0j
r

Erfi

� ffiffiffiffiffiffiffi
jλ0j
2

r
jcmin

0 j
�

¼
ffiffiffiffiffiffiffiffiffiffi
π

2jλ0j
r

Erfið1Þ ¼ 0.83
ffiffiffiffiffiffiffiffiffiffi
2

π

jλ0j
r

¼ 0.83Im
Z

i∞

−i∞
dc0e−

1
2
λ0c20 : ð22Þ

As long as the cutoff cmax
0 satisfies ð1=2Þjλ0jðcmax

0 Þ2 ≤ 1,
we have

Z
cmax
0

cmin
0

dc0e−
1
2
λ0c20 ∈ ð0.83; 1.67ÞIm

Z
0

−i∞
dc0e−

1
2
λ0c20

∼Oð1ÞIm
Z

i∞

−i∞
dc0e−

1
2
λ0c20 : ð23Þ

Therefore, without continuing the contour and simply
placing cutoffs on the negative mode integral, we can
compute the NLO decay rate up to an Oð1Þ relative
correction.
However, beyond the semiclassical approximation, for

example in Monte Carlo simulation, it is not obvious how
to implement a cut on c0 when the theory is formulated in
configurations fxðtÞg instead of the fcng basis. We need a
different approach with similar properties. Instead, we
consider a functional of xðtÞ defined as

SbV ½x� ¼
Z

dtVðxðtÞÞΘðxðtÞ − bÞ; ð24Þ

whereΘð·Þ is the Heaviside step function. Only times t such
that xðtÞ > b, i.e., the configuration goes beyond the point b
and into the classically allowed region R, contributes to SbV .
VðxðtÞÞ is lower than VðbÞ ¼ VFV ¼ 0 and thus negative
when xðtÞ > b. In otherwords, SbV measures the contribution
to the action solely from the parts that can lower it below the
action of the false vacuum. Configurations can be charac-
terized into a one-parameter family using SbV ½x�. The greater
xðtÞ is, when between b and xTV, the more negative VðxðtÞÞ
is. Therefore, the lower SbV ½x� is, the more likely the
configuration xðtÞ is to be close to the true vacuum, with
a more positive value of c0. Configurations near the false
vacuum all have SbV ¼ 0 since they do not enter the regionR.
Roughly speaking, c0 increases when SbV decreases.
We place a hard wall on SbV ½x� during ensemble gen-

eration, and then place a more stringent cut on it during
postselection. The latter is taken at the minimum location of
the probability density function pðSbVÞ. This corresponds to
not rejecting too many configurations (cutting off the
Gaussian c0 integral too close to the peak) while not
moving too far in the direction of the true vacuum (where
the result becomes exponentially sensitive to the cutoff). At
the minimum of pðSbVÞ, results for observables are also
minimally sensitive to the precise choice of the cut. In
Appendix B we give a more detailed justification for this
choice and test it on example potentials.
With this prescription for eliminating unwanted configu-

rations, we anticipate that the ensembles indeed satisfy the
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conditions such that ρ̂ is approximately T-independent and
provides a good estimate of the rateΓ.We now turn to testing
the method numerically on various example potentials.

III. NUMERICAL EXAMPLES

In this section we apply the algorithm described above to
a family of model potentials, comparing the results with
semiclassical computations and numerical solution of the
time-dependent Schrödinger equation.
Because decays are generally rare events, the probability

of obtaining bouncelike configurations in the Monte Carlo
simulation is suppressed. In semiclassical language, the rate
is exponentially small in the bounce action. If this suppres-
sion is too extreme, direct ensemble generation methods do
not work. To avoid this problem, this section is focused on
examples where the decay rate is not prohibitively small. The
case of small decay rates is considered in Sec. IV.

A. The potentials and semiclassical properties

We use “modified double-well potentials” of the form
shown schematically in Fig. 1 as a family of useful QM
examples. We parametrize the potential as

VðxÞ ¼
� 1

2
m2x2 − ηx3 þ λ

8
x4 x < xTV

VTV x ≥ xTV;
ð25Þ

where the value of VTV is defined to maintain the continuity
of the potential at x ¼ xTV. (We remind the reader than in
our normalization x is a 0þ 1D scalar field and thus has the
dimension energy−1=2 rather than the dimension of a
physical position, energy−1.) We define the potential so
that xFV ¼ 0 and VFV ≡ VðxFVÞ ¼ 0.
The large flat region to the right of xTV is useful to have a

continuum or quasicontinuum of unbound states for the
metastable state localized around xFV to decay into. The
classical turning point is labeled by b and the classically
allowed region is R ¼ fxjVðxÞ < VFVg ¼ fxjx > bg. In
the region x ≤ xTV this potential is exactly a quartic
potential, so the semiclassical analysis is very similar to
the case of the latter potential.
The only three parameters in this model are m, η, and λ.

We then reparametrize the theory using a similar para-
metrization as in Ref. [13]. With the nondimensionalization
into t̄ and x,

t̄ ¼ mt ð26Þ

x ¼ m2

2η
x̄; ð27Þ

the Euclidean action of a path xðtÞ that does not enter the
modified region x ≥ xTV can be rewritten as

S½x� ¼ β

Z
dt̄

�
1

2
ð∂t̄x̄Þ2 þ

1

2
x̄ −

1

2
x̄3 þ α

8
x̄4
�
; ð28Þ

where there are two dimensionless parameters,

α ¼ λm2

4η2
; ð29Þ

β ¼ m5

4η2
: ð30Þ

We then choosem as the only dimensionful parameter. Thus
m sets the energy scales of the theory, and wemostly work in
units where m ¼ 1. When needed, m can be restored from
dimensional analysis. m, α, and β form the new set of
parameters that are a rearrangement of m, η, and λ.
With the new parametrization, the potential in Eq. (25)

takes the form,

VðxÞ ¼
� 1

2
m2x2 − m5=2

2
ffiffi
β

p x3 þ m3α
8β x4 x < xTV

VTV x ≥ xTV:
ð31Þ

We can analytically solve for the classical vacua and
turning point,

xFV ¼ 0; ð32Þ

xTV ¼
ffiffiffiffi
β

m

r
3þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 8α
p

2α
;

b ¼
ffiffiffiffi
β

m

r
2ð1 − ffiffiffiffiffiffiffiffiffiffiffi

α − 1
p Þ
α

: ð33Þ

We further define the dimensionless potential,

V̄ðx̄Þ ¼
� 1

2
x̄ − 1

2
x̄3 þ α

8
x̄4 x̄ < x̄TV

V̄TV x̄ ≥ x̄TV;
ð34Þ

the dimensionless Euclidean Lagrangian,

L̄E½x̄� ¼
1

2
ð∂t̄x̄Þ2 þ V̄ðx̄Þ; ð35Þ

and the corresponding action,

S̄½x̄� ¼
Z

dt̄L̄E½x̄�: ð36Þ

This action is dependent only on α and independent of m
and β. The complete action is proportional to β,

S½x� ¼ βS̄½x̄�: ð37Þ
Some useful relations between the two parametrizations are

x ¼
ffiffiffiffi
β

m

r
x̄; ð38Þ

VðxÞ ¼ mβV̄ðx̄Þ; ð39Þ
and the n-th-order derivative of V̄ðx̄Þ,
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VðnÞðxÞ ¼ m
n
2
þ1β1−

n
2V̄ðnÞðx̄Þ: ð40Þ

Therefore, VTV ¼ mβV̄TV.
The parameter α always satisfies 0 < α < 1 and controls

the shape of the potential. In the limit α → 1, the false and
true vacua become degenerate as VTV → −2mβð1 − αÞ. In
the limit α → 0, the true vacuum approaches minus infinity
with leading behavior VTV → −27mβ=ð8α3Þ. β is always
positive and controls the overall scale of V. β → ∞ is the
semiclassical limit where the quantum theory is governed by
the classical bounce solution xbðtÞ (saddle point). Effects
from quantum fluctuations δxðtÞ ¼ xðtÞ − xbðtÞ, except for
the negative and zero modes, are exponentially suppressed
by expð−βðS̄½x̄b þ δx̄� − S̄½x̄b�ÞÞ when β is large.

B. Simulation results

After introducing the SbV cut described in Sec. II C, we can
perform a latticeMonteCarlo computation of ρ̂ðFV; 0;b; TÞ,
i.e., the probability density at x ¼ b at Euclidean time T
starting from the false vacuum state at time zero. We impose
periodic boundary conditions in Euclidean time to improve
the statistics; for large T, the temperature is low enough that
the system initially thermalizes close to the false vacuum if
the Markov chain is seeded with an initial configuration
equal to the semiclassical false vacuum, x ¼ 0.
To establish an appropriate cut on SbV , we first compute the

probability density function pðSbVÞ. To find the minimum of
this function, a finite sample may not be sufficient, since the
function exhibits statistical fluctuations andwe are interested
in the region where pðSbVÞ is approximately flat. We use
kernel density estimation (KDE) [14,15] and gradient
descent to compute pðSbVÞ and search for the minimum.
We use the Epanechnikov kernel [16] with the kernel width
small enough to capture local variation of the density
function but still large enough to contain sufficient configu-
rations. The typical scale of the kernel width for our setup is
Oð10−1Þ. In each iteration step, KDE can compute p at the
target SbV from the gradient descent with a low cost. In the

gradient descent method, we start from several initial values
ofSbV and compare the local minima found by different initial
values, due to statistical fluctuation, to find the global
minimum.
As shown above, the decay rate Γ ≈ ρbðTÞ when

1=m ≪ T ≪ 1=Γ. Therefore, we report ρb computed from
MC as Γ and compare it against Γ computed from the
solution of the TDSE, the NLO semiclassical Gel’fand-
Yaglom (GY) method, and the LO semiclassical/dimen-
sional analysis (DA) method ΓDA ¼ me−Sb . The TDSE and
semiclassical results are only expected to agree in the far
semiclassical limit, and comparing both with the MC
results provides a measure of how much information the
MC can access beyond the different levels of semiclassical
approximation in intermediate regimes.
The parameters used in our MC ensembles are given in

Table I in Appendix C, and results are shown in Figs. 4–6,
including both variation of model parameters (α and β;
Figs. 4 and 5 respectively) and variation of lattice/ensemble
parameters [SbV-cut, T, and a; Figs. 6(a)–6(c), respectively.]
Since we work in units where the mass is unity, and other

scales in the problem like the spatial size of the semi-
classical bounce solution are expected to be of this order,1

we mostly work with lattice spacing am ¼ 0.1 and volume
NT ¼ 400. These choices are expected to avoid large
corrections from lattice artifacts and finite volume effects,

(a) (b)

FIG. 4. (a) The decay rate Γ as a function of β with fixed α ¼ 0.90, computed with four different methods: exact (the TDSE), NLO (the
GY method), LO (naive dimensional analysis), and MC (the Monte Carlo method). (b) The ratio Γ=Γexact versus Γexact=m as a
reparametrization of the axes of (a) to facilitate comparisons. The solid line in (b) is the constant 1.

1In quantum field theory, the bounce can easily be much larger
than the scalar mass parameter since it scales as the inverse of the
semiclassical energy splitting between the true and false vacua.
This is an effect of a friction term in the equation of motion
defining the bounce. In quantum mechanics the friction term is
not present, and to obtain a bounce much larger than the input
mass scale requires an exponential tuning of the energy splitting.
Typically, the bounce is still larger than 1=m, so our estimate
ΓDA ¼ me−Sb is actually larger than the usual LO estimate ΓLO ¼
R−1
b e−Sb common in the literature. We see from the figures that

the latter would only worsen the discrepancy of the LO estimate
with the NLO, TDSE, and MC results.
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which we validate by varying these choices in two of the
analyses described below. The ensemble-level SbV-cut is
mostly taken to be −2.0, which is large enough in
magnitude to avoid impacting the postselection SbV-cut,
while at the same time preventing the ensemble from
probing configurations too close to the true vacuum, where
it could get stuck. With these reasonable choices for the

lattice/ensemble parameters, we compute Γ for a range of
potentials defined by α and β.
In Fig. 4 we vary β with fixed α. From the semiclassical

perspective, varying β is a probe of the LO exponential
factor, Γ ∼ e−βSb . We find that the MC computation
matches the exact TDSE result up to a factor <2 over a
range Γ=m ∼ 10−4–10−1. In the same range the NLO GY

(a) (b)

FIG. 5. (a) The decay rate Γ as a function of α with fixed β ¼ 9.0, computed with four different methods: exact (the TDSE), NLO (the
GY method), LO (naive dimensional analysis), and MC (the Monte Carlo method). (b) The ratio Γ=Γexact versus Γexact=m as a
reparametrization of the axes to facilitate comparisons. The solid line in (b) is the constant 1.

(a) (b)

(c)

FIG. 6. Decay rate Γ at β ¼ 8.0 and α ¼ 0.9 computed with four different methods: exact (the TDSE), NLO (the GY method), LO
(naive dimensional analysis), and MC (the Monte Carlo method). (a) has varying SbV-cut, fixed at mT ¼ 20.0 and ma ¼ 0.1. (b) has
varying T, fixed at SbV -cut ¼ −2.0 and ma ¼ 0.1. (c) has varying a, fixed at SbV -cut ¼ −2.0 and mT ¼ 20.0.

VACUUM DECAY AND EUCLIDEAN LATTICE MONTE CARLO PHYS. REV. D 107, 094506 (2023)

094506-9



method achieves similar accuracy, with somewhat worse
performance at higher rates. The LO estimate (DA) with
dimensional analysis typically underestimates the rate by
around an order of magnitude for these parameters.
In Fig. 5 we vary α at fixed β. From the semiclassical

perspective, this is a probe of the mild α-dependence of the

LO exponential factor e−βSb (since Sb only depends on α),
as well as beyond-LO effects. Our MC results are in good
agreement with both the TDSE and GY results. They are
closer to the “exact” TDSE values than GY, which could be
an indication that our MC method for computing Γ is
capable of accurately capturing some information beyond
the NLO semiclassical approximation.
In Fig. 6(a), with all other parameters fixed, we vary the

ensemble-levelSbV cuts. The results from these ensembles are
expected to be about the same. There is an uncertainty in
finding the minimum of the probability distribution pðSbVÞ
measured on the ensemble, and this is the primary source of
discrepancy among the values in Fig. 6(a). In principle, the
minimum should be nearly independent of the SbV-cut at
ensemble generation, but there is an uncertainty introduced
by numerical minimizationwith a finite sample. As shown in
Table I inAppendixC, the postselection SbV-cuts for the these
ensembles are not the same, although they are all around
−0.5. The uncertainty in the postselection SbV-cuts is not
reflected in the statistical error bars in Fig. 6(a).
In Fig. 6(b), we vary NT with all other parameters fixed

to test the T-dependence of our results. As discussed in
Sec. II B, we expect the T-dependence of the measured
quantity ρbðTÞ to be weak when 1=m ≪ T ≪ 1=Γ. With
a ¼ 0.1 m−1, NT ranges from 200 to 1000, so T ¼ aNT=2
ranges from 10 m−1 to 50 m−1. With α ¼ 0.9 and β ¼ 8.0,
the value of 1=Γ obtained by solving the TDSE is about
300 m−1, so the condition 1=m ≪ T ≪ 1=Γ is satisfied.
There is some mild variation in the MC results as we vary
T, but within statistical uncertainties they fall between the
TDSE and GY results for this model point, and the
uncertainty in Γ associated with residual T-dependence
is again a factor <2.
Finally, in Fig. 6(c) we vary the lattice spacing a with

other parameters fixed. There is an Oða2Þ difference
between the lattice action and the continuum action, so
reducing the value of a can make the result more precise.
Since m is the characteristic scale in the continuum theory,
a should not be substantially greater than 1=m. However,
for fixed time range T, smaller a leads to a greater number
of sites NT ¼ 2T=a, and greater computational cost. We
find that values of a in the range ½0.05 m−1; 0.4 m−1� all
give accurate results, justifying the use of a ¼ 0.1 m−1 for
the majority of our previous computations.

IV. LONG LIFETIMES

In the previous section, we saw that straightforward
ensemble generation with a hard wall on the quantity SVb

allows an accurate computation of the probability density ρ
and thus a good estimate of the decay rate, when these
quantities are not too small. However, when the lifetime
becomes very long, direct generation of the ensembles
becomes impractical: starting from the vicinity of the false
vacuum, the saddle point is simply too difficult to find by
random fluctuations.
Instead, we consider a modification of the computation

whichwe refer to as constrained ensemble reweighting. In the
ensemble generation, we fix the trajectories to the classical
turning point b at the midpoint in Euclidean time. In doing so
we give up time translation invariance and the associated
improvement in statistics, butwegainmuchmore by “telling”
the MC that it needs to reach b. To be more precise, for each
rate computation, we generate two ensembles, one with the
constraint applied and one without, and attempt to compute
the probability of finding configurations from the constrained
ensemble in the unconstrained ensemble.
In an ensemble of N configurations with NT sites, the

number of configurationsΔN½x⋆� near a given configuration
fx⋆i g1≤i≤Nt

in a vicinity of volume
QNT

i¼1Δxi is given by

1

N
ΔN½x⋆�QNT
i¼1Δxi

≈ ce−S½x⋆�; ð41Þ

where c is a normalization factor. The ensemble generation
may have some imposed constraints in the space of con-
figurations. These constraints affectwhich configurations are
allowed but still retain the relative probabilities of allowed
configurations. The factor c may depend on the constraints
but does not depend on configurations x⋆ as long as x⋆ is not
forbidden by the constraints. c is also independent of the total
number of configurations N.
For an ensemble withN1 configurations generated by the

modified double-well potential we are interested in, which
we denoted as “ensemble 1,” we first consider x⋆ ≡ x⋆i ¼
xFV for all i, i.e., the FV-static configuration. The number of
configurations in the vicinity of the static xFV configuration
is given by

1

N1

ΔN1½xFV�QNT
i¼1 Δxi

≈ c1e−S½xFV�: ð42Þ

Now consider x⋆ ¼ xb, the bounce solution, in the same
ensemble. Configurations in its vicinity are representative
contributors to ρ. The number of such configurations is

1

N1

ΔN1½xb�QNT
i¼1Δxi

≈ c1e−S½xb�: ð43Þ

Therefore, with the same volume
QNT

i¼1 Δxi, ΔN1½xb�=
ΔN1½xFV� ≈ expð−S½xb� þ S½xFV�Þ is exponentially sup-
pressed in the semiclassical limit. In such a case, from
ensemble 1, ΔN1½xFV� is measurable whereas ΔN1½xb� is
difficult to measure.
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To circumvent the exponential suppression we can
generate a second ensemble, denoted as “ensemble 2,”
with N2 configurations constrained by xNT=2 ¼ b, corre-
sponding to a center time constraint xðt ¼ 0Þ ¼ b in the
continuum. Due to this constraint, effectively there are now
only NT − 1 sites on the lattice. The number of configu-
rations in ensemble 2 in the vicinity of a configuration x⋄ is

1

N2

ΔN2½x⋄�Q
1≤i≤NT;i≠NT=2Δxi

≈ c2e−S½x
⋄�; ð44Þ

where c2 is a normalization factor different from c1
(and even has a different dimension, ½c2� ¼ ½x�½c1�). In
ensemble 2, false-vacuum-like configurations are not
allowed due to the constraint, so for relevant configurations
near the bounce, x⋄ ∼ xb, ΔN2½xb� is numerically calcu-
lable without suffering from an exponential suppression.
We can use Eqs. (42) and (44) to estimate the probability

density at x ¼ b. We write

ρb ≈
1

N1

dN1

dxNT=2

����
xNT=2

¼b

¼ 1

N1

� Y
i≠NT=2

Z
dxi

�
dNTN1½x1; � � � � � � ; xNT

�
ðQidxiÞ

����
xNT=2

¼b

¼
� Y

i≠NT=2

Z
dxi

�
c1e−S½x� ¼

c1
c2

� Y
i≠NT=2

Z
dxi

�
c2e−S½x�

¼ c1
c2

� Y
i≠NT=2

Z
dxi

�
1

N2

dNT−1N2½x1;…; xNT=2−1; xNT=2þ1;…; xNT
; xNT=2 ≈ b�Q

i≠NT=2dxi

¼ c1
c2

: ð45Þ

Thus we extract the decay rate,

Γ=
ffiffiffiffi
m

p
≈ ρb ≈ c1=c2; ð46Þ

where c1=c2 can be computed from two ensembles as

c1
c2

≈ e−S½x⋄�þS½xFV�

×

�
1

N1

ΔN1½xFV�QNT
i¼1Δxi

�	�
1

N2

ΔN2½x⋄�Q
1≤i≤NT;i≠NT=2Δxi

�
: ð47Þ

There is still an “exponentially hard” aspect of the
method: for large lattices the probability of finding a
configuration in a volume

QNT
i¼1Δxi near another configu-

ration is exponentially small in NT . To ameliorate this we
find that it is sufficient to work with somewhat larger lattice
spacings and smaller volumes, without substantially sac-
rificing accuracy.
We test the method on a benchmark point with α ¼ 0.9,

β ¼ 60.0, and we generate two ensembles with
a ¼ 0.3 m−1, NT ¼ 120. As described above, in ensemble
2 we impose a constraint xðt ¼ 0Þ ¼ b and SbV ¼ −1.20
during the ensemble generation to avoid the dominance of
true-vacuum-like configurations. The number of configu-
rations in ensemble 1 is Ncf;1 ¼ 100; 000. Ensemble 1 has
no constraint at xðt ¼ 0Þ, and we have effectively set no
SbV-cut either, because β is very large. It is highly improb-
able for a configuration in ensemble 1 to approach b,

by a factor of order e−βSb ≈ 10−27, and we find that all

configurations have SbV ¼ 0. Therefore in the formulas
above N1 ¼ Ncf;1 ¼ 100; 000.
For ensemble 2 we still need to impose cuts on SbV ,

similar to the procedure described in Sec. III. With the
additional constraint xðt ¼ 0Þ ¼ b, the detailed arguments
provided in Appendix B, used to justify the particular
postselection cut on SbV used in Sec. III, do not hold exactly.
However, the general principle that the cut should be
chosen prior to the onset of the exponential rise in the
SbV distribution still applies, and in practice we find that the
same choice of postselection cut SbV > −0.5 is adequate. In
general the variation of the cut within a range that does not
sample the exponential rise, or approach unnecessarily
close to zero, leads to an Oð1Þ impact on the final result for
the rate. This would be a reasonable target accuracy for this
method, but in our initial investigation here we find
somewhat larger sources of error. After postselection,
ensemble 2 contains N2 ¼ 48; 674 configurations.
To carry out the analysis we must define the configu-

rations around which to count neighboring configurations
in each ensemble. For ensemble 1 we could simply use
x⋆ ¼ xFVðtÞ ¼ 0, as used in the formulas above. For
ensemble 2, a convenient choice for x⋄ is to construct a
smoothed configuration by taking the mean or median
value of x evaluated at each t over all the configurations in
the postselected ensemble. We use the median configura-
tion, shown in Fig. 7, to reduce the effects of possible
outliers, but the mean configuration is in fact extremely
similar. (To keep the ensembles on the same footing, we
also use the median configuration in ensemble 1 for x⋆
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rather than directly using x⋆ ¼ xFV ¼ 0, but the difference
is negligible, and we continue to refer to the central
configuration for this ensemble as xFV.) We also overlay
the semiclassical bounce solution in Fig. 7, demonstrating,
as a by-product, that the smoothed configurations closely
approximate the bounce, as one might expect deep in the
semiclassical regime.
The vicinity of the median configuration is defined by

choosing the windows fΔxig. In principle we would like all

Δxi to be infinitesimal, but this is not possible in practice,
because the number of configurations in the neighborhood
is exponentially small in the number of sites NT . Instead,
we take Δxi to be finite at order Oð ffiffiffiffiffiffiffiffiffi

β=m
p Þ, i.e., the

characteristic scale of the potential in x-space. For sim-
plicity, we choose Δxi ≡ Δx to be site-independent. For
ensemble 2 a configuration xðtiÞ is identified as lying in the
vicinity of x⋄ if x⋄ðtiÞ − Δx=2 < xðtiÞ < x⋄ðtiÞ þ Δx=2
for all sites i, and similarly for ensemble 1. We check this
criterion for all configurations after postselection, and the
number of configurations that pass the test give the values
of ΔN2½x⋄� and ΔN1½xFV� in Eq. (47).
In Eq. (47), there is the factor e−S½x⋄�þS½xFV� which can be

computed from the median-smoothed configurations in
each ensemble. However, when the vicinity defined by
Δx is finite, the action of every actual configuration in the
neighborhood receives large contributions from high fre-
quency fluctuations. Therefore we consider a second
method to estimate the difference −S½x⋄� þ S½xFV�. We
construct the sample distribution of the action over each
neighborhood of original configurations and identify the
action difference with the difference in the means of these
distributions. The distributions are peaked at much higher
values of S than the action of the median smoothed
configurations, due to the high-frequency fluctuations in
the original configurations (see Appendix C 3 for numerical
details). Loosely speaking we can think of this alternate
prescription as redefining the central configuration
by a typical configuration in the neighborhood of the
smoothed one.
In Fig. 8, we use these two different prescriptions for

the exponential factor in (47) to compute c1=c2 with

FIG. 7. Median configurations for ensembles 1 and 2. The
numerical bounce solution obtained from solving the classical
equation of motion is shown for comparison. Statistical error bars
on the median configurations are quite small, with maximum
errors in x of 0.00053 m−1=2 for ensemble 1 and 0.0025 m−1=2 for
ensemble 2. These uncertainties are tiny compared to the
characteristic scale of variation of the potential. Because other
errors are much larger, we neglect this source of uncertainty in
subsequent error estimates.

(a)
(b)

FIG. 8. Values of c1=c2 obtained using the two different approaches to compute e−S½x⋄�þS½xFV � as described in the text. The dashed line
shows an exponential fit, which we extrapolate to zero to obtain estimates for Γ. We use these results together with the unextrapolated
values near the smallest accessible Δx to obtain a conservative uncertainty range Γ ¼ 10−25�1 m. The central value is quite close to
the semiclassical NLO estimate ΓGY ¼ 8.61 × 10−26 m, while the leading order estimate is about 2 orders of magnitude smaller,
ΓDA ¼ 1.56 × 10−27 m.
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finite-sized neighborhoods. The statistical uncertainties are
greater at smaller Δx because fewer configurations survive.
At intermediate Δx the results are very close to an
exponential function of Δx. Heuristically this can be
understood as follows. In ensemble 1, fluctuations can
only raise the action, so as Δx increases the number of
neighboring configurations rapidly saturates to an Oð1Þ
fraction of the total in ensemble 1. In ensemble 2 the
fluctuations do not necessarily raise the action and satu-
ration only occurs at larger Δx. These behaviors are
reflected in Fig. 8. The difference in the typical action
of fluctuations then implies an exponential difference in the
Δx distribution of configurations which is measured by
c1=c2. By contrast, even in the second method, the
exponential prefactor is highly stable with Δx, as shown
in Fig. 8. (In the first method this factor does not change, by
definition.)
We now perform four estimates of the decay rate from

these results, corresponding to each of the two methods of
computing the difference −S½x⋄� þ S½xFV�, and taking the
results in Fig. 8 with and without exponential extrapolation
toΔx ¼ 0. With exponential extrapolation, we fit c1=c2 as a
function ofΔx to the form p0 expð−p1ΔxÞwhere p0 and p1

are fit parameters. Since we are only interested in semi-
quantitative extrapolation, we use a naive fit that ignores the
correlation among data at different Δx and treats them as
uncorrelated. In thiswayweobtain a conservative estimate of
the uncertainties arising from practical limitations on the
smallest Δx that can be accessed directly.
The values of c1=c2 at different Δx are correlated, and

we perform exponential fits only using data with relatively
small statistical uncertainties. The extrapolated results at
Δx ¼ 0 are 8(a) c1=c2 ≈ 9.0 × 10−26

ffiffiffiffi
m

p
and 8(b) c1=c2≈

1.5 × 10−24
ffiffiffiffi
m

p
. Since c1=c2 is an estimate for ρb ≈ Γ=

ffiffiffiffi
m

p
,

the results translate to 8(a) Γ ≈ 9.0 × 10−26 m and 8(b)
Γ ≈ 1.5 × 10−24 m. Without extrapolation, the values are of
order Γ ≈ 10−26 m and Γ ≈ 10−25 m at the smallest Δx
with controlled statistical errors in the two methods. Putting
the four results together we obtain

Γ ≈ ð10−26−10−24Þ m; ð48Þ

with order-of-magnitude uncertainty associatedwith finiteΔx.
The semiclassical NLO estimate for the decay rate is

ΓGY ¼ 8.61 × 10−26 m, while the leading order estimate
is about two orders of magnitude smaller, ΓDA ¼
1.56 × 10−27 m. The central value in Eq. (48) is close to
the NLO result, and the conservative uncertainty band is still
tighter than the LO-NLO difference.
We regard the method and analysis presented in this

section as a promising first exploration of simple reweight-
ing techniques for systems with long lifetimes. To better
control the uncertainties, a more rigorous argument for the
exponential extrapolation is essential, and the two estimates
of −S½x⋄� þ S½xFV� can be compared with larger ensembles

across a range of potentials. Nonuniform Δxi might also
provide a useful tool. We leave these directions to
future work.

V. CONCLUSIONS AND OUTLOOK

In this work, we develop a new framework for studying
systems with metastable vacua in Euclidean Monte Carlo
simulations. Our main results are

(i) In quantum mechanics with a metastable vacuum
state in the potential, the decay rate can be estimated
if the probability density is known at the classical
turning point, as shown in Eq. (8). The probability
density can be expressed in terms of a lattice
observable ρ̂; see Eqs. (9) and (14)–(16).

(ii) Direct lattice simulation is feasible if the lifetime is
not too long, and a wall is inserted to prevent the
ensemble from wandering into the basin of the true
vacuum. For this purpose we find that a cut on the
total contribution to the potential energy from the
classically allowed region, SbV , provides an effective
barrier, Eq. (24). We place a loose cut during
ensemble generation and a tighter cut in postselec-
tion. A good choice for the latter is the minimum of
the sample distribution of SbV . This cut avoids the
need for any analytic continuation, while introduc-
ing an uncertainty into the final result.

(iii) Testing the method over a family of example
models, we find that we can reproduce the results
of numerical exact diagonalization to similar or
better accuracy than next-to-leading-order semi-
classical analysis with the NLO prefactor computed
numerically using the Gel’fand-Yaglom method.
The differences are generally an Oð1Þ factor, while
the leading order semiclassical estimate with pre-
factor fixed on dimensional grounds is generally off
by more than an order of magnitude. The lattice
results show satisfactory stability when varying over
a range of lattice simulation parameters.

(iv) For long lifetimes, a direct lattice computation is
again infeasible, but we find that a simple modifi-
cation of the technique is effective to compute the
probability density at the classical turning point b:
we generate an additional ensemble with a constraint
that the trajectories reach b at a fixed time. By a
reweighting procedure we can then estimate ρðbÞ
using Eqs. (46) and (47). In an example case this
method gives results consistent with NLO semi-
classics within an order of magnitude, while LO
semiclassics differs by 2 orders of magnitude. The
uncertainties are driven by an extrapolation and
might be improved by refinements of the method.

Our work is of an exploratory nature and as such we focus
here on the simplest one-particle quantum mechanical
theories. In these theories there are multiple other accu-
rate means of computation (exact diagonalization, NLO
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semiclassics), which we use to benchmark our method.
Lattice techniques would be of limited interest if they were
confined to one-particle quantum mechanics. Fortunately,
there are reasons to be optimistic about the future exten-
sions to multiparticle quantum mechanics and field theo-
ries. The main new aspects in the more complex theories
are the presence of a classical turning surface, rather than a
turning point, and of renormalization effects. A natural first
step would be to generalize the probability density as a
function of particle coordinate x to a probability density in
the energy of field configurations on spatial slices; the
density at the turning point b should then be replaced by the
probability density at energy equal to that of the false
vacuum. This energy is shifted by quantum effects, as are
the model parameters in the usual way, and one could
attempt to account for renormalization effects by standard
lattice methods. Our analysis in Sec. II would need to be
extended to obtain the relationship between Γ and ρðEÞ
appropriate for field theories. We hope to address this
problem in future work.
Following the real-time evolution of metastable states is

also an important problem for the nascent field of quantum
simulations applied to high energy physics. It would be
interesting to explore hybrid classical-quantum techniques
utilizing the lattice methods developed here.
The most exciting application of lattice Monte Carlo

techniques to theories with metastable vacua is in cases
where a precise semiclassical formulation is not well-under-
stood. These include scalar theories where the false vacua are
not present in the classical potential, but are generated by
quantum effects, and gauge theories where long-lived false
vacua are believed to be generated by strong dynamics (e.g.
Yang-Mills at large N [17].) Our work is only a first step in
this direction, and both theoretical and computational devel-
opments are needed to perform accurate computations in all
of the theories of interest. It would be interesting to explore
application of themulticanonical method [18–22], which has
been developed to address critical slowing down in systems
with first-order phase transitions, to the case at hand with
exponentially slow quantum tunneling. In addition to the
theoretical aspects mentioned above, on the computational
side, smarter sampling such as creating ensembles using
machine learning techniques [23,24] might improve the
accuracy when the decay rates are very slow. However,
for the purpose of simply verifying the existence of meta-
stable states, straightforward lattice simulations may in fact
be quite effective.
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APPENDIX A: DECAY RATES FROM THE
GEL’FAND-YAGLOM METHOD

The NLO decay rate from the saddle point approxima-
tion is [1]

Γ ¼
�
S½xb�
2π

�
1=2

e−S½xb�Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½S00½xFV��
det0½S00½xb��

s
; ðA1Þ

where det0 means the zero eigenvalue is removed from the
determinant. The two differential operators are

S00½xFV� ¼ −
d2

dr2
þ V 00ðxFVðrÞÞ; ðA2Þ

S00½xb� ¼ −
d2

dr2
þ V 00ðxbðrÞÞ; ðA3Þ

where r≡ jtj is the distance in Euclidean time from the
center of the bounce.
It is more convenient to work with dimensionless

quantities. The decay rate is then

Γ ¼ m
ffiffiffi
β

p �
Sb
2π

�
1=2

e−βSbIm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½S00½x̄FV��
det0½S̄00½x̄b��

s
: ðA4Þ

The potential in the dimensionless form is

V̄ðx̄Þ ¼
� 1

2
x̄ − 1

2
x̄3 þ α

8
x̄4 x̄ < x̄TV

V̄TV x̄ ≥ x̄TV:
ðA5Þ

In the semiclassical limit, the flat region at x̄ ≥ x̄TV does not
affect the result, and we can instead use V̄ðx̄Þ ¼ 1

2
x̄ − 1

2
x̄3 þ

α
8
x̄4 for x̄ ∈ R. We denote

M≡ S̄00½x̄b� ¼ −
d2

dr̄2
þ 1þ Vðr̄Þ; ðA6Þ

Mfree ≡ S̄00½x̄FV� ¼ −
d2

dr̄2
þ 1; ðA7Þ

where r̄ ¼ jt̄j and

Vðr̄Þ≡
�
d2V̄
dx̄2

�����
x̄¼x̄bðr̄Þ

− 1: ðA8Þ
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These two differential operators are both parity-conserving,
so each operator has two superselection sectors: odd func-
tions of t̄ and even functions of t̄. The zero mode ofM is an
odd function. We can thus break up the operators into

M ¼ ModdMeven; ðA9Þ

Mfree ¼ Mfree
oddM

free
even; ðA10Þ

and compute the functional determinant ratios for each
sector.
All even modes have nonzero eigenvalues. From the

Gel’fand-Yaglom theorem,

detðMevenÞ
detðMfree

evenÞ
¼ ψ evenð∞Þ

ψ free
evenð∞Þ ¼ Revenð∞Þ; ðA11Þ

where ψ even and ψ free
even are regular solutions of

Mevenψ even ¼ 0; ðA12Þ

Mfree
evenψ

free
even ¼ 0; ðA13Þ

and

Revenðr̄Þ≡ ψ evenðr̄Þ
ψ free
evenðr̄Þ

: ðA14Þ

After some algebra, we obtain the equation for Reven,

R00
evenðr̄Þþ2 tanhðr̄ÞR0

evenðr̄Þ−Vðr̄ÞRevenðr̄Þ¼0; ðA15Þ

with the initial condition Revenð0Þ ¼ 1 and R0
evenð0Þ ¼ 0.

This is an ordinary differential equation that can be solved
numerically once the exact form of the potential is given.
Then we take the limit r̄ → ∞ to compute Revenð∞Þ.
We cannot use the same method to compute the

determinant ratio in the odd sector because of the zero
mode. Instead, we apply the collective coordinate method
to systematically remove the zero mode [13]. The result is

�
Sb
2π

�
1=2�det0ðModdÞ

detðMfree
oddÞ

�
−1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x∞x̄00bð0Þ

π

r
; ðA16Þ

where x̄∞ is defined by the asymptotic behavior of x̄b at
r → ∞,

x̄bðr̄Þ ≈ x̄∞e−r̄: ðA17Þ

Combining Eqs. (A4), (A14), and (A16) we obtain

Γ ¼ m
ffiffiffi
β

p
e−βSb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x∞x̄00bð0Þ

π

r
Im½Revenð∞Þ−1=2�; ðA18Þ

where Revenð∞Þ is negative.

APPENDIX B: SPECIFICATION OF SbV-CUT

In Sec. II C we introduced the quantity SbV defined on each
MC configuration and used two cuts on it (ensemble-
generation-level and postselection) to prevent sampling
problematic configurations that probe too close to the true
vacuum. The postselection cut was placed at theminimum of
the probability density of configurations as a function of SbV ,

pðSbVÞ ¼
���� d
dSbV

� R
SbV ½x�>SbV

Dxe−S½x�R
SbV ½x�>ðSbVÞmin Dxe−S½x�

�����: ðB1Þ

In this appendix we discuss the properties of pðSbVÞ in more
detail and give a physical model to explain the typical
finding SbV jminðpðSbVÞÞ ≈ −1=2.
The denominator in Eq. (B1) is independent of SbV and

serves as a normalization factor for the total probability
such that

R
0
ðSbVÞmin dSbVpðSbVÞ ¼ 1. We denoteZ

SbV ½x�>ðSbVÞmin
Dxe−S½x� ¼ N −1 ðB2Þ

for simplicity. We define the density of number of con-
figurations per SbV as

DðSbVÞ ¼ lim
ΔSbV→0

R
SbV<SbV ½x�<SbVþΔSbV

Dx

ΔSbV
; ðB3Þ

and the average value of e−S over configurations condi-
tional on SbV as

he−SiSbV ¼ lim
ΔSbV→0

R
SbV<SbV ½x�<SbVþΔSbV

Dxe−S½x�R
SbV<SbV ½x�<SbVþΔSbV

Dx
: ðB4Þ

Then the probability density of configurations per SbV can
be rewritten as

pðSbVÞ ¼ NDðSbVÞhe−SiSbV : ðB5Þ
Qualitatively speaking, DðSbVÞ is an increasing function
with DðSbV ¼ 0Þ ¼ ∞ because of the enormous number of
configurations with SbV ¼ 0. he−SiSbV may be a decreasing

function of SbV , especially when SbV is very low and
dominates the change in the total action S, so that
he−SiSbV ¼ e−S

b
V he−ðS−SbVÞiSbV ≈ constant × e−S

b
V . Because of

the opposite monotonicities of the two factors, pðSbVÞ may
have a minimum.
As is shown in Figs. 9(b) and 9(d), for relatively large

values of jSbV j, the total action approximately obeys
S ¼ SbV þ constant. This observation supports the expect-
ation described in the previous paragraph that he−SiSbV ≈
constant × e−S

b
V . We fit the curves over a range of SbV

chosen by hand to demonstrate the idea. The fit is not used
for computation of the final result of the decay rate.
Statistical errors from Monte Carlo are not considered in
the fit for simplicity.
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Further, with decreasing SbV , the total action S is
approximately decreasing. The negative mode with λ0 < 0
is the only mode that lowers the total action when going
away from the bounce solution. Therefore, in this region,
the change in c0 dominates the change in the total action
and also the change in SbV . Under this assumption, we have
SbV ≈ ðSbVÞ0 þ ð1=2Þλ0ðc0Þ2 and S ≈ constantþ SbV . ðSbVÞ0
is a point in the SbV-space from which S − SbV starts to
decrease with increasing SbV , i.e., no longer independent of
the value of SbV . Then,

DðSbVÞ ¼ lim
ΔSbV→0

R
SbV<S

b
V ½x�<SbVþΔSbV

Dx

ΔSbV

¼ lim
Δc0→0

R
c0<c0½x�<c0þΔc0 Dx

jλ0c0jΔc0
¼ constant ×

1

jλ0c0j
¼ constant ×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλ0ðSbV − ðSbVÞ0Þj

p ; ðB6Þ

where c0½x� is the negative mode coefficient of the
configuration xðtÞ, and

R
c0<c0½x�<c0þΔc0 Dx ¼ constant ×

Δc0. Combining these observations we obtain an approxi-
mate model for the probability density,

pðSbVÞ ¼ constant ×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðSbV − ðSbVÞ0Þ
p e−S

b
V : ðB7Þ

The minimum is

0 ¼ 1

pðSbVÞ
dpðSbVÞ
dSbV

¼ 1

DðSbVÞ
dDðSbVÞ
dSbV

þ 1

he−SiSbV
dhe−SiSbV
dSbV

¼ −
1

2ðSbV − ðSbVÞ0Þ
− 1 ðB8Þ

or

ðSbVÞmin ¼ ðSbVÞ0 − 1=2: ðB9Þ

Physically we expect ðSbVÞ0 to be small, and approximating
ðSbVÞ0 ≈ 0 gives the minimum ðSbVÞmin ¼ −1=2.

(a) (b)

(c) (d)

FIG. 9. (a),(b) α ¼ 0.9, β ¼ 8.0, (c),(d) α ¼ 0.7, β ¼ 9.0, both with SbV cut at −2.0, a ¼ 0.1 m−1, T ¼ 20.0 m−1. (a),(c) Densities
of configurations per SbV calculated from kernel density estimation. The overall normalization of pðSbVÞ is subject to the SbV cut.
Fits using Eq. (B7) are shown for comparison. (b),(d) Statistical dependence between SbV and the total action S calculated from
kernel regression (also by using the Epanechnikov kernel with suitable choice of the kernel width). Linear fits for both S and
S − SbV are shown for comparison. The linear coefficient for S − SbV in Fig. 9(d) is qualitatively close to 0. In Fig. 9(b), the linear
coefficient 0.88 is greater than 0, but this discrepancy is comparable to the generic statistical uncertainty at each point.
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Now let us compare with Monte Carlo. In Figs. 9(a) and
9(c), we examine results from two simulated potentials and
we fit the measured pðSbVÞ with a model similar to (but
slightly generalizing) Eq. (B7). The fit is not used for the
computations of the decay rate, only for the illustration of
the physics of the quantity SbV. There is some subjectivity in
choosing the fit range of SbV , because the lower end of the
MC result is affected by the cut on SbV , and the upper end of
SbV ≈ 0 is not expected to satisfy the conditions for the
above arguments. Statistical errors in the density of
configurations from Monte Carlo are not considered in
the fit for simplicity.
Our argument for the functional form of pðSbVÞ is not

meant to be precise. We see that the model fit is good, but
there are deviations from Eq. (B7). For example, the
coefficient in the exponent returned by the fits is not exactly
−1. The constant ðSbVÞ0, in the example of Fig. 9(b), is about
−0.1. The fit in Fig. 9(a) gives ðSbVÞ0 ≈ −0.085. Similar
inaccuracies in the model can also be seen in Figs. 9(c)
and 9(d). However, it suffices as a qualitative description,
and indeed we find in our numerical studies that the
stationary point of pðSbVÞ is generically in the range −1.0
to −0.1. The most important conclusion is that it is
reasonable to expect the probability density to have a
minimum, roughly somewhere in this range.
We now use semiclassical arguments to assert that the

effect of varying the cut on SbV , near the stationary point of
pðSbVÞ, results only in anOð1Þ uncertainty in the decay rate.
If we define the cut as ðSbVÞmin ¼ ðSbVÞ0 − 1=2, then
ð1=2Þjλ0jðcmax

0 Þ2 ¼ 1=2. Combined with the previously
discussed cut ð1=2Þjλ0jðcmin

0 Þ2 ¼ 1, the c0 integral in the
semiclassical computation is

Z
cmax
0

cmin
0

dc0e−
1
2
λ0c20 ¼

ffiffiffiffiffiffiffiffiffiffi
π

2jλ0j
r �

Erfi
� ffiffiffiffiffiffiffi

jλ0j
2

r
cmax
0

�

þ Erfi

� ffiffiffiffiffiffiffi
jλ0j
2

r
jcmin

0 j
��

¼
ffiffiffiffiffiffiffiffiffiffi
π

2jλ0j
r �

Erfi

�
1ffiffiffi
2

p
�
þ Erfið1Þ

�

¼ 1.30193
ffiffiffiffiffiffiffiffiffiffi
2

π

jλ0j
r

¼ 1.30193Im
Z

i∞

−i∞
dc0e−

1
2
λ0c20 ; ðB10Þ

which differs from the result from analytic continuation
only by an Oð1Þ factor.
To summarize, we propose to place a cut the configu-

rations at the value of SbV at the minimum of the sample
distribution pðSbVÞ. In practical Monte Carlo simulations, a
lower cut in SbV that contains the stationary point is needed
in ensemble generations in order to find the appropriate cut

in SbV . A relatively small ensemble may be enough for
giving a conservative estimation of where to cut. Then, a
postselection of configurations discards configurations
with SbV lower than the stationary point. Computation of
observables is then performed on the ensemble after
postselection.

APPENDIX C: DETAILS OF THE
MUMERICAL COMPUTATIONS

In this appendix we provide details of the MC ensembles
and the methods used to numerically analyze the MC data.

1. Parameters of the ensembles

Table I shows the parameters of the ensembles used in
Figs. 4–6.

2. Binning the postselected ensembles

After analyzing the distribution of configurations in SbV-
space we apply the postselection SbV-cut. The retained
configurations define the postselection ensemble on which
we measure observables. Since our original ensembles have
autocorrelation, the postselection ensemble is also auto-
correlated. With a bin size K, the effective number of
independent configurations is Ncf;post=K.
Considering small and large limits of the ratio

Ncf;post=Ncf can be used to justify binning the
Monte Carlo configurations in the postselected ensemble.
In the small limit, the ratio Ncf;post=Ncf → 0, and the
postselected configurations become essentially uncorre-
lated. In this case, binning is unnecessary. In the large
limit, the ratio Ncf;post=Ncf → 1, and the postselected
ensemble is similar to the original ensemble, where binning
is standard.
On our postselected ensembles, to determine the suitable

bin sizes K, we change K and calculate the statistical error
of ρ̂ on binned configurations (by using the mean value of ρ̂
over each bin). For ensembles in Table I, a generic suitable
choice of K turns out to be about 200, where the statistical
error starts to saturate. This bin size is used to obtain the
statistical errors shown in Figs. 4–6.

3. Numerical details of the constrained
ensemble reweighting

When applying the constrained ensemble reweighting
technique introduced in Sec. IV, we find that the relevant
quantities used in the calculation, such as the frequency of
the event x⋄ðtiÞ − Δx=2 < xðtiÞ < x⋄ðtiÞ þ Δx=2, are not
sensitive to the bin size K. In practice, we use K ¼ 5 as a
safer choice than K ¼ 1. To prevent the smoothing artifacts
due to taking the average of K configurations, for every K
configurations, we only use one configuration in the
calculation and skip the remaining K − 1 configurations.
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(a) (b)

FIG. 10. Distributions of original configurations with K ¼ 5, Δx ¼ 4.0m−1=2 and the kernel width h ¼ 1.0 in KDE using the
Epanechnikov kernel. (a) ensemble 1; (b) ensemble 2.

TABLE I. Parameters used in ensembles. Results for the MC estimate of Γ are given in the corresponding figures where they are
compared with three alternative computation methods: the leading-order semiclassical approximation, where the dimensionful prefactor
is estimated with dimensional analysis (DA), ΓDA ¼ me−Sb ; the NLO semiclassical approximation using the Gel’fand-Yaglom (GY)
method; and the solution of the time-dependent Schrödinger equation (TDSE) by exact diagonalization. Ncf is the number of
configurations. (Where ensembles from different figures have same parameters, the same ensemble is used.)

Figure a (units of m−1) NT SbV-cut α β Ncf Postselection SbV -cut Ncf;post

Figure 4 varying β 0.1 400 −2.0 0.9 4.0 19,999 −0.2879 1,864
0.1 400 −2.0 0.9 50 20,000 −0.3304 3,594
0.1 400 −1.0 0.9 6.0 20,000 −0.5010 15,259
0.1 400 −2.0 0.9 7.0 19,999 −0.5672 11,390
0.1 400 −2.0 0.9 8.0 20,000 −0.4966 16,487
0.1 400 −2.0 0.9 9.0 40,000 −0.6261 36,027
0.1 400 −2.5 0.9 10.0 59,999 −0.5293 55,697
0.1 400 −2.5 0.9 11.0 119,999 −0.6925 117,888

Figure 5 varying α 0.1 400 −2.0 0.6 9.0 40,000 −0.5385 27,819
0.1 400 −2.0 0.7 9.0 40,000 −0.5406 30,747
0.1 400 −2.0 0.8 9.0 40,000 −0.5473 32,544
0.1 400 −2.0 0.9 9.0 40,000 −0.6261 36,027
0.1 400 −2.0 0.95 9.0 40,000 −0.5473 37,811

Figure 6(a) varying SbV -cut 0.1 400 −3.0 0.9 8.0 9,999 −0.2408 3,688
0.1 400 −2.5 0.9 8.0 9,999 −0.6711 6,775
0.1 400 −2.0 0.9 8.0 20,000 −0.4966 16,487
0.1 400 −1.5 0.9 8.0 9,999 −0.4002 8,741

Figure 6(b) varying T 0.1 200 −2.0 0.9 8.0 20,000 −0.4669 15,620
0.1 400 −2.0 0.9 8.0 20,000 −0.4966 16,487
0.1 600 −2.0 0.9 8.0 20,000 −0.4527 11,840
0.1 800 −2.0 0.9 8.0 19,999 −0.5906 12,685
0.1 1000 −2.0 0.9 8.0 20,000 −0.4326 9,421

Figure 6(c) varying a 0.05 800 −2.0 0.9 8.0 20,000 −0.4170 15,043
0.1 400 −2.0 0.9 8.0 20,000 −0.4966 16,487
0.2 200 −2.0 0.9 8.0 20,000 −0.4993 15,842
0.4 100 −2.0 0.9 8.0 19,999 −0.4313 14,590
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We show the probability distribution of original configu-
rations in ensembles 1 and 2 in Fig. 10 withΔx ¼ 4.0m−1=2.
We find that pðS1Þ and pðS2Þ are peaked at much higher
values of S1 and S2 than the actions of the median smoothed
configurations (about 0.142 for ensemble 1 and about 62.082

for ensemble 2). As explained above this is to be expected due
to high-frequency fluctuations in the original configurations.
In calculation of Sec. IV,we use the statistics of S1 andS2 over
the distributions (also subject to the change in Δx) at variable
Δx and use them jointly to evaluate e−S½x⋄�þS½xFV� in Eq. (47).
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