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Non-Abelian gauge fields having a line-singularity of the Dirac type lead us to violation of the non-
Abelian Bianchi identity. The violation as an operator is equivalent to violation of Abelian-like Bianchi
identities corresponding to eight Abelian-like conserved magnetic monopole currents of the Dirac type
in SUð3Þ QCD. It is very interesting to study if these new Abelian-like monopoles are responsible for
color confinement in the continuum SUð3Þ QCD, since any reliable candidate of color magnetic
monopoles is not known yet. If these new Abelian-like monopoles exist in the continuum limit, the
Abelian dual Meissner effect occurs, so that the linear part of the static potential between a quark-
antiquark pair is reproduced fully by those of Abelian and monopole static potentials. These phenomena
are called here as perfect Abelian and monopole dominances. It is shown that the perfect Abelian
dominance is reproduced fairly well, whereas the perfect monopole dominance seems to be realized for
large β when use is made of the smooth lattice configurations in the maximally Abelian (MA) gauge.
Making use of a block spin transformation with respect to monopoles, the scaling behaviors of
the monopole density and the effective monopole action are studied. Both monopole density and the
effective monopole action which are usually a two-point function of β and the number of times n of the
block spin transformation are a function of b ¼ naðβÞ alone for n ¼ 1, 2, 3, 4, 6, 8, 12. If the scaling
behavior is seen for up to larger n, it shows the existence of the continuum limit, since aðβÞ → 0 when
n → ∞ for fixed b ¼ naðβÞ. Along with the previous results without any gauge fixing, these new results
obtained in MA gauge suggest that the new Abelian-like monopoles play the role of color confinement
in SUð3Þ QCD.
DOI: 10.1103/PhysRevD.107.094503

I. INTRODUCTION

Color confinement in quantum chromodynamics (QCD)
is still an important unsolved problem. As a picture of color
confinement, ’t Hooft [1] and Mandelstam [2] conjectured
that the QCD vacuum is a kind of a magnetic super-
conducting state caused by condensation of magnetic
monopoles and an effect dual to the Meissner effect works
to confine color charges. However to find color magnetic
monopoles which condense is not straightforward in QCD.
If the dual Meissner effect picture is correct, it is absolutely
necessary to derive such color-magnetic monopoles from
gluon dynamics of QCD.
An interesting idea to introduce such an Abelian monop-

ole in QCD is to project QCD to the Abelian maximal torus

group by a partial (but singular) gauge fixing [3]. In SUð3Þ
QCD, the maximal torus group is Abelian Uð1Þ2. Then
Abelian magnetic monopoles appear as a topological object
at the space-time points corresponding to the singularity of
the gauge-fixing matrix. Condensation of the monopoles
causes the dual Meissner effect with respect to Uð1Þ2.
Numerically, an Abelian projection in various gauges such
as the maximally Abelian (MA) gauge [4,5] seems to
support the conjecture [6–9]. Although numerically inter-
esting, the idea of Abelian projection [3] is theoretically
unsatisfactory. Especially there are infinite ways of such a
partial gauge-fixing and whether the ’t Hooft scheme
depends on gauge choice or not is not known.
Motivated by an interesting work by Bonati et al. [10]

which found violation of non-Abelian Bianchi identity
(VNABI) exists behind the ’tHooft Abelian monopoles, the
present author found in 2014 [11] an interesting and more
fundamental fact that, when original gluon fields have a
singularity where partial derivatives are not commutative,
the non-Abelian Bianchi identity is broken and VNABI is
just equal to the violation of Abelian-like Bianchi identities.
The latter just corresponds to the existence of Abelian-like
monopoles. For more details, see also Ref. [12].
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Define a covariant derivative operator Dμ ¼ ∂μ − igAμ.
The Jacobi identities are expressed as ϵμν ρσ½Dν; ½Dρ;
Dσ�� ¼ 0. By direct calculations, one gets ½Dρ; Dσ� ¼
−igGρσ þ ½∂ρ; ∂σ�, where the second commutator term of
the partial derivative operators cannot be discarded in
general, since gauge fields may contain a line singularity.
Actually, it is the origin of the violation of the non-Abelian
Bianchi identities (VNABI) as shown in the following.
The non-Abelian Bianchi identities and the Abelian-
like Bianchi identities are, respectively: DνG�

μν ¼ 0 and
∂νf�μν ¼ 0. The relation ½Dν; Gρσ� ¼ DνGρσ and the Jacobi
identities lead us to

DνG�
μν ¼ −

i
2g

ϵμν ρσ½Dν; ½∂ρ; ∂σ��

¼ 1

2
ϵμν ρσ½∂ρ; ∂σ�Aν ¼ ∂νf�μν; ð1Þ

where fμν is defined as fμν ¼ ∂μAν − ∂νAμ ¼ ð∂μAa
ν−

∂νAa
μÞλa=2. Namely Eq. (1) shows that the violation of

the non-Abelian Bianchi identities, if exists, is equivalent
to that of the Abelian-like Bianchi identities. Denote the
violation of the non-Abelian Bianchi identities (VNABI) as
Jμ ¼ DνG�

μν and Abelian-like monopole currents kμ without
any gauge-fixing as the violation of the Abelian-like Bianchi
identities: kμ ¼ ∂νf�μν ¼ 1

2
ϵμν ρσ∂νfρσ. Equation (1) shows

that Jμ ¼ kμ. The Abelian-like monopole currents satisfy an
Abelian conservation rule kinematically, ∂μkaμðxÞ ¼ 0 [13].
There can exist exact Abelian (but kinematical) symmetries
in non-Abelian QCD. This is an extension of the Dirac idea
[14] of monopoles in Abelian QED to non-Abelian QCD.
In the framework of simpler SUð2Þ QCD, interesting

numerical results were obtained. Abelian and monopole
dominances as well as the Abelian dual Meissner effect are
seen clearly without any additional gauge-fixing already in
2009 [15,16], although at that time, no theoretical explan-
ation was clarified with respect to Abelian-like monopoles
without any gauge-fixing. They are now found to be just
Abelian-like monopoles proposed in the above paper [11].
Also, the existence of the continuum limit of this new kind
of Abelian-like monopoles was discussed with the help
of the block spin renormalization group concerning the
Abelian-like monopoles. The beautiful scaling behaviors
showing the existence of the continuum limit are observed
with respect to the monopole density [17] and the infrared
effective monopole action [18]. The scaling behaviors seem
also to be independent of gauges smoothing the lattice
vacuum.
It is very interesting to study the new Abelian-like

monopoles in SUð3Þ QCD. To check if the Dirac-type
monopoles are a key quantity of color confinement in the
continuum SUð3Þ QCD, it is necessary to study monopoles
numerically in the framework of lattice SUð3Þ QCD and
to study then if the continuum limit exists. It is not so

straightforward, however, to extend the previous SUð2Þ
studies to SUð3Þ. How to define Abelian-like link fields
and monopoles without gauge-fixing is not so simple as in
SUð2Þ, since a SUð3Þ group link field is not expanded in
terms of Lie-algebra elements defining Abelian link fields
as simply done as in SUð2Þ. There are theoretically many
possible definitions which have the same naive continuum
limit in SUð3Þ. In the previous work [19], we found a
natural definition as shown later explicitly. Using the
definition, we showed as cited in Table I that the perfect
Abelian dominance exists with the help of the multilevel
method [20,21] but without introducing additional smooth-
ing techniques like partial gauge fixings. Table II shows
that the perfect monopole dominance holds good again
without any additional gauge fixing. In the latter, we had to
evaluate huge number of correlations between nonlocal
gauge-variant quantities in order to extract probable gauge-
invariant results [22].
The dual Meissner effect around a pair of static quark

and antiquark was studied. Abelian electric fields are
squeezed due to solenoidal monopole currents and the
penetration length for an Abelian electric field of a single
color is the same as that of non-Abelian electric field. The
coherence length was also measured directly through the
correlation of the monopole density and the Polyakov loop
pair. The Ginzburg-Landau parameter indicates that the
SUð3Þ vacuum in the confinement phase is that of the weak
type I (dual) superconductor. But these previous results in
Ref. [19] are all only on very small lattices and at restricted
β. However they suggest that the new idea of monopoles
are also important in real SUð3Þ QCD. It is necessary to
study on larger lattices at more different β in order to
show the existence of the new monopoles actually in the
continuum SUð3Þ.

TABLE I. The ratio of the Abelian and the non-Abelian string
tensions σa=σF determined by applying the multilevel method in
the Wilson action. The data are cited from Ref. [19].

Lattice size β σa=σF

124 5.6 0.87(13)
164 5.6 1.05(9)
124 5.7 0.91(8)
124 5.8 1.01(11)

TABLE II. String tensions from Polyakov-loop correlations in
the Wilson action at β ¼ 5.6 on 243 × 4. The data are from
Ref. [19].

Types of the potential σa2

Non-Abelian 0.178(1)
Abelian 0.16(3)
Monopole 0.17(2)
Photon −0.0007ð1Þ
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Here the aim of this note is to study the scaling behaviors
of the Abelian monopoles with the help of additional
technique reducing lattice artifact monopoles as much as
possible. First the most popular partial gauge fixing, the
maximally Abelian gauge is adopted for the Iwasaki
improved gluon action [23–25] on 484 lattices for various
coupling constants between β ¼ 2.3 and β ¼ 3.5. It is
studied if the Abelian dominance and the monopole domi-
nance expected from the Abelian dual Meissner picture [26]
are realized. Next introducing the block spin transformation,
we measure the renormalization flows of the monopole
density and the effective monopole action and study directly
if the Abelian-like monopoles have the continuum limit.

II. LATTICE SETTUP OF SUð3Þ QCD

To study the continuum limit clearly on large lattice
volume, it is important to reduce the lattice artifact
monopoles as much as possible and for that purpose, we
adopt the maximally Abelian gauge (MA) [4,5,27] in which

RMAðUðs; μÞÞ ¼
X
s

X4
μ¼1

TrðU†ðs; μÞH⃗Uðs; μÞH⃗Þ ð2Þ

is maximized under SUð3Þ gauge transformations, where H⃗
is the diagonal Cartan subalgebra. After the MA gauge-
fixing, we perform gauge-fixing with respect to the residual
Uð1Þ2 symmetry in Landau gauge. Here we denote such
serial gauge-fixings as MAU12.
Then Abelian link fields θaμðsÞ and Abelian Dirac-type

monopoles on SUð3Þ lattice are defined from non-Abelian
link fields UμðsÞ as in the previous work [19]. Maximizing
the following quantity

RA ¼ ReTrfexpðiθaμðsÞλaÞU†
μðsÞg; ð3Þ

where λa is the Gell-Mann matrix leads us to, say, in the λ1

case,

θ1μðsÞ ¼ tan−1
�
ImðU12ðs; μÞ þ U21ðs; μÞÞ
ReðU11ðs; μÞ þ U22ðs; μÞÞ

�
: ð4Þ

To improve the overlapping, we perform the following
smearings:
(1) The hypercubic smearing is done with respect to the

temporal direction of non-Abelian link fields sim-
ilarly as done in [28]. But the results are found to be
not so sensitive on the hypercubic blocking.

(2) With respect to spatial link variables, we perform
Abelian smearing with the fixed smearing parameter
α ¼ 2.3 similarly as done with respect to non-
Abelian link fields in Ref. [29]. We check the
dependence of the iteration numbers of smearing
ns for 0 ≤ ns ≤ 60 on the behaviors of the effective
mass and the overlap parameter. The results are not

so different except for the small t < 3a or large
t > 20a. We show in Table III the simulation
parameters.

We next define Abelian-like lattice monopoles. The
unique reliable method ever known to define a lattice
Abelian monopole is the one proposed in compact QED by
DeGrand and Toussaint [30] who utilize the fact that the
Dirac monopole has a Dirac string with a magnetic flux
satisfying the Dirac quantization condition [14]. Hence we
adopt the method here, since the Abelian-like monopoles
here are of the Dirac type in QCD.
It is known that MA gauge fixing in SUð3Þ has some

ambiguities especially in defining Abelian monopoles
correponding to the diagonal color components [31].
Here we adopt the simplest method in which two diagonal
Gell-Mann matrices λ3 and λ8 are used.
First we define Abelian plaquette variables from the

above Abelian link variables:

θaμνðsÞ≡ ∂μθ
a
νðsÞ − ∂νθ

a
μðsÞ; ð5Þ

where ∂νð∂0νÞ is a forward (backward) difference. Then the
plaquette variable can be decomposed as follows:

θaμνðsÞ ¼ θ̄aμνðsÞ þ 2πnaμνðsÞðjθ̄aμνj < πÞ; ð6Þ

where naμνðsÞ is an integer corresponding to the number of
the Dirac string. Then VNABI as Abelian-like monopoles
is defined by

kaμðsÞ ¼ −
1

2
ϵμαβγ∂αθ̄

a
βγðsþ μ̂Þ

¼ 1

2
ϵμαβγ∂αnaβγðsþ μ̂Þ;

JμðsÞ≡ 1

2
kaμðsÞλa: ð7Þ

This definition (7) of VNABI satisfies the Abelian con-
servation condition and takes an integer value which
corresponds to the magnetic charge obeying the Dirac
quantization condition [14].

TABLE III. Simulation parameters. (The coupling constant β,
the lattice size, the gauge configuration number, the lattice
spacing aðβÞ from Ref. [25], ns the number of the Abelian
smearing steps, (ta;m1 , ta;m2 ) the fitting ranges in lattice unit.

β Volume Nconf aðβÞ [fm] ns, ðta1; ta2Þ ns, ðtm1 ; tm2 Þ
2.9 484 160 0.1420(116) 6, (1, 10) 2, (5, 10)
3.0 484 160 0.1312(99) 4, (3, 11) 0, (10, 17)
3.1 484 160 0.1143(46) 8, (2, 15) 2, (5, 17)
3.2 484 160 0.1080(60) 6, (10, 18) 0, (14, 24)
3.3 484 160 0.0918(65) 8, (1, 20) 60, (15, 20)
3.4 484 160 0.0855(75) 10, (4, 18) 0, (15, 24)
3.5 484 160 0.0809(130) 12, (3, 18) 2, (4, 20)
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III. ABELIAN AND MONOPOLE
STATIC POTENTIALS

We evaluate the static potentials from Abelian Wilson
loops and their monopole contributions. Here, we take into
account only a simple Abelian Wilson loop, say, of size
I × J. Then such an Abelian Wilson loop operator is
expressed as

Wa
A ¼ exp

n
i
X

Jext;aμ ðsÞθaμðsÞ
o
; ð8Þ

where Jext;aμ ðsÞ is an external electric current having a color
a taking �1 along the Wilson loop. Since Jext;aμ ðsÞ is
conserved, it is rewritten for such a simple Wilson loop in
terms of an antisymmetric variable Ma

μν as Jext;aν ¼
∂
0Ma

μνðsÞ with a forward (backward) difference ∂νð∂0νÞ.
Note that Ma

μνðsÞ take �1 on a surface with the Wilson
loop boundary. Although we can choose any surface type,
we adopt a minimal flat surface here. We get

Wa
A ¼ exp

n
−
i
2

X
Ma

μνðsÞθaμνðsÞ
o
: ð9Þ

We investigate the monopole contribution to the static
potential in order to examine the role of monopoles for
confinement. The monopole part of the Abelian Wilson
loop operator is extracted as follows [8,9]. Using the
lattice Coulomb propagator Dðs − s0Þ, which satisfies
∂ν∂

0
νDðs − s0Þ ¼ −δss0 , we get

Wa
A ¼ Wa

monWa
ph; ð10Þ

Wa
mon ¼ exp

n
2πi

X
kaβðsÞDðs − s0Þ 1

2
ϵαβρσ∂αMa

ρσðs0Þ
o
;

ð11Þ

Wa
ph ¼ exp

n
−i

X
∂
0
μθ̄

a
μνðsÞDðs − s0ÞJaνðs0Þ

o
: ð12Þ

We then compute the static potential from the Abelian
Wilson loops and the monopole Wilson loops in the
MAU12 gauge on the 484 lattices at β ¼ 2.9, 3.0, 3.1, 3.2,
3.3, 3.4 and 3.5. They are shown as follows

Va
AðrÞ ¼ −limt→∞ lnhWa

Ai ð13Þ

Va
mðrÞ ¼ −limt→∞ lnhWa

mi: ð14Þ

We extract VðrÞ from the least-squares fit with the
single- exponential form

Wðr; tÞ ¼ CðrÞe−VðrÞt ð15Þ

and choose the fit range of t1 ≤ t ≤ t2 such that the stability
of the so-called effective mass

Veffðr; tÞ ¼ ln
Wðr; tÞ

Wðr; tþ 1Þ ð16Þ

is observed in the range t1 ≤ t ≤ t2 [32]. We also measure
the overlap coefficient CðrÞ in (15) to check if the ground-
state part is extracted or not. Then we fit the potential to the
usual functional form

VfitðrÞ ¼ σr − c=rþ μ; ð17Þ

where σ denotes the string tension, c the Coulombic
coefficient, and μ the constant. Since the MA gauge breaks
global color invariance, the Abelian and the monopole
potentials depend on the color chosen. Here we show
explicitly the color 3 diagonal components alone. Examples
of the effective mass of the Abelian and the monopole
Wilson loops are plotted in Fig. 1. The fitting ranges as well
as other lattice parameters in each case are described in
Table III.
Examples of the Abelian and the monopole static

potentials in the MAU12 at β ¼ 3.5 are shown in Fig. 2.
The results of the string tensions on 484 in the MAU12

gauge are summarized for various β in Table IV and in
Figs. 3 and 4. Here σa and σm are Abelian, and monopole
string tensions which are compared with non-Abelian
string tensions σF determined in Ref. [25]. Perfect

FIG. 1. Examples of the effective mass plots at β ¼ 3.5 on 484

for the Abelian (up) and the monopole (down) parts.
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Abelian dominance is seen quite well for all 2.9 ≤ β ≤ 3.5
considered. The perfect Abelian dominance in MAU12 was
shown also on 324 lattices in the Wilson action [32].
Table IVand Fig. 3 show that the asymptotic scaling seems
quite well satisfied. On the other hand, perfect monopole
dominance seems satisfied for β ≥ 3.2 as seen from
Table IV and Fig. 4. These results along with the previous
results [19] without any additional gauge fixing but on
smaller lattices are consistent with the expectation that the
Abelian dual Meissner effect due to the new Abelian-like
monopoles is the color confinement mechanism in the
continuum limit.

Some comments are in order.
(1) The error bars of the Abelian and monopole poten-

tials of color 3 in MAU12 are very small and so they
are not clearly seen in Fig. 2.

(2) The errors in Table IV are only statistical. There are
systematic errors. Changes of the fitting range giving
rise to one of the systematic errors are checked to be
less than 10 percent.

FIG. 2. Examples of the static potentials at β ¼ 3.5 on 484 for
the Abelian (up) and the monopole (down) parts.

TABLE IV. Simulation results of the Abelian and monopole string tensions σa;m versus non-Abelian one σF. FRðr=aÞ is the fitting
range. VðrÞ ¼ σ � rþ c is used in the monopole fit at β ¼ 2.9 and 3.1.

Abelian string tension Monopole string tension Non-Abelian string tension [25]

β σa FRðr=aÞ χ2=Nd:o:f: σm FRðr=aÞ χ2=Nd:o:f: σF

2.9 0.02044(5) (3, 16) 0.12 0.01531(8) (4, 24) 1.16 0.02017(47)
3.0 0.01670(34) (4, 24) 0.79 0.01380(7) (4, 24) 0.96 0.01722(34)
3.1 0.01312(4) (4, 24) 1.67 0.00986(5) (4, 24) 1.24 0.01306(12)
3.2 0.01126(22) (8, 18) 1.38 0.01132(13) (7, 21) 0.96 0.01167(14)
3.3 0.00928(3) (4, 24) 0.89 0.00818(6) (6, 24) 0.874 0.00842(11)
3.4 0.007662(4) (3, 24) 0.06 0.00679(5) (7, 24) 0.93 0.00731(11)
3.5 0.00664(4) (5, 12) 1.01 0.00653(18) (4, 11) 0.72 0.00655(17)

FIG. 3. Ratio of Abelian string tensions versus non-Abelian one
on 484.

FIG. 4. Ratio of monopole string tensions versus non-Abelian
one on 484.

MONOPOLES OF THE DIRAC TYPE AND COLOR CONFINEMENT … PHYS. REV. D 107, 094503 (2023)

094503-5



(3) In the above, we show only the results with respect
to the color 3 diagonal components. We also
measure another color 8 diagonal components for
all β. To extract the color 8 Abelian link fields
from non-Abelian one needs to solve a quartic
equation, so that a bit more complicated. But
still we get almost good Abelian and monopole
dominances.

(4) We also measure off-diagonal color components.
But then the overlap coefficients CðrÞ become
smaller rapidly for large r regions and then no
Abelian and monopole dominances are observed.

(5) The SUð3Þ results in MAU12 obtained here seem
better than those studied in the serial maximally
Abelian and Uð1Þ Landau gauge (MAU1) and the
maximally center gauge (MCG) in the SUð2Þ case
[33]. Note, however, in SUð2Þ, perfect Abelian
and monopole dominances are clearly shown in
the works without any additional gauge fixing
[15,16].

IV. BLOCK SPIN TRANSFORMATION STUDIES
OF THE MONOPOLES

A. The block spin transformation method

Since Abelian monopoles considered here correspond to
violation of non-Abelian Bianchi identity (VNABI) in the
continuum [11,17], it is impossible to study the continuum
limit of such quantities on lattice in the framework of the
asymptotic scaling of usual continuumQCDwhere VNABI
is assumed not to occur. Namely existence of linelike
singularities leading to VNABI is not assumed in the usual
framework of QCD. To study the continuum limit of
Abelian monopoles, therefore, one needs to adopt a
completely different method.
The renormalization-group method based on the block

spin transformation is known to be a powerful tool for
studying the continuum limit and critical phenomena
especially in various spin-systems [34–36]. When the
original lattice has a volume V with the lattice spacing
a, the blocked lattice is defined as that having a lattice
spacing na on the lattice volume V=n3 and the blocked spin
is defined by integrating out the original spins on the
original lattice inside the blocked lattice. An infrared
effective action is obtained describing the physics of
the blocked spins leading us to the renormalization-group
flow.
The idea of the block spin with respect to Abelian

monopoles on lattice was first introduced by Ivanenko et al.
[37] and applied to the study obtaining an infrared effec-
tive monopole action in Ref. [38]. The n blocked monopole
has a total magnetic charge inside the n3 cube and is
defined on a blocked reduced lattice with the spacing
b ¼ na. The respective magnetic currents for each color are
defined as

kðnÞμ ðsnÞ ¼
1

2
ϵμν ρσ∂νn

ðnÞ
ρσ ðsn þ μ̂Þ

¼
Xn−1
i;j;l¼0

kμðnsn þ ðn − 1Þμ̂þ iν̂þ jρ̂þ lσ̂Þ;

nðnÞρσ ðsnÞ ¼
Xn−1
i;j¼0

nρσðnsn þ iρ̂þ jσ̂Þ; ð18Þ

where sn is a site number on the reduced lattice and the
color indices are not shown explicitly. For example,

kð2Þμ ðs2Þ ¼
X1
i;j;l¼0

kμð2s2 þ μ̂þ iν̂þ jρ̂þ lσ̂Þ;

kð4Þμ ðs4Þ ¼
X3
i;j;l¼0

kμð4s4 þ 3μ̂þ iν̂þ jρ̂þ lσ̂Þ

¼
X1
i;j;l¼0

kð2Þμ ð2s4 þ μ̂þ iν̂þ jρ̂þ lσ̂Þ:

These equations show that the relation between kð4Þμ ðs4Þ and
kð2Þμ ðs2Þ is similar to that between kð2Þμ ðs2Þ and kμðsÞ and
hence one can see the above Eq. (18) corresponds to the
usual block spin transformation. After the block spin
transformation, the number of short lattice artifact monop-
ole loops decreases while loops having larger magnetic
charges appear. For details, see Ref. [17].
For the purpose of studying the scaling behaviors for

wide range of β, we adopt the vacuum ensembles of the
Iwasaki action from β ¼ 2.3 till β ¼ 2.8 as shown in
Table V in addition to those in Table III. For the additional
range of β, we adopt only 80 configurations in Table III,
since the errors are very small in the case of monopole
density and the effective action studies.

B. Monopole density

The first observable is the gauge-invariant monopole
density. If the Abelian monopoles exist in the continuum
limit, the monopole density must exist nonvanishing in

TABLE V. Simulation parameters (Coupling constants β of the
Iwasaki action, the lattice size, the gauge configuration number
used. The lattice spacing aðβÞ are from Ref. [25].

β Volume Nconf aðβÞ [fm]

2.3 484 80 0.1143(46)
2.4 484 80 0.1143(46)
2.5 484 80 0.1143(46)
2.6 484 80 0.1080(60)
2.7 484 80 0.0918(65)
2.8 484 80 0.0855(75)
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the continuum. In SUð2Þ, this seems to be realized
actually [17].
In SUð3Þ we have eight Abelian-like conserved monop-

ole currents instead of three in SUð2Þ. Since monopoles are
three-dimensional objects, the monopole density is defined
as follows:

ρ ¼
P

μ;sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
aðkaμðsnÞÞ2

q
4

ffiffiffi
8

p
Vnb3

; ð19Þ

where Vn ¼ V=n4 is the 4 dimensional volume of the
reduced lattice, b ¼ naðβÞ is the spacing of the reduced
lattice after n-step block spin transformation. The super-
script a denotes a color component. It is to be noted that we
do not restrict ourselves only to the Abelian monopoles of
color diagonal components as usually adopted in MAU12
gauge. Here we adopt Abelian monopoles of all color
components and take the sum over all color components.
Then

P
aðkaμÞ2 is gauge-invariant in the continuum limit,

since Jμ ¼ kμ is an adjoint operator. Note that we are
studying the new Abelian-like monopoles of the Dirac type
which must be independent of additional partial gauge
fixing.
In general, the density ρ is a function of two variables β

and n, i.e., ρ ¼ ρðn; aðβÞÞ. When we change β larger for
fixed number of blocking step, the monopole density
decreases as shown in the upper part of Fig. 5 in the case
of original unblocked monopole currents. No asymptotic
scaling is seen for fixed number of blocking. On the other
hand, we change the number of blocking steps from n ¼ 1
to n ¼ 12, the monopole density increases monotonously
for fixed β. But it is interesting to show that, if we plot
the monopole density versus blocked lattice distance
b ¼ naðβÞ, we get a universal curve ρðn; aðβÞÞ → ρðb ¼
naðβÞÞ depending on b alone as shown in Fig. 6. There
is a beautiful scaling function similarly as observed in
SUð2Þ [17], although the latter SUð2Þ results have smaller
error bars and more appealing. If the same behavior ρðb ¼
naðβÞÞ is kept for n → ∞, it corresponds to the nonzero
monopole density at aðβÞ → 0, i.e., the continuum limit.
Although we have studied the block spin transformation up
to n ¼ 12, the results obtained support strongly existence
of the continuum limit of the Abelian-like monopoles
considered here, since the asymptotic universal scaling
function depending only on b is realized.
In SUð2Þ, we have studied three other smooth gauge

fixings as well as MAU1 and no gauge-dependence is seen
as expected from the new type of Abelian-like monopoles
[11]. On the other hand in SUð3Þ, we have not yet obtained
another reliable gauge-fixed smooth vacuum ensemble
except for those in MAU12. Hence to prove existence of
the new type of Abelian-like monopoles in SUð3Þ, the
scaling behavior in MAU12 alone is not enough. Gauge
independence is still to be studied.

C. Infrared effective monopole action

The next observable is the infrared effective monopole
action. The effective action SðkÞ for original monopoles
fkaμðsÞg is defined as follows:

e−S½k� ¼
Z

DUðs; μÞe−SðUÞ

×
Y
a

δ

�
kaμðsÞ −

1

2
ϵμν ρσ∂νnaρσðsþ μ̂Þ

�
;

where SðUÞ is the Iwasaki gauge action. The effective

action for blocked monopoles fkðnÞμ ðsnÞg is evaluated as

FIG. 5. Monopole density behaviors for fixed n ¼ 1monopoles
versus β (up) and for fixed β versus n (down).

FIG. 6. Monopole density versus b ¼ naðβÞ.
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e−S½kðnÞ� ¼ Πs;μ

X∞
kμðsÞ¼−∞

δð∂0μkμÞe−S½k�δ
�
kðnÞμ ðsnÞ −

Xn−1
i;j;l¼0

kμðnsn þ ðn − 1Þμ̂þ iν̂þ jρ̂þ lσ̂Þ
�
:

Then we get the renormalization flow of infrared effective
monopole actions as S½k� → S½kð1Þ� → S½kð2Þ�….
Practically, we have to restrict the number of interaction

terms of monopoles. It is natural to assume that monopoles
which are far apart do not interact strongly and to consider
only short-ranged local interactions of monopoles.
We determine the monopole action (20), that is, the set of

couplingsFðiÞ from themonopole current ensemble fkaμðsÞg
with the aid of an inverse Monte-Carlo method first devel-
oped by Swendsen [39] and extended to closed mono-
pole currents by Shiba and Suzuki [38]. The details of the
inverse Monte-Carlo method are reviewed in Appendix A of
Ref. [18].
Also in SUð3Þ, we are dealing with Abelian-like mono-

poles of each color separately, the method is the same as
done in SUð2Þ [18]. For simplicity, here we consider only
the most important two-point interactions between monop-
ole currents composed of first 10 couplings as infrared
effective monopole action, since they are known as most
important from the careful studies of SUð2Þ case:

S½k� ¼
X10
i

FðiÞSi½k�; ð20Þ

where FðiÞ are first 10 coupling constants shown explicitly
in Table VI.
Since we now consider vacuum configurations in the

smooth MAU12 gauge, only the diagonal components are
important. Hence, we consider only the monopole currents
having a color 3.
As studied in the previous section discussing the mono-

pole density, we perform the block spin transformation of

monopole currents for n ¼ 1, 2, 3, 4, 6, 8, 12 on 484 at β ¼
2.3 ∼ 3.5 and try to fix the infrared monopole actions for all
blocked monopoles.
Contrary to the beautiful SUð2Þ results [18], the coupling

constants for small steps of blocking n ¼ 1 ∼ 3 cannot be
determined well for β ¼ 2.3 ∼ 3.5. We may need more
delicate tuning of initial conditions for FðiÞ. Here we
discuss only the results of the results of FðiÞ for n ≥ 4. All
coupling constants are in general a function of aðβÞ and n.
But similarly as in the monopole density, the scaling
behaviors are seen only when we plot FðiÞ versus
b ¼ naðβÞ. The most dominant self-coupling constant
Fð1Þ is shown in Fig. 7. The result show that the coupling
constant Fð1Þ is a function of b ¼ naðβÞ alone, namely the
scaling behavior is seen. Behaviors of other important
coupling constants are shown in Figs. 8–10. All data show
similar scaling behaviors.

TABLE VI. The quadratic interactions used for the modified
Swendsen method. Color index a of the monopole current kaμ is
omitted.

Coupling fFðiÞg Distance Type

Fð1Þ (0, 0, 0, 0) kμðsÞkμðsÞ
Fð2Þ (1, 0, 0, 0) kμðsÞkμðsþ μ̂Þ
Fð3Þ (0, 1, 0, 0) kμðsÞkμðsþ ν̂Þ
Fð4Þ (1, 1, 0, 0) kμðsÞkμðsþ μ̂þ ν̂Þ
Fð5Þ (0, 1, 1, 0) kμðsÞkμðsþ ν̂þ ρ̂Þ
Fð6Þ (1, 1, 1, 0) kμðsÞkμðsþ μ̂þ ν̂þ ρ̂Þ
Fð7Þ (0, 1, 1, 1) kμðsÞkμðsþ ν̂þ ρ̂þ σ̂Þ
Fð8Þ (2, 0, 0, 0) kμðsÞkμðsþ 2μ̂Þ
Fð9Þ (1, 1, 1, 1) kμðsÞkμðsþ μ̂þ ν̂þ ρ̂þ σ̂Þ
Fð10Þ (0, 2, 0, 0) kμðsÞkμðsþ 2ν̂Þ

FIG. 7. The self-coupling constant Fð1Þ versus b ¼ naðβÞ.

FIG. 8. The nearest-neighbor coupling constant Fð2Þ versus
b ¼ naðβÞ.
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V. SUMMARY AND DISCUSSIONS

In this paper, the scaling behaviors of the new Abelian-
like monopoles in pure SUð3Þ QCD are studied adopting
the Iwasaki improved gauge action for wide range of β and
the number of blocking transformations from n ¼ 1, 2, 3, 4,
6, 8, 12. To reduce lattice-artifact monopoles, we adopt
here the maximally Abelian gauge and U12 Landau gauge.
(1) The perfect Abelian dominance and the perfect

monopole dominance are seen fairly well with
respect to Abelian and monopole string tensions.
The asymptotic scaling behaviors are observed
roughly in these cases. The SUð3Þ results here look
better than those in SUð2Þ [33].

(2) The block spin transformation studies with respect to
Abelian monopoles are done. The behaviors of the
monopole densities ρðn; aðβÞÞ of the blocked mo-
nopole currents show the beautiful scaling behavior:
ρðn; aðβÞÞ → ρðb ¼ naðβÞÞ, i.e., ρ is a function of
b ¼ naðβÞ alone. The scaling behaviors are seen
here for n ¼ 1, 2, 3, 4, 6, 8, 12. If on larger lattices,

similar scaling behaviors are seen for n → ∞, it
means aðβÞ → 0, the continuum limit. It is stressed
that, although we adopt MAU12 gauge, the scaling
behavior of the monopole density is seen with
respect to SUð3Þ invariant combination summing
over all color components.

(3) Adopting the inverse Monte Carlo method, we
determine the coupling constant flow of the effective
monopole action under the blocking transformation.
Although we restrict ourselves to important two-
point monopole current interactions, we get the
scaling behaviors also. Namely, all coupling con-
stants which usually a two-point function of n
and aðβÞ are actually found to be a function of
b ¼ aðβÞ alone.

(4) It is interesting to know what is the continuum
theory of Abelian monopoles. The present author
along with colleagues has studied the continuum
theory of Abelian monopoles. An Abelian dual
Higgs model [40] seems to be the theory of Abelian
monopoles in the continuum limit. See the
Refs. [41,42].

(5) These results are all on 484 lattice for various
coupling constants of the Iwasaki gauge action,
adopting MAU12 gauge for reducing the lattice-
artifact monopoles. It is absolutely necessary to
show gauge independence to prove the new type
of Abelian monopoles coming from the violation of
non-Abelian Bianchi identity at least as done in
SUð2Þ [15,16] without adopting any additional
gauge fixing. But such studies in SUð3Þ seem at
present almost impracticable except for the previous
study on a small lattice [19]. Hence it is desirable to
study in smooth gauges other than MAU12 as done
in SUð2Þ case [17,18]. We have tried the maximal
center (MCG) gauge [43,44], since in SUð2Þ it
shows after the simulated annealing [45] a similar
scaling behavior as in MAU1. But in SUð3Þ at
present the simple MCG gauge fixing is too difficult
to find the real maximum point. There seem to exist
so many local maxima in the MCG gauge funtional.
Such work will be done in the future.
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FIG. 9. The another nearest-neighbor coupling constant Fð3Þ
versus b ¼ naðβÞ.

FIG. 10. The next to nearest-neighbor coupling constant Fð4Þ
versus b ¼ naðβÞ.
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