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We study the processD0 → πþπ−f0ð980Þ, f0 → πþπ− by introducing the triangle mechanism, in which
f0ð980Þ is considered to be dynamically generated from the meson-meson interaction. For the total
contribution of this process, the contribution of the triangular loop formed by K�K̄K particles could
generate a triangular singularity of about 1418 MeV. We calculate the differential decay width of this
process and show a narrow peak of about 980 MeV in the πþπ− invariant mass distribution, which comes
from f0 decay. For theMinvðπf0Þ invariant mass distribution, we obtain a finite peak at 1418 MeV, which is
consistent with the triangle singularity.
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I. INTRODUCTION

Triangle diagrams give the same good descriptions in the
hadron physics, but of particular concern are those that lead
to triangle singularities (TS) in amplitude [1–4]. Triangle
singularities were introduced by Landau [5,6]. Nowadays, a
large amount of peaks observed in high-energy experiments
are considered to be caused by triangle singularities,
especially the processes involving heavy quarks. With
the development of experiments, triangle singularities play
an increasingly important role in hadron physics. The
picture of the triangle mechanism can be summarized as
follows: the initial particle A decays into two internal
particles 1 and 2 flying back-to-back, particle 2 decays into
internal particle 3 and external particle B, the former moves
in the same direction as particle 1, and the two internal
particles 1 and 3 rescatter to form an external particle C.
According to the Coleman-Norton theorem [4], the gen-
eration of triangle singularity depends on whether the
above process is a classical process and whether all three
internal particles are simultaneously placed on-shell and
collinear in the rest frame of the decay particle [5]. In
reality, the internal particles have finite widths and result in
the transformation of triangle singularities to finite peaks
which can be observed in experiments.
In Ref. [7], the triangle singularity was introduced

to explain J=ψ → γηð1405=1475Þ → γπ0f0ð980Þ → γ3π

experiment data, and gave some good conclusions to
explain the f0 − a0 mixing and the relation between
ηð1405=1475Þ. Soon after, some literature were published
to analyze the important role of triangle singularity in the
process ηð1405Þ → f0ð980Þπ0 [8–11]. Meanwhile, in order
to further solve the issue of f0ð980Þ − a0ð980Þ mixing
and isospin breaking, the triangle mechanism in
different processes that contain f0 − a0 mixing has been
researched [12–18]. In Ref. [19], the production of f0ð980Þ
in semilepton decay process τ− → ντπ

−f0ð980Þ has been
studied through a K�KþK− triangle loop which produces a
singularity located at 1418 MeV in the πf0 invariant mass
distribution. Applying triangle mechanism to f1ð1285Þ →
π0a0ð980Þ and f1ð1285Þ → π0f0ð980Þ processes and con-
sidering all three resonances as dynamically generated
states, authors in Ref. [12] obtained the branching fractions
which are consistent with the experiments. Especially in
Ref. [14], authors found the two nonresonant peaks at
2850 MeV in the invariant mass of πDs0 pairs and around
the 3000 MeV in the invariant mass of πDþ

s1 pairs, which
are associated with the kinematical triangle singularities.
By adjusting the values of ϵ and K� width, it shows the
peak’s developmental behavior of the real and imaginary
parts of the loop function.
Recently, the authors in Ref. [20] proposed the triangle

singularity close to the K̄d threshold for the first time in the
pΣ− → K−d and K−d → pΣ− processes. In Ref. [21], the
processes Dþ

s → a0ð980Þρ and a0ð980Þω including a
πþπþη loop have been researched. Further, for the ψð2sÞ →
πþπ−KþK− process, the authors in Ref. [22] introduced
a moving triangle singularity in the range of 1.158 to
1.181 GeV. In addition, a lot of other research has been
done on the triangle mechanism [23–50].
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In this paper, following the procedure in Refs. [14,28],
we study D0 → πþπ−f0 and D0 → πþπ−f0, f0 → πþπ−,
decay processes by introducing triangle mechanism.
The amplitude for the production of f0ð980Þ could be
obtained by chiral unitary approach, which f0 is considered
as dynamically generated from the meson-meson interac-
tion [51–53]. We consider the main contributions of
K�0KþK− triangle loop as well as the contributions that
come from intermediate state aþ1 ð1260Þ. Although the
traditional Feynman parametrization and dispersion
relation methods could be used to calculate the loop
integral to obtain the triangular amplitude, the authors in
Refs. [54,55] put forward a simple formula to judge
whether the triangular singularity exist, such formula is
derived by performing the residue theorem on the loop
function, and the poles of the spatial integral are then
analyzed. In order to obtain the total amplitude of this
process, some coupling strength for different D0 decay
processes needs to be calculated by fitting to corresponding
experimental data.
The structure of this paper is as follows. In Sec. II, the

detailed pictures ofD0 → πþπ−f0ð980Þ, f0 → πþπ− decay
process and interaction vertices including D0 have been
depicted. We calculate the coupling strength of the
D0K�0K−πþ and D0aþ1 π

− vertices by fitting the corre-
sponding experiments. Then, we give the derivation details
and formalism for the calculation of D0 → πþπ−f0ð980Þ,
f0 → πþπ− decay that contains the triangle mechanism,
where f0 is considered as the dynamically generated states.
Moreover, we give the expressions of the amplitudes for the
corresponding Feynman diagrams. In Sec. III, the numeri-
cal results for differential distribution of decay width as a
function of the invariant masses have been shown. Finally,
a brief summary is given in Sec. IV.

II. FORMALISM

In this section, we show that a peak around 1.42 GeV in
the Minvðπf0Þ invariant mass distribution will be produced
in the D0 → πþπ−f0ð980Þ and D0 → πþπ−f0ð980Þ, f0 →
πþπ− decay processes by triangle singularity. The total
Feynman diagrams contributing to this process, which
include the K̄�0ðK�0ÞKþK− and K�þK̄0K0 triangle loops,
have been depicted in Fig. 1. In order to determine the
interaction strength of the first decay vertices of Fig. 1, such
as D0 → πþK�0K− and D0 → aþ1 π

−, the access to the
corresponding decay width is essential. From the PDG
[56], for the first vertex of D0 → πK�K process Figs. 1(a)
and 1(d), there is only the production channel of π∓K�0K�
pair. Because the 3rd component of isospin obeys the
conservation law, only the Figs. 1(a) and 1(d) will con-
tribute to the total amplitude for the first D0 → πK�K
vertex. There is the similar situation for other subfigures of
Fig. 1, but Ref. [57] gives the branching fractions of aþ1 π

−

and a−1 π
þ productions, which the former is about two

orders of magnitude larger than the latter. Thus, for the
vertices of D0 → a�1 π

∓ processes, we neglect the contri-
bution from the D0a−1 π

þ vertex. Another important point is
that the a1 from the D0 decay will considered as dynami-
cally generated in a two coupled channel problem with
building blocks ρπ and K̄�K [15,57]. Thus, the a1 could
decay to f0π by the K̄�KK̄ and ρππ triangle loop as
Refs. [15,18,57,58]. Because the width of ρ meson is very
broad, the contributions from the ρππ triangle loop are
neglected [45,55]. In the following, we will take Figs. 1(a)
and 1(d) as examples to perform the calculation and
discussion. From Fig. 1(a), we can see that the D0 decays
to πþK�0K− first, then the K�0 decays to the π−Kþ. Since
the Kþ and K− move in the same direction, and the former

FIG. 1. The total Feynman diagrams contributing to D0 → πþπ−f0ð980Þ and D0 → πþπ−f0ð980Þ, f0ð980Þ → πþπ− decay processes
involving intermediate state a1 and K̄�KK̄ triangle loop.
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is faster than the latter, the KþK− rescattered to form
f0ð980Þ. Meanwhile, f0 could be considered as the
dynamically generated states of the πþπ−, KþK−, π0π0,
K0K̄0, and ηη in S-wave within the chiral unitary approach
[51–53].
It is worthy to note that there is a triangle singularity for

the K�0KþK− triangle loop in Fig. 1 when we take value of
the f0ð980Þ mass just above the KþK− threshold, in other
words, the mass mf0 must meet the condition for triangle
singularity [54,55]

m2
f0

∈
�
ð2mKÞ2;

ðmK þmK�0ÞðmKmK�0 þm2
KÞ −mKmπ

mK�0

�
:

ð1Þ

In order to get the triangle singularity, it is straightfor-
ward to use the following condition

lim
ϵ→0

ðqonþ −qa−Þ ¼ 0; and qonþ ¼ λ
1
2ðM2

invðπf0Þ;M2
Kþ ;M2

K�0Þ
2Minvðπf0Þ

;

ð2Þ

where qonþ denotes the on shell three momentum of K− in
the center-of-mass frame (COM) of K�0K−, Minvðπf0Þ is
the invariant-mass of K�0K− system, and λðx; y; zÞ ¼ x2 þ
y2 þ z2 − 2xy − 2yz − 2xz is the Kählen function.
Meanwhile, qa− is given by

qa− ¼ γðνE�
Kþ − p�

KþÞ − iϵ; ð3Þ

with definitions

ν¼ k
Ef0

; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1− ν2

p ¼ Ef0

mf0

;

E�
Kþ ¼m2

f0
þm2

Kþ −m2
K−

2mf0

; p�
Kþ ¼ λ

1
2ðm2

f0
;M2

K− ;M2
KþÞ

2mf0

;

ð4Þ

where E�
Kþ and p�

Kþ are the energy and momentum of the
Kþ meson in the COM frame of the KþK− system, ν and γ
are the velocity of the KþK− system and Lorentz boost
factor, respectively. When Eq. (2) is established, on the one
hand, it means that all particles in the triangle loop are on-
shell, the K− and f0ð980Þmove in the same direction in the
rest frame of f0ð980Þ and COM frame of πf0ð980Þ,
respectively. Meantime, in order that the Kþ and K− in
the triangle loop could rescatter to form the f0ð980Þ in a
classical picture, it is required that the momentum of K− in
the COM frame of πf0 is smaller than that of Kþ in the rest
frame of the decay particle, which is derived from the
K�0 → Kþπ− decay. On the other hand, in mathematics,
Eq. (2) represents that qa− and qonþ are the singularities of

triangle loop function in the upper and lower half of the
complex-q plane, respectively, and the integration path of
loop function Eq. (22) is pinched between qa− and qonþ in the
same position of the real axis. In addition,

Ef0 ¼
M2

invðπf0Þ þm2
f0
−m2

πþ

2Minvðπf0Þ
;

k ¼ λ
1
2ðM2

invðπf0Þ; m2
f0
; m2

πþÞ
2Minv

: ð5Þ

Now, we can obtain a triangle singularity around
1418 MeV in the Minvðπf0Þ invariant mass distribution
by using Eq. (2). Further, when the complex mass of K�0
with m0

K�0 ¼ mK�0 − iΓK�0=2, ΓK�0 ¼ 50 MeV is used in
Eq. (2), it leads to a complex triangle singularity
near 1418 − i29.7 MeV.

A. The process of D0 → K�0πK

Before calculating the amplitudes of Fig. 1(a), the ampli-
tudes of D0 → πþK�0K− decay processes need to be
established to determine the vertex couplings strength.
The pictures of decay processes at the quark level as shown
in Fig. 2, which only includes the πþK�0K− final state.
TakingFig. 2 as an example, the first part is that the d̄u anddū
quark pairs could be produced via an external emission of a
W boson, where two vertices cdW and ud̄W included by the
weak decay are Cabibbo-suppressed and Cabibbo-favored,
respectively. In the next step, the d̄u quark-antiquark pair
hadronizes and produces a πþ meson. At the same time,
the remaining dū and ss̄ quark-antiquark pairs, selected from
the vacuum q̄qðūuþ d̄dþ s̄sÞ state, combine to form the
K�0K− vector-pseudoscalar mesons pair.
In order to conserve angular momentum, the coupling

vertex of Fig. 2 can be calculated via the P-wave inter-
action. Following the construction of vertex interactions in
Refs. [16,28], we take

−itD0→K�0πþK− ¼ −iCϵ⃗K�0 · p⃗πþ ; ð6Þ

where ϵ⃗K�0 and p⃗πþ are the polarization vector of K�0 and
momentum of the πþ, respectively. The C presents the
coupling strength of this vertex, the analytical expression

FIG. 2. The D0 → πþK�0K− decay process at the quark level.
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and numerical results will be given below. From Eq. (2),
we have obtained the triangle singularity around 1.42 GeV,
thus the momentum of K�0 is approximately 135.66 MeV
in the π−f0 rest frame, which is smaller than the K�0 mass
895.81 MeV. For this reason, we can safely ignore the time-
component ϵ0 of the K�0 polarization vector, so the
following form of polarization sum is taken

X
μ;ν

ϵK�0μϵK�0ν ∼
X
i;j

ϵK�0iϵK�0j ¼ δij; μ ¼ i;

μ ¼ j; i; j ¼ 1; 2; 3: ð7Þ

From the PDG [56], the partial decay branching ratio
are ΓðD0 → K�0K∓π�; K�0 → K�π∓Þ=ΓðKþK−πþπ−Þ ¼
11� 2� 1% and BrðKþK−πþπ−Þ¼ð2.45�0.11Þ×10−3.
Considering the BrðK�0 → KπÞ ∼ 100%, we can get
BrðD0→K�0K−πþÞ¼ 3

2
BrðD0→K�0K−πþ;K�0→Kþπ−Þ.

Meanwhile, the decay width of D0 → πþK�0K− process is
given by

ΓD0→πþK�0K− ¼
Z

dMinvðK�0K−Þ 1

ð2πÞ3
j ⃗p̃0

K− jj ⃗p̃πþj
4m2

D0

×
X
pol

jtD0→πþK�0K− j2; ð8Þ

where MinvðK�0K−Þ is the invariant mass of the K�0K−

system. The ⃗p̃0
K− ; ⃗p̃πþ are three momentum of the K− in the

K�0K− COM frame and that of the πþ in the D0 rest frame,
respectively. They are given by

j ⃗p̃0
K− j ¼ λ

1
2ðM2

invðK�0K−Þ;M2
K− ;M2

K�0Þ
2MinvðK�0K−Þ ;

j ⃗p̃πþj ¼
λ
1
2ðM2

D0 ;M2
invðK�0K−Þ;M2

πþÞ
2MD0

: ð9Þ

After squaring the amplitude tD0→πþK�0K− and employing
the polarization sum Eq. (7), we getX

pol

jtD0→πþK�0K− j2 ¼ C2j ⃗p̃0
πþj2; ð10Þ

where the ⃗p̃0
πþ is the three momentum of the πþ in the

K�0K− COM frame

j ⃗p̃0
πþj ¼

λ
1
2ðM2

D0 ;M2
invðK�0K−Þ;M2

πþÞ
2MinvðK�0K−Þ : ð11Þ

Finally, combining the Eqs. (8) and (10), C2=ΓD0 is
given by

C2

ΓD0

¼ BrðD0 → πþK�0K−ÞR
dMinvðK�0K−Þ 1

ð2πÞ3
j ⃗p̃0

K− jj ⃗p̃πþ j
4m2

D0

j ⃗p̃0
πþj2

∼ 5.69516 × 10−7 MeV−1: ð12Þ

B. The processes D0 → π +π − f 0ð980Þ and
D0 → π + π − f 0ð980Þ, f 0ð980Þ → π +π −

For the Feynman diagrams of Fig. 1(a) process, accord-
ing to the Feynman rules, we have the following amplitude
form

−itD0→πþπ−f0 ¼ i
X
pol

Z
d4q
ð2πÞ4

itD0→πþK�0K−

q2 −m2
K þ iϵ

×
itK�0Kþπ−

ðP − qÞ2 −m2
K� þ iϵ

×
itKþK−f0

ðP − q − kÞ2 −m2
K þ iϵ

; ð13Þ

in the COM frame of π−f0 where the π− comes from the
K�0 decay. It can be seen from Eq. (13) that in order to
obtain full amplitude, the tD0→πþK�0K− ; tK�0Kþπ− and tKþK−f0
need to be calculated. And, the tD0→πþK�0K− has been
obtained in Eqs. (6) and (12).
In order to calculate the tK�0Kþπ− , we need to employ

the chiral invariant Lagrangian with the local hidden
symmetry [59,60], which is given by

LVPP ¼ −ighVμ½P; ∂μP�i; ð14Þ

where the brackets h� � �i represent SU(3) trace, and cou-
pling constant g ¼ mV=2fπ in the local hidden gauge, with
mV ¼ 800 MeV and fπ ¼ 93 MeV. The P and Vμ stand
for the pseudoscalar and vector mesons octet, respectively,
which are given by

P ¼

0
BBB@

π0ffiffi
2

p þ η8ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η8

1
CCCA

;

V ¼

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA

:

ð15Þ

Then, the amplitude of K�0 decay is written as

−itK�0Kþπ− ¼ −igϵ⃗K�0 · ðp⃗0
π− − p⃗0

KþÞ: ð16Þ

Similarly to the calculations of Eq. (10), the zero compo-
nent of polarization vector in Eq. (16) is omitted, and the
polarization sum Eq. (7) is also used here. The p⃗0

π− and p⃗0
Kþ

are the momenta of the π− and Kþ in the COM frame of
πf0, respectively, and the former is given by
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jp⃗0
π− j ¼ jk⃗j ¼ λ

1
2ðM2

invðπf0Þ;M2
π− ;M2

f0
Þ

2Minvðπf0Þ
: ð17Þ

Finally, the tKþK−f0 need to be provided, in which f0 could
be considered as the dynamically generated state. Thus the
amplitude is simply written as

tKþK−f0 ¼ gKþK−f0 : ð18Þ

Now, by substituting Eqs. (6), (16), and (18) into
Eq. (13), we can get

tD0→πþπ−f0 ¼ igKþK−f0gC
X
pol

Z
d4q
ð2πÞ4

ϵ⃗K� · p⃗0
πþ

q2 −m2
K þ iϵ

ϵ⃗K� · ðp⃗0
π− − p⃗0

KþÞ
ðP − qÞ2 −m2

K� þ iϵ
1

ðP − q − kÞ2 −m2
K þ iϵ

; ð19Þ

where p⃗0
π− could be obtained from Eq. (17) and the p⃗0

πþ is the momentum of the πþ in the COM frame of πf0, which comes
from the D0 decay. We have

jp⃗0
πþj ¼

λ
1
2ðM2

D0 ;M2
invðπf0Þ;M2

πþÞ
2Minvðπf0Þ

: ð20Þ

The Eq. (7) could be employed to perform polarization sum of Eq. (19), which gives

tD0→πþπ−f0 ¼ −igKþK−f0gC
Z

d4q
ð2πÞ4

1

q2 −m2
K þ iϵ

p⃗0
πþ · ð2k⃗þ q⃗Þ

ðP − qÞ2 −m2
K� þ iϵ

1

ðP − q − kÞ2 −m2
K þ iϵ

; ð21Þ

where P ¼ ðMinv; 0; 0; 0Þ and p⃗0
π− − p⃗0

Kþ ¼ k⃗ − ð−k⃗ − q⃗Þ ¼ 2k⃗þ q⃗. We define expression tT as

tT ¼ i
Z

d4q
ð2πÞ4 p⃗

0
πþ · ð2k⃗þ q⃗Þ 1

q2 −m2
K þ iϵ

1

ðP − qÞ2 −m2
K� þ iϵ

1

ðP − q − kÞ2 −m2
K þ iϵ

: ð22Þ

For theK�0 propagator in the tT , we can ignore the part of negative energy as Refs. [12,54,55]. After performing analytically
integration Eq. (22) in dq0 by using residue theorem, we can use the following formula

Z
d3qq⃗ifðq⃗; k⃗Þ ¼ k⃗i

Z
d3q

q⃗ · k⃗

jk⃗j2
fðq⃗; k⃗Þ: ð23Þ

Now, Eq. (22) reduces to

tT ¼ p⃗0
πþ · k⃗

Z
d3q
ð2πÞ3

1

8ωK−ðq⃗ÞEK� ðq⃗ÞEKþðk⃗þ q⃗Þ
1

k0 − EK� ðq⃗Þ − EKþðk⃗þ q⃗Þ
1

P0 þ ωK−ðq⃗Þ þ EKþðk⃗þ q⃗Þ − k0

×
2P0ωK−ðq⃗Þ þ 2k0EKþðk⃗þ q⃗Þ − 2½ωK−ðq⃗Þ þ EKþðk⃗þ q⃗Þ�½ωK−ðq⃗Þ þ EK� ðq⃗Þ þ EKþðk⃗þ q⃗Þ�

½P0 − ωK−ðq⃗Þ − EKþðk⃗þ q⃗Þ − k0 þ iϵ�½P0 − ωK−ðq⃗Þ − EK� ðq⃗Þ þ iϵ�

�
2þ q⃗ · k⃗

jk⃗j2
�
;

¼ p⃗0
πþ · k⃗ × t̃T ; ð24Þ

where ωK−ðq⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mK− þ q⃗2

p
; EK�0ðq⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mK�0 þ q⃗2

p
;

EKþðq⃗þ k⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKþ þ ðk⃗þ q⃗Þ2

q
and k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π− þ k⃗2
q

are the energy of K−; K�0; Kþ and π− in the COM frame
of πf0 system, respectively. While P0 ¼ Minvðπf0Þ is the
invariant mass of the πf0 system. The jq⃗j integral in the
Eq. (24) is regulated by cutoff scheme, θðqmax − jq�jÞ,

where jq�j is the momentum of K− in the f0 rest frame. The
qmax ¼ 600 MeV in the f0 rest frame was obtained in the
chiral unitary approach by fitting experimental data. In
the following calculation, we need to add the width for K�0

with the replacement of EK�0 by EK�0 − iΓK�0=2 in the
denominator of Eq. (24).
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Finally, for the three body decay process as depicted in
Fig. 1(a), the mass distribution of differential width could
be written as

dΓ0

dMinvðπf0Þ
¼ 1

3

1

ð2πÞ3
C2g2KþK−f0

g2

4m2
D0

jp⃗πþjjk⃗jjtT j2; ð25Þ

where the 1=3 in Eq. (25) originates from the integrand
of phase-space angle in p⃗0

πþ · k⃗ ¼ jp⃗0
πþjjk⃗j cos θ,

and the p⃗πþ is the momentum of the πþ in the D0

rest frame

jp⃗πþj ¼
λ
1
2ðm2

D0 ;M2
πþ ;M

2
invðπ−f0ÞÞ

2mD0

: ð26Þ

At the same time, the other Feynman diagrams contri-
butions Figs. 1(b) and 1(c) were considered to calculate the
differential decay width. Here we give the amplitude
expressions (t) for the Figs. 1(a)–1(c) directly

ta ¼ −CðCa
2gÞp⃗0

πþ · k⃗ × t̃TðmK�0 ; mK− ; mKþÞðCa
3gK̄Kf0Þ;

tb ¼ −C0 1

M2
invðπf0Þ −m2

a1 þ ima1Γa1

ðCb
1gK̄�Ka1ÞðCb

2gÞp⃗0
π− · k⃗ × t̃TðmK̄�0 ; mKþ ; mK−ÞðCb

3gK̄Kf0Þ;

tc ¼ −C0 1

M2
invðπf0Þ −m2

a1 þ ima1Γa1

ðCc
1gK̄�Ka1ÞðCc

2gÞp⃗0
π− · k⃗ × t̃TðmK�þ ; mK̄0 ; mK0ÞðCc

3gK̄Kf0Þ: ð27Þ

From Refs. [7,9,15], the values of factor Cj
i have been

shown in Table I. We have gK̄Kf0 ¼ gKþK−f0 ¼ −gK̄0K0f0 for
the coupling between K̄K and f0 in isospin base. The value
of coupling gK̄�Ka1 in isospin base has been give in Ref. [61]

gK̄�Ka1 ¼ ð1872 − i1486Þ MeV: ð28Þ

Meanwhile, the coupling between aþ1 and the combination
with I ¼ 1, C ¼ þ and G ¼ − of the K̄�K pair is
represented by the state

1ffiffiffi
2

p ðK̄�K − K�K̄Þ ¼ 1ffiffiffi
2

p ðK̄�0Kþ − K�þK̄0Þ: ð29Þ

The C0 in the tðbÞðcÞ stand for the effective coupling strength
of D0 → aþ1 π

− vertices. In the derivation of C0, combining
BrðD0 → aþ1 ð1260Þ; a1 → 2πþπ−Þ ¼ ð4.52� 0.31Þ× 10−3

from PDG and Refs. [57,62], we take the branch ratio as
BrðD0 → aþ1 π

−Þ ¼ ð4.1� 0.4Þ × 10−3. For the propagator
of a1 in Eq. (27), we take parameters of a1 as ma1 ¼
1230 MeV and Γa1 ¼ 425 MeV, coming from the use of
Ref. [23].
Meanwhile, we further consider that the f0ð980Þ decay

to the πþπ− final state, as depicted in Fig. 1(d). In order to
write amplitude of D0 → πþπ−f0ð980Þ, f0 → πþπ− proc-
ess, following Refs. [28,34], we only need to replace the
couplings Ca

3gK̄Kf0 or gKþK−f0 in Eqs. (25) and (27) by the
transition amplitude tKþK−→πþπ− . The amplitude tKþK−→πþπ−

is obtained by solving the coupled channels Bethe-Salpeter
(BS) equation in the chiral unitary approach, in which f0

appears as dynamically generated state. The BS equation is
given by

T ¼ ½1 − VG�−1V; ð30Þ
where the V and G are the interaction potential and meson
loop function respectively, which have been calculated in
Ref. [51]. The meson loop function G is regulated by a
cutoff qmax ¼ 600 MeV. Finally, the double differential
distribution for D0 → πþπ−f0ð980Þ, f0 → πþπ− decay
process is written as

d2Γ0

dMinvðπf0ÞdMinvðπþπ−Þ

¼ g2C2

ð2πÞ5
jp⃗πþjj ⃗q̃πjjk⃗j

4m2
D0

jtT j2 · jtKþK−→πþπ− j2: ð31Þ

TABLE I. Coefficients entering the evaluation of amplitudes in
Eqs. (27) and (32). The C2 have a minus sign compared with
Ref. [15], this is because that we taken the p⃗0

π− − p⃗0
Kþ ¼ 2k⃗þ q⃗

form used in Refs. [14] for the VPP vertex instead of P − 2k⃗ − q⃗
in Ref. [15].

Diagram C1 C2 C3

Figure 1(a) ... 1 1
Figure 1(b) 1ffiffi

2
p 1 1

Figure 1(c) − 1ffiffi
2

p −1 −1
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Similar to Eq. (27), the amplitudes expressions of Figs. 1(d)–1(f) have

td ¼ −CðCa
2gÞp⃗0

πþ · k⃗ × t̃TðmK�0 ; mK− ; mKþÞðtKþK−→πþπ−Þ;

te ¼ −C0 1

M2
invðπf0Þ −m2

a1 þ ima1Γa1

ðCb
1gK̄�Ka1ÞðCb

2gÞp⃗0
π− · k⃗ × t̃TðmK̄�0 ; mKþ ; mK−ÞðtKþK−→πþπ−Þ;

tf ¼ −C0 1

M2
invðπf0Þ −m2

a1 þ ima1Γa1

ðCc
1gK̄�Ka1ÞðCc

2gÞp⃗0
π− · k⃗ × t̃TðmK�þ ; mK̄0 ; mK0ÞðtK̄0K0→πþπ−Þ: ð32Þ

III. RESULTS

With the former formula Eq. (24), by fixing the value of
Mf0 , the distributions of the triangle amplitudes t̃T , Imðt̃TÞ,
Reðt̃TÞ and jt̃T j2 × 1.3 × 107 as functions of the Minvðπf0Þ
invariant mass have been shown in Fig. 3 for the K�0KþK−

triangle loop diagram. From the Fig. 3, we see that there is a
peak around 1418 MeV for the jt̃T j2, which is consistent
with the result of Eq. (2). Since kinematic factors are the
function of the invariant mass Minvðπf0Þ, as Minvðπf0Þ
increases, it could impose restrictions on phase space and
change the shape of the final mass distribution. According
to Ref. [14], we need to consider whether the cutoff qmax
and triangle singularity will affect the behavior of Imðt̃TÞ.
Comparing the three subfigures of Fig. 3 where Minvðπf0Þ
is fixed at 600, 700, and 800 MeV, respectively, one can
find that as the qmax increases the behavior of the Imðt̃TÞ at
the higher Minvðπf0Þ becomes softer, while the peak that
associated to the triangle singularity remains. There are two
peaks for Imðt̃TÞ and Reðt̃TÞ located at 1440 MeV and
1390 MeV, respectively. The reason is that the peak of
Imðt̃TÞ is derived from the triangle singularity while the
peak of Reðt̃TÞ is derived from the threshold of the K�0K�
that is about 1390 MeV in Fig. 1(a). Next, we will more
intuitively show the behavior of Imðt̃TÞ and Reðt̃TÞ peaks.
In Fig. 4, analogy to Ref. [14], we show the develop-

ment of triangle singularity of K�0KþK− triangle loop

with ΓK�=2 and ϵ fixed at different finite values but
close to zero. To reach the triangle singularity in the
Fig. 1(a), it is required that the mass of f0 should be
slightly larger than the K−Kþ threshold as in Eq. (1).
In Fig. 4, we have taken mf0 ¼ 990 MeV. Due to the
different sources of the two peaks of Imðt̃TÞ and Reðt̃TÞ,
from Fig. 4, we can see that there are two different
distribution behavior for Reðt̃TÞ and Imðt̃TÞ. For the
Reðt̃TÞ, in Fig. 4(a), there is a cusp located at threshold
of the K�0K system 1390 MeV and a sharp downfall
nearby the triangle singularity 1418 MeV. And, in Fig. 4(b),
the triangle singularity appears in the form of narrow
peak around 1418 MeV in the distribution of Imðt̃TÞ. At the
same time, by taking the different values of ΓK�=2 and ϵ,
namely 1, 0.5, 0.25, and 0.1 MeV, Fig. 4 shows that as the
values decreases, the cusp of the Reðt̃TÞ converges to a
finite value, which is associated to the threshold of the
K�0K, and the peak of Imðt̃TÞ becomes more and more
sharp and finally transforms into a singularity when
ΓK�=2 ¼ ϵ ¼ 0.
As shown in Fig. 5(a), differential distributions of decay

width Γ0 have been depicted for different f0ð980Þ masses
Mf0 ¼ 980, 983, and 987 MeV. It is clear that the mass of
f0ð980Þ will enhance the result of decay width, but the
peaks of differential distributions are still located around
the location of the triangle singularity Minvðπf0Þ ¼
1418 MeV. In Fig. 5(b), we plot the double differential

(a) (b) (c)

FIG. 3. The distributions of the triangle amplitude t̃T for the K�0KþK− triangle loop in the Fig. 1(a). We take Mf0 ¼ 980 MeV, and
times 1.3 × 107 for t2T.
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(a) (b) (c)

FIG. 5. (a) The differential distribution of decay width Γ0 for f0ð980Þ productions, as Eq. (25). (b) The double differential distribution
of decay width Γ as a function of the invariant mass Minvðπþπ−Þ for the four body decay processes at Minvðπf0Þ ¼ 1398, 1418 and
1438 MeV. (c) The differential distributions of Γ for Figs. 1(d) and 1(e) plus Fig. 1(f) with Minvðπf0Þ ¼ 1418 MeV.

(a) (b)

FIG. 4. The distributions of the real (a) and imaginary (b) parts of t̃T for the K�0KþK− triangle loop by taking Mf0 ¼ 990 MeV and
the different values of ΓK�=2 ¼ ϵ ¼ 1, 0.5, 0.25, and 0.1 MeV.

(a) (b)

FIG. 6. The differential distribution of decay width Γ as a function of the invariant mass Mπf0 for the four body decay processes.
(a) The integration region is Mf0 ∈ ½900; 1000� MeV. (b) The integration region is Mf0 ∈ ½800; 1200� MeV.
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distribution of decay width 1
ΓD0

d2Γ
dMinvðπf0ÞdMinvðπ−πþÞ as a

function of the invariant mass Minvðπ−πþÞ in the region
of the f0ð980Þ for the four body decay process. In Fig. 5(b),
we take Minvðπf0Þ ¼ 1398, 1418, and 1438 MeV as
triangle singularity is around. For the Fig. 5(b), there is
a clear peak around the 980 MeV, and have strong
contribution to Minvðπþπ−Þ distribution around the
region of Minvðπþπ−Þ ¼ 980 MeV. The Fig. 5(c) shows
that although we consider the contributions of the inter-
mediate state a1, it is very small compared with the
Fig. 1(a). Moreover, the peak at triangle singularity
(Minvðπf0Þ ¼ 1418) is significantly larger than the values
of Minvðπf0Þ ¼ 1398 and 1438 MeV. In the following
analysis, we only focus on the domain of f0ð980Þ,
and the main contribution comes from the range of
Mf0 ∈ ½900; 1000�. Therefore, we can restrict integral
range of Minvðπþπ−Þ of Eq. (31) to these limits. Further,
we can obtain the differential distribution for 1

ΓD0

dΓ
dMinvðπf0Þ as

a function of the invariant massMinvðπf0Þ. The results have
been depicted in Fig. 6. From the Fig. 6, for the total
contribution, there is a clear peak located at 1418MeV with
considering the f0ð980Þ as a dynamically generated states,
which is consistent with Figs. 3 and 5.

IV. SUMMARY

In the present work, we give the derivation details and
formalism for the decay width calculation of D0 →
πþπ−f0ð980Þ, f0 → πþπ− process. From the Fig. 1(a),
D0 first decays to K�0πK, then the K�0 decays to the πK̄
and the K̄K fuse to form a f0ð980Þ. Only the triangle
mechanism corresponding to K�0KK̄ triangle diagrams can
produce triangle singularity around 1418 MeV for the
invariant mass of Minvðπf0Þ. Through calculating the

d2Γ
dMinvðπf0ÞdMinvðπþπ−Þ, a clear peak is produced in the invariant

mass distribution of πþπ− system that comes from the f0
decay, showing a clear f0ð980Þ shape. After integrating
over Minvðπþπ−Þ, the dΓ

dMinvðπf0Þ shows a clear peak in the

Minvðπf0Þ invariant mass distribution located at 1418 MeV,
and the main contribution of the peak comes from the
triangle singularity.
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