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Monte Carlo calculations of fermionic systems with continuous auxiliary fields frequently suffer from a
diverging variance for fermionic observables. If the simulations have an infinite variance problem, one
cannot estimate observables reliably even with an arbitrarily large number of samples. In this paper, we
explore a method to solve this problem using sampling based on the distribution of a system with an extra
time slice. The necessary reweighting factor is computed both perturbatively and through a secondary
Monte Carlo. We show that the Monte Carlo reweighting coupled to the use of an unbiased estimator of the
reweighting factor leads to a method that eliminates the infinite variance problem at a very small extra cost.
We compute the double occupancy in the Hubbard model at half-filling to demonstrate the method and
compare the results to well-established results obtained by other methods.
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I. INTRODUCTION

Lattice fermion models are ubiquitous in many areas of
physics, from condensed matter to lattice QCD. Frequently,
no analytic methods are available to study them, so
stochastic methods are used instead. But fermions pose a
number of special challenges to Monte Carlo calculations,
among them the infinite variance problem we address in
this paper. The Hubbard model is an example of a lattice
fermion model and has attracted much attention since it not
only exhibits a rich phase structure as the temperature and
doping are varied (including antiferromagnetic, supercon-
ducting, and non-Fermi liquid regions) but also because it is
supposed to be intimately connected to the physics of
cuprate high-Tc superconductors.
A common strategy for simulating the Hubbard model

is to introduce an auxiliary bosonic variable via the
Hubbard-Stratonovich transformation, which allows for a
Monte Carlo simulation over those variables (instead of
the original fermionic ones) to be carried out. Although
discrete auxiliary variables are most commonly used, there
are at least two reasons for using continuous variables
instead. First, away from half-filling, the action of the

auxiliary field becomes complex and the model develops a
sign problem, making a Monte Carlo simulation nearly
impossible. The methods used to bypass the sign problem,
such as the complex Langevin method, are all based on an
analytic continuation of the auxiliary variables [1–5] (see
Ref. [6] for a review), all require the use of continuous
variables. Second, the very successful hybrid Monte Carlo
algorithm, which speeds up Monte Carlo calculations in
othermodels, also requires continuous auxiliary fields [7–9].
However, the desirability of continuous auxiliary variables is
tempered by the fact that their use typically leads to large (or
even infinite) variance for interesting observables, again
making Monte Carlo calculations extremely difficult. A
manifestation of this problem also occurs in lattice QCD
for discretizations that encounter “exceptional” gauge con-
figurations [10]. Note that while for QCD this problem was
detected in the context of quenched simulations and attrib-
uted to neglecting the determinant in the sampling weight,
similar divergences crop up in dynamical simulations [11]
which lead to instabilities in the HMC algorithm. The
solution for these instabilities [12–14] is similar to the
solution we explore here: use sampling with a positive
weight that has no zeros in the field space together with a
reweighting.
A number of methods have been proposed to deal with

the infinite variance problem [15–18]. The origin of the
problem is that some auxiliary field configurations with
small statistical weights contribute significantly to observ-
ables. A way of dealing with this issue, proposed in
Ref. [15], is to sample the configurations according to a
modified distribution so that small statistical weights and
large contributions to the observables do not occur for the
same configurations. The proposal was made in the context
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of auxiliary-field quantum Monte Carlo with noncompact
auxiliary fields at zero temperature, and consists in a
reweighting with respect to a probability density involving
one more time slice than the system being considered.
In this work, we adapt the extra time slice method to

be suitable for standard Monte Carlo simulations of
Euclidean time path integrals over compact auxiliary
fields, and we show how it is implemented for two
discretizations of the action of the system. The imple-
mentation proposed in Ref. [15], however, requires
that one compute fermion contractions of expð−ϵHÞ to
obtain the reweighting factor, where H is the Hamiltonian
operator of the system under investigation. Two options
present themselves: compute several terms in an expansion
in ϵ, or estimate it nonperturbatively using Monte Carlo
by writing it as an integral with respect to a known
probability distribution. Since the first option introduces
new OðϵkÞ errors, and quickly becomes difficult to
calculate at orders k > 2, the second option is preferable.
The latter option amounts to a stochastic estimate of 1=F,
where F is a quantity estimated by Monte Carlo—but the
estimator 1=F̄ for this quantity is known to be biased [19].
We therefore implement an unbiased estimator of the
reweighting factor and show the improvement obtained
by this method.
In what follows, we first define our conventions for the

testbed model used in our investigation—namely, the
Hubbard model at half-filling. We then review the origins
of the infinite variance problem and display its symptoms in
a Monte Carlo simulation. The extra time slice method is
then defined, together with the two approaches to comput-
ing the requisite reweighting factor. Lastly, we describe the
unbiased estimation of the reweighting factor.

II. MODEL

We denote an electron creation operator at site x by
ψ̂†
a;x, where a ¼ ↑;↓ is the spin. The grand canonical

Hamiltonian of the Hubbard model on a square lattice is
then given by

H ¼ −κ
X
hx;yi

ðψ̂†
↑;xψ̂↑;y þ ψ̂†

↓;xψ̂↓;yÞ

þ U
X
x

�
ψ̂†
↑;xψ̂↑;x −

1

2

��
ψ̂†
↓;xψ̂↓;x −

1

2

�

− μ
X
x

ðψ̂†
↑;xψ̂↑;x þ ψ̂†

↓;xψ̂↓;x − 1Þ: ð1Þ

Here, we have used parameters which yield half-filling
at μ ¼ 0. The summation in the first term is over sites
hx; yi that are nearest neighbors. On a lattice with an
even number of sites, we define ψ̂1;x ≡ ψ̂↑;x, ψ̂2;x≡
ð−1Þxψ̂†

↓;x, so that, in terms of the new variables, the
Hamiltonian becomes

H ¼ −κ
X
hx;yi

ðψ̂†
1;xψ̂1;y þ ψ̂†

2;xψ̂2;yÞ

þ U
2

X
x

ðψ̂†
1;xψ̂1;x − ψ̂†

2;xψ̂2;xÞ2

− μ
X
x

ðψ̂†
1;xψ̂1;x − ψ̂†

2;xψ̂2;xÞ ð2Þ

up to a constant shift.
Using a Hubbard-Stratonovich transformation, the

expectation value of an observableO in a thermal ensemble
at temperature T has a representation as an integral over
an auxiliary bosonic field defined on the same square
lattice:

hOi ¼
R ½dϕ�OðϕÞe−S0ðϕÞ detMðϕÞR ½dϕ�e−S0ðϕÞ detMðϕÞ ; ð3Þ

where the auxiliary field action S0ðϕÞ is

S0ðϕÞ ¼ −β
X
x;t

cosϕt;x: ð4Þ

As described in the Appendix, one can derive this
using a Trotterization of the partition function Z ¼
Tr expð−H=TÞ ≈ Tr½expð−ϵHÞ�N . The matrix MðϕÞ ¼
M1ðϕÞM2ðϕÞ is a product of the fermion matrices for each
spin, which are given by

MaðϕÞ ¼ 1þ BaðϕNÞ � � �Baðϕ1Þ; ð5Þ

where ϕt ¼ fϕt;xg denotes the field on time slice t, and the
spatial matrices BaðϕÞ are given by

BaðϕtÞ ¼ e−H2e−H̃4ðϕtÞ ð6Þ

with

ðH2Þx;y ¼ κϵδhx;yi þ εaμϵδx;y;

H̃4ðϕtÞx;y ¼ −iεa sinϕt;xδx;y: ð7Þ

Here, δhx;yi is the nearest-neighbor hopping matrix, and
ε1 ¼ þ1, ε2 ¼ −1. The parameter β is related to ϵU by

e−ϵU=2 ¼ I0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 1

p
Þ

I0ðβÞ
: ð8Þ

This path integral representation, derived in the Appendix,
is accurate up to terms of order ϵ2. Another representation,
accurate only up to order ϵ, is also discussed there.

III. INFINITE VARIANCE PROBLEM

Consider the expectation value in Eq. (3). For a
fermionic observable, OðϕÞ detMðϕÞ arises from the
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integration of a polynomial in Grassmann variables, result-
ing in a polynomial in the matrix elements of MðϕÞ,
and is therefore nonsingular for a finite system. This
remains true even for so-called “exceptional configura-
tions” with detMðϕÞ ¼ 0. It is also typically the case that
OðϕÞ detMðϕÞ does not vanish on these configurations.
For nearly exceptional configurations with a small but
nonvanishing determinant, M−1 exists, so OðϕÞ ∼ 1=
detMðϕÞ can be large. While the contribution of such
configurations to the average value of the observable is
finite, their contribution to the variance σ2O ¼ hO2i − hOi2
is unbounded. In fact, the integrand in the numerator of

hO2ðϕÞi ¼
R ½dϕ�O2ðϕÞe−S0ðϕÞ detMðϕÞR ½dϕ�e−S0ðϕÞ detMðϕÞ ð9Þ

is proportional to the divergent quantityO2ðϕÞdetMðϕÞ∼1=
detMðϕÞ. And because the polynomial O detM typically
does not vanish at exceptional configurations, their presence
will cause the variance to diverge.
In the Monte Carlo simulation, one computes a stochas-

tic estimatorO of hOi, together with an error estimate given
by the standard deviation of the mean,

errO ¼
ffiffiffiffiffiffi
σ2O
n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1
ðO2 −O2Þ

r
; ð10Þ

where n is the number of statistically independent ϕ
configurations generated in the Markov chain. When the
variance σ2O is finite, the error estimate errO decreases as
1=

ffiffiffi
n

p
. If the probability distribution is importance-sampled

according to the distribution pðϕÞ∼ exp½−S0ðϕÞ�detMðϕÞ,
the exceptional configurations with vanishing detMðϕÞ
are never accepted, yet nearby configurations can be
accepted, and these contribute arbitrarily large values for
O2ðϕÞ detMðϕÞ, leading to the nonconvergence of the

variance estimator as n is increased [15,17]. The effect
of the infinite variance in a Monte Carlo calculation is
exemplified by the upper curve in Fig. 1. Sudden “glitches”
caused by the sampling of a nearly exceptional configu-
ration change abruptly the average value of the observable
(the double occupancy D in this case) and lead to the
nonconvergence of the estimated error. In Fig. 2, we show
that the large values of D are correlated with small
eigenvalues of the fermion matrix MaðϕÞ.
It would be advantageous to sample auxiliary fields

according to a different statistical distribution, where
(i) the variance with respect to the new distribution is
not infinite, and (ii) where the probability of the nearly
exceptional configurations is not so small and they are
sampled more frequently, while at the same time
reweighting them down so their contribution is correctly
taken into account. One such method is discussed in the
next section.

FIG. 1. The double occupancy and its error estimate on a 4 × 4 lattice, with U=κ ¼ 8, μ ¼ 0, T=κ ¼ 0.5, and ϵ ¼ 2.0. The left plot is
the Monte Carlo history of the cumulative mean and error for the double occupancy as a function of number of updates, and the right plot
is the scaled error, errD ×

ffiffiffi
n

p
, which should be constant if the error estimate is reliable. Sudden jumps in the error are a symptom of the

infinite variance problem. The results here are produced using the improved action.

FIG. 2. Double occupancy versus the smallest absolute eigen-
value of the fermion matrix MðϕÞ. We highlight with red the
“exceptional” configurations for which the double occupancy
exceeds 20. The horizontal line marks the average value of D.
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IV. METHODS

A. Extra time slice reweighting

To eliminate the infinite variance problem in our sim-
ulation, we follow the method proposed by Shi et al. [15].
The basic idea is to sample the auxiliary field according to a
modified distribution and reweigh the contribution of each
configuration appropriately. We will choose the probability
distribution of an identical system with one extra time slice
to define the distribution we will sample from. The
rationale is that for a given auxiliary field, this probability
distribution, when neglecting the fields on the extra time
slice (marginalized distribution), is similar to the original
probability density, but it has no zeros.
Formally, we multiply and divide the integrand of the

partition function by a function FðϕÞ defined by

FðϕÞ≡
Z

dϕ� e−S0ðϕ�Þ detMNþ1ðϕ;ϕ�Þ; ð11Þ

so that

Z ¼
Z

½dϕ�Ne−S0ðϕÞ detMNðϕÞ
FðϕÞ
FðϕÞ

¼
Z

½dϕ�Ndϕ�RðϕÞe−S0ðϕ;ϕ�Þ detMNþ1ðϕ;ϕ�Þ; ð12Þ

where we have defined a reweight factor RðϕÞ≡
detMNðϕÞ=FðϕÞ. Above, S0ðϕ�Þ ¼ −β

P
x cosϕ

�
x is the

bosonic action of the extra time slice, and S0ðϕ;ϕ�Þ ¼
S0ðϕÞ þ S0ðϕ�Þ is the total auxiliary field action over
N þ 1 time slices. For insertions of an observable OðϕÞ,
we similarly findZ

½dϕ�e−S0ðϕÞOðϕÞ detMNðϕÞ

¼
Z

½dϕ�dϕ�OðϕÞRðϕÞe−S0ðϕ;ϕ�Þ detMNþ1ðϕ;ϕ�Þ: ð13Þ

Observables may then be written as

hOiN ¼ hOðϕÞRðϕÞiNþ1

hRðϕÞiNþ1

; ð14Þ

where the symbol h� � �iNþ1 stands for the average with
respect to the probability distribution of a system with an
extra time slice:

pNþ1ðϕ;ϕ�Þ ¼ e−S0ðϕ;ϕ�Þ detMNþ1ðϕ;ϕ�ÞR ½dϕ�dϕ�e−S0ðϕ;ϕ�Þ detMNþ1ðϕ;ϕ�Þ ; ð15Þ

where detMNþ1ðϕ;ϕ�Þ is the productY
a¼1;2

det½1þ Baðϕ�ÞBaðϕNÞ � � �Baðϕ1Þ�: ð16Þ

At half-filling, these two determinants are complex con-
jugates of each other, and therefore detMNþ1 is greater than
or equal to zero. The function FðϕÞ is then strictly positive,
since it is an integral of a non-negative quantity that cannot
be uniformly zero, and because detM is bounded above on
a finite lattice, FðϕÞ is also nonsingular. This makes the
reweight factor RðϕÞ strictly positive.
The infinite variance problem is solved by this reweight-

ing prescription because, if ϕ0 is an exceptional configu-
ration where detMNðϕÞ vanishes, then any positive power
of Oðϕ0ÞRðϕ0Þ will be nonsingular, since the determinant
detMNðϕÞ cancels in their product. In particular, the
integrand of the variance of OR is ðORÞ2pNþ1, which is
nonsingular.
The computation of FðϕÞ can proceed in different

ways. As described in Sec. II of the Appendix, F can be
approximately written as a Grassmann integral of the
observable expð−ϵHÞ in the presence of a background field
ϕ. Perhaps the simplestway to compute it is then to expand in
ϵ as expð−ϵHÞ ¼ 1 − ϵH þ � � � and compute the fermion
contraction of H, and higher-order terms, and truncate at
someorder.Aswedescribe in Sec.V,we find empirically that
the Oðϵ2Þ error introduced by this truncation is numerically
very large. Instead, we will perform a nonperturbative
Monte Carlo estimate of the reweighting factor by noticing
that FðϕÞ can be computed as an expectation value

FðϕÞ ¼ ZhdetMNþ1ðϕ;ϕ�Þig ð17Þ

with respect to the probability distribution gðϕ�Þ ¼
exp½−S0ðϕ�Þ�=Z. Note that the normalization constant
Z ¼ R

dϕ� exp½−S0ðϕ�Þ� can be evaluated analytically,
but it can be neglected, since it drops out in the ratio in
Eq. (14). This “sub–Monte Carlo” is relatively inexpensive,
first because the distribution function gðϕ�Þ factorizes
site by site, and then standard methods can be used to
sample efficiently the one-dimensional probability dis-
tribution. Second, the matrices appearing in MNþ1ðϕ;ϕ�Þ
have ϕ as a fixed background, so the matrix product
BaðϕNÞ � � �Baðϕ1Þ need only be computed once in the
evaluation of FðϕÞ.

B. Unbiased estimator for 1=F

A subtlety arises in the Monte Carlo evaluation of
1=FðϕÞ. The Monte Carlo estimator for FðϕÞ is computed
by taking the mean over n� auxiliary variables ϕ�

i :

FðϕÞ≡ Z
1

n�
X
i

detMNþ1ðϕ;ϕ�
i Þ: ð18Þ

FðϕÞ is an unbiased estimator of FðϕÞ, but 1=FðϕÞ is not
an unbiased estimator of 1=FðϕÞ.
Let us denote Ai ¼ Z detMNþ1ðϕ;ϕ�

i Þ, to simplify
notation. We can compute the bias of the estimator 1=Ā
from an expansion in A − hAi:
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�
1

Ā

�
¼ 1

hAi −
�
Ā − hAi
hAi2

�
þ
�ðĀ − hAiÞ2

hAi3
�
þ � � � :

ð19Þ
The second term vanishes, but the remaining terms do not,
which gives us a perturbative expansion for the bias. In a
Monte Carlo simulation, such a bias is only relevant if it is
larger than the statistical error. Since the bias falls like 1=n
to leading order, while the error falls as 1=

ffiffiffi
n

p
, in general

one can control for the bias by increasing the sample size.
However, if generating a large ensemble is expensive, a
more elegant solution is to construct an unbiased estimator
instead.
We adopt the unbiased estimator proposed in Ref. [19]

for the reciprocal 1=hAi, for positive definite Ai > 0. The
estimator is defined by

ξ̂A ≡ w
qn

Yn
i¼1

ð1 − wAiÞ: ð20Þ

Here, n is a non-negative integer-valued random variable
distributed according to a geometric distribution with
success probability p. The probability for outcome n is
qn ¼ ð1 − pÞnp. To calculate this estimator, we have to
evaluate n uncorrelated random samples Ai. The average
number of random variables required to compute the
estimator once is hni ¼ 1=p. The estimator is unbiased
for any value of p and any value of w < 2=hAi. For a given
ϕ, we tune the values of w and p to minimize the variance
of the estimator, using the following method [19]: We take

k samples of Ai and compute the means Ā and A2. We
choose w and p according to

w ¼ min

�
1

kĀ
;
Ā

A2
;

1

Amax

�
;

p ¼ 1 − ½1 − 2wĀþ w2A2�12; ð21Þ

where Amax is the largest Ai. The total number of samples
to get one estimate is then kþ hni ¼ kþ 1=p. In our
simulations, it turns out that for most cases w ¼ 1=kĀ and
then p ≈ 1=k; thus, the total cost for one evaluation is 2k,
on average.

V. RESULTS

To test this method, we compute the double occupancy

DðϕÞ ¼ 1

V

X
x

hn↑ðxÞn↓ðxÞiF

¼ 1

V

X
x

½1 −M−1
1 ðϕÞx;x�M−1

2 ðϕÞx;x ð22Þ

for the Hubbard model at half-filling in a small volume.
The infinite variance problem is apparent in Fig. 1. In the
same figure, the corresponding calculation using the extra
time slice reweighting (with the unbiased estimator) is
shown. It is evident that the glitches are gone or, at least,
drastically reduced. Even more evident is the fact that the
variance of the sampled mean approaches a constant instead
of diverging as the number of samples is increased. This
difference in behavior between the calculation with and
without reweighting was consistently observed over a range
of Hubbard model parameters and for different variations of
the reweighting procedure (which are described next).
In the left pane of Fig. 3, we show the result of the ϵ → 0

extrapolation using the “improved” action [accurate to
Oðϵ2Þ] but computing the reweighting factor RðϕÞ in
two ways: using sub–Monte Carlo estimation and from
an expansion of expð−ϵHÞ ≈ 1 − ϵH that introduces ϵ2

corrections. The sub–Monte Carlo method has a mild ϵ
dependence; this may be expected from the fact that the
improved action is correct to order ϵ2 and that no further
approximation is made in computing R, but we also
observe that the coefficient of ϵ2 is small. Meanwhile,

FIG. 3. The double occupancy on a 4 × 4 lattice, with U=κ ¼ 8, μ ¼ 0, and T=κ ¼ 0.5. The left and right plots are with the improved
and conventional actions, respectively. The double occupancy is fitted as a function of ϵ. For the expansion method, the reweighting
factor was calculated to order ϵ, and only the three leftmost points are used in the fit. The gray band is the benchmark value of the double
occupancy in infinite volume [20].
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the expð−ϵHÞ expansion, while parametrically of the same
order as the sub–Monte Carlo method, introduces a notable
systematic error, shifting the ϵ2 coefficient substantially. In
the right pane of Fig. 3, the corresponding results computed
from the “conventional” action described in Sec. 1 of the
Appendix are displayed. This action is accurate to order ϵ,
and this is reflected in the data; the systematic error in ϵ is
large. We note that it is likely that higher-order expansions
of expð−ϵHÞ will show a better continuum limit behavior
than the ϵ2 truncation. However, the calculation of R
quickly becomes impractical due to the number of con-
tractions needed to compute higher powers of H.
This indicates that if one wants to keep the advantages of

using the improved action and, at same time, circumvent
the infinite variance problem using the extra time slice
reweighting, the best strategy is to use the sub–Monte Carlo
estimator, as described in the previous section.
The usefulness of our method hinges on being able to

estimate the reweighting factor with a moderate number of
sub–Monte Carlo samplings. In Fig. 4, we show the bias for
the double occupancy as a function of the (average) number
of sub–Monte Carlo samplings required. We compare the
unbiased estimator discussed above with a biased one that
uses 1=F̄ as an estimator for 1=hFi. The results clearly
show that the unbiased estimator is superior to the biased
one: the error bars are comparable, and the bias vanishes.
We note that the stochastic errors on the final results are a
combination of the variance of the observable from
configuration to configuration and the variance of the
estimator. As we reduce the variance of the estimator,
which comes at increasing cost, the errors are asymptoti-
cally converging to the value controlled by the configura-
tion-to-configuration fluctuations. The number of sub–
Monte Carlo samplings required to reach the asymptotic
regime turns out to be very modest and, since the
reweighting is done only on the configurations used for
measurements, the overhead of using our method is
minimal.

VI. DISCUSSION

Using the Hubbard model as a testbed, we studied the
infinite variance problem in a fermionic system and
suggested a new way to improve the extra time slice
method proposed in Ref. [15]. We established that comput-
ing the reweighting factor in powers of the time step ϵ, as
advocated in Ref. [15], leads to large finite ϵ corrections, at
least at leading order. We proposed instead to compute the
reweighting factor using a sub–Monte Carlo calculation
and pointed out that using an unbiased estimator allow us to
use very large values of ϵ.
To assess the effectiveness of our method, we calculated

the double occupancy of the Hubbard model. We used
two different discretizations, one correct up to OðϵÞ, and
another improved one, correct up to Oðϵ2Þ. In order to
take full advantage of the convergence properties of the
improved action, it is essential that the reweighting be done
nonperturbatively and using an unbiased estimator.
We note that for efficient simulations, we need to use the

improved action. As shown in Fig. 3, one can use larger
values of ϵ with our improved action. Larger values of ϵ
translate in a smaller number of time slices with a resulting
lowering of computational costs. In fact, the bottleneck in
Monte Carlo simulation of fermionic theories is the cal-
culation of the fermion determinant. This scales in general
as OðV3N3Þ for direct evaluations, and as OðV3NÞ when
using the reduction formula, as in Eq. (A9), where V is the
volume of the spatial lattice and N is the number of time
slices. Additionally, autocorrelation is generally increased
at smaller values of ϵ, which then favors simulations with
large values of ϵ. On the other hand, the improved action
simulations exposed the infinite variance problem, which
seems to be more prominent than when simulating the
unimproved action.
The success of the extra time slice method requires that

FðϕÞ be strictly greater than zero, which holds for the
Hubbard model at half-filling. Away from half-filling, a

FIG. 4. The double occupancy with biased and unbiased estimators on a 4 × 4 lattice, with U=κ ¼ 8, μ ¼ 0, and T=κ ¼ 0.5. The left
and right plots are at ϵ ¼ 0.5 and ϵ ¼ 2.0, respectively. The bias in the biased estimator vanishes as 1=nsub; the solid line represents that
fit. The number of sub-MC samples for the unbiased estimator is random: here we use the average value nsub ≈ 2k, which includes the
cost of the k estimates required to compute w and p in Eq. (21). The gray band is the extrapolation for the biased estimator at nsub → ∞
including its error bar.
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sign problem develops which then spoils this property, and
a new definition of FðϕÞ will be required to avoid the
variance problem. However, it may be possible to apply a
modified extra time slice method in that scenario; we will
explore this in future work.
Lastly, we note that the fact that 1=Ā is a biased

estimator for 1=hAi also implies that in traditional
applications of reweighting—for example, in simulations
with a sign problem—the estimate for 1=hRi [see denom-
inator in Eq. (14)] is biased. In fact, if the same ensemble is
used to compute the numerator and denominator, the
overall estimator for any observable will have a bias
different from that of 1=R̄ alone, and therefore care should
be taken to define unbiased estimators for observables in
reweighted theories, especially when the ensemble size is
not large.
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APPENDIX: PATH INTEGRAL
REPRESENTATIONS

1. OðϵÞ discretization
The first discretization of the partition function Z ¼

Tr½expð−ϵHÞ�N is obtained by resolving the trace in terms
of fermion coherent states [21], and then expanding the
exponential expð−ϵHÞ in powers of ϵ. Then, upon inserting
coherent state identities and using the property

hηjFðψ̂†; ψ̂Þjη0i ¼ Fðη̄; η0Þe
P

x;a
η̄axη

0a
x ðA1Þ

for any polynomial function Fðψ̂†; ψ̂Þ in normal-ordered
form, the partition function becomes a Grassmann integral
over a product of factors:

hηtþ1je−ϵHjηti ¼ e
P

x;a
η̄atþ1;xη

a
t;xðe−Hðη̄tþ1;ηtÞ þOðϵ2ÞÞ; ðA2Þ

where H ¼ H2 þH4, with H2 quadratic in Grassmann
variables and H4 quartic:

H2 ¼ ϵκ
X
hx;yi;a

η̄atþ1;xη
a
t;y þ

X
x;a

Zaη̄
a
tþ1;xη

a
t;x; ðA3Þ

with Za ¼ ϵU
2
þ εaϵμ, ε1 ¼ þ1, ε2 ¼ −1, and

H4 ¼
Uϵ

2

X
x;a;b

ðη̄atþ1;xðσ3Þabηbt;xÞ2: ðA4Þ

Here, σ3 is the Pauli z matrix.

We perform a Hubbard-Stratonovich (HS) transforma-
tion to a compact auxiliary field by noting that for any X
such that X2 ≠ 0 but X3 ¼ 0, we have

1

2πI0ðβÞ
Z

2π

0

dθ eβ cos θeiX sin θ ¼ e−
Uϵ
2
X2

; ðA5Þ

with β determined from the condition Uϵ ¼ I1ðβÞ=βI0ðβÞ,
and where InðzÞ are modified Bessel functions. Thus,
letting X ¼ η̄atþ1;xðσ3Þabηbt;x, the factors expð−H4Þ for each
time slice become integrals over ϕt ¼ fϕt;xg, and one can
then perform the Grassmann integration to find

Z ¼
Z

½dϕ�e−S0ðϕÞ detðM1ðϕÞM2ðϕÞÞ þOðϵÞ; ðA6Þ

where ½dϕ� ¼ Q
t;x dϕt;x, S0 is the auxiliary field action

[Eq. (4)], and the fermion matrix is given by

MaðϕÞðt;xÞ;ðt0;yÞ ¼ δx;yδt;t0 þ AaðϕtÞx;ybtδt;t0þ1; ðA7Þ

with

AaðϕtÞx;y ¼ ðZa − 1 − εai sinϕt;xÞδx;y − ϵκδhx;yi: ðA8Þ

Here, bt ¼ −1 for t ¼ N − 1 and 1 otherwise, due to
antiperiodicity, and δhx;yi ¼

P
μ δx;yþμ is the hopping

matrix. Using the following identity for an arbitrary set
of matrices fAtg [22]:

det

2
666664

1 0 � � � AN

A1 1 � � � 0

..

. ..
. . .

. ..
.

0 � � � AN−1 1

3
777775 ¼ detð1 − ð−1ÞNAN � � �A1Þ;

ðA9Þ

we can show that

Z ¼
Z

½dϕ�e−S0ðϕÞ detM1ðϕÞ detM2ðϕÞ þOðϵÞ; ðA10Þ

where

MaðϕÞ ¼ 1þ ð−1ÞNAaðϕNÞ � � �Aaðϕ1Þ: ðA11Þ

The error in using this action isOðϵÞ, because, in taking the
product of Eq. (A2) for all t, the subleading term is
OðNϵ2Þ ¼ T−1OðϵÞ, T being the temperature.

2. Oðϵ2Þ discretization
The second discretization is derived by a different

Trotterization which separates quadratic and quartic terms
in the Hamiltonian:
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Z ¼ Tr½ðe−ϵH2e−ϵH4ÞN � þOðϵ2Þ; ðA12Þ

with

H2 ¼ −κ
X
hx;yi

X
a

ψ̂†
a;xψ̂a;y − μ

X
x

ðn̂1;x − n̂2;xÞ;

H4 ¼
U
2

X
x

ðn̂1;x − n̂2;xÞ2: ðA13Þ

Above, n̂1;x is the number operator for up-electrons on site
x, and n̂2;x is the number operator of down-holes.
We implement a HS transformation to a compact

auxiliary field by noting that Eq. (A5) is also valid for
any operator X̂ with eigenvalues f0;�1g, with β instead
satisfying e−Uϵ=2 ¼ I0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 1

p
Þ=I0ðβÞ. If we now use the

coherent state property [21],

hηje
P

x;y
ψ̂†
xAxyψ̂y jη0i ¼ e

P
x;y

η̄xðeAÞxyη0y ; ðA14Þ

and let X̂ ¼ n̂1;x − n̂2;x, we can write the partition
function as

Z ¼
Z

½dϕ�e−S0ðϕÞ detðM1ðϕÞM2ðϕÞÞ þOðϵ2Þ; ðA15Þ

where the fermion matrix Ma is now given by

MaðϕÞðt;xÞ;ðt0;yÞ ¼ δx;yδt;t0 þ BaðϕtÞx;ybtδt;t0þ1 ðA16Þ

and

BaðϕtÞx;y ¼ e−H̃
a
2e−H̃

a
4
ðϕtÞ ðA17Þ

with the definitions

ðH̃a
2Þx;y ¼ κϵδ<x;y> þ εaϵμδx;y

H̃a
4ðϕtÞx;y ¼ −iεa sinϕt;xδx;y: ðA18Þ

Using Eq. (A9) again, one arrives at

Z ¼
Z

½dϕ�e−S0ðϕÞ detM1ðϕÞ detM2ðϕÞ þOðϵ2Þ; ðA19Þ

where

MaðϕÞ ¼ 1þ BaðϕNÞ � � �Baðϕ1Þ: ðA20Þ

We emphasize that β here is a different function of Uϵ than
the one appearing in Eq. (A10). Furthermore, the discre-
tization error in this expression for the partition function is
Oðϵ2Þ, whereas for the conventional action in Eq. (A10),
the error is OðϵÞ. In this sense, the action in Eq. (A19) is
“improved.”
The “expansion method” in Fig. 3 refers to an alternative

way of evaluating FðϕÞ [Eq. (11)], in terms of fermion
contractions with respect to an action over N time slices.
First, we begin with the identity

detMNþ1ðϕ;ϕ�Þ ¼ Tr½Bðϕ�ÞBðϕNÞ � � �Bðϕ1Þ�; ðA21Þ

where BðϕÞ ¼ B1ðϕÞB2ðϕÞ. Integrating over ϕ� with a
density e−S0ðϕ�Þ, we obtain

FðϕÞ ¼ Tr½e−H̃2e−ϵH4BðϕNÞ � � �Bðϕ1Þ�
¼ Tr½ð1 − ϵHÞBðϕNÞ � � �Bðϕ1Þ� þOðϵ2Þ: ðA22Þ

The quantity in the trace can be evaluated using the
properties of Grassmann coherent states as

G1ðϕÞ ¼ ð1 − ϵh1ðϕÞÞ detMNðϕÞ; ðA23Þ

where

h1ðϕÞ ¼ κ
X
hx;yi

ððM−1
1 Þy;x þ ðM−1

2 Þy;xÞ

þ U
2

X
x

ððM−1
1 Þx;x þ ðM−1

2 Þx;x

− 2ðM−1
1 Þx;xðM−1

2 Þx;xÞ
þ μ

X
x

ððM−1
1 Þx;x − ðM−1

2 Þx;xÞ; ðA24Þ

and M−1
a ðϕÞ is the matrix inverse of Eq. (A20). Thus,

FðϕÞ ¼ G1ðϕÞ þOðϵ2Þ. Higher orders may be com-
puted, but the number of fermion contractions grows
exponentially.
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