
Neutrinoless double beta decay from lattice QCD:
The short-distance π − → π + e− e − amplitude

W. Detmold, W. I. Jay , D. J. Murphy, P. R. Oare , and P. E. Shanahan
Center for Theoretical Physics, Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA

and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions

(Received 21 December 2022; accepted 29 March 2023; published 3 May 2023)

This work presents a determination of potential short-distance contributions to the unphysical π− →
πþe−e− decay through lattice QCD calculations. The hadronic contributions to the transition amplitude are
described by the pion matrix elements of five Standard Model effective field theory operators, which are
computed on five ensembles of domain-wall fermions with Nf ¼ 2þ 1 quark flavors with a range of
heavier-than-physical values of the light quark masses. The matrix elements are extrapolated to the
continuum, physical light-quark mass, and infinite volume limit using a functional form derived in chiral
effective field theory (χEFT). This extrapolation also yields the relevant low-energy constants of χEFT,
which are a necessary input for χEFT calculations of neutrinoless double beta decay of nuclei.
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I. INTRODUCTION

Neutrinoless double beta (0νββ) decay, if observed,
would unambiguously reveal the existence of physics
beyond the Standard Model (BSM) [1]. In particular, it
would imply that the difference between baryon number
and lepton number (B − L) is not a fundamental symmetry
of the Universe [2], and would prove that the neutrino is a
Majorana particle [3]. Moreover, observation of 0νββ
decay would provide additional information about the
matter-antimatter asymmetry in the Universe [4], which
may help to explain baryogenesis and further constrain the
neutrino masses [5].
As such, experiments are underway worldwide to search

for 0νββ decay, the most sensitive of which study 76Ge and
136Xe and constrain the half-lives of 0νββ decay in each
isotope to be greater than 1026 years [6–10]. Understanding
the implication of these constraints for possible BSM
physics scenarios requires input in the form of nuclear
matrix elements (NMEs); which NMEs are relevant
depends on the underlying mechanism of 0νββ decay.
These mechanisms can be broadly divided into two
categories: long-distance mechanisms, in which the decay
is induced by a nonlocal interaction mediated by a light
particle of mass much less than the hadronic scale [11,12];
and short-distance mechanisms, in which the decay is
mediated by a heavy particle that can be integrated out

in effective field theory (EFT) to generate contact inter-
actions [13,14]. In extensions of the Standard Model, long-
distance mechanisms are typically assumed to be generated
by the dimension-5 Weinberg operator, in which the
mediating particle is generally a light Majorana neutrino
(although other scenarios have been considered) [15–18],
while short-distance mechanisms are described by oper-
ators of dimension greater than or equal to 9 [19]. The
dominant mechanism of 0νββ decay will determine the
scale ΛLNV at which lepton-number violating physics is
observed. In particular, if 0νββ decay is primarily described
by a long-distance mechanism, then ΛLNV ≫ 1 TeV [20],
while if 0νββ decay is primarily described by a short-
distance mechanism, ΛLNV ∼ 1 TeV [21,22]. Both cases
must be understood in order to draw conclusions about the
underlying BSM physics from any experimental detection
of 0νββ decay.
Calculations of long- and short-distance 0νββ decay

matrix elements have been performed with nuclear many-
body methods [21,23]. These techniques are currently the
only theoretical methods which can provide insight into
0νββ decay in nuclear isotopes which are experimentally
relevant. The requisite NMEs for the long- and short-
distance 0νββ decay of 48Ca, 76Ge, and 136Xe have been
computed, although large model dependence in the
calculated NMEs remains a challenge for these techniques
[6,7,24–26]. To improve these calculations, connection to
the Standard Model is required.
Lattice quantum chromodynamics (LQCD) is the only

known method with which to compute NMEs directly from
the underlying quark and gluon degrees of freedom.
However, current LQCD calculations of nuclei suffer from
a signal-to-noise problem [27,28] and a factorial increase in
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the number of quark contractions with atomic number [29],
which make calculations of phenomologically relevant
nuclei impractical in the absence of new algorithms and
approaches. Instead of direct computation of large nuclei,
recent work uses EFT [16,22,30–33] to relate LQCD
calculations of simpler processes such as the unphysical
mesonic transition π− → πþe−e− and the two-nucleon
0νββ decay n0n0 → pþpþe−e− to nuclear 0νββ decay.
Studies of the π− → πþe−e− transition in particular do not
incur the technical challenges faced by LQCD calculations
of nuclei. The long-distance pion matrix elements have
been computed directly using LQCD with a domain-wall
fermion action [34,35]. The associated short-distance pion
matrix elements have been calculated from LQCD input
with two approaches: relating the desired matrix elements
to kaon-mixing matrix elements, assuming SUð3Þ chiral
symmetry [36], and computing the pion matrix elements
directly using LQCD with a mixed action [37].
This work presents a direct LQCD computation of the

π− → πþe−e− matrix elements of the leading short-
distance (dimension-9) operators, performed for me ¼ 0
and at threshold. This calculation uses domain-wall fer-
mions, as their chiral symmetry properties yield matrix
elements that have a simple renormalization structure.
There is a mild tension between the results of the present
calculation and the previous mixed-action LQCD calcu-
lation of the same matrix elements in Ref. [37], which may
be due to the differences in the action used in each
calculation. The ensembles used in this calculation are
the same as those used in the first lattice computation of the
long-distance π− → πþe−e− amplitude mediated by light
Majorana neutrino exchange [34]. As such, both the long
and short-distance contributions to π− → πþe−e− have
now been computed in a consistent framework, allowing
conclusions to be drawn regarding the relative importance
of the two potential contributions, as discussed in Sec. IV.
The remainder of this paper is organized as follows.

Section II details the EFT framework for the short-distance
π− → πþe−e− decay and the LQCD calculation of the
hadronic part of the transition amplitude. Section III
describes the procedure used to extrapolate the renormal-
ized LQCD matrix elements to the physical point using a
model based on chiral EFT (χEFT), and presents results for
the extrapolated matrix elements and the extracted χEFT
low-energy constants (LECs). Section IV summarizes the
results and presents an outlook.

II. SHORT-DISTANCE MATRIX ELEMENTS

A. Short-distance operators

In the Standard Model EFT (SMEFT) framework, the
Standard Model enters as the renormalizable sector of a
nonrenormalizable theory [38]. Potential short-distance
contributions to π− → πþe−e− are induced by physics at
the scale ΛLNV ≳ v, where v ¼ 247 GeV is the electroweak

scale set by the Higgs vacuum expectation value and
described in the SMEFT by operators with mass dimension
greater than 4. At the quark level, any SMEFToperator that
contributes to 0νββ decay must induce the process
dd → uue−e−. Every such operator must therefore contain
at least six fermion fields, and so have mass dimension
d ≥ 9, with contributions to the π− → πþe−e− decay
power-suppressed by a factor of Λd−4

LNV. The dimension-9
lepton number violating operators thus contribute to the
decay at leading order (LO) in inverse powers of ΛLNV.
There are 14 SUð3Þc ×Uð1ÞEM-invariant dimension-9

SMEFT operators which violate lepton number and may
contribute to π− → πþe−e−; they can be factorized into a
4-quark operator multiplying a leptonic operator. Of these
operators, four have corresponding 4-quark operators that
transform as Lorentz 4-vectors, and therefore match to the
χEFT operator πð∂μπÞēγμγ5ec þ H:c:, where the super-
script c denotes charge conjugation and π and e represent
the pion and electron fields. Integration by parts shows that
pionic matrix elements of this operator are proportional to
one power of the electron mass and give subleading
contributions to the decay π− → πþe−e−. Of the remaining
ten operators, five have corresponding 4-quark operators
with positive parity and contribute to π− → πþe−e−, while
the five operators containing 4-quark operators of negative
parity do not contribute. Consequently, at LO the decay is
described with the Lagrangian

L0νββ
SMEFT ¼ ēec

G2
F

ΛLNV

X
k

ckOk; ð1Þ

where GF is the Fermi coupling constant, ck are dimen-
sionless Wilson coefficients, and the operator basis
fOkðxÞg is

O1ðxÞ ¼ ðq̄LðxÞτþγμqLðxÞÞ½q̄RðxÞτþγμqRðxÞ�;
O2ðxÞ ¼ ðq̄RðxÞτþqLðxÞÞ½q̄RðxÞτþqLðxÞ�

þ ðq̄LðxÞτþqRðxÞÞ½q̄LðxÞτþqRðxÞ�;
O3ðxÞ ¼ ðq̄LðxÞτþγμqLðxÞÞ½q̄LðxÞτþγμqLðxÞ�

þ ðq̄RðxÞτþγμqRðxÞÞ½q̄RðxÞτþγμqRðxÞ�;
O10 ðxÞ ¼ ðq̄LðxÞτþγμqLðxÞ�½q̄RðxÞτþγμqRðxÞÞ;
O20 ðxÞ ¼ ðq̄RðxÞτþqLðxÞ�½q̄RðxÞτþqLðxÞÞ

þ ðq̄LðxÞτþqRðxÞ�½q̄LðxÞτþqRðxÞÞ; ð2Þ

with k ∈ f1; 2; 3; 10; 20g [31]. Here qLðxÞ and qRðxÞ are the
left- and right-handed components of the quark field
isospin doublet, respectively, and

τþ ¼
�
0 1

0 0

�
ð3Þ
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is the isospin raising operator. The round and square brackets
in Eq. (2) denote color contraction: for arbitrary Dirac
matrices Γ1 and Γ2, the operators fO1ðxÞ;O2ðxÞ;O3ðxÞg
factor into products of color singlets, ðūΓ1dÞ½ūΓ2d�≡
ðūaΓ1daÞðūbΓ2dbÞ, whereas the operators fO10 ðxÞ;
O20 ðxÞg mix color between the two Dirac bilinear terms,
ðūΓ1d�½ūΓ2dÞ≡ ðūaΓ1dbÞðūbΓ2daÞ, where a, b are color
indices. The operator basis fOkðxÞg of Eq. (2) is named the
BSM basis and is typically used in phenomenological
calculations of 0νββ decay [33].
Although the π− → πþe−e− transition is unphysical, it

has phenomenological importance as it can be related to the
nuclear decays with χEFT [22]. In particular, the two-
nucleon decay n0n0 → pþpþe−e− is induced in χEFT by
the diagrams in Fig. 1 and has LO contributions from the
ππ and NN vertices [16,33].1 The associated effective
Lagrangian relevant for π− → πþe−e− (i.e., omitting NN
and πN operators which do not contribute) is [37]

L0νββ
χEFT ¼ ēec

G2
F

ΛLNV

Λ4
χ

ð4πÞ2
f2π
8

�
c1β1O

χ
1 −

c2β2
2

Oχ
2

− c3β3O
χ
3 þ c10β10O

χ
10 −

c20β20

2
Oχ

20

�
: ð4Þ

Here, fπ is the pion decay constant in the chiral limit, Λ2
χ ≡

8π2f2π is the scale of chiral symmetry breaking, and Oχ
k

denote the leading χEFT operators corresponding to Ok
[39]. The χEFT LECs βk determine the ππ coupling, and
are also essential input to study the nucleonic decay. The βk
can be determined by evaluating the pion matrix elements
of the Ok in LQCD and matching them to the correspond-
ing matrix elements of Oχ

k in Eq. (4).

B. Bare matrix elements

The pion matrix elements of each of the SMEFT
operators in Eq. (2) are computed in LQCD using
gauge-field ensembles with Nf ¼ 2þ 1 quark flavors
generated by the RBC/UKQCD Collaboration [40,41].
Each ensemble uses the Shamir kernel [42] for the
domain-wall fermion action [43] and the Iwasaki
action [44] for the gauge field. The parameters of each
ensemble are detailed in Table I, and additional details
regarding the ensemble generation can be found in
Refs. [40,41,45]. The scale is set using the Wilson flow
scale w0 [46]. The pion mass,mπ , the pion decay constant,
fπ , and the axial-vector renormalization constant, ZA, for
each ensemble were determined in Ref. [34]. In the
conventions used here, the physical pion decay constant

[47] is fðphysÞπ ¼ 130.2 MeV. The vector renormalization
constant, ZV , for these ensembles was computed in the
chiral limit in Refs. [46,48]. Because ZV ≈ ZA, the
ensembles exhibit approximate chiral symmetry.
On each ensemble, the time-averaged two-point function

C2ptðtÞ ¼
1

T

XT−1
t−¼0

X
x;y

h0jχπðx; tþ t−Þχ†πðy; t−Þj0i ð5Þ

and three-point functions

Ckðt−; tx; tþÞ ¼
X
x;y;z

h0jχ†πðx; tþÞOkðz; txÞχ†πðy; t−Þj0i; ð6Þ

where the pion interpolating operator χπðxÞ ¼ ūðxÞγ5dðxÞ
has the quantum numbers of the π− and tþ ≥ tx ≥ t−, are
computed for each operator OkðxÞ in the BSM basis
[Eq. (2)]. Wall-source propagators are computed at each
available time slice on each configuration, where “wall”
denotes projection to vanishing three-momentum in the
Coulomb gauge. Note that wall sources are not gauge

FIG. 1. Diagrams illustrating short-distance contributions to the n0n0 → pþpþe−e− 0νββ decay in χEFT. The solid lines denote
nucleons or electrons and the dotted lines denote pions. The hatched circles represent EFToperators built from hadronic fields, which are
at LO for the ππ vertex diagram, (a) determined by Oχ

k in Eq. (4). ππ (a) and NN (b) diagrams are the LO χEFT contributions to
n0n0 → pþpþe−e−.

1Earlier work [31] found the ππ contributions to be the sole LO
contribution, but the Weinberg power counting used therein did
not account for regulator dependence completely.
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invariant, hence the need for gauge fixing. The two-point
functions [Eq. (5)] are constructed using a wall source
propagator at t− and a wall sink at tþ t−, and the three-
point functions [Eq. (6)] are constructed using wall source
propagators at t− and tþ and a point (local) sink at tx. The
explicit Wick contractions are given in Appendix A.
The bare pion matrix elements in lattice units

hOki≡ a4hπþjOkðp ¼ 0Þjπ−i ¼ a4
X
x

hπþjOkðx; 0Þjπ−i

ð7Þ
are extracted from the effective matrix elements

Oeff
k ðtÞ≡ 2mπ

Ckð0; t; 2tÞ
C2ptð2tÞ − 1

2
C2ptðT=2Þemπð2t−T=2Þ : ð8Þ

Subtracting 1
2
C2ptðT=2Þemπð2t−T=2Þ in the denominator of

Eq. (8) isolates the backwards-propagating state in the two-
point function, and in the 0 ≪ t ≪ T limit Oeff

k ðtÞ asymp-
totes to hOki. The effective matrix elements are computed
on between 33 and 53 gauge-field configurations for each
ensemble (details in Appendix B, Table III), resampled
using a bootstrap procedure with nb ¼ 50 bootstrap sam-
ples. The spectral decomposition of Oeff

k ðtÞ up to and
including the first excited state with energy mπ þ Δ,

Oeff
k ðtÞ ¼ hOki þN ðkÞ

1 e−Δt þN ðkÞ
2 e−ðmπþΔÞðT−2tÞ

1þN ðkÞ
3 e−2Δt þN ðkÞ

4 e−ðmπþΔÞTþ2ð2mπþΔÞt ; ð9Þ

parametrizes the ground and excited-state contributions to

Oeff
k ðtÞ, where the coefficients N ðkÞ

i are constants deter-
mined by the spectral content of the theory. Equation (9)

can be Taylor expanded to first order in N ðkÞ
3 and N ðkÞ

4 ,
yielding

fkðt; hOki; mðkÞ;ΔðkÞ; AðkÞ
i Þ

≡ hOki þ AðkÞ
1 e−Δ

ðkÞt þ AðkÞ
2 e−ðmðkÞþΔÞðT−2tÞ − AðkÞ

3 e−2Δ
ðkÞt

− AðkÞ
4 e−ðmðkÞþΔÞTþ2ð2mðkÞþΔðkÞÞt: ð10Þ

This function is used to model the temporal dependence

of Oeff
k ðtÞ, treating hOki; mðkÞ;ΔðkÞ, and AðkÞ

i as free
parameters.
Fits of Oeff

k ðtÞ to the model of Eq. (10) are performed
using a correlated least-squares fit. Each fit is performed
over a given range ½tmin; tmax�, with the covariance matrix
obtained from the bootstrapped sample covariance matrix
via linear shrinkage with parameter λ [49,50]; the hyper-
parameters are varied, with tmin ∈ ½6; 11�, tmax ∈ ½30; 32�,
and λ ∈ f0.1; 0.2; 0.3; 0.4g. Bayesian priors are placed on
the model parameters, informed by the results of a two-state
fit to C2ptðtÞ. The priors on the spectral coefficients are set

to AðiÞ
k ¼ 0.0� 0.1, where μ� σ denotes the normal dis-

tribution with mean μ and width σ. To enforce positivity,

log-normal priors are chosen for the mass mðkÞ
π and excited

state gap ΔðkÞ such that mðkÞ ¼ mπ � δmπ , where mπ (δmπ)
is the mean (standard deviation) of the pion mass (Table I)
and ΔðkÞ ¼ 2mπ �mπ . Statistically indistinguishable
results are obtained for hOki under variation of all hyper-
parameters within the ranges described above, and
when widths of the priors are inflated by a factor of 2;
hence fiducial values of the hyperparameters are chosen as

½tmin; tmax� ¼ ½6; 32� and λ ¼ 0.1.2 Posterior values for AðkÞ
3

and AðkÞ
4 are found to be ≪ 1, thus the Taylor expansion in

Eq. (10) is valid. The fits have χ2=dof between 0.10 and
0.73. Fit results and the complete set of fits for each
operator on each ensemble with the fiducial hyperpara-
meters are shown in Appendix B. Illustrative fits to data
from the 32I, aml ¼ 0.004 ensemble with the fiducial
hyperparameters are shown in Fig. 2.

C. Renormalization

To make contact with phenomological calculations,
lattice-regulated matrix elements must be renormalized
in the MS scheme. In this calculation, the renormalization
coefficients are computed nonperturbatively in the RI/
sMOM-ðγμ; γμÞ (abbreviated as RIγ) scheme [51,52] and

TABLE I. Parameters of the gauge-field ensembles used in this study. Each ensemble was generated with two degenerate light quark
flavors of mass ml and one heavy quark flavor of mass ms. The lattice volumes are L3 × T × Ls, with the fifth dimension having
Ls sites. Derived quantities are computed in Ref. [34] (the pion mass mπ , the pion decay constant fπ , and the axial current
renormalization ZA) and Refs. [46,48] (the vector current renormalization ZV and the inverse lattice spacing a−1).

Ensemble aml ams β L3 × T × Ls a ½fm� mπ ½MeV� fπ ½MeV� ZA ZV

24I 0.01 0.04 2.13 243 × 64 × 16 0.1106(3) 432.2(1.4) 163.72(64) 0.71670(22) 0.71273(26)
0.005 339.6(1.2) 151.55(62)

32I 0.008 0.03 2.25 323 × 64 × 16 0.0828(3) 410.8(1.5) 162.02(90) 0.74482(15) 0.7440(18)
0.006 359.7(1.2) 154.28(70)
0.004 302.0(1.1) 147.54(81)

2This choice for λ is statistically the most conservative within
the range, as λ ¼ 0 corresponds to no shrinkage.
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perturbatively matched to MS. In terms of the operator
basis fOkðxÞg [Eq. (2)], the renormalized matrix elements
can be expressed as

OMS
k ðx; μ2; aÞ ¼ ZMS;O

kl ðμ2; aÞOlðx;aÞ
¼ CMS←RIγ;O

kj ðμ2; aÞZRIγ;O
jl ðμ2; aÞOlðx;aÞ;

ð11Þ

where sums over repeated indices are implied. Here
Olðx; aÞ denotes the bare operator at lattice spacing a, and

CMS←RIγ;O
kj ðμ2; aÞ≡ ZMS;O

ki ðμ2; aÞ½ZRIγ;Oðμ2; aÞ�−1ij ð12Þ

is the multiplicative matching coefficient from the RIγ to
MS schemes, computed at one loop in perturbation theory
in the strong coupling αsðμÞ [52,53]. Note that each
renormalization coefficient is mass independent and
defined in the chiral limit.

The renormalization coefficients, Eq. (11), are conven-
tionally computed in the nonperturbative renormalization
(NPR) operator basis, fQnðxÞg, which contains different
linear combinations of operators than the BSM basis of
Eq. (2). Correlation functions involving the color-mixed
operators O10 ðxÞ;O20 ðxÞ may be rewritten with Fierz
identities [54] as combinations of color-unmixed quark
bilinears, which simplifies the calculation. The NPR basis
is defined in terms of the quark bilinears:

SSðxÞ ¼ ðūðxÞdðxÞÞðūðxÞdðxÞÞ;
PPðxÞ ¼ ðūðxÞγ5dðxÞÞðūðxÞγ5dðxÞÞ;
VVðxÞ ¼ ðūðxÞγμdðxÞÞðūðxÞγμdðxÞÞ;
AAðxÞ ¼ ðūðxÞγμγ5dðxÞÞðūðxÞγμγ5dðxÞÞ;
TTðxÞ ¼

X
μ<ν

ðūðxÞγμγνdðxÞÞðūðxÞγμγνdðxÞÞ ð13Þ

as

0
BBBBBB@

Q1ðxÞ
Q2ðxÞ
Q3ðxÞ
Q4ðxÞ
Q5ðxÞ

1
CCCCCCA

≡

0
BBBBBB@

VVðxÞ þ AAðxÞ
VVðxÞ − AAðxÞ
SSðxÞ − PPðxÞ
SSðxÞ þ PPðxÞ

TTðxÞ

1
CCCCCCA
: ð14Þ

This basis is related to the positive-parity projection of the
BSM basis, Eq. (2), as

0
BBBBBB@

Q1ðxÞ
Q2ðxÞ
Q3ðxÞ
Q4ðxÞ
Q5ðxÞ

1
CCCCCCA

¼

0
BBBBBB@

0 0 2 0 0

4 0 0 0 0

0 0 0 −2 0

0 2 0 0 0

0 2 0 0 4

1
CCCCCCA

0
BBBBBB@

O1ðxÞ
O2ðxÞ
O3ðxÞ
O10 ðxÞ
O20 ðxÞ

1
CCCCCCA
: ð15Þ

The space spanned by fQnðxÞg splits into three irreducible
subspaces under chiral symmetry, with bases fQ1ðxÞg,
fQ2ðxÞ; Q3ðxÞg, and fQ4ðxÞ; Q5ðxÞg. As both the MS and
RIγ schemes obey chiral symmetry, the renormalization

coefficients ZMS;Q
nm ðμ2; aÞ and ZRIγ;Q

nm ðμ2; aÞ, which satisfy
analogous equations to Eqs. (11) and (12), each factorize
into a direct sum of three block diagonal matrices, each of
which spans an irreducible subspace.
To renormalize the NPR basis operators, the four-point

functions

ðGnÞαβγδabcdðq; a;mlÞ

≡ 1

V

X
x

X
x1;…;x4

eiðp1·x1−p2·x2þp1·x3−p2·x4þ2q·xÞ

× h0jd̄δdðx4Þuγcðx3ÞQnðxÞd̄βbðx2Þuαaðx1Þj0i ð16Þ

FIG. 2. Effective matrix elementsOeff
k ðtÞ [Eq. (8)] computed on

the 32I, aml ¼ 0.004 ensemble. Colored bands denote the best-
fit band for the corresponding excited-state fit to the model of
Eq. (10), with ½tmin; tmax� ¼ ½6; 32� and λ ¼ 0.1. The gray band in
each panel denotes the extracted value of hOki [Eq. (10)].
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are computed on each ensemble, where V ¼ L3 × T is the
lattice volume and q ¼ p2 − p1. Latin letters a, b, c, d
denote color indices, while Greek letters α, β, γ, δ denote
Dirac indices. All correlation functions used for the
renormalization are computed in the Landau gauge with
momentum sources [55] using ten configurations for each
ensemble, as the V2 averaging from the momentum sources
significantly reduces noise. The momenta are chosen
subject to the symmetric constraint

p2
1 ¼ p2

2 ¼ q2 ¼ μ2; ð17Þ

with the particular choice

p1 ¼
2π

aL
ð−j; 0; j; 0Þ; p2 ¼

2π

aL
ð0; j; j; 0Þ; ð18Þ

with q ¼ p2 − p1 and j ∈ Z. The kinematic configuration
corresponding to Gnðq; a;mlÞ is depicted in Fig. 3. Note
that with this choice of momentum, each value of q
corresponds to a unique value of p1 and p2, hence functions
of ðp1; p2; qÞ are labeled as functions of q for conciseness.
The four-point functions are amputated,

ðΛnÞαβγδabcdðqÞ≡ ðS−1Þαα0aa0 ðp1ÞðS−1Þγγ
0

cc0 ðp1Þ
× ðGnÞα

0β0γ0δ0
a0b0c0d0 ðqÞðS−1Þβ

0β
b0bðp2ÞðS−1Þδ0δd0dðp2Þ;

ð19Þ

where

Sðp; a;mlÞ ¼
1

V

X
x;y

eip·ðx−yÞh0jqðxÞq̄ðyÞj0i ð20Þ

is the Landau-gauge momentum-projected quark propaga-
tor. The ensemble dependence of ΛnðqÞ, GnðqÞ, and SðpÞ
has been suppressed in Eq. (19) for clarity. Projectors

ðPnÞβαδγbadc are introduced to project ðΛmÞαβγδabcd onto the NPR
basis for RIγ [52] to yield a matrix of projected four-point
functions with components

Fmnðq; a;mlÞ≡ ðPnÞβαδγbadcðΛmÞαβγδabcdðq; a;mlÞ: ð21Þ

The remaining quantities which are computed nonper-
turbatively on each ensemble are the RIγ quark-field
renormalization

�
ZRIγ

q

ZV

�
ðμ2; a;mlÞ

����
q2¼μ2

¼ 1

48
Tr½γμΛμ

VðqÞ�; ð22Þ

and the vector and axial-vector-renormalization coeffi-
cients, ZVðμ2;a;mlÞ and ZAðμ2; a;mlÞ, whose computa-
tion is described in Appendix C. Here Λμ

VðqÞ ¼
S−1ðp1ÞGμ

VðqÞS−1ðp2Þ is the amputated vector three-point
function, where

Gμ
Vðq; a;mlÞ ¼

1

V

X
x;x1;x2

eiðp1·x1−p2·x2þq·xÞ

× h0juðx1ÞVμðxÞd̄ðx2Þj0i ð23Þ

is the vector three-point function, with VμðxÞ ¼ ūðxÞγμdðxÞ
the vector current. The quantities Z ∈ fZRIγ

q =ZV; Fnmg
display mild dependence on quark mass and are extrapo-
lated to the chiral limit via a joint fit over ensembles with
different masses to the model

Zðμ2; a;mlÞ ¼ Zðμ2; aÞ þ Z̃ðμ2; aÞml ð24Þ

where Zðμ2; aÞ and Z̃ðμ2; aÞ are fit coefficients, and
Zðμ2; aÞ is understood as the chiral limit of Zðμ2; a;mlÞ.
Correlations between ZRIγ

q =ZV and Fnm on each ensemble
are retained in the fits, and the covariance matrix is
block diagonal as data from different ensembles is uncor-
related. Fitted values of Zðμ2; aÞ are statistically consistent
when a constant model Zðμ2; a;mlÞ ¼ Zðμ2; aÞ is used in
place of the linear model of Eq. (24). The full set of
extrapolations for ðZRIγ

q =ZVÞðμ2; aÞ and Fmnðq; aÞ for both
the a ¼ 0.11 fm and a ¼ 0.08 fm ensembles is shown in
Appendix D.
With the definitions above, the NPR-basis renormaliza-

tion coefficients in the RIγ scheme can be computed as

ZRIγ;Q
nm

Z2
V

ðμ2;aÞ
����
sym

¼
�
ZRIγ

q ðμ2; aÞ
ZV

�2

½FðtreeÞ
nr F−1

rmðq; aÞ�

ð25Þ

where FðtreeÞ
nr ≡ PrΛ

ðtreeÞ
n is the matrix of projections of the

tree-level vertex function ΛðtreeÞ
n , and the notation jsym

FIG. 3. Kinematics for operator renormalization. The red
crossed circle denotes the operator O which injects momentum
2q into the vertex, while the solid lines denote up quarks, with
momentum p1 into the vertex, and down quarks, with momentum
p2 out of the vertex. The momenta are chosen subject to the
symmetric constraint, Eq. (17).
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denotes evaluation at the symmetric kinematic point,
Eq. (17). The renormalization coefficients ZRIγ;Q

nm ðμ2;aÞ=
Z2

V are only computed nonperturbatively at scales μj ¼
2π
aL kðj; j; 0; 0Þk corresponding to the lattice momenta given
in Eq. (18), where k · k denotes the Euclidean norm
of the lattice vector. However, the matching coefficients

CMS←RIγ;Q
nm ðμ2; aÞ in Eq. (11) have been computed at μ ¼

M≡ 3 GeV [52,53], and therefore the renormalization
coefficients must be perturbatively evolved from μj to M.
To minimize the artifacts from truncating the perturbative
expansion of thematching coefficients, μj must be chosen to
lie in the Rome-Southampton window [56,57],

ΛQCD ≪ μj ≪
�
π

a

�
; ð26Þ

with μj taken to satisfy μj ≤ M to minimize discretization
artifacts. In practice, the scale μ4 is used for renormalization
at both a ¼ 0.11 fm and a ¼ 0.08 fm, as this is the nearest
available scale to M satisfying these constraints.

Numerically, these scales are μ4 ¼ 2.64 GeV for the
a ¼ 0.11 fm ensemble and μ4 ¼ 2.65 GeV for the a ¼
0.08 fm ensemble. Scale evolution from μ4 to M is per-
formed by integrating the evolution equation,

�
ZRIγ;Q

nm

Z2
V

�
ðM;aÞ¼

�
ZRIγ;Q

nm

Z2
V

�
ðμ4;aÞ

þ
Z

M

μ4

dμ
μ
γRIγ;Qnp ðαsðμÞÞ

�
ZRIγ;Q

pm

Z2
V

ðμ;aÞ
�
;

ð27Þ

where the NPR basis anomalous dimensions γRIγ;Qnm ðαsðμÞÞ
have been computed at two-loop order in αsðμÞ in Ref. [58].
Statistically consistent results for ðZRIγ;Q

nm =Z2
VÞðMÞ are

obtained when μ3 is instead used as the nonperturbative
scale in Eq. (27).
The results for the NPR basis renormalization coeffi-

cients, computed at μ ¼ 3 GeV in MS, are

�
ZMS;Q

Z2
V

�
ðμ2 ¼ 9 GeV2; a ¼ 0.11 fmÞ

¼

0
BBBBBB@

0.90746ð43Þ 0 0 0 0

0 1.04052ð14Þ 0.26154ð56Þ 0 0

0 0.05286ð12Þ 0.95333ð75Þ 0 0

0 0 0 0.91775ð71Þ −0.02367ð13Þ
0 0 0 −0.28140ð66Þ 1.13952ð35Þ

1
CCCCCCA
;

�
ZMS;Q

Z2
V

�
ðμ2 ¼ 9 GeV2; a ¼ 0.08 fmÞ

¼

0
BBBBBB@

0.92625ð51Þ 0 0 0 0

0 1.03941ð31Þ 0.27661ð50Þ 0 0

0 0.04203ð67Þ 0.85916ð82Þ 0 0

0 0 0 0.84035ð87Þ −0.01061ð40Þ
0 0 0 −0.29928ð71Þ 1.19362ð57Þ

1
CCCCCCA
: ð28Þ

The components corresponding to transitions between
operators in different irreducible chiral representations

are consistent with jZMS;Q
nm =Z2

V j < 10−5 and thus set to
zero in Eq. (28). The renormalization coefficients have
been computed for the NPR operator basis (Eq. (14) in
Ref. [52] using s quarks in place of d quarks. The results in
Ref. [52] agree with Eq. (28) at the percent level, and
deviations between the results are likely due to perturbative
truncation errors, as Ref. [52] used nonpertubative step
scaling [56,57]. The NPR basis renormalization coeffi-
cients are converted to the BSM basis using the change of

basis matrix, Eq. (15), and combined with the bare matrix
elements to form renormalized matrix elements,

Okðmπ; fπ; a; LÞ≡ hπþjOMS
k ðp ¼ 0Þjπ−iðmπ; fπ; a; LÞ:

ð29Þ
On a given ensemble, the renormalization coefficients and
bare matrix elements are computed on different configura-
tions, as the former are only computed on a subset of ten of
the configurations used to compute the matrix elements
on each ensemble. As such, they are combined as an
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uncorrelated product and their errors are added in quadrature.
The renormalized matrix elements are shown in Table II.

III. CHIRAL EXTRAPOLATION

The renormalized matrix elements Okðmπ; fπ; a; LÞ,
Eq. (29), computed on each ensemble, are extrapolated
to the continuum and infinite volume limit and physical
pion mass using χEFT at NLO; the relevant expressions
have been derived in Ref. [37] using the Lagrangian in
Eq. (4). The chiral models F k for Ok are given by

F 1ðmπ; fπ; a; L; α1; β1; c1Þ

¼ β1Λ4
χ

ð4πÞ2
�
1þ ϵ2πðlog ϵ2π − 1þ c1 − f0ðmπLÞ

þ 2f1ðmπLÞÞ þ α1a2
�
;

F 2ðmπ; fπ; a; L; α2; β2; c2Þ

¼ β2Λ4
χ

ð4πÞ2
�
1þ ϵ2πðlog ϵ2π − 1þ c2 − f0ðmπLÞ

þ 2f1ðmπLÞÞ þ α2a2
�
;

F 3ðmπ; fπ; a; L; α3; β3; c3Þ

¼ ϵ2π
β3Λ4

χ

ð4πÞ2
�
1 − ϵ2πð3 log ϵ2π þ 1 − c3 þ f0ðmπLÞ

þ 2f1ðmπLÞÞ þ α3a2
�
; ð30Þ

where ϵ2π ¼ m2
π=Λ2

χ is a power-counting parameter for
χEFT, βk are the LO LECs defined in Eq. (4), and αk
and ck are the additional NLO LECs. The matrix elements
O10 andO20 have the same chiral behavior asO1 andO2 and
are modeled by F 1 and F 2, respectively, but with different
LECs, α10 ; β10 ; c10 and α20 ; β20 ; c20 . The functions

f0ðmLÞ ¼ −2
X
jnj≠0

K0ðmLjnjÞ;

f1ðmLÞ ¼ 4
X
jnj≠0

K1ðmLjnjÞ
mLjnj ð31Þ

are sums of modified Bessel functions KiðzÞ arising from
one-loop, finite volume χEFT in the p regime.
The models are fit to the data in Table II, using least-

squares minimization including the correlations between
Ok, mπ, and fπ on each ensemble. The final extrapolated
results for the matrix elements and corresponding LECs
are given in Table II. The resulting fits are shown in
Fig. 4, where to isolate the pion-mass dependence of the

matrix elements, ϵ2π has been rescaled by ðfðlatÞπ =fðphysÞπ Þ2
and the values of Okðmπ; fπ; a; LÞ have been shifted by

−F kðmπ;fπ;a;L;αk;βk;ckÞþF kðmπ;f
ðphysÞ
π ;0;∞;αk;βk;ckÞ,

where αk, βk, ck are the best-fit coefficients given in
Table II. The extrapolation bands for each Ok depict

the functional form F kðmπ; f
ðphysÞ
π ; 0;∞; αk; βk; ckÞ. The

results for hπþjOMS
k jπ−i obey the same hierarchy as the

chiral SUð3Þ estimates [36] and are consistent with these
results within 2 standard deviations.

TABLE II. Renormalized pion matrix elementsOkðmπ ; fπ ; a; LÞ, Eq. (29), of each operatorOk in the BSM basis computed on each of
the ensembles (upper), and the results of chiral continuum extrapolation (lower). The parameters αk, βk, and ck are the χEFT LECs,

Eq. (30), and hπþjOMS
k jπ−i is the extrapolated matrix element in the continuum and infinite volume limit at physical quark masses in the

MS scheme at μ ¼ 3 GeV.

Operator O1 O2 O3 O10 O20

Ensemble aml Okðmπ; fπ ; a; LÞ
24I 0.01 −0.0190ð11Þ −0.0467ð15Þ 0.001602(59) −0.0850ð32Þ 0.01556(50)

0.005 −0.0162ð11Þ −0.0391ð15Þ 0.000815(28) −0.0733ð32Þ 0.01305(45)

32I 0.008 −0.0204ð15Þ −0.0436ð18Þ 0.001383(57) −0.0863ð39Þ 0.01393(66)
0.006 −0.0179ð13Þ −0.0387ð14Þ 0.000937(39) −0.0771ð36Þ 0.01239(50)
0.004 −0.0160ð15Þ −0.0347ð16Þ 0.000569(24) −0.0696ð37Þ 0.01115(60)

Extrapolated OkðmðphysÞ
π ; fðphysÞπ ; 0;∞Þ

hπþjOMS
k jπ−i ðGeV4Þ −0.0127ð16Þ −0.0245ð22Þ 0.0000869(80) −0.0535ð48Þ 0.00757(75)

βk −1.21ð17Þ −2.37ð23Þ 0.606(66) −5.17ð51Þ 0.735(80)

αk (fm−2) −0.27ð31Þ 0.33(23) 0.13(22) −0.04ð23Þ 0.58(26)

ck −0.6ð1.4Þ −1.17ð98Þ 8.6(1.4) −1.18ð98Þ −1.5ð1.0Þ
χ2=dof 0.02 0.03 0.22 0.08 0.03
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The results for the renormalized, extrapolated, matrix
elements differ from the results of Ref. [37] by about 2.0 to
5.0 standard deviations. There are a number of differences
between the two calculations which may account for the
discrepancy. The present calculation was performed with
the same domain-wall action for the valence and sea quarks
and is thus unitary, while that of Ref. [37] used a mixed
action where unitarity is only restored in the continuum
limit. Using the domain-wall action for valence and sea
quarks yields matrix elements that have a mild depend-
ence on the lattice spacing. In contrast, the mixed action
results appear to have a larger dependence on the lattice
spacing. However, the analysis of Ref. [37] was performed
on nine ensembles with pion masses mπ ≲ 310 MeV,
including one ensemble with pion mass below the physi-
cal point, which allows for an interpolation to the physical
point. Reference [37] also uses three lattice spacings as
opposed to the two used in this computation, which allows
for higher control of discretization artifacts in the non-
perturbative renormalization and the chiral and continuum
extrapolation.

IV. CONCLUSION

This work presents a determination of the renormalized
matrix elements and χEFT LECs for the short-distance
operators that potentially arise from BSM physics at high
scales and are relevant for the π− → πþe−e− transition. The
present calculation is the first to use chiral fermions with
the same valence and sea quark actions. The domain-wall
action yields a simple renormalization coefficient structure
and straightforward extrapolation to the continuum and
infinite volume limit and physical value of the light quark
mass. With the results of Ref. [34], this completes the

calculation of both the long- and short-distance amplitudes
for π− → πþe−e− on the same gauge-field ensembles.
One may compare the relative size of the decay

amplitude of π− → πþe−e− induced by short-distance
mechanisms, ASD, to that induced by long-distance mech-
anisms, ALD. In any model with a seesaw-type mechanism
[59], for example the minimal left-right symmetric
model [22], the effective Majorana neutrino mass mββ

scales as c=ðGFΛLNVÞ, where c is a Wilson coefficient.
This implies

ASD

ALD
¼

G2
F

ΛLNV
jPkckhπþjOkjπ−ij
G2

FmββjM0νj

¼ GF
jPkckhπþjOkjπ−ij

cjM0νj

∼GF

Λ4
QCD

Λ2
QCD

∼ 10−5; ð32Þ

where M0ν is the long-distance nuclear matrix element for
π− → πþe−e−. The final line of Eq. (32) arises by assuming
that in a given BSM model, the dimensionless Wilson
coefficients, ck and c, describing each amplitude are order
1, and by using dimensional arguments to approximate the
matrix elements. In particular, the long-distance nuclear
matrix element includes the convolution of a massless
bosonic propagator with a bilocal QCD matrix element.
The convolution picks out the dimensional scale 1=Λ2

QCD,
thereby enhancing the long-distance contribution compared
to the short-distance one.
Since hπþjOkjπ−i and M0ν have now been computed

consistently in LQCD, it is possible to compute the ratio of
Eq. (32), quantitatively, given the Wilson coefficients ck
and c from some model. For example, taking ck ¼ c ¼ 1,
and using the LQCD results from this work and of Ref. [34]
for the matrix elements yields ASD

ALD
¼ 6.1ð2Þ × 10−5, con-

sistent with expectations.
In addition to the pion-pion χEFT LECs, the other LECs

contributing to nuclear 0νββ decay must be determined in
future calculations in order to constrain models of new
physics from experimental constraints on nuclear 0νββ
decay rates. Knowledge of these LECs may be used as
input for models of nuclear many-body physics, which may
be used to estimate the half-lives of various nuclear 0νββ
decay processes from short-distance mechanisms with
increasing precision. The other LO LECs that are necessary
for describing nuclear 0νββ decay are from the nucleon-
nucleon interaction [Fig. 1(b)], and may be determined with
knowledge of the hpþpþjOkðp ¼ 0Þjn0n0imatrix elements
[33]. Calculations of these matrix elements are ongoing and
will provide the first direct LQCD probe of 0νββ decay in
nuclear systems.

FIG. 4. Chiral extrapolation of renormalized matrix elements.
The LQCD results are shown at ϵ2π ¼ m2

π=ð8π2f2πÞ calculated
using the pion mass of each ensemble and the physical value of
fπ , and the values of Okðmπ; fπ; a; LÞ have been shifted by

−F kðmπ ; fπ; a; L; αk; βk; ckÞ þ F kðmπ; f
ðphysÞ
π ; 0;∞; αk; βk; ckÞ,

where αk, βk, ck are the best-fit coefficients given in Table II. The
physical pion mass is denoted by the dashed line.
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APPENDIX A: THREE-POINT CONTRACTIONS

The correlation functions of Eq. (6) can be written in
terms of the following contraction structures:

①Γ1Γ2
¼

X
x

Tr½γ5Γ1Sdðt− → xÞS†uðt− → xÞ� · Tr½γ5Γ2Sdðtþ → xÞS†uðtþ → xÞ� þ ðt− ↔ tþÞ;

②Γ1Γ2
¼

X
x

Tr½γ5Γ1Sdðt− → xÞS†uðt− → xÞγ5Γ2Sdðtþ → xÞS†uðtþ → xÞ� þ ðt− ↔ tþÞ;

③Γ1Γ2
¼

X
x

TrC½TrD½γ5Γ1Sdðt− → xÞS†uðt− → xÞ� · TrD½γ5Γ2Sdðtþ → xÞS†uðtþ → xÞ�� þ ðt− ↔ tþÞ;

④Γ1Γ2
¼

X
x

TrD½TrC½γ5Γ1Sdðt− → xÞS†uðt− → xÞ� · TrC½γ5Γ2Sdðtþ → xÞS†uðtþ → xÞ�� þ ðt− ↔ tþÞ; ðA1Þ

where Γ1, Γ2 are arbitrary Dirac matrices, TrC (TrD) denotes a color (spin) trace, Tr ¼ TrC∘TrD denotes a full trace, and
x ¼ ðx; txÞ. Propagators Sðtsrc → xÞ are computed with a zero three-momentum wall source at time tsrc ∈ ft−; tþg and a
point sink at time tx,

Sðtsrc → xÞ≡X
y

Sððy; tsrcÞ → ðx; txÞÞ: ðA2Þ

With the definitions of Eq. (A1), the correlation functions are evaluated as

C1ðt−; tx; tþÞ ¼ −
1

4
½①VV − ②VV − ①AV þ ②AV þ ①VA − ②VA − ①AA þ ②AA�;

C2ðt−; tx; tþÞ ¼ −
1

2
½①SS − ②SS þ ①PP − ②PP�;

C3ðt−; tx; tþÞ ¼ −
1

2
½①VV − ②VV þ ①AA − ②AA�;

C10 ðt−; tx; tþÞ ¼ −
1

4
½③VV − ④VV − ③AV þ ④AV þ ③VA − ④VA − ③AA þ ④AA�;

C20 ðt−; tx; tþÞ ¼ −
1

2
½③SS − 4④SS þ ③PP − ④PP�; ðA3Þ

where S ¼ 1, P ¼ γ5, V ¼ γμ, and A ¼ γμγ5.

APPENDIX B: EFFECTIVE MATRIX ELEMENT FITS

Figures 5–8 display the remaining fits to the effective matrix elements [Eq. (8)] that were not depicted in Fig. 2.
The fit procedure is described in Sec. II B of the main text. The number of gauge-field configurations per ensemble used in
each matrix element extraction, ncfgs, and the corresponding bare matrix elements in lattice units, Eq. (7), are shown in
Table III.
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FIG. 5. Effective matrix elements, Eq. (8), for the operators Okðp ¼ 0Þ on the 24I, aml ¼ 0.01 ensemble. The constant gray band
denotes the fit results for each bare, dimensionless matrix element a4hπþjOkðp ¼ 0Þjπ−i, and the colored data points and colored band
denote the effective matrix element data and extrapolation band, respectively. The fit procedure is detailed in Sec. II B.
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FIG. 6. As in Fig. 5, for the 24I, aml ¼ 0.005 ensemble.
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FIG. 7. As in Fig. 5, for the 32I, aml ¼ 0.008 ensemble.
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FIG. 8. As in Fig. 5, for the 32I, aml ¼ 0.006 ensemble.
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APPENDIX C: VECTOR AND AXIAL-VECTOR
RENORMALIZATION COEFFICIENTS

Calculation of the scale and scheme-independent
vector and axial-vector-current renormalization coefficients
ZjðaÞ, with j ∈ fV; Ag, proceeds through the vector
[Eq. (23)] and axial-vector three-point functions,

Gμ
Aðq;a;mlÞ

¼ 1

V

X
x;x1;x2

eiðp1·x1−p2·x2þq·xÞh0juðx1ÞAμðxÞd̄ðx2Þj0i; ðC1Þ

where AμðxÞ ¼ ūðxÞγμγ5dðxÞ. The momenta p1, p2, and q
are subject to the symmetric constraint, Eq. (17), and

TABLE III. Determination of bare matrix elements a4hπþjOkðp ¼ 0Þjπ−i on each ensemble for each operatorOkðxÞ in the BSM basis,
Eq. (2), extracted from fits to the effective matrix elements [Eq. (8)] as described in the text. The effective matrix elements are computed
on ncfgs configurations on the respective ensemble.

Ensemble aml ncfgs a4hπþjO1jπ−i a4hπþjO2jπ−i a4hπþjO3jπ−i a4hπþjO10 jπ−i a4hπþjO20 jπ−i
24I 0.01 52 −0.005804ð41Þ −0.010023ð91Þ 0.0003442(16) −0.01794ð13Þ 0.002445(22)

0.005 53 −0.004891ð38Þ −0.00834ð11Þ 0.0001742(14) −0.01533ð12Þ 0.002043(26)

32I 0.008 33 −0.001862ð17Þ −0.002917ð34Þ 0.00008286(58) −0.005791ð53Þ 0.0007248(86)
0.006 42 −0.001644ð16Þ −0.002587ð36Þ 0.00005600(40) −0.005145ð50Þ 0.0006445(87)
0.004 47 −0.001482ð15Þ −0.002331ð31Þ 0.00003391(40) −0.004669ð47Þ 0.0005822(78)

FIG. 9. Vector and axial-vector renormalization coefficients computed by the procedure described in the text, and extrapolated to
μ2 ¼ 0 with the model given in Eq. (C5). The red data points are the computed data, Eq. (C3), the blue bands show the extrapolation to
μ2 → 0, and the green bands denote the chiral limit value of ZA and ZV computed in Refs. [34,48].
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parametrized identically to themodes used in the calculation
of the four-quark operator renormalizations [Eq. (18)] with
k ∈ f2; 3; 4; 5g. The lattice spacing dependence is made
explicit in this section. The amputated three-point functions

Λμ
j ðq;a;mlÞ¼ S−1ðp1;a;mlÞGμ

j ðq;a;mlÞS−1ðp2;a;mlÞ;
ðC2Þ

with j ∈ fV; Ag, are used to compute the renormalization
coefficients,

1

12q̃2
ZVðμ2; a;mlÞ

ZRI=sMOM
q ðμ2; a;mlÞ

Tr½q̃μΛμ
Vðq; a;mlÞq̃�

����
sym

¼ 1;

1

12q̃2
ZAðμ2; a;mlÞ

ZRI=sMOM
q ðμ2; a;mlÞ

Tr½q̃μΛμ
Aðq; a;mlÞγ5q̃�

����
sym

¼ 1;

ðC3Þ
where p̃μ ¼ 2

a sinða2pμÞ is the lattice momentum. Note that
the quark-field renormalization in Eq. (C3) is defined in the
RI/sMOM scheme [51],

ZRI=sMOM
q ðμ2;a;mlÞjp2¼μ2

¼ i
12p̃2

Tr
h
S−1ðp;a;mlÞp̃

i
jp2¼μ2 ; ðC4Þ

which differs from the RIγ scheme [52] of Eq. (22); ZV and
ZA are scheme independent, and hence may be computed in
any scheme. The chiral limits ZVðμ2; aÞ and ZAðμ2; aÞ of
ZVðμ2; a;mlÞ and ZAðμ2; a;mlÞ are evaluated by a joint,
correlated linear extrapolation of fZRI=sMOM

q ;ZV;ZAg in
ml, identical to the procedure used in the aml → 0

extrapolation of fZRIγ
q =ZV; Fnmg, as described in Sec. II

C of the text [Eqs. (21)–(24)].
Although the renormalization coefficients ZV , ZA are

scale independent, the RI procedure introduces scale
dependence from the kinematic setup [Eq. (17)]. This
scale dependence is removed by fitting Zjðμ2; aÞ to a
power series in μ2 and taking the μ2 → 0 limit as described

in Ref. [69], with fit model:

Zjðμ2; aÞ ¼ ZjðaÞ þ cð1Þj ðaÞμ2 þ cð2Þj ðaÞμ4: ðC5Þ

Here ZjðaÞ, cð1Þj ðaÞ, and cð2Þj ðaÞ are coefficients which are
determined by correlated χ2 minimization. The fits are
shown in Fig. 9. The fits have χ2=dof ranging between 0.15
and 0.71. The best-fit value of ZjðaÞ is the value that
is taken for the renormalization factor, and it is determined
that

ZVð0.11 fmÞ¼ 0.7119ð20Þ; ZVð0.08 fmÞ¼ 0.7472ð24Þ;
ZAð0.11 fmÞ¼ 0.7137ð19Þ; ZAð0.08 fmÞ¼ 0.7462ð23Þ:

ðC6Þ

The results show that ZV ¼ ZA within statistical precision
as expected. The determination presented in this work is
consistent with the determination of ZV in Ref. [48] for the
a ¼ 0.08 fm and a ¼ 0.11 fm ensembles, and with ZA in
Ref. [34] for the a ¼ 0.08 fm ensembles, although ZA
differs from the a ¼ 0.11 fm value in that work by about 1
standard deviation. This deviation may be due to discrep-
ancies in the procedure used to extract ZA, as the fit model
[Eq. (C5)] does not capture all the discretization artifacts
present in the data.

APPENDIX D: RENORMALIZATION
COEFFICIENT aml → 0 EXTRAPOLATION

Figures 10–17 display the aml → 0 extrapolations
of ZRIγ

q =ZV and Fnm, as described in Sec. II C of the
text. Each renormalization coefficient is evaluated at
q ¼ 2π

L ð4; 4; 0; 0Þ, which is the lattice momentum corre-
sponding to the scale μ ¼ μ4. In each of Figs. 10–17, the μ
dependence of ðZRIγ

q =ZVÞðμ2; aÞ and the q dependence of
Fnmðq; aÞ has been suppressed for clarity. The data is
observed to have very mild dependence on aml.
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FIG. 12. As in Fig. 10, aml → 0 extrapolation for Fnm on the second irreducible chiral subspace fF22; F23; F32; F33g, for the
a ¼ 0.11 fm ensembles.

FIG. 10. The aml → 0 extrapolation for the RI quark-field
renormalization ZRIγ

q =ZV , Eq. (22), computed on the a ¼
0.11 fm ensembles at q ¼ 2π

aL ð4; 4; 0; 0Þ and extrapolated to the
chiral limit via a joint correlated linear extrapolation in aml
[Eq. (24)]. The data is depicted in red and the shaded band
denotes the extrapolation.

FIG. 11. As in Fig. 10, aml → 0 extrapolation for Fnm on the
first irreducible chiral subspace fF11g, for the a ¼ 0.11 fm
ensembles.
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FIG. 13. As in Fig. 10, aml → 0 extrapolation for Fnm on the third irreducible chiral subspace fF44; F45; F54; F55g, for the a ¼
0.11 fm ensembles.

FIG. 14. As in Fig. 10, aml → 0 extrapolation forZRIγ
q =ZV, for

the a ¼ 0.08 fm ensembles.

FIG. 15. As in Fig. 10, aml → 0 extrapolation for Fnm on the
first irreducible chiral subspace fF11g, for the a ¼ 0.08 fm
ensembles.
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FIG. 16. As in Fig. 10, aml → 0 extrapolation for Fnm on the second irreducible chiral subspace fF22; F23; F32; F33g, for the
a ¼ 0.08 fm ensembles.
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