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We address finite volume effects of lattice QCD calculations in background magnetic fields. Using chiral
perturbation theory at next-to-leading order, volume effects are calculated for thermodynamic quantities:
the chiral condensate, pressure anisotropy, and magnetization. The neutral pion effective action in a finite
volume is additionally derived. For these charge neutral observables, volume and source averaging are
shown to capitalize on magnetic periodicity, which is the remnant translational invariance of the finite-
volume theory. For a fixed magnetic field strength, certain volume and source averaged quantities are
independent of the size of the lattice transverse to the magnetic field. Despite this simplifying feature, finite
volume corrections to the magnetic field dependence of the chiral condensate and neutral pion magnetic
polarizability can be non-negligible. The pressure anisotropy at fixed magnetic flux, moreover, appears
acutely sensitive to the lattice volume in the chiral regime.
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I. INTRODUCTION

The study of QCD in background magnetic fields is
motivated in part by their phenomenological relevance.
Large magnetic fields are observed in astrophysical objects,
with surface magnetization of magnetars reaching nearly
1010 T [1] and larger fields conjectured for the interiors of
these neutron stars [2]. Additionally, noncentral heavy ion
collisions at RHIC and LHC produce immense currents that
can result in magnetic fields as large as 1016 T [3–6]. Fields
of similar magnitude may have been produced during the
electroweak phase transition after the Big Bang [7,8] and
influenced early cosmology of the Universe, in particular
the phase transition from a quark soup to a confined phase
of hadronic matter.
In sufficiently strong magnetic fields, one can argue

that the underlying QCD dynamics becomes weakly
coupled [9], with the zero temperature phase exhibiting
magnetic catalysis and anisotropic confinement [10]. For

an overview of many aspects of strongly interacting matter
in magnetic fields, see Refs. [11,12]; while, for a review of
the QCD phase diagram in an external magnetic field,
see Ref. [13]. Fortunately, nonperturbative quark and gluon
interactions can be studied in background magnetic fields
using first-principles lattice QCD calculations. Indeed,
there has been a wealth of calculations exploring the chiral
condensate, QCD thermodynamics, and the phase diagram
in magnetic fields, e.g., Refs. [14–30]. Additionally back-
ground fields are also of intrinsic interest to QCD, because
they provide a probe that allows for the investigation of
hadron structure and interactions. External magnetic fields
have been used in lattice QCD calculations to understand,
e.g., the masses and magnetic mixing of mesons [31–36].
Despite significant advances in lattice QCD calculations,
not all computations have been carried out at the physical
quark masses, nor extrapolated to the continuum and
infinite volume limits. In particular, the reduction of the
light quark mass to its physical value on a lattice of a fixed
size will lead to an increase in finite volume effects.
A particularly useful tool to systematically investigate

finite volume effects that arise in lattice QCD calculations
is chiral perturbation theory [37,38]. This low-energy
effective theory of QCD is formulated in terms of the
pattern of spontaneous and explicit breaking of chiral
symmetry, and incorporates interactions of the emergent
pseudo-Goldstone pions. As pions are the longest-range
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modes of QCD, their dynamics encode effects of the
finite volume through their boundary conditions [39].
Observables can be computed order-by-order in a power-
counting scheme that treats momentum p and the pion
mass mπ as small compared to the chiral symmetry
breaking scale 4πFπ . Additionally, one can include external
fields in the power counting, enabling the consideration of
large magnetic fields B satisfying

QB
m2

π
∼ 1; but with QB ≪ ð4πFπÞ2; ð1Þ

where Q > 0 is the charge of the pion. Model-independent
calculations of QCD properties in magnetic fields have
been carried out using chiral perturbation theory in infinite
volume [40–51].
In this work, we study finite volume effects on lattice

QCD observables in a homogeneous, background magnetic
field. The Landau levels of charged particles in magnetic
fields exhibit infinite degeneracy due to translational
invariance. When the volume is finite, however, only a
remnant of the continuous translational invariance remains.
We explore the consequences of this magnetic periodicity
on QCD observables using chiral perturbation theory,
in which the dominant corrections arise from finite volume
modifications to charged pion loops. Even for charge
neutral quantities, magnetic periodicity produces coordi-
nate dependence, e.g. the chiral condensate varies in the
plane transverse to the magnetic field, and the neutral pion
experiences a transverse coordinate-dependent potential.
Volume averaging (for bulk thermodynamic quantities) and
source averaging (for the neutral pion two-point function)
are shown to remove certain transverse area effects at a
fixed value of the magnetic field. Despite this simplifica-
tion, finite volume effects on the magnetic field dependence
of observables can be non-negligible. We find this to be the
case for the chiral condensate and neutral pion magnetic
polarizability. In the case of the pressure anisotropy at
fixed magnetic flux, moreover, we find a substantial finite
volume effect for the lowest flux quanta, even at mπL ¼ 4.
This is largely due to the smallness of the magnetization in
the chiral regime.
The presentation is organized as follows. In Sec. II, we

review magnetic periodic boundary conditions and obtain
the finite volume Green’s function of the charged pion,
which is required for the subsequent chiral perturbation
theory calculations. Finite volume effects on QCD thermo-
dynamics in a magnetic field are calculated at next-to-
leading order in Sec. III. We begin with the chiral
condensate, before taking up the free energy, magnetiza-
tion, and pressure anisotropy. In Sec. IV, we determine the
finite volume effective action for the neutral pion.
Consequences of the coordinate-dependent effective poten-
tial are discussed, and source averaging is shown to restore
momentum conservation between the source and sink.

Various technical details are collected in the Appendices.
In Appendix A, we provide formulas for image sums in
terms of elliptic-theta functions. Computation of covariant
derivatives of the coincident charged pion propagator is
given in Appendix B. The two-point function of the neutral
pion is obtained in Appendix C. Lastly, a summary of our
key results is given in Sec. V.

II. FINITE-VOLUME GREEN’S FUNCTION
IN A MAGNETIC FIELD

The finite-volume Green’s function of the charged pion
in a magnetic field is central to the chiral perturbation
theory calculations in subsequent sections. In this section,
the magnetic periodic boundary conditions required of the
Green’s function are first reviewed. Our treatment follows
the quantum mechanical finite-volume problem detailed
in Ref. [52]. The charged pion propagator is then explicitly
constructed using the method of magnetic periodic
images [53]. The coincident propagator (namely that from
a point back to itself) is shown to depend on coordinates
transverse to the magnetic field, but maintains the remnant
translational invariance of the finite-volume theory.

A. Boundary conditions

We work in Euclidean spacetime characterized by the
finite-size parameters Lμ ¼ ðβ; L1; L2; L3Þ, where L0 ¼ β
is the inverse temperature, and Lj are the spatial extents.
Throughout, the spatial volume is denoted by V ¼ L1L2L3.
A uniform magnetic field Bx̂3 can be obtained with the
gauge potential AμðxÞ ¼ AμðxÞ þ Bμ, where AμðxÞ ¼ ð0;
−Bx2; 0; 0Þ and Bμ ¼ ð0; θ1L1

; θ2L2
; 0Þ is a constant potential.1

On a torus, AμðxÞ is periodic up to a gauge transformation

Aμðxþ L2x̂2Þ ¼ AμðxÞ þ ∂μΛ2ðxÞ; ð2Þ

where Λ2ðxÞ ¼ −BL2x1. The constant gauge potential Bμ

can only be gauged away in infinite volume. Note that we
have set B0 ¼ B3 ¼ 0 for simplicity.
For a complex scalar field φ of charge Q (which we

identify with the charged pion starting in Sec. II B), we
write Dμφ ¼ ð∂μ þ iQAμÞφ. This derivative will be a
gauge covariant derivative provided the field transforms
as φ → e−iQΛφ under the gauge transformation Aμ →
Aμ þ ∂μΛ. A periodic φ field coupled to Aμ includes extra

1The Green’s function for a charged particle depends on the
gauge chosen for AμðxÞ. Observables computed in this work,
however, are all charge neutral. Thus, gauge dependence only
occurs at the intermediate stages of calculations, with the final
results ultimately gauge invariant. For example, the one-loop
corrections with tadpole topology involve the coincident charged
pion propagator. Such one-loop corrections are necessarily gauge
invariant; but, in addition to the magnetic field, Wilson lines that
wrap the compact dimensions are also gauge invariant quantities.
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effects due to the finite volume. These are best removed
from Aμ at the cost of modifying the boundary conditions
on the scalar field. The new field ϕðxÞ≡ e−iQBμxμφðxÞ
removes Bμ from the action, but leads to twisted boundary
conditions of the form ϕðxþ Lμx̂μÞ ¼ e−iQθμϕðxÞ, where
Einstein’s summation convention is suspended in writing
this and any subsequent boundary conditions. Addressing
the effect of nonperiodicity of the gauge potential, more-
over, requires a gauge transformation at the boundary; after
which, there is an additional factor

ϕðxþ Lμx̂μÞ ¼ e−iQθμe−iQΛμðxÞϕðxÞ; ð3Þ
leading to magnetic periodic boundary conditions with a
twist. It is best to write the phase acquired by wrapping the
torus as a Wilson line

W2ðx1Þ ¼ e−iQθ2e−iQΛ2ðxÞ ¼ e−iQðθ2−x1BL2Þ: ð4Þ
For convenience, we define another Wilson line,

W1ðx2Þ ¼ e−iQðθ1þx2BL1Þ; ð5Þ
for later use.
Consistency of the boundary conditions requires

quantization of the magnetic field [54]. On the one hand,
we can write

ϕðxþ L1x̂1 þ L2x̂2Þ ¼ e−iQθ1ϕðxþ L2x̂2Þ
¼ e−iQθ1W2ðx1ÞϕðxÞ; ð6Þ

while on the other, we see

ϕðxþ L1x̂1 þ L2x̂2Þ ¼ W2ðx1 þ L1Þϕðxþ L1x̂1Þ
¼ e−iQθ1W2ðx1 þ L1ÞϕðxÞ: ð7Þ

These are equivalent boundary conditions provided

e−iQL1L2B ¼ 1 → QB ¼ 2πNΦ

L1L2

: ð8Þ

The magnetic field strength is thus determined in terms
of the integer flux quantum NΦ. The flux quantum deter-
mines the size of the remnant translational invariance group,
which is ZNΦ

[52]. For n ∈ ZNΦ
, we see this invariance

manifested in the translational properties of the Wilson lines

W1

�
x2 þ

n
NΦ

L2

�
¼ W1ðx2Þ;

W2

�
x1 þ

n
NΦ

L1

�
¼ W2ðx1Þ: ð9Þ

This translational invariance is in addition to periodicity,
under which we have W1ðx2 þ nL2Þ ¼ W1ðx2Þ and
W2ðx1 þ nL1Þ ¼ W2ðx1Þ, for all n ∈ Z.

B. Charged pion propagator

Identifying the complex scalar field with the charged
pion ϕðxÞ ¼ πþðxÞ, the propagator for the charged scalar
takes the form

Gþðx0; xÞ ≡ h πþðx0Þπ−ðxÞ i; ð10Þ

where the angled brackets denote vacuum expectation
values. Adopting a quantum mechanical notation [55],
we have

Gþðx0; xÞ ¼ hx0j
1

−DμDμ þm2
jxi; ð11Þ

where the covariant derivative Dμ ¼ ∂μ − iQAμ acts on
the negatively charged pion, and m is the tree-level pion
mass. As such, the propagator obeys the Green’s function
equation

ð−DμDμ þm2ÞGþðx0; xÞ ¼
Y3
μ¼0

δLμ
ðx0μ − xμÞ; ð12Þ

where each Dirac delta function is that having compact
support xμ ∈ ½0; LμÞ, for each μ. The propagator can be
obtained with the help of the proper-time integral

Gþðx0; xÞ ¼
Z

∞

0

ds e−sm
2

Gkðx0k; xkjsÞG⊥ðx0⊥; x⊥jsÞ; ð13Þ

where ⊥ denotes the spatial directions transverse to the
magnetic field, and k denotes the Euclidean time direction
and the field direction. The latter directions give rise to a
contribution to the proper-time integral having the form

Gkðx0k; xkjsÞ≡ hx0kje∂
2
ksjxki ¼

1

4πs

X
νk

e−
Δx2k
4s ; ð14Þ

where Δxμ ¼ x0μ þ νμLμ − xμ, for each value of μ. The
sum over νk ¼ ðν0; ν3Þ includes all images in the x0- and
x3-directions, namely

P
νk ¼

P∞
ν0¼−∞

P∞
ν3¼−∞. As such,

Gkðx0k; xkjsÞ is periodic in both k-directions.
To complete the specification of the propagator, we

need the contribution to the proper-time integral from the
transverse directions

G⊥ðx0⊥; x⊥jsÞ≡ hx0⊥jeD2⊥sjx⊥i: ð15Þ

On account of Sec. II A, this contribution obeys magnetic
periodic boundary conditions with a twist:

G⊥ðx0⊥ þ L1x̂1; x⊥jsÞ ¼ e−iQθ1G⊥ðx0⊥; x⊥jsÞ;
G⊥ðx0⊥ þ L2x̂2; x⊥jsÞ ¼ W2ðx01ÞG⊥ðx0⊥; x⊥jsÞ; ð16Þ
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along with

G⊥ðx0⊥; x⊥ þ L1x̂1jsÞ ¼ eþiQθ1G⊥ðx0⊥; x⊥jsÞ;
G⊥ðx0⊥; x⊥ þ L2x̂2jsÞ ¼ W�2ðx1ÞG⊥ðx0⊥; x⊥jsÞ: ð17Þ

The transverse contribution to the propagator can be related
to its infinite-volume counterpart G∞⊥ through a sum over
images constructed to satisfy the boundary conditions
given in Eqs. (16) and (17). Writing ν⊥ ¼ ðν1; ν2Þ withP

ν⊥ ¼
P∞

ν1¼−∞
P∞

ν2¼−∞, the transverse contribution to the
propagator is

G⊥ðx0⊥; x⊥jsÞ ¼
X
ν⊥

eiQθ1ν1 ½W�2ðx01Þ�ν2

×G∞⊥ ðx0⊥ þ ν⊥L⊥; x⊥jsÞ; ð18Þ
where the infinite-volume propagator has the form

G∞⊥ ðx0⊥;x⊥jsÞ¼Wðx0⊥;x⊥Þe−
QBðx0⊥−x⊥Þ2
4 tanhQBs

QB
4π sinhQBs

: ð19Þ

The infinite-volume propagator is not translationally invari-
ant due to the factor Wðx0⊥; x⊥Þ. One way to write this
factor is as an inverse Wilson line2 evaluated on the
straight-line path from x⊥ to x0⊥, namely

Wðx0⊥; x⊥Þ ¼ e
−iQ

R
x0⊥
x⊥

dzμAμðzÞ

¼ e
iQB
2
ðx0

1
−x1Þðx02þx2Þ: ð20Þ

With the charged pion propagator fully specified, it is
straightforward to confirm that the solution Eq. (13) indeed
satisfies the Green’s function relation appearing in
Eq. (12) [53].

C. Coincident propagator

In the calculations that follow (the chiral condensate, free
energy, andderivative-free tadpole contributions to the neutral
pion effective action), the charged pion propagator from a
point back to itself is required. Due to the remnant transla-
tional invariance, such coincident contributions are not
coordinate independent. Instead, they depend on the trans-
verse coordinates, but maintain ZNΦ

translational invariance.
The charged pion propagator from a point xμ back to

itself is straightforward to evaluate using Eq. (13). Not
surprisingly, it can be expressed in terms of a sum over
images

Gþðx; xÞ ¼
X
νμ

fðν⊥; x⊥ÞgþðνμÞ; ð21Þ

where the coordinate dependence appears in the phase
function

fðν⊥; x⊥Þ ¼ ð−1ÞNΦν1ν2 ½W�1ðx2Þ�ν1 ½W�2ðx1Þ�ν2 . ð22Þ
Notice that each transverse image appearing in the
sum is accompanied by the corresponding Wilson lines
through the function fðν⊥; x⊥Þ, and maintains ZNΦ

trans-
lational invariance via Eq. (9). Each image, moreover,
has a sign determined by ð−1ÞNΦν1ν2, which can be
attributed to a finite volume Aharonov-Bohm effect [53].
The remaining image dependence appears under the
coordinate-independent, proper-time integral

gþðνμÞ ¼
Z

∞

0

ds
e− sm2

ð4πsÞ2
QBs

sinh QBs
e−

ðνkLkÞ2
4s −QBðν⊥L⊥Þ2

4 tanh QBs : ð23Þ

The proper-time integral for the term with νμ ¼
ð0; 0; 0; 0Þ≡ 0μ is divergent in the ultraviolet s ≪ 1,
however, this is the only term that survives the infinite-
volume limit. The ultraviolet behavior of the infinite-
volume integrand, moreover, is independent of the mag-
netic field. To regulate the divergence, we introduce a
proper-time cutoff s0 ≪ 1 into the offending term

gþð0μÞ≡
Z

∞

s0

ds
e−sm

2

ð4πsÞ2
QBs

sinh QBs
: ð24Þ

Accordingly, the one-loop calculations can be renormalized
by a magnetic field independent, infinite-volume subtrac-
tion of the form

gþð0μÞ → g∞þ ¼ lim
s0→0

�
gþð0μÞ −

Z
∞

s0

ds
e−sm

2

ð4πsÞ2
�
; ð25Þ

where the subtracted term arises from renormalizing the
magnetic field independent parameters of the infinite-
volume theory.3 The behavior with respect to the magnetic
field and finite volume is hence ultraviolet finite.

2The fact that an inverse Wilson line appears guarantees
translational and gauge invariance would be maintained by a
modified propagator that is defined to include the corresponding
Wilson line between the separated charged pion fields in Eq. (10).
Such a modified propagator, however, depends on the path
chosen for the Wilson line, with the equivalent paths known
for pointlike particles.

3It is instructive to write out the term introduced for the
subtraction. Removing the multiplicative factor of ð4πÞ−2, we haveZ

∞

s0

ds
e−sm

2

s2
¼ 1

s0
þm2½logðs0m2Þ þ γE − 1� þOðs0Þ:

The divergence is absorbed by a − 1
s0

counterterm that is pion
mass independent. The s0 dependence of the chiral logarithm is
compensated by the contribution from a low-energy constant.
Schematically, we write such a contribution to the above as
m2lðs0Þ. The low-energy constant then satisfies the renormaliza-
tion group equation s0 d

ds0
lðs0Þ ¼ −1 to keep the net result s0

independent. As our concern is with the magnetic field and finite
volume dependence of observables, we renormalize the chiral
corrections into the parameters, so that they take their physical
values in the combined zero-field and infinite-volume limit.
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The function g∞þ describes the magnetic field depend-
ence of the coincident propagator in the infinite-volume
limit. The proper-time cutoff can be removed s0 → 0,
leading to

g∞þ ¼
Z

∞

0

ds
e−sm

2

ð4πsÞ2
�

QBs
sinhQBs

− 1

�
≡ QB
ð4πÞ2 I

�
m2

QB

�
:

ð26Þ

The required Laplace transform IðαÞ is defined to be
dimensionless. It is related to the Hurwitz zeta-function,
and can be evaluated in terms of the digamma function [43]

IðαÞ ¼ αð1 − log α
2
Þ þ 2 logΓð1þα

2
Þ − log 2π: ð27Þ

With the infinite-volume limit removed, the coincident
propagator in Eq. (21) simply becomes

Gþðx; xÞ ¼
X
νμ≠0μ

fðν⊥; x⊥ÞgþðνμÞ; ð28Þ

and includes effects of finite volume, both with and without
the magnetic field. In what follows, the sum over images is
useful for analytic manipulations, however, a more eco-
nomical expression is needed for numerical evaluations.
For this purpose, the image sums can be expressed in terms
of Jacobi elliptic-theta functions, resulting in the formula

Gþðx; xÞ ¼
Z

∞

0

ds
e−sm

2

ð4πsÞ2
QBs

sinhQBs
½Θðx⊥jsÞ − 1�: ð29Þ

The expression for Θðx⊥jsÞ is somewhat lengthy and
appears in Appendix A. In infinite volume, we have the
limit Θðx⊥jsÞ → 1; and, this finite-volume effect appropri-
ately vanishes.
One-loop corrections in chiral perturbation theory also

arise from neutral pion contributions. While these contri-
butions do not produce magnetic field dependence at the
order we work, they lead to volume dependence, which we
discuss for completeness. The neutral pion propagator is
simply the charged pion propagator evaluated at Q ¼ 0.
Using the expression from above, we have the coincident,
neutral pion propagator

G0ð0; 0Þ≡G0ðx; xÞ ¼
X
νμ

g0ðνμÞ; ð30Þ

where the contribution from a periodic image νμ is

g0ðνμÞ ¼
Z

∞

0

ds
e−sm

2

ð4πsÞ2 e
− ðνμLμÞ

2

4s : ð31Þ

This result is translationally invariant, for which we employ
the notation G0ð0; 0Þ.

Using the infinite-volume renormalization scheme, one
has ḡ0ð0μÞ ¼ 0 and the sum over all νμ is replaced by a sum
over νμ ≠ 0μ, for which the infinite-volume limit accord-
ingly vanishes. The renormalized coincident propagator
G0ð0; 0Þ can be economically written in terms of Jacobi
elliptic-theta functions

G0ð0; 0Þ ¼
Z

∞

0

ds
e−sm

2

ð4πsÞ2 ½Θ0ðsÞ − 1�; ð32Þ

where Θ0ðsÞ is defined in Eq. (A7). The difference of
G0ð0; 0Þ compared to G0ð0; 0Þ amounts to the subtraction
of unity in the proper-time integral. This subtraction arises
due to the absence of νμ ¼ 0μ in the sum, and ensures that
the proper-time integral converges in the ultraviolet. In
infinite spacetime volume, Θ0ðsÞ ¼ 1 and G0ð0; 0Þ appro-
priately vanishes.

III. FINITE-VOLUME THERMODYNAMICS
IN A MAGNETIC FIELD

Having spelled out the charged pion propagator in a
magnetic field, finite-volume thermodynamic quantities can
be computed using chiral perturbation theory. Specifically,
we address the chiral condensate, free energy, magnetization
and pressure anisotropy. Although we can readily evaluate
their temperature dependence for temperatures that are small
compared to the chiral symmetry breaking scale, we show
results at zero temperature (β ¼ ∞) in what follows.

A. Chiral condensate

Due to the remnant translational invariance in a magnetic
field, the chiral condensate in finite volume is a local
quantity, which we denote by hψðxÞψðxÞi. It can be obtained
from the partition function Z by functional differentiation
with respect to a local scalar source SðxÞ,4 namely

hψðxÞψðxÞ i ¼ −
δ logZ
δSðxÞ : ð33Þ

When the source is replaced by a uniform value, such as the
quark mass SðxÞ → mq, partial differentiation produces the
volume averaged condensate

hψψ i ¼ −
1

βV
∂ logZ
∂mq

; ð34Þ

which can also be obtained by directly computing the
spacetime average of the local condensate

hψψ i ¼ 1

βV

Z
d4x hψðxÞψðxÞ i: ð35Þ

4We use an isoscalar source, because there is no isospin
breaking in the chiral condensate to the order we are working.
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In scenarios with translational invariance, the local and
average condensates are equal. In a magnetic field at finite
volume, however, they are no longer equal as hψðxÞψðxÞ i
depends on x⊥ due to the remnant ZNΦ

translational
invariance.
In chiral perturbation theory for two flavors [37], the

leading-order value and one-loop correction to the chiral
condensate arise from terms in the Euclidean action density

L ¼ Sλ

�
1 −

1

2F2
ðπ0Þ2 − 1

F2
πþπ−

�
; ð36Þ

where x dependence of the scalar source and pion fields is
treated as implicit. In the action density, F ≈ 92 MeV is the
chiral-limit value of the pion decay constant, and λ < 0 is
the chiral-limit value of the condensate. Taking the action
density with SðxÞ → mq, the Gell-Mann–Oakes–Renner
relation m2F2 ¼ −mqλ is found by inspection.
Using the action density, the local chiral condensate

can be determined at one-loop order from the neutral
and charged pion ring diagrams. The result has the
schematic form

hψðxÞψðxÞ i ¼ λ

�
1 −

G0ð0; 0Þ
2F2

−
Gþðx; xÞ

F2

�
; ð37Þ

which omits the renormalization and contributions from
low-energy constants. These can be handled with the zero-
field, infinite-volume renormalization scheme described in
Sec. II C. Denoting hψψi0 as the zero-field, infinite-volume
limit of the condensate, we thus have

hψðxÞψðxÞ i
hψψ i0

¼ 1 −
G0ð0; 0Þ
2F2

π
−
g∞þ þ Gþðx; xÞ

F2
π

: ð38Þ

To arrive at this expression the chiral-limit value of the pion
decay constant F has been replaced with its physical value
Fπ , as the difference is beyond the order we work. This is
similarly done in the propagators, where we replace the
leading-order pion mass m, with its physical value mπ . In
the zero-field limit, g∞þ vanishes; whereas, in the infinite-
volume limit, the barred coincident propagators vanish.
Accordingly, we have hψðxÞψðxÞ i=hψψ i0 → 1 in the
combined zero-field and infinite-volume limits. In the
zero-field limit at fixed volume, the expression for
hψðxÞψðxÞ i in Eq. (38) reproduces the p-regime finite
volume effect on the condensate [39]; whereas, in the
infinite-volume limit at non-zero field, it reproduces the
leading magnetic field dependence of the condensate [43].
Our primary concern is with the finite volume effect

in nonzero magnetic fields. To this end, we subtract the
infinite-volume limit at nonzero field, namely

hψψ i∞ ¼ hψψ i0ð1 − g∞þ =F2
πÞ; ð39Þ

and form the condensate ratio

Rðx⊥Þ ¼
hψðxÞψðxÞ i − hψψ i∞

hψψ i0
: ð40Þ

In terms of coincident propagators of neutral and charged
pions, we have

Rðx⊥Þ ¼ −
1

F2
π

�
1

2
G0ð0; 0Þ þGþðx; xÞ

�
: ð41Þ

Using Eqs. (29) and (32) for the coincident propagators,
the finite volume effect can be expressed as a proper-time
integral

Rðx⊥Þ ¼ −
Z

∞

0

ds
ð4πsFπÞ2

e−sm
2
π

�
1

2
ðΘ0ðsÞ − 1Þ

þ QBs
sinhQBs

ðΘðx⊥jsÞ − 1Þ
�
: ð42Þ

For nonzero values of the magnetic field, the finite
volume effect Rðx⊥Þ is coordinate dependent, which is
depicted in Fig. 1 for a cubic volume V ¼ L3. Generally the
local chiral condensate has oscillatory behavior. In asymp-
totically large volumes,5 these oscillations are exponen-
tially suppressed. This suppression can be exhibited
analytically by retaining the first image corrections, namely
those that satisfy jν⃗j ¼ 1. In a cubic volume, the leading
asymptotic behavior of Eq. (42) takes the form

Rðx⊥Þ ¼ −
�
5

2
þ cos

�
2πNΦ

x1
L

�
þ cos

�
2πNΦ

x2
L

��

×
m2

π

F2
π

e−mπL

ð2πmπLÞ3=2
þ � � � ; ð43Þ

where, for simplicity, we have taken vanishing twist angles.
The large-volume limit, furthermore, is taken above as
mπL ≫ 1 but with NΦ held fixed, for which QB=m2

π ≪ 1.
Oscillations of the local condensate are completely an

artifact of the finite volume. In lattice QCD calculations,
moreover, the local chiral condensate is rarely obtained,
because it is statistically noisy. Instead, a volume average
greatly improves the signal. Volume averaging the result
from chiral perturbation theory has the effect of removing
the oscillatory terms. This can already be anticipated from
the simple oscillations exhibited in the asymptotic formula.
When one averages Eq. (43) over the transverse plane,
a factor of −5=2 is produced, while the zero-field limit
of Rðx⊥Þ produces a factor of −9=2. Transverse averaging
consequently reduces the volume effect by a factor of 5=9
compared to the case of vanishing magnetic field.

5Technically only asymptotically large areas A⊥ ¼ L1L2

transverse to the magnetic field are required.
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In the general case of Eq. (38), averaging over the
transverse plane projects onto the sector of zero winding
numbers

1

L1

Z
L1

0

dx1½W�2ðx1Þ�ν1 ¼ δν1;0;

1

L2

Z
L2

0

dx2½W�1ðx2Þ�ν2 ¼ δν2;0: ð44Þ

With ν⊥ ¼ ð0; 0Þ, the effect of the finite transverse area
A⊥ ¼ L1L2 enters only through the magnetic field quan-
tization condition, and not from transverse images. Due to
the remnant ZNΦ

translational invariance, volume averag-
ing the charged pion ring diagram thus has the effect of
sending A⊥ → ∞ with QB held fixed.
The finite volume effect on the volume averaged con-

densate hψψ i can be obtained simply by performing the
spacetime average. Using the ratio Rðx⊥Þ in Eq. (40),
we denote the result of volume averaging by

hR i ¼ 1

βV

Z
d4xRðx⊥Þ: ð45Þ

Carrying out the spacetime integral of the one-loop result
Eq. (42) using Eq. (44), we obtain

hR i ¼ −
Z

∞

0

ds
ð4πsFπÞ2

e−sm
2
π

�
1

2
ðΘ0ðsÞ − 1Þ

þ QBs
sinhQBs

ðϑ3ð0; e−
L2
3
4s Þ − 1Þ

�
: ð46Þ

Notice that compared to Eq. (42), there are now only
magnetic field dependent images from the x̂3 direction;
this is the A⊥ → ∞ limit of the charged pion contribution
with QB fixed.6

The size of hR i is generally quite small, which means
that the finite volume corrections in a magnetic field are
quite small compared to h ψ̄ψ i0. A more apt comparison,
however, is made by forming the ratio of differences

ΔhR i
ΔR∞ ¼

hR i − hR ijB¼0
R∞ − R∞jB¼0

; ð47Þ

FIG. 1. Contour plots of the finite volume correction to the
chiral condensate. Heat maps of Rðx⊥Þ in Eq. (43) are plotted as a
function of x⊥, withmπL ¼ 3 and vanishing twist angles θ⊥ ¼ 0.
Flux quanta NΦ ¼ 1, 2, and 3 are displayed and exhibit single,
double, and triple periodicity, respectively.

6As our wording indicates throughout, the nature of these
limits in finite volume can be delicate. To isolate the magnetic
field dependence of the finite volume effect, for example, one
might subtract the zero-field limit. The naïve limit, however, does
not commute with spacetime averaging

hR ijB¼0 ≠
1

βV

Z
d4xRðx⊥ÞjB¼0:

A continuous zero-field limit is only obtained with a concomitant
infinite transverse-area limit due to magnetic flux quantization.
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where R∞ ≡ hψψ i∞=h ψ̄ψ i0. The ratio in Eq. (47) com-
pares the magnetic field dependence of the finite volume
effect with the corresponding infinite-volume field depend-
ence. The latter is magnetic catalysis of chiral symmetry
breaking from chiral perturbation theory [43]. In Fig. 2,
we plot the ratio of condensate differences for the case of a
cubic volume V ¼ L3. The plot shows smaller finite-size
effects for larger flux quanta. On a fixed-sized lattice,
increasing the flux quantum produces Landau levels with
smaller average radii, which are naturally less sensitive to
volume effects. Additionally, the finite volume effect is
shown to further catalyze chiral symmetry breaking. This is
unlike finite-volume melting of the chiral condensate in a
vanishing magnetic field [56]. Decreasing mπL at fixed
flux quantum, however, corresponds to increasing the
magnetic field. At sufficiently small mπL, the magnetic
fields become nonperturbative QB=ð4πFπÞ2 > 1. Small-
volume results in zero and nonzero magnetic flux are not
continuously connected.
The asymptotic-volume limit of the ratio of condensate

differences in Eq. (47) can be taken. Carrying out the
mπL ≫ 1 limit in a cubic volume at fixed NΦ, we find the
flux-independent behavior

ΔhR i
ΔR∞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmπL

p
e−mπL

×

�
1þO

�
1

mπL

�
þO

�
N2

Φ
ðmπLÞ2

�
þOðe−mπLÞ

�
;

ð48Þ

where, in addition to the leading power-law and exponential
corrections, the size of the leading flux-dependent correction
has been indicated. Figure 2 confirms the NΦ-independent

asymptotic behavior of the finite volume effect. Agreement
is best for the smallest flux quantum, which is consistent
with the scaling of flux-dependent corrections. For NΦ ¼ 1,
the asymptotic formula is seen to work remarkably well
already at moderately large volumesmπL ¼ 2.5. Subleading
power-law corrections to the leading exponential behavior,
however, are proportional to ðmπLÞ−1 and spoil the other-
wise fortuitous agreement in moderate volumes.

B. Free energy

The free energy density F is related to the thermody-
namic partition function through the relation

F ¼ −
1

βV
logZ: ð49Þ

In chiral perturbation theory, the free energy density of
pions can be obtained from Eq. (34) through the relation

∂F
∂m2
¼ F2

hψψ i
hψψ i0

; ð50Þ

where m2 is the tree-level pion mass, and the Gell-Mann–
Oakes–Renner relation has been applied. In what follows,
we focus on the magnetic free energy density, which we
define as

FB ¼ F − F jB¼0 −
1

2
B2: ð51Þ

The subtraction of 1
2
B2 removes the pure gauge contribu-

tion from the free energy density, so that FB is exclusively
the matter contribution.
Integrating the regularized expression for the charged

pion contribution to the condensate hψ̄ψi leads to the free
energy density FB up to an integration constant. The result,
however, requires renormalization. As in Sec. II C, only
the νμ ¼ 0μ term is divergent, and this term is the infinite-
volume limit. Hence, we make the further separation

FB ¼ F∞
B þ F FV

B ; ð52Þ

in order to isolate the divergent term F∞
B in the sum over

images. From Eq. (50), it has the form

F∞
B ¼ −

Z
dm2ðgþð0μÞ − gþð0μÞjB¼0Þ þ cBðs0Þ; ð53Þ

where gþð0μÞ appears in Eq. (24), and cBðs0Þ is indepen-
dent of m2. Even after subtraction of the B ¼ 0 limit, the
OðB2Þ term in F∞

B logarithmically diverges as s0 → 0. In
this case, one requires a magnetic field-dependent counter-
term from the chiral Lagrangian cB ∝ B2, which, due to its
independence from pion fields, is called a high-energy
constant in the language of [37]. The renormalization

FIG. 2. Magnetic field dependence of the finite volume effect
on the chiral condensate. The ratio of condensate differences in
Eq. (47) is plotted as a function of mπL for different flux quanta
NΦ. The leading behavior in asymptotically large volumes
Eq. (48) is shown as a dashed curve, and is independent of
NΦ. The effect of finite volume is to further catalyze chiral
symmetry breaking, but decreases with increasing flux quantum.
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condition on theOðB2Þ term of the free energy densityF is
chosen to preserve the classical value 1

2
B2, which ensures

that the magnetic field strength is not renormalized from
matter fields [55]. After renormalization, the infinite
volume contribution to the magnetic free energy density
is thus

F∞
B ¼

Z
∞

0

ds
ð4πÞ2s3e

−sm2
π

�
QBs

sinhQBs
−1þðQBsÞ2

6

�
: ð54Þ

The finite volume contribution, by contrast, requires no
renormalization, and is given by

F FV
B ¼

Z
∞

0

ds
ð4πÞ2s3 e

−sm2
π

�
QBs

sinhQBs
− 1

�
½ϑ3ð0; e−

L2
3
4s Þ − 1�:

ð55Þ

In Eqs. (54) and (55), we have replaced the tree-level pion
mass m with the physical pion mass mπ , because the
difference is higher order. Notice that the finite volume
effect involves only images in the longitudinal direction.
This is the A⊥ → ∞ limit with QB fixed that we encounter
above for the chiral condensate. The free energy is a
spacetime average, rather than a local distribution.

C. Magnetic pressure anisotropy and magnetization

The addition of a magnetic field breaks the isotropy of
space, which canmanifest itself in thermodynamic quantities.
Allowing for such anisotropy, the matter contribution to the
magnetic pressure in the ith direction can be defined as [57]

pi ¼ −
Li

V

�
∂FB

∂Li

�
Lj;B

; ð56Þ

where j ≠ i andFB is the free energy, namelyFB ¼ VFB. In
this definition, themagnetic field is held fixed.Due to the field
quantization condition on a torus, however, lattice practi-
tioners cannot generally vary the size of a transverse direction
while keeping the magnetic field fixed. In lattice QCD
calculations, a more accessible definition of the magnetic
pressure is [18]

p̃i ¼ −
Li

V

�
∂FB

∂Li

�
Lj;NΦ

; ð57Þ

which is defined at fixed magnetic flux. In the longitudinal
direction, these two definitions of pressure are identical

p̃3 ¼ p3 ¼ −FB − L3

∂FB

∂L3

: ð58Þ

Due to magnetic flux quantization, however, the magnetic
pressure in the transverse directions differs between the two
definitions

p̃⊥ − p⊥ ¼ B

�
∂FB

∂B

�
V
≡ −BMr; ð59Þ

where we have identified the renormalized magnetization
Mr, given by

Mr ¼ −
�
∂FB

∂B

�
V
: ð60Þ

The renormalizedmagnetization is a measure of themagnetic
response of theQCD vacuum [9,58]. Note that by subtracting
the gauge contribution to the free energy density FB in
Eq. (51),Mr depends only on the matter contribution to the
free energy density.
To access the renormalized magnetization in lattice

QCD calculations, one can measure the magnetic pressure
anisotropy [18]

Δp̃≡ p̃⊥ − p̃3: ð61Þ

Using Eqs. (57) and (60), we arrive at the expression for the
matter contribution to the pressure anisotropy

Δp̃ ¼ −BMr þ L3

∂FB

∂L3

: ð62Þ

The second term in the pressure anisotropy is solely an
artifact of the finite size of the longitudinal direction.
Taking L3 → ∞ with QB held fixed, we have

Δp̃∞ ¼ −BM∞
r ; ð63Þ

where the infinite-volume limit of the magnetization M∞
r

arises from the infinite-volume limit of the free energy
density M∞

r ¼ −ð∂F∞
B =∂BÞV.

In Fig. 3, we investigate the finite volume correction
to the magnetic pressure anisotropy for a cubic volume
V ¼ L3. The ratio RðΔp̃Þ of the finite volume effect
compared to the infinite volume anisotropy

RðΔp̃Þ ¼ Δp̃ − Δp̃∞

Δp̃∞ ; ð64Þ

is plotted as a function of mπL for the lowest values of
the flux quantum NΦ. The finite volume effect generally
decreases with increasing flux quantum. This is sensible as
larger magnetic fields on a fixed-sized lattice lead to
Landau levels of smaller average radii, which are naturally
less sensitive to the finite volume. The effect of the finite
volume, however, is shown to be substantial in the figure.
Access to the magnetization in lattice QCD calculations via
the pressure anisotropy relies on flux quantization in finite
volume, which makes it susceptible to potentially sizeable
finite-volume effects. This we can anticipate in chiral
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perturbation theory, because both the infinite-volume and
finite-volume results are loop effects of the same order.
Additionally shown in the figure is that a vanishing finite

volume effect in the asymptotic limit mπL → ∞ is very
slowly obtained. This limit does not correspond to a fixed
magnetic field. Instead, the magnetic field strength
decreases with increasing mπL. The renormalized mag-
netization M∞

r is itself small when the field is small,
namely M∞

r ∝ B3. Combined with the asymptotic expan-
sion of the integrand of Eq. (64), we obtain the large-
volume behavior

RðΔp̃Þ ¼ 30

7ð2πÞ3=2N2
Φ
ðmπLÞ9=2e−mπL

×

�
1þO

�
1

mπL

�
þOðe−mπLÞ

�
; ð65Þ

taken at fixed NΦ. This leading exponential behavior arises
exclusively from L3ð∂F FV

B =∂L3ÞB, with contributions from
Bð∂F FV

B =∂BÞV suppressed by a relative factor of ðmπLÞ−1.
Figure 3 confirms that this asymptotic behavior does not
set in until rather large values of mπL. Away from the
asymptotic limit, large finite volume effects persist. For
NΦ ¼ 1, however, the magnetization is still relatively small
and well described by its small-field behavior M∞

r ∝ B3,
down to mπL ∼ 3. The most pernicious volume effects
shown are thus largely due to the smallness of the
magnetization. The largest magnetic field shown corre-
sponds to the smallest volume, which in all figures is
mπL ¼ 2.5. This volume was chosen so that numerically
QB ≈ NΦm2

π . The trend shown in Fig. 3 suggests that finite

volume effects will diminish in magnetic fields relevant
for heavy ion collisions, for which QB≳ 10m2

π and the
magnetization is considerably larger. Such field strengths,
however, are beyond the reach of chiral perturbation theory.

IV. NEUTRAL PION EFFECTIVE ACTION

Beyond thermodynamic quantities, hadron energies and
interactions are modified in background fields. The sim-
plest hadron to consider is the neutral pion, which feels the
effect of the magnetic field through virtual charged pion
fluctuations. The effective action for the neutral pion in a
magnetic field is determined at one-loop order in the chiral
expansion in Sec. IVA. In finite volume, the effective
action for a neutral particle has explicit coordinate depend-
ence due to the remnant ZNΦ

translational invariance.7 The
effective action obtained is then utilized in Sec. IV B to
compute the two-point correlation function of the neutral
pion. While the general result is quite complicated, aver-
aging over the source location leads to dramatic simplifi-
cations due to charge neutrality.

A. Computation of the effective action

1. One-loop computation

At next-to-leading order, the four pion terms of the
Euclidean action density in two-flavor chiral perturbation
theory are [37]

L ¼ −
m2

24F2
ðπ0Þ4 − m2

6F2
πþπ−ðπ0Þ2 − 1

3F2
πþπ−ð∂μπ0Þ2

−
1

3F2
Dμπ

þDμπ
−ðπ0Þ2 þ 1

3F2
∂μðπþπ−Þπ0∂μπ0:

ð66Þ

These terms produce a perturbative correction to the neutral
pion propagator G0ðx0; xÞ of the form

δG0ðx0; xÞ ¼
Z
y
G0ðx0; yÞOðyÞG0ðy; xÞ; ð67Þ

where we use
R
y as an abbreviation for the integral

R
d4y

over finite spacetime. From Eq. (66), the coordinate-space
operator OðyÞ arising from the one-loop tadpole diagrams
has the form

OðyÞ ¼ ∂μ
 
V1ðyÞ∂μ!− V2ðyÞ −

1

2
∂μ
 ½∂μV1ðyÞ�

−
1

2
½∂μV1ðyÞ�∂μ!; ð68Þ

FIG. 3. Finite volume effect on the magnetic pressure
anisotropy. Plotted as a function of mπL is the ratio RðΔp̃Þ in
Eq. (64) of the finite volume effect on the magnetic pressure
anisotropy Δp̃ compared to its infinite volume value. Results are
plotted for the lowest three flux quanta, with the corresponding
large-volume behavior Eq. (65) shown as dashed curves. Finite
volume effects persist to large values of mπL, but these
correspond to small values of the magnetic field, where the
renormalized magnetization M∞

r is itself small.

7An analogous result was obtained earlier for the case of the
neutron effective action calculated using heavy baryon chiral
perturbation theory [53].
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where the partial derivatives are all taken with respect to y.
In writing this perturbative correction, we have defined

V1ðyÞ ¼
2

3F2
Gþðy; yÞ;

V2ðyÞ ¼ −
m2

2F2
G0ð0; 0Þ þ

m2

2
V1ðyÞ −

1

2
½∂2μV1ðyÞ�: ð69Þ

The neutral pion propagator is translationally invariant;
and, we have accordingly written G0ðy; yÞ ¼ G0ð0; 0Þ, as
in Sec. II C. There is a term contributing to V2ðyÞ that
contains two covariant derivatives of the charged pion
propagator, and this has been simplified using the relation
in Eq. (B3).
To further simplifyOðyÞ, it is efficacious to write the first

term in Eq. (68) as half the sum of two terms, where each
term is the result of one of the two possible integrations
by parts. The boundary terms produced vanish due to
periodicity.8 Carrying out integration by parts symmetri-
cally thus enables the replacement

∂μ
 
V1ðyÞ∂μ!¼ −

1

2
ð∂μ V1ðyÞ∂μ þ ∂μ

!
V1ðyÞ∂μ!Þ: ð70Þ

With this replacement made, the coordinate-space operator
OðyÞ in Eq. (68) subsequently becomes

OðyÞ ¼ −
1

2
ð∂μ ∂μ
 

V1ðyÞ þ V1ðyÞ∂μ! ∂μ
!Þ − V2ðyÞ

− ∂μ
 ½∂μV1ðyÞ� − ½∂μV1ðyÞ�∂μ!: ð71Þ

The first two terms above will permit simplification in
Eq. (67) using the Green’s function relation for the neutral
pion. The last two terms above simplify when one of them
is integrated by parts, with the boundary contribution again
vanishing due to periodicity. The net result of these
manipulations is the simplified form

OðyÞ ¼ ð−∂μ ∂μ
 þm2Þ 1

2
V1ðyÞ

þ 1

2
V1ðyÞð−∂μ! ∂μ

!þm2Þ − VðyÞ; ð72Þ

where

VðyÞ ¼ m2V1ðyÞ þ V2ðyÞ − ∂
2
μV1ðyÞ: ð73Þ

The coordinate-space operator OðyÞ can be viewed as
the action of an abstract operator O in coordinate space,
namely jyiOðyÞhyj ¼ Ojyihyj. Written in this way, the
Green’s function itself is an operator. We denote the free
Green’s function operator as G0, and the full Green’s
function operator as G0. Including the perturbative correc-
tion in Eq. (67) with O from Eq. (72), the Green’s function
operator G0 is thus of the form

G0 ¼ G0 þ
1

2
ðV1G0 þ G0V1Þ −G0VG0: ð74Þ

The effective action is the inverse of the operator G0, which
at next-to-leading order accuracy is given by

G−1
0 ¼

�
1 −

1

2
V1

�
G−1

0

�
1 −

1

2
V1

�
þ V þ � � � : ð75Þ

Wave function renormalization can be accomplished by
employing the coordinate-dependent field redefinition

π0 → π̃0 ¼
�
1þ 1

2
V1

�
π0: ð76Þ

After this field redefinition, we arrive at a neutral pion
effective action with the canonical normalization

G̃−1
0 ¼ G−1

0 þ V þ � � � ; ð77Þ

where V in Eq. (73) is now identified as the effective
potential. It is given in coordinate space in terms of
coincident propagators as

VðyÞ ¼ m2

F2

�
Gþðy; yÞ −

1

2
G0ð0; 0Þ

�
−

1

F2
∂
2
μGþðy; yÞ:

ð78Þ

For ease of notation, the tilde will subsequently be dropped
from the redefined neutral pion field.

2. Renormalization

The expressions written above have an ultraviolet
divergence in V that is regulated by a proper-time cutoff
s0 ≪ 1. As in Sec. II C, the divergence is independent of
both the magnetic field and the volume, and is canceled by
inclusion of the appropriate counterterms from the chiral
Lagrangian. A further effect of such counterterms is a shift
of the mass-squared appearing in G−1

0 . After the divergence
is canceled, one can renormalize the tree-level mass m to
the physical pion mass mπ , i.e. the mass in the zero-field
and infinite-volume limit. There is no remaining s0
dependence in this renormalization scheme.
To focus specifically on finite volume effects, we arrange

the terms of the effective action by adding and subtracting
the infinite-volume limit in nonzero magnetic fields. To this

8After integration by parts on the variable yμ, the two boundary
terms produced are G0ðx0; yÞGþðy; yÞ∂μG0ðy; xÞjyμ¼Lμ

yμ¼0 and

∂μG0ðx0; yÞGþðy; yÞG0ðy; xÞjyμ¼Lμ

yμ¼0 , up to constants of proportion-
ality. Both of these terms vanish, which is due to periodicity of the
neutral pion propagator, and periodicity of Gþðy; yÞ. The latter
owes to Eq. (22) and the periodicity of the Wilson lines in Eq. (9),
i.e., they are also invariant for n ¼ NΦ ∉ ZNΦ

.
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end, the renormalized neutral pion effective action is
written as

Leff ¼
1

2
ð∂μπ0Þ2 þ

1

2
ðE2 þ VÞðπ0Þ2: ð79Þ

The neutral pion energy E is defined from the relation

E2 ¼ m2
π

�
1þ QB
ð4πFπÞ2

I
�
m2

π

QB

��
; ð80Þ

where the magnetic field dependence arises through the
function IðαÞ given in Eq. (27). This infinite-volume result
was obtained using chiral perturbation theory in Ref. [45].
The remaining contribution to the effective action appear-

ing in Eq. (79) is the effective potential V ¼ Vðy⊥Þ. This is
defined to be solely a finite volume effect,9 for which
we have

Vðy⊥Þ ¼
m2

π

F2
π

�
Gþðy; yÞ −

1

2
G0ð0; 0Þ

�
−
∂
2
μGþðy; yÞ

F2
π

: ð81Þ

Note that the contribution to the effective potential from
∂
2
μGþðy; yÞ, which is given in Eq. (B4), automatically
vanishes in infinite volume, and additionally vanishes in
zero magnetic field.

B. Two-point function computation

The coordinate dependence of the effective potential
Eq. (81) leads to complicated behavior for the two-point
correlation function of the neutral pion. We compute this
behavior generally, but show that source location averaging
produces dramatic simplifications due to charge neutrality.
The finite-volume correction to the neutral pion energy is
straightforwardly identified after source location averaging.
Using the renormalized effective action in Eq. (79) to

compute the two-point function, we arrive at

G0ðx0; xÞ ¼ eG0ðx0; xÞ −
Z
y

eG0ðx0; yÞVðy⊥ÞeG0ðy; xÞ; ð82Þ

where the effective potential has been treated perturba-
tively. At zero temperature, the free neutral pion propagator
has become

eG0ðx0; xÞ ¼
Z

∞

−∞

dp0

2π

X
p⃗

eipμðx0−xÞμ

pμpμ þ E2
; ð83Þ

where the sum runs over periodic momentum modes. Our
convention is that

P
p⃗ ≡ 1

V

P
n⃗, where pi ¼ 2π

Li
ni and each

mode number ni ∈ Z. The tilde reflects thatG0 differs fromeG0 by the replacement m2 → E2.
In a typical lattice QCD calculation of the spectrum, one

performs a projection onto zero spatial momentum at the
sink x0. With infinite temporal extent, the zero-momentum
projected two-point correlation function is defined by

C0ðt; x⊥Þ ¼
Z
x⃗0
G0ðx0; xÞ; ð84Þ

where t > 0 denotes the Euclidean time separation,
t≡ x00 − x0. The correlation function retains dependence
on the transverse location of the source x⊥, as the notation
indicates. Using Eq. (82) to obtain the zero momentum
projected two-point function, it can be written in the form

C0ðt; x⊥Þ ¼
e−ðEþΔEÞt

2ðEþ ΔEÞ ½1þR⊥ðt; x⊥; θ⊥Þ�; ð85Þ

where the t dependence of the function R⊥ modifies the
simple exponential falloff. In addition to the transverse
location of the source, the functionR⊥ also depends on the
twist angles θ⊥. The detailed derivation of R⊥ðt; x⊥; θ⊥Þ
and the energy shift ΔE is given in Appendix C.

1. Behavior of the correlation function

To investigate the modification of the two-point
function C0ðt; x⊥Þ in Eq. (85), we consider the scenario
of vanishing uniform gauge potential θ⊥ ¼ 0, with the
source location chosen to be coincident with the gauge
origin x⊥ ¼ 0. In this scenario, the modification function
becomes R⊥ðt; 0; 0Þ, but this is not much simpler than the
general form given in Eq. (C4). To illustrate the compli-
cations analytically, we focus specifically on contributions
from images with jν⃗⊥j ¼ 1, which produce the dominate
finite volume effect near the infinite-volume limit.10 To
further simplify, we take a cubic volume V ¼ L3.
In the function R⊥ðt; 0; 0Þ, momentum is not conserved

between the source and sink. For all four images with
jν⃗⊥j ¼ 1, the contributions are from source momenta of
magnitude p≡ 2π

L NΦ. From such images, we have the
contribution to R⊥ðt; 0; 0Þ of the form

Rð1Þ⊥ ðtÞ ¼ 4

�
1þm2

π

p2

��
mπ

Ep
eðmπ−EpÞt − 1

�
gþðjν⊥j ¼ 1Þ

F2
π

;

ð86Þ

9As such, the volume effect includes that in a vanishing
magnetic field. Setting Q ¼ 0, we obtain VjQ¼0 ¼ Δm2

π , which
is the p-regime finite volume effect on the pion mass squared [39].
Taking the magnetic field to vanish, we obtain VjB¼0 ¼
Δm2

π0
ðQθ⃗⊥Þ, where Δm2

π0
ðϑ⃗Þ is the finite volume effect on the

neutral pion mass squared in the presence of isospin twisted
boundary conditions [59], where the twist angles are identified as
ϑ⃗ ¼ Qθ⃗⊥.

10Images with jν⃗j ¼ 1 give the dominant finite volume effects;
however, those with jν3j ¼ 1 and ν⊥ ¼ 0 are excluded from
R⊥ðt; x⊥; θ⊥Þ by Eq. (C5), and are accounted for in ΔE.
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where factors of E have been replaced by mπ, as the
difference isOðF−4

π Þ. As a result of the nonvanishing source
momentum p, this contribution exhibits t dependence.11

In Fig. 4, we plot the logarithmic derivative of the
correlation function

ΔMeffðtÞ ¼ −
d
dt

log C0ðt; 0Þ − ðEþ ΔEÞ; ð87Þ

using Eq. (85) withR⊥ðt; x⊥; θ⊥Þ approximated byRð1Þ⊥ ðtÞ
given in Eq. (86). In the definition of ΔMeffðtÞ, we
have subtracted the long-time limit Eþ ΔE, so that the
effective-mass plateau will occur at zero. Using perturba-
tion theory, we can further approximate the effective mass
function as

ΔMeffðtÞ ¼ −
d
dt

Rð1Þ⊥ ðtÞ; ð88Þ

up to corrections of OðF−4
π Þ. The figure shows the finite

volume effect is quite small.12 The overall size of the effect

is proportional to m2
π=ð4πFπÞ2, and we use the physical

values mπ ¼ 139.6MeV and Fπ ¼ 92.1 MeV [60].
Note that the finite-volume correction to the two-point

function is not constrained by spectral positivity. The
correlation function has been projected onto zero momen-
tum at the sink, and momentum is not conserved. The
correlator cannot be written as a sum of probabilities for
various contributing states; instead, there are transitions
between the source and sink. Contributions from the
transition between the lowest image momentum states
and the zero momentum state, however, are positive (as
shown in Fig. 4), and appear similar to excited-state
contamination; they are exponentially suppressed for
ðEp −mπÞt ≫ 1. Fortunately, we estimate this effect on
the correlation function to be quite small; furthermore, it
can be mitigated by source averaging.

2. Source location averaging

To cut down on statistical noise, the common lattice
QCD procedure to compute the two-point function consists
of varying the source location.13 Taking Ns sources to be
located at the transverse positions fx⊥1; x⊥2;…; x⊥Ns

g, one
can compute the source averaged correlation function

h C0ðtÞ iNs
¼ 1

Ns

XNs

i¼1
C0ðt; x⊥iÞ: ð89Þ

For a sufficiently large number of sources, one can assume
that the finite source average is a reasonable approximation
to the integral over all source locations. In this approxi-
mation, one has

h C0ðtÞ i ¼ lim
Ns→∞

h C0ðtÞ iNs
; ð90Þ

where

h C0ðtÞ i ¼
1

βV

Z
d4x C0ðt; x⊥Þ; ð91Þ

is the spacetime average of the correlation function with
respect to the source location.
The spacetime average can be computed for the

formula in Eq. (85). As detailed in Appendix C, the
modification to the correlation function averages to zeroR
d2x⊥R⊥ðt; x⊥; θ⊥Þ ¼ 0. The average over the transverse

FIG. 4. Finite volume effect on the effective mass function.
Plotted versus mπt is the effective mass ΔMeff of the neutral pion
two-point function in units of mπ . The offset in ΔMeff Eq. (87)
ensures that the long-time plateau occurs at zero. The effective
mass of the finite-volume correlation function Eq. (88) only
accounts for images with jν⊥j ¼ 1. Results are plotted for
NΦ ¼ 1, for which the effect is greatest.

11In the regime p2 ≪ m2
π , we are close to momentum

conservation between the source and sink, and a shift of the
neutral pion energy can be identified. This regime, however,
requires prohibitively large volumes mπL ≫ 2πNΦ, especially
in light of the fact that several values of the flux quantum are
needed to investigate magnetic field dependence on a fixed-size
lattice.

12One should keep in mind that the pion mass is not the best
scale to compare the effective mass with. To measure the
magnetic polarizability of the neutral pion, one needs to be able
to discern small shifts in the pion’s energy. Nonetheless,
compared to a ∼10% shift in mπ , the finite volume effect shown
in Fig. 4 is still small.

13Above, we consider averages over the source location with a
fixed uniform gauge potential. One can also keep the source
location fixed, and average over the twist angles; or even, vary
both the source location and twist angles. These possibilities were
discussed in the context of charged particle correlation functions
in Ref. [61], where different behaviors were contrasted. In the
present case of the neutral pion correlation function, however, all
three possibilities share the salient feature that R⊥ðt; x⊥; θ⊥Þ
averages to zero, see Appendix C.
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plane thus has the effect of sending A⊥ → ∞ with QB held
fixed. Consequently, we recover a simple exponential
falloff of the correlation function from averaging a large
number of sources

hC0ðtÞi ¼
e−ðEþΔEÞt

2ðEþ ΔEÞ : ð92Þ

After source averaging, ΔE can be identified as the
finite volume effect on the neutral pion energy. From
Appendix C, it can be expressed by the proper-time integral

ΔE ¼ mπ

2

Z
∞

0

ds
e−sm

2
π

ð4πsFπÞ2
�

QBs
sinhQBs

× ðϑ3ð0; e−
L2
3
4s Þ − 1Þ − 1

2
ðΘ0ðsÞ − 1Þ

�
: ð93Þ

In the regime where QB=m2
π ≪ 1, one can expand the

finite volume effect ΔE order by order in B2. This
corresponds to a large transverse area A⊥ expansion,
carried out at fixed longitudinal size L3. The term at zeroth
order in B2 is part of the finite volume correction to the
neutral pion mass.14 The second-order term gives a finite
volume correction to the magnetic polarizability. Using the
definition

E ¼ mπ −
1

2
βMB2 þOðB4Þ; ð94Þ

we reproduce the infinite-volume polarizability of the
neutral pion [62–64]

βM ¼
Q2

6mπð4πFπÞ2
; ð95Þ

by expanding the infinite-volume energy E in Eq. (80) to
OðB2Þ. Carrying out the same expansion onΔE in Eq. (93),
we obtain the finite volume correction

ΔβM=βM ¼ 2
X∞
ν¼1

νmπL3K1ðνmπL3Þ; ð96Þ

where K1ðzÞ is a modified Bessel function. As ΔβM > 0,
the finite volume leads to a greater magnetic susceptibility
of the neutral pion. For asymptotically large volumes, we
have the fractional volume effect

ΔβM=βM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmπL3

p
e−mπL3 þ � � � : ð97Þ

Taking L3 ¼ L, the finite volume effect on the magnetic
polarizability of the neutral pion is shown in Fig. 5,
and contrasted with its asymptotic behavior. One needs
mπL > 4 to have a volume effect of < 10%.

V. SUMMARY OF KEY RESULTS

Chiral perturbation theory gives a model-independent
description of low-energy QCD. We utilize this effective
theory to determine finite volume effects on QCD observ-
ables in a uniform magnetic field. Our attention is restricted
to charge neutral observables at next-to-leading order in the
chiral expansion, including: the chiral condensate, mag-
netization, pressure anisotropy, and neutral pion effective
action. These observables receive loop corrections from
charged pions, which are subject to magnetic periodic
boundary conditions. Due to magnetic periodicity, the
finite-volume theory retains a remnant of the continuous
translational invariance of the Landau level problem in
infinite volume. This remnant translational invariance has a
desirable feature for charged pion loop contributions:
spacetime averaging produces the infinite transverse-area
results at a given magnetic field, namely A⊥ → ∞ with QB
held fixed. Finite volume effects of suitably averaged
quantities thus depend on the transverse size only through
the magnetic field quantization condition, not through
transverse images. Such averaging, moreover, is essentially
a standard part of nearly all lattice QCD calculations of
these observables.
A summary of key results is as follows.
(i) Finite volume corrections to the chiral condensate in

a magnetic field are computed in Sec. III A. The
chiral condensate in finite volume is spatially vary-
ing due to the remnant translational invariance, as
shown in Fig. 1. The spatially averaged condensate,
however, receives only image corrections from the

FIG. 5. Finite volume effect on the magnetic polarizability of
the neutral pion. Plotted versus mπL (solid curve) is the ratio of
the finite volume effect ΔβM to the infinite volume polarizability
βM given in Eq. (96). Additionally shown (dashed curve) is the
asymptotic volume formula Eq. (97).

14Recall that volume averaging and evaluation at zero mag-
netic field are operations that do not commute. Above, we take
the source average first, then evaluate at zero magnetic field. The
finite volume effect is different than obtained by first restricting to
zero magnetic field. That restriction gives the p-regime formula.
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longitudinal direction, as given by Eq. (46). The
finite volume effect on the magnetic field depend-
ence of the condensate is shown in Fig. 2. For the
smallest magnetic flux quanta, the effect can be
≳10%, even for mπL ¼ 4. The finite volume serves
to further catalyze chiral symmetry breaking in a
magnetic field.

(ii) We compute the magnetic pressure anisotropy using
chiral perturbation theory in Sec. III C. The pressure
anisotropy at fixed flux can be used on the
lattice to determine the magnetization of the QCD
vacuum [18]. In finite volume, the matter contribu-
tion to the pressure anisotropy depends on the
magnetization, but there is an additional term that
is purely a finite volume artifact, see Eq. (62). The
finite volume effect on the pressure anisotropy is
shown in Fig. 3. The additional term leads to the
dominant finite volume effect, which is quite sub-
stantial. The finite volume produces a larger pressure
anisotropy, consequently a larger apparent magneti-
zation (in magnitude). These finite volume effects
are considerable for fields of size QB ∼m2

π due to
the smallness of the magnetization in this regime.

(iii) The neutral pion in a magnetic field is taken up
in Sec. IV. Calculation of the neutral pion effective
action in finite volume is efficaciously performed
using coordinate-space methods pioneered by
Schwinger. The end result Eq. (79) features a
coordinate-dependent potential for the neutral pion
that complicates the behavior of its correlation
function Eq. (85). Even after projecting the sink
onto vanishing momentum, the two-point function
generally depends on the location of the source.
Fortunately, this finite volume effect is estimated to
be quite small, as shown in Fig. 4.

(iv) While the coordinate-dependent effective potential
of the neutral pion leads to momentum non-
conservation between the source and sink, source
averaging is carried out in practice to mitigate gauge
noise. The effect of source averaging is to approx-
imately project the correlation function to zero
momentum at the source, thus restoring translational
invariance. With momentum conserved, the two-
point function takes a simple form Eq. (92), from
which the finite volume correction to the neutral
pion energy can be identified. One application of
this result is the determination of the finite volume
effect on the magnetic polarizability of the neutral
pion, which is shown in Fig. 5 and points to a 10%
effect for mπL ¼ 4.

Finally, although our investigation concerns the finite-
volume effects in lattice QCD calculations, our results
hint at potentially important finite-size effects due to field
inhomogeneities. It would be interesting to adapt the
techniques presented here to the study of magnetic fields

of finite spatial extent, which could be relevant for heavy
ion collisions.

ACKNOWLEDGMENTS

P. A. acknowledges the hospitality of The City College
of New York, and the Graduate Center of The City
University of New York. P. A. also acknowledges the
support of the Kavli Institute for Theoretical Physics,
Santa Barbara, through which the research was supported
in part by the National Science Foundation under Grant
No. NSF PHY-1748958.

APPENDIX A: FINITE VOLUME FORMULAS

For numerical evaluation, the coincident charged pion
propagator in Eq. (28) is best expressed in terms of Jacobi
elliptic-theta functions. Due to the finite volume Aharonov-
Bohm factor ð−1ÞNΦν1ν2, the propagator generally requires
three of the four canonically numbered functions

ϑ2ðz; qÞ ¼ 2
X∞
ν¼0

cos ½ð2νþ 1Þz�qðνþ1
2
Þ2 ;

ϑ3ðz; qÞ ¼ 1þ 2
X∞
ν¼1

cos ð2νzÞqν2 ;

ϑ4ðz; qÞ ¼ 1þ 2
X∞
ν¼1
ð−1Þν cos ð2νzÞqν2 ; ðA1Þ

and expressions depend on whether the flux quantumNΦ is
even or odd. There is one elliptic-theta function required to
express the image sum for each direction. The coincident
propagator of the charged pion is written in terms of a
modification factor Θðx⊥jsÞ in Eq. (29). This factor
contains the image sums in the form

Θðx⊥jsÞ ¼ ΘkðsÞΘðNΦ mod 2Þ
⊥ ðx⊥jsÞ: ðA2Þ

Image sums in the Euclidean time and magnetic-field
directions contribute the factor

ΘkðsÞ ¼ ϑ3ð0; e−
β2

4sÞϑ3ð0; e−
L2
3
4s Þ; ðA3Þ

whereas the sums over images transverse to the field
direction produce oscillatory dependence on the transverse

coordinates through the function ΘðNΦ mod 2Þ
⊥ ðx⊥jsÞ, which

depends on whether the flux quantum NΦ is even or odd.
In the former case, one has

Θð0Þ⊥ ðx⊥jsÞ ¼ ϑ3

�
Qθ1
2
þ πNΦx2

L2

; e−
QBL2

1
4 tanh QBs

�

× ϑ3

�
Qθ2
2

−
πNΦx1
L1

; e−
QBL2

2
4 tanh QBs

�
; ðA4Þ
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while in the latter case, one arrives at two different
contributions

Θð1Þ⊥ ðx⊥jsÞ ¼ ϑ3

�
Qθ1 þ

2πNΦx2
L2

; e−
QBL2

1
tanh QBs

�

× ϑ3

�
Qθ2
2

−
πNΦx1
L1

; e−
QBL2

2
4 tanh QBs

�

þ ϑ2

�
Qθ1 þ

2πNΦx2
L2

; e−
QBL2

1
tanh QBs

�

× ϑ4

�
Qθ2
2

−
πNΦx1
L1

; e−
QBL2

2
4 tanh QBs

�
; ðA5Þ

after separating the even and odd images in the x̂1 direction.
Identical results are obtained from an analogous expression
that separates the even and odd images in the x̂2 direction.
This is due to the readily proven identity

ϑ3ð2z1; q41Þϑ3ðz2; q2Þ þ ϑ2ð2z1; q41Þϑ4ðz2; q2Þ
¼ ϑ3ð2z2; q42Þϑ3ðz1; q1Þ þ ϑ2ð2z2; q42Þϑ4ðz1; q1Þ: ðA6Þ

Results for the neutral pion propagator can be obtained
from those of the charged pion by evaluation atQ ¼ 0. The
zero-charge limit produces the coincident finite-volume
propagator of the neutral pion Ḡ0ð0; 0Þ in Eq. (32). In that
case, the image sums are contained in the function Θ0ðsÞ,
which is defined as

Θ0ðsÞ ¼
Y3
μ¼0

ϑ3ð0; e−
L2μ
4s Þ: ðA7Þ

At zero temperature, one has β ¼ ∞ and consequently
ϑ3ð0; 0Þ ¼ 1. The product over all μ is then reduced to
that over the three spatial directions, and reflects that only
ν0 ¼ 0 contributions remain. This feature is shared by the
charged pion propagator, due to the temperature depend-
ence of Eq. (A3).

APPENDIX B: COVARIANT DERIVATIVES OF
THE COINCIDENT PROPAGATOR

In computing the effective action of the neutral pion
in Sec. IVA, an additional one-loop diagram element is
required beyond the coincident propagators given in
Sec. II C. The new element is the charged pion tadpole
diagram with two covariant derivatives of the pion propa-
gator, specifically of the form

D2Gþðx; xÞ≡ lim
x0→x
hD0μπþðx0ÞDμπ

−ðxÞ i: ðB1Þ

Point splitting has been introduced to regulate an ultraviolet
divergence in a way consistent with dimensional regulari-
zation. As this divergence is independent of both the
magnetic field and the volume, it would nevertheless be

removed in the zero-field, infinite-volume renormalization
scheme that we employ.
While the covariant derivatives of the charged pion

propagator are straightforward to evaluate, a more circu-
itous route to compute Eq. (B1) proves beneficial. One
notes that ½D0μ; Dμ� ¼ 0 for each μ, thus allowing us to
arrive at the identity

D0μDμ ¼ −
1

2
ðD0μD0μ þDμDμÞ þ

1

2
ðD0μ þDμÞ2: ðB2Þ

Making use of this identity and the Green’s function
relation given in Eq. (12), we find

D2Gþðx; xÞ ¼ −m2Gþðx; xÞ þ
1

2
∂
2
μGþðx; xÞ: ðB3Þ

To obtain this relation, note that point splitting requires one
to evaluate at x0 ≠ x before taking the spacetime points to
be coincident x0 → x. The relation in Eq. (B3) agrees with
that obtained by direct covariant differentiation, however, a
proper-time integration by parts is needed to uncover the
form given above. It is also possible to arrive at the relation
by considering how the diagram element enters as a
perturbative correction to the neutral pion Green’s function
Eq. (67). In that case, one can perform integration by parts
over the intermediate spacetime coordinate. Such integra-
tion by parts is efficacious for other contributions to the
effective action, as discussed in Sec. IVA.
Using Eq. (B3), the new one-loop diagram element

can be expressed in terms of the coincident charged pion
propagator Eq. (21) and derivatives thereof. The latter
contribution is given by

∂
2
μGþðx; xÞ ¼ −

X
νμ

ðQBν⊥L⊥Þ2fðν⊥; x⊥ÞgþðνμÞ; ðB4Þ

and is written in terms of the functions fðν⊥; x⊥Þ and
gþðνμÞ that appear in Eqs. (22) and (23), respectively.
Alternatively, this contribution can be expressed in terms of
a proper-time integral

∂
2
μGþðx; xÞ ¼

Z
∞

0

ds
e−sm

2
π

ð4πsÞ2
QBs

sinh QBs
∂
2
μΘðx⊥; sÞ; ðB5Þ

where Θðx⊥; sÞ is given in Eq. (A2). It is straightforward
to differentiate this function, with the result producing
dependence on various ϑ00j ðz; qÞ, where primes denote
differentiation with respect to the first argument of the
elliptic-theta functions. The expression for ∂

2
μΘðx⊥; sÞ is

quite lengthy, and is omitted for brevity.
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APPENDIX C: TWO-POINT FUNCTION
MODIFICATION

After projection onto zero spatial momentum at the sink,
the neutral pion two-point function in Eq. (82) can be cast
in a form very similar to Eq. (85)

C0ðt; x⊥Þ ¼
e−Et

2E
½1þRðt; x⊥; θ⊥Þ�; ðC1Þ

where, after integration over the intermediate time, the
modification function Rðt; x⊥; θ⊥Þ is given by

Rðt; x⊥; θ⊥Þ ¼
X
p⃗⊥

Z
L⊥

0

d2y⊥eip⃗⊥·ðy⃗−x⃗Þ⊥Vðy⊥Þ

×
E

Ep⃗⊥
eðE−Ep⃗⊥ Þt − 1

p⃗2⊥
; ðC2Þ

with Ep⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ p⃗2

p
. Explicit coordinate dependence of

the effective potential Vðy⊥Þ leads to nonconservation of
momentum between the source and sink. Thus, there are
contributions from momentum modes with p⃗⊥ ≠ 0. This
applies to the charged pion contribution to the effective
potential. By contrast, the neutral pion contribution main-
tains momentum conservation, and can readily be included
in the finite volume effect on the energy ΔE in Eq. (85).
Writing the charged pion contribution to the effective

potential Eq. (81) in terms of its image contributions, the
transverse position integral appearing in Rðt; x⊥; θ⊥Þ can
be performed, because it is simply a Fourier transformZ

L⊥

0

d2y⊥eip⃗⊥·y⃗⊥fðν⊥; y⊥Þ ¼ δn1;NΦν2δn2;−NΦν1A⊥fðν⊥; 0Þ;

ðC3Þ

where the phase function fðν⊥; x⊥Þ is given in Eq. (22).
The transverse momentum sums are now trivial to perform,
leading to the charged pion contribution

Rðt; x⊥; θ⊥Þ ¼
X
ν⃗−0⃗

m2
π þ ðQBν⊥L⊥Þ2

F2
π

fðν⊥; 0Þgþðν⃗Þ

× e−ip⃗ν·x⃗⊥
E
Ep⃗ν

eðE−Ep⃗ν Þt − 1

p⃗2
ν

; ðC4Þ

where gþðνμÞ is given in Eq. (23), and the image-dependent
momentum modes are specified by p⃗ν ¼ 2πNΦðν2L1

;− ν1
L2
Þ.

The charged pion contribution to the modification
function can be additively decomposed into two terms

Rðt; x⊥; θ⊥Þ ¼ RkðtÞ þR⊥ðt; x⊥; θ⊥Þ; ðC5Þ

where R⊥ðt; x⊥; θ⊥Þ is the contribution from all images
with ν⊥ ≠ 0, while RkðtÞ is the contribution from all
images with ν⊥ ¼ 0. The former contribution does not
exhibit any simplifications. It is given by a formula almost
identical to Eq. (C4), but with

P
ν⃗−0⃗ replaced by

P
ν⃗;ν⊥≠0,

and is the R⊥ðt; x⊥; θ⊥Þ function appearing in Eq. (85).
For the twist angle and source location averaging discussed
in Sec. IV B, it is crucial to note that the dependence
on twist angles enters via the phase function fðν⊥; 0Þ ¼
ð−1ÞNΦν1ν2eiQθ⊥·ν⊥ , whereas the transverse location of the
source appears exclusively in the Fourier phase e−ip⃗ν·x⃗⊥ .
Both averages thus project onto the sector with ν⊥ ¼ 0;
consequently, these averages of R⊥ðt; x⊥; θ⊥Þ are zero.
By contrast, the charged pion contribution to RkðtÞ has

p⃗ν ¼ 0, for which momentum is conserved between the
source and sink. In taking the limit of vanishing momen-
tum, we obtain

RkðtÞ ¼ −
�
tþ 1

E

�
mπ

2F2
π

X
ν3≠0

gþðν3Þ; ðC6Þ

where we have approximated a multiplicative factor of E by
mπ , because the difference isOðF−4

π Þ. The form ofRkðtÞ is
exactly what one expects for a small correction ΔE to the
energy E. In terms of a two-point function with energy
Eþ ΔE, we have

e−ðEþΔEÞt

2ðEþ ΔEÞ ¼
e−Et

2E

�
1 −

�
tþ 1

E

�
ΔE

�
þ � � � : ðC7Þ

Provided ΔEt ≪ 1 and ΔE=E ≪ 1, one can treat ΔE as a
perturbative correction to the energy obtained from the time
dependence of a two-point function with a simple expo-
nential falloff. Hence, we identify ΔE of Eq. (85) with

ΔE ¼ mπ

2F2
π

�X
ν3≠0

gþðν3Þ −
1

2
G0ð0; 0Þ

�
; ðC8Þ

which additionally includes the neutral pion contribution.
This finite volume effect is expressed as a proper-time
integral in Eq. (93).
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