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In this paper we show that, as in the spacelike case, the inverse logarithmic expansion is applicable for all
values of the argument of the analytic coupling constant. We present two different approaches, one of
which is based primarily on trigonometric functions, and the latter is based on dispersion integrals. The
results obtained up to the 5th order of perturbation theory have a compact form and their acquiring is much
easier than the methods that have been used before. As an example, we apply our results to study the Higgs
boson decay into a bb̄ pair.
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I. INTRODUCTION

The perturbative expansion in QCD works well only for
estimation of the quantities in the region of large squared
momentumQ2 (here and furtherQ2 ¼ −q2, where q2 is the
transferred momentum in the Euclidean domain for space-
like processes). However, for transferred momenta less than
1 GeV2, the situation changes dramatically. The reason for
this is the presence of the singularity of the coupling
constant (couplant) αsðQ2Þ at the point Q2 ¼ Λ2 which is
widely known as Landau (ghost) pole. This singularity is
especially important when we expand various physical
observables in terms of the couplant, which makes the
behavior of the observables nonanalytic in the Q2-plane.
For the correct description of QCD observables in the
region of smallQ2 values, it is necessary to construct a new
everywhere continuous couplant.
The renormalization group (RG) method allows us to

sufficiently improve the expressions obtained in the frame
of perturbation theory (PT). To show that the RG method
cannot solve the above-mentioned problem, we first write
the differential equation

d
dL

āsðQ2Þ ¼ βðāsÞ; āsðQ2Þ ¼ αsðQ2Þ
4π

; L ¼ Q2

Λ2
;

ð1Þ

with the QCD β-function

βðāsÞ ¼ −
X
i¼0

βiāiþ2
s ¼ −β0ā2s

�
1þ

X
i¼1

biβi0ā
i
s

�
;

bi ¼
βi
βiþ1
0

; ð2Þ

where the first fifth coefficients, i.e. βi with i ≤ 4, are
exactly known [1–3]. Here we use the following definition
of strong couplant:

asðQ2Þ ¼ β0αsðQ2Þ
4π

¼ β0āsðQ2Þ; ð3Þ

where we absorb the first coefficient of the QCD β-function
into the as definition, as is usually the case of analytic
couplants (see, e.g., Refs. [4–12]).
Solving Eq. (1) for āsðQ2Þ with the only leading order

(LO) term on the right side, one can obtain the one-loop
expression

að1Þs ðQ2Þ ¼ 1

L
; ð4Þ

i.e. að1Þs ðQ2Þ contains the pole at Q2 ¼ Λ2 that indicates
the inability of the RG approach to remove the
Landau pole.
In the timelike region (q2 > 0) (i.e., in the Minkowski

space), the determination of the running coupling turns
out to be quite difficult. The reason for the problem is
that, strictly speaking, the expansion of perturbation
theory in QCD cannot be determined directly in this
area. Indeed, since the early days of QCD, much
effort has been made to determine the appropriate
coupling parameter in the Minkowski space to describe
important timelike processes such as, for example, the
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eþe−-annihilation into hadrons, quarkonium and
τ-lepton decays into hadrons. Most of the attempts (see,
for example, [13]) were based on the analytical continuation
of the strong couplant from the deep Euclidean region,
where QCD perturbative calculations can be performed, to
the Minkowski space, where physical measurements are
performed.Over the time, it became clear that in the infrared
(IR) regime, the strong couplant can reach a stable fixed
point and stop increasing. This behavior would imply that
the color forces can saturate at low momenta. So, for
example, Cornwall [14] already in 1982 obtained the
appearance of the gluon effective mass, which behaves
as IR regulator in the region of small momenta. Similar
results were obtained by others in subsequent years (see, for
example, [15]) using different methods.
In other developments, analytical expressions for the LO

couplant directly in the Minkowski space were obtained
[16] using an integral transformation from the spacelike to
the timelike region for the Adler D-function (more infor-
mation can be found in Ref. [17]).
The systematic approach, called the analytical perturba-

tion theory (APT), arose in the Shirkov and Solovtsov
studies [4]. In this paper authors proposed to use new
everywhere continuous analytic couplant AMAðQ2Þ in the
form of spectral integral

AðiÞ
MAðQ2Þ ¼ 1

π

Z þ∞

0

dσ
ðσ þQ2Þ r

ð1Þ
pt ðσÞ; ð5Þ

which is directly related with the appropriate PT order via
the spectral function rptðsÞ

rðiÞpt ðσÞ ¼ ImaðiÞs ð−σ − iϵÞ: ð6Þ

Similarly, the analytical images of a running coupling in
Minkowski space are defined using another linear operation

UðiÞ
MAðsÞ ¼

1

π

Z þ∞

s

dσ
σ
rðiÞpt ðσÞ; ð7Þ

This method, called the minimal approach (MA) (see, e.g.,
[12]), contains a spectral function of a pure perturbative
nature.1

The analytic couplants AMAðQ2Þ and UMAðsÞ take
almost the same values as asðQ2Þ when Q2ðsÞ ≫ Λ2 and
completely different finite values at Q2 ≤ Λ2. Moreover,
the MA couplants AMAðQ2Þ and UMAðQ2Þ are related each
other as [8]

AðiÞ
MAðQ2Þ ¼

Z þ∞

0

dσQ2

ðσ þQ2Þ2 U
ðiÞ
MAðσÞ;

UðiÞ
MAðsÞ ¼

1

2πi

Z
−sþiε

−s−iε

dσ
σ
AðiÞ
MAðσÞ: ð8Þ

The APT were extended for the case of noninteger
power of the couplant, which appears in the QFT
framework for quantities with nonzero anomalous
dimensions (see the famous papers [7–9], some previous
study [10] and reviews in Ref. [11]). For these purposes
the fractional APT (FAPT) was developed. Due to the
complexity of FAPT, the main results here until recently
were obtained mostly in LO, however, it was also used
in higher orders by reexpanding the corresponding
coupling constants in the terms of LO ones, as well
as using some approximations.
Following our recent paper [20] devoted to the

couplant in the Euclidean domain, in this article we
extend the FAPT in the Minkowski space to higher PT
orders using the so-called 1=L-expansion of the usual
couplant. For an ordinary couplant, this expansion is
valid only for the large values of L, i.e. for Q2 ≫ Λ2;
however, as it was shown in [20], if we consider an
analytic couplant, this expansion is applicable through-
out whole axis of squared transfered momentum. This
becomes possible due to the smallness of the corrections
for MA couplant which disappear when Q2 → ∞ and
also Q2 → 0.2 Thus, only in the region Q2 ∼ Λ2 cor-
rections turn out to be important enough (see also
detailed discussions in Sec. III below).
Below we represent two different forms for the MA

couplant in the Minkowski space calculated up to the 5th
order of PT both of which contain the coefficients of the
QCD β-function as parameters (some short version with the
results based on the first three orders can be found
in Ref. [21]).
The paper is organized as follows. In Sec. II we

shortly review the basic properties of the usual strong
couplant, its fractional derivatives (i.e., the ν-derivatives)
and the 1=L-expansions, which can be represented as
some operators acting on the ν-derivatives of the LO
strong couplant. This was the key idea of the paper [20],
which makes it possible here to construct 1=L-expansions
of the ν-derivatives ofMA couplant in theMinkowski space
for high-order perturbation theory, see Sec. III. In Sec. IV
we applied our new derivative operators to an integral
representations of theMA couplant in theMinkowski space
and in this manner continued it at the high PT orders.
Section V contains an application of this approach to the
Higgs boson decay into a bb̄ pair. In conclusion, some final
discussions are given. In addition, we have several

1An overview of other similar approaches can be found in [11]
including approaches [18,19] close to APT.

2The absence of high-order corrections for Q2 → 0 was also
discussed in Refs. [4–6].
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Appendices. Appendix A presents some alternative
results for the ν-derivatives of the MA couplant

Uð1Þ
MAðsÞ, which may be useful for some applications.

Some details related to the derivation of the coefficients
of the running quark mass are gathered in Appendix B.
Appendix C contains formulas for restoring noninteger
ν-powers of the usual strong couplant as a series of its
(νþm)-derivatives.

II. STRONG COUPLING CONSTANT
AND ITS FRACTIONAL DERIVATIVES

The strong couplant asðQ2Þ can be represented as
1=L-series when Q2 ≫ Λ2. Here we give the first five
terms of the expansion in an agreement with the number of
known coefficients βi in the following short form

að1Þs ðQ2Þ ¼ 1

L
; aðiþ1Þ

s ðQ2Þ ¼ að1Þs ðQ2Þ þ
Xiþ1

m¼2

δðmÞ
s ðQ2Þ;

ði ¼ 0; 1; 2;…Þ ð9Þ

where L is defined in Eq. (1).

The corresponding corrections δðmÞ
s ðQ2Þ are repre-

sented in [20]. At any PT order, the couplant asðQ2Þ
contains its own parameter Λ of dimensional trans-
mutation, which is fitted from experimental data for
every single case.
The coefficients βi depend on the number f of flavors,

which increases or decreases at thresholds Q2
f ∼m2

f, where

some new quark appears at Q2 > Q2
f. Here mf is the MS

mass of f quark, for example, mb ¼ 4.18þ 0.003 −
0.002 GeV from PDG20 [22].3 Thus, the couplant as
is f-dependent and its f-dependence can be incorporated
into Λ, as Λf, where f indicates the number of active
flavors. In the MS scheme, the relations between Λf

i and
Λf−1
i are known up to the four-loop order [23–25] and they

are usually used at Q2
f ¼ m2

f, where the relations are
simplified (for a recent review, see e.g. [26,27]).
Below we mainly deal with the region of low Q2, where

the only three first lightest quarks appear. Since in this case
we will use the set of Λf¼3

i (i ¼ 0; 1; 2; 3) taken from
the recent Ref. [28]. Further, since we will consider the
H → bb̄ decay as an application, we will use also the
results for Λf¼5

i taken also from [28]

Λf¼3
0 ¼ 142 MeV; Λf¼3

1 ¼ 367 MeV; Λf¼3
2 ¼ 324 MeV; Λf¼3

3 ¼ 328 MeV;

Λf¼5
0 ¼ 87 MeV; Λf¼5

1 ¼ 224 MeV; Λf¼5
2 ¼ 207 MeV; Λf¼5

3 ¼ 207 MeV: ð10Þ

We use also Λ4 ¼ Λ3, since in the highest orders Λi values
become very similar.

A. Fractional derivatives

As it was done in [29,30], we first introduce the
derivatives of couplant (in the (iþ 1)-order of PT)

ãðiþ1Þ
nþ1 ðQ2Þ ¼ ð−1Þn

n!
dnaðiþ1Þ

s ðQ2Þ
ðdLÞn ; ð11Þ

which is a key element in construction of FAPT (see, e.g.,
Ref. [31] and discussions therein).
The derivatives ãnðQ2Þ can be successfully used

instead of as-powers in the decomposition of QCD
observables. Although every derivative decreases the
power of as, it produces the additional β-function ∼a2s ,
appeared from the term das=dL. At LO, the series of
derivatives exactly coincide with the series of powers.
Beyond LO, the relation between ãnðQ2Þ and ans ðQ2Þ
was established [30,32] (the corresponding expansion

anþ1ðQ2Þ in the terms ãðiþ1Þ
nþmþ1ðQ2Þ can be found in

Appendix C) and extended to the fractional case, where
n is replaced for a noninteger ν, in Ref. [33]. The results

for evaluation of ãðiþ1Þ
nþ1 ðQ2Þ are shown in (11) was

considered in details in Appendix B of [20].
Here we write only the final results of calculations,

which are represented in the form similar to given in
Eq. (9)4:

ãð1Þν ðQ2Þ ¼ ðað1Þs ðQ2ÞÞν ¼ 1

Lν ;

ãðiþ1Þ
ν ðQ2Þ ¼ ãð1Þν ðQ2Þ þ

Xi

m¼1

Cνþm
m δ̃ðmþ1Þ

ν ðQ2Þ;

δ̃ðmþ1Þ
ν ðQ2Þ ¼ R̂m

1

Lνþm ; Cνþm
m ¼ ΓðνþmÞ

m!ΓðνÞ ; ð12Þ

where

3Strictly speaking, the quark masses are Q2-dependent in MS-
scheme andmf ¼ mfðQ2 ¼ m2

fÞ. However, theQ2-dependence is
quite slow and it is not shown in the present study.

4The expansion (12) is very similar to those used in
Refs. [7,8] for the expansion of ðaðiþ1Þ

s ðQ2ÞÞν in terms of powers
of að1Þs ðQ2Þ.
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R̂1 ¼ b1

�
Ẑ1ðνÞ þ

d
dν

�
; R̂2 ¼ b2 þ b21

�
d2

ðdνÞ2 þ 2Ẑ1ðνþ 1Þ d
dν

þ Ẑ2ðνþ 1Þ
�
;

R̂3 ¼
b3
2
þ 3b2b1

�
Z1ðνþ 2Þ − 11

6
þ d
dν

�

þ b31

�
d3

ðdνÞ3 þ 3Ẑ1ðνþ 2Þ d2

ðdνÞ2 þ 3Ẑ2ðνþ 2Þ d
dν

þ Ẑ3ðνþ 2Þ
�
;

R̂4 ¼
1

3
ðb4 þ 5b22Þ þ 2b3b1

�
Z1ðνþ 3Þ − 13

6
þ d
dν

�

þ 6b21b2

�
d2

ðdνÞ2 þ 2

�
Z1ðνþ 3Þ − 11

6

�
d
dν

þ Z2ðνþ 3Þ − 11

3
Z1ðνþ 3Þ þ 38

9

�

þ b41

�
d4

ðdνÞ4 þ 4Ẑ1ðνþ 3Þ d3

ðdνÞ3 þ 6Ẑ2ðνþ 3Þ d2

ðdνÞ2 þ 4Ẑ3ðνþ 3Þ d
dν

þ Ẑ4ðνþ 3Þ
�
: ð13Þ

The representation (12) of the δ̃ðmþ1Þ
ν ðQ2Þ corrections as

R̂m-operators plays a very important role in this paper.5

Hereinafter, acting these operators on the analytic couplant
in the Minkowski space, we will obtain the results for high-
order corrections.

III. MINIMAL ANALYTIC COUPLING IN
MINKOWSKI SPACE

There are several ways to obtain analytical versions
of the strong couplant as (see, e.g. [11]). Here we will
follow the MA approach [4–6] as discussed in the Introduc-
tion. To the fractional case, the MA approach was gener-
alized by Bakulev, Mikhailov and Stefanis (hereinafter
referred to as the BMS approach), that is presented in three
famous papers [7–9] (see also the previous paper [10], the
reviews [11,12] and Mathematica package in [35]).
We first show the leading order BMS results, and

later we will go beyond LO, following our results for
the usual strong couplant obtained in the previous section
[see Eq. (12)].

A. LO

The LO MA coupling Uð1Þ
MA;νðsÞ in the Minkowski space

has the following form [8]

Uð1Þ
ν ðsÞ ¼ Ũð1Þ

ν ðsÞ ¼ sin½ðν − 1ÞgðsÞ�
πðν − 1Þðπ2 þ L2

sÞðν−1Þ=2
; ðν > 0Þ;

ð14Þ

where

Ls ¼ ln
s
Λ2

; gðsÞ ¼ arccos

�
Lsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 þ L2
s

p
�
: ð15Þ

The fact that Eq. (14) is applicable only for ν > 0 will be
discussed later.

For the cases ν ¼ 0.5; 1; 1.5, Uð1Þ
MA;νðQ2Þ is shown in

Fig. 3. Strictly speaking, the value of the parameter Λ is
obtained by fitting experimental data. To obtain its
values (one of the two MA couplants AMAðQ2Þ and
UMAðsÞ can be fitted as they are very close to each
other, as will be shown on Figs. 7 and 8 below) within
the framework of analytical QCD, it is necessary to fit
experimental data for various processes6 by using, for
instance, formulas obtained in this paper that simplify
the form of higher-order terms. This, however, requires
additional special research. In this article we use the
values Λf¼3 and Λf¼5 [see Eq. (10)] obtained in the

5The results for R̂m-operators contain the transcendental
principle [34]: the corresponding functions ẐkðνÞ (k ≤ m) contain
the Polygamma-functions ΨkðνÞ and their products, such as
Ψk−lðνÞΨlðνÞ, and also with a larger number of factors) with
the same total index k. However, the importance of this property
is not clear yet.

6One of the most important applications is fitting experimental
data for the DIS structure functions (SFs) F2ðx;Q2Þ and
F3ðx;Q2Þ (see, e.g., Refs. [36–39] and [40,41], respectively).

One can use the ν-derivatives of the MA couplant ÃðiÞ
MA;νðQ2Þ,

which is indeed possible, because when fitting we study the SF
Mellin moments (following Ref. [42]) and only at the end
reconstruct the SF themselves. This differs from the more popular
approaches [43] based on numerical solutions of the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [44]. In the
case of using the [42] approach, the Q2-dependence of the SF
moments is known exactly in analytical form (see, e.g., [45]): it

can be expressed in terms of the ν-derivatives ÃðiÞ
MA;νðQ2Þ, where

the corresponding ν-variable becomes to be N-dependent (here N
is the Mellin moment number), and the using of the ν-derivatives
should be crucial. Beyond LO, in order to obtain complete
analytic results for Mellin moments, we will use their analytic
continuation [46].
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framework of a conventional perturbative QCD since PT
and FAPT couplants must coincide in the limit of large
Q2 and this requirement is fulfilled. It is clearly seen

that at low Q2 Uð1Þ
MA;νðQ2Þ agrees with its asymptotic

values:

Uð1Þ
MA;νðQ2 ¼ 0Þ ¼

8<
:

0 when ν > 1;

1 when ν ¼ 1;

∞ when ν < 1;

ð16Þ

obtained in Ref. [47]. The corresponding results in the

Euclidean space for Að1Þ
MA;νðQ2Þ ν ¼ 0.5; 1; 1.5 were

numerically obtained and shown on Fig. 1 in [20].
They are very close to those shown above in Fig. 1.

Moreover, the asymptotic values of Að1Þ
MA;νðQ2 ¼ 0Þ and

Uð1Þ
MA;νðs ¼ 0Þ are completely identical to each other.

B. Beyond LO

Hereafter we repeat for UMA;νðsÞ the procedure that

was applied to ãðiÞν ðQ2Þ. For this purpose, following to
the representation (14) for the LO MA couplant in the
Minkowski space, we consider its derivatives

ŨMA;nþ1ðsÞ ¼
ð−1Þn
n!

dnUMAðsÞ
ðdLsÞn

: ð17Þ

Using the results (12) for the usual couplant we have

ŨMA;ðiþ1Þ
ν ðsÞ ¼ Ũð1Þ

MA;νðsÞ þ
Xi

m¼1

Cνþm
m δ̃ðmþ1Þ

ν ðsÞ;

δ̃ðmþ1Þ
ν ðsÞ ¼ R̂mŨ

ð1Þ
MA;νþmðsÞ; ð18Þ

where Ũð1Þ
MA;νðsÞ is given in Eq. (14).

This approach allows to express the high order correc-
tions in explicit form

δ̃ðmþ2Þ
ν ðsÞ ¼ 1

ðνþmÞπðπ2 þ L2
sÞðνþmÞ=2

n
δ̄ðmþ2Þ
νþm−1ðsÞ sinððνþmÞgÞ þ δ̂ðmþ2Þ

νþm−1ðsÞg cosððνþmÞgÞ
o
; ð19Þ

where δ̄ðmþ2Þ
ν ðsÞ and δ̂ðmþ2Þ

ν ðsÞ are

δ̄ð2Þν ðsÞ ¼ b1½Ẑ1ðνÞ − G�; δ̂ð2Þν ðsÞ ¼ b1;

δ̄ð3Þν ðsÞ ¼ b2 þ b21½Ẑ2ðνÞ − 2GẐ1ðνÞ þ G2 − g2�; δ̂ð3Þν ðsÞ ¼ 2b21½Ẑ1ðνÞ −G�;

δ̄ð4Þν ðsÞ ¼ b3
2
þ 3b1b2

�
Z1ðνÞ −

11

6
−G

�
þ b31½Ẑ3ðνÞ − 3GẐ2ðνÞ þ 3ðG2 − g2ÞẐ1ðνÞ −GðG2 − 3g2Þ�;

δ̂ð4Þν ðsÞ ¼ 3b1b2 þ b31½3Ẑ2ðνÞ − 6GẐ1ðνÞ þ ð3G2 − g2Þ�;

δ̄ð5Þν ðsÞ ¼ 1

3
ðb4 þ 5b22Þ þ 2b1b3

�
Z1ðνÞ −

13

6
−G

�
þ 6b21b2

�
Z2ðνÞ −

11

3
Z1ðνÞ þ

38

9
− 2G

�
Z1ðνÞ −

11

6

�
þ G2 − g2

�

þ b41½Ẑ4ðνÞ − 4GẐ3ðνÞ þ 6ðG2 − g2ÞẐ2ðνÞ − 4GðG2 − 3g2ÞẐ1ðνÞ þG4 − 6G2g2 þ g4�;

δ̂ð5Þν ðsÞ ¼ 2b1b3 þ 12b21b2

�
Z1ðνÞ −

11

6
−G

�
þ 4b41½Ẑ3ðνÞ − 3GẐ2ðνÞ þ ð3G2 − g2ÞẐ1ðνÞ − GðG2 − g2Þ� ð20Þ

and

GðsÞ ¼ 1

2
ln ðπ2 þ L2

sÞ: ð21Þ

FIG. 1. The results for Uð1Þ
MA;νðQ2Þ with ν ¼ 0.5; 1; 1.5 in

logarithmic scale.
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C. The case ν = 1

For the case ν ¼ 1 we get

Ũðiþ1Þ
MA;ν¼1ðsÞ ¼ Ũð1Þ

MA;ν¼1ðsÞ þ
Xi

m¼1

δ̃ðmþ1Þ
ν¼1 ðsÞ; ð22Þ

where LO gives the famous Shirkov-Solovtsov result [4,6]

Uð1Þ
MAðsÞ ¼ Ũð1Þ

MA;ν¼1ðsÞ ¼
gðsÞ
π

¼ 1

π
arccos

�
Lsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
s þ π2

p
�

¼ 1

π

�
π

2
− arctan

�
Ls

π

��
ð23Þ

and the high order corrections sufficiently simplify

δ̃ðmþ1Þ
ν¼1 ðsÞ ¼ 1

mπðπ2 þ L2
sÞm=2 fδ̄

ðmþ1Þ
m−1 ðsÞ sinðmgÞ þ δ̂ðmþ1Þ

m−1 ðsÞg cosðmgÞg; ð24Þ

where δ̄ðmþ1Þ
m−1 ðsÞ and δ̂ðmþ1Þ

m−1 ðsÞ can be obtained from the corresponding values in Eq. (20) with ν ¼ 1. Using Eqs. (A1) and
(A2) we get

δ̄ð2Þ0 ðsÞ ¼ −b1½1þG�; δ̂ð2Þ0 ðsÞ ¼ b1;

δ̄ð3Þ1 ðsÞ ¼ b2 þ b21½G2 − g2 − 1�; δ̂ð3Þ1 ðsÞ ¼ −2Gb21;

δ̄ð4Þ2 ðsÞ ¼ b3
2
− b1b2½1þ 3G� þ b31

2
½1þ 6Gþ 3ðG2 − g2Þ − 2GðG2 − 3g2Þ�;

δ̂ð4Þ2 ðsÞ ¼ 3b1b2 þ b31½3G2 − g2 − 3G − 3�;

δ̄ð5Þ3 ðsÞ ¼ 1

3
ðb4 þ 5b22Þ −

2

3
b1b3½1þ 3G� þ 3b21b2½2G2 − 2g2 − 1�

þ b41

�
5

3
þ 2G − 4ðG2 − g2Þ − 10

3
GðG2 − 3g2Þ þG4 − 6G2g2 þ g4

�
;

δ̂ð5Þ3 ðsÞ ¼ 2b1b3 − 12Gb21b2 þ 2b41

�
4G − 1þ 5

3
ð3G2 − g2Þ − 2GðG2 − g2Þ

�
: ð25Þ

Another form of δ̃ðiþ1Þ
ν¼1 ðsÞ is given in Appendix A [see Eq. (A3)].

At the point s ¼ Λ2 the above results are simplified. They are

Ũðiþ1Þ
MA;ν¼1ðs ¼ Λ2Þ ¼ Ũð1Þ

MA;ν¼1ðs ¼ Λ2Þ þ
Xi

m¼1

δ̃ðmþ1Þ
ν¼1 ðs ¼ Λ2Þ; ð26Þ

where LO gives

Uð1Þ
MA;1ðs ¼ Λ2Þ ¼ 1

2
; ð27Þ

and the high order corrections are

δ̃ð2mþ1Þ
ν¼1 ðs ¼ Λ2Þ ¼ ð−1Þm

4mðπ2 þ L2
sÞm

δ̂ð2mþ1Þ
2m−1 ðs ¼ Λ2Þ;

δ̃ð2mþ2Þ
ν¼1 ðsÞ ¼ ð−1Þm

ð2mþ 1Þπðπ2 þ L2
sÞmþ1=2 δ̄

ð2mþ2Þ
2m ðs ¼ Λ2Þ ð28Þ
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where δ̄ð2mþ2Þ
2m ðs ¼ Λ2Þ and δ̂ð2mþ1Þ

2m−1 ðs ¼ Λ2Þ can be taken
from Eq. (25) with the following replacement:

Gðs ¼ Λ2Þ ¼ lnðπÞ; gðs ¼ Λ2Þ ¼ π

2
: ð29Þ

D. Discussions

This subsection provides graphical results of couplant
construction. Figures 2 and 3 show the results for

UðiÞ
MA;ν¼1ðsÞ with i ¼ 1; 3; 5 in usual and logarithmic

scales (the last one was chosen to stress the limit

UðiÞ
MA;ν¼1ðs → 0Þ → 1). From Figs. 4 and 5 we can see

the differences between UðiÞ
MA;ν¼1ðQ2Þ with i ¼ 1;…; 5,

which are rather small and have nonzero values around the
position Q2 ¼ Λ2

i . In Figs. 2, 4, 5, and 8 the values of
ðΛf¼3

i Þ2 (i ¼ 0; 2; 4) are shown by vertical lines with color
matching in each order. Note that Fig. 5 contains only one
vertical line since ðΛf¼3

4 Þ2 ¼ ðΛf¼3
5 Þ2.

So, Figs. 2–5 point out that the difference between

Uðiþ1Þ
MA;ν¼1ðsÞ and UðiÞ

MA;ν¼1ðsÞ is essentially less then the

couplants themselves. From Figs. 3, 4, and 5 it is clear

that for s → 0 the asymptotic behavior of Uð1Þ
MA;ν¼1ðsÞ,

Uð3Þ
MA;ν¼1ðsÞ, and Uð5Þ

MA;ν¼1ðsÞ coincides [and is equal to
behavior considered in (16)], i.e. the differences

δðiÞMA;ν¼1ðs → 0Þ are negligible. Also Figs. 4 and 5 show

the differences δðiþ1Þ
MA;ν¼1ðsÞ (i ≥ 2) essentially less then

δð2ÞMA;ν¼1ðsÞ. We note that general form of the results is
exactly the same as in the case of the MA couplants

Aðiþ1Þ
MA;ν;iðQ2Þ, which have been studied earlier in [20].

Indeed, the similarity is shown in Figs. 6 and 7. In

Fig. 6 the results for UðiÞ
MA;ν¼1ðsÞ and AðiÞ

MA;ν¼1ðQ2Þ
(i ¼ 1; 3; 5) are shown in the so-called mirror form,
which is in accordance with the similar one presented

earlier in [8]. Figure 7 contains Uð1Þ
MA;ν¼1ðsÞ, Að1Þ

MA;ν¼1ðQ2Þ,
Uð2Þ

MA;ν¼1ðsÞ and Að2Þ
MA;ν¼1ðQ2Þ which are very close to

each others but have different limit values when

Q2 → 0. Moreover, the differences δð2ÞMA;ν¼1ðQ2Þ in the

cases Uð2Þ
MA;ν¼1ðsÞ and Að2Þ

MA;ν¼1ðQ2Þ are almost the same
although correction of the spacelike couplant decreases

FIG. 2. 1, 3, and 5 orders ofUðiÞ
MA;ν¼1. The vertical lines indicate

ðΛf¼3
i−1 Þ2.

FIG. 3. 1, 3, and 5 orders ofUðiÞ
MA;ν¼1 with logarithmic scale of s.

FIG. 4. δðiÞMA;ν¼1 with i ¼ 2; 3. The vertical lines indicate
ðΛf¼3

i−1 Þ2.

FIG. 5. δðiÞMA;ν¼1 with i ¼ 4, 5. The vertical line indicates
ðΛf¼3

3 Þ2 ¼ Λf¼3
4 Þ2.
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more rapidly. The direct relation between AðiÞ
MA;ν¼1ðQ2Þ and

UðiÞ
MA;ν¼1ðQ2Þ gives an interesting picture (see Fig. 8).

Obviously we have
AðiÞ
MA;ν¼1

ðQ2¼0Þ
UðiÞ

MA;ν¼1
ðQ2¼0Þ ¼ 1 for any order and

the second similar point

AðiÞ
MA;ν¼1ðQ2 ¼ ðΛf¼3

i−1 Þ2Þ
UðiÞ

MA;ν¼1ðQ2 ¼ ðΛf¼3
i−1 Þ2Þ

¼ 1 ð30Þ

for i ¼ 1. Higher order corrections break the identity (30),
shifting the second point from ðΛf¼3

i Þ2. As we can see in
Fig. 8, the shift is quite small. As can be seen from Fig. 8,
the ratio (30) asymptotically approaches 1 when Q2 → ∞.
Thus, we can conclude that contrary to the case of the

usual couplant, the 1=L-expansion of the MA couplant is
very good approximation at any Q2ðsÞ values. Moreover,

the differences between Uðiþ1Þ
MA;ν¼1ðsÞ and UðiÞ

MA;ν¼1ðsÞ
become smaller with the increase of order. So, the expan-

sions of Uðiþ1Þ
MA;ν¼1ðsÞ i ≥ 1 through the Uð1Þ

MA;ν¼1ðsÞ done in
Refs. [7–9] are very good approximations.

IV. INTEGRAL REPRESENTATIONS FOR
MINIMAL ANALYTIC COUPLING

As it was mentioned in the Introduction, the MA

couplants Að1Þ
MA;νðQ2Þ and Uð1Þ

MA;νðsÞ are constructed as
follows: the LO spectral function is taken directly from

perturbation theory but the MA couplants Að1Þ
MA;νðQ2Þ and

Uð1Þ
MA;νðsÞ themselves were obtained using the correct

integration contours. Thus, at LO, the MA couplants

Að1Þ
MA;νðQ2Þ and Uð1Þ

MA;νðsÞ obey Eqs. (5) and (7) presented
in the Introduction.
To check Eqs. (24) and (20) we compare them with an

integral form

UðiÞ
1 ðsÞ ¼ 1

π

Z
∞

s

dσ
σ
rðiÞpt ðσÞ: ð31Þ

For LO, we can take the integral form from [8]

Uð1Þ
ν ðsÞ ¼ 1

π

Z
∞

s

dσ
σ
rð1Þν ðσÞ; ð32Þ

where

rð1Þν ðsÞ ¼ sin½νgðsÞ�
πðπ2 þ L2

sÞðν−1Þ=2
¼ νUð1Þ

νþ1ðsÞ; ð33Þ

In (14) only the case ν ≥ 0 is considered, it means
that the integral (32) converges to zero at the upper limit.
We would like to note, that dispersion integral (31) does not
converge for some ν and, in this case, we will introduce
constant, which corresponds to the upper limit of the
integral. In general, it is better to replace the integral
(31) by the one

Uð1Þ
ν ðsÞ ¼ 1

π

Z
∞

s

dσ
σ
rð1Þν ðσÞ − Uð1Þ

ν ð∞Þ; ð34Þ

FIG. 6. 1, 3 and 5 orders of UðiÞ
MA;ν¼1 and AðiÞ

MA;ν¼1.

FIG. 7. 1 and 2 orders of UðiÞ
MA;ν¼1, A

ðiÞ
MA;ν¼1 and δð2ÞMA;ν¼1 in

Euclidean and Minkowki spaces.

FIG. 8. The relation AðiÞ
MA;ν¼1=U

ðiÞ
MA;ν¼1 for i ¼ 1; 5. The vertical

lines indicate ðΛf¼3
i−1 Þ2.
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where

Uð1Þ
ν ð∞Þ ¼

8<
:

0 when ν > 0;

1 when ν ¼ 0;

∞ when ν < 0:

ð35Þ

We see that the expression (32) diverges for ν < 0 and
requires additional constant for ν ¼ 0. Therefore Eq. (14) is
applicable only when ν > 0. Further in this paper we will
only consider the region ν > 0.
Using our approach to obtain high-order terms from LO

(32), we can extend the LO integral (32) to the one

ŨðiÞ
ν ðsÞ ¼ 1

π

Z
∞

s

dσ
σ
rðiÞν ðσÞ; ð36Þ

where obviously

rðiÞν ðsÞ ¼ νŨðiÞ
νþ1ðsÞ: ð37Þ

The spectral function rðiÞ1 ðsÞ has the form

rðiÞ1 ðsÞ ¼ rð1Þ1 ðsÞ þ
Xi

m¼1

δðmþ1Þ
1 ðsÞ ð38Þ

where

rð1Þ1 ðsÞ ¼ Uð1Þ
2 ðsÞ; δðmþ1Þ

1 ðsÞ ¼ ðmþ 1Þδ̃ðmþ1Þ
ν¼2 ðsÞ: ð39Þ

In the explicit form:

rðiÞ1 ðsÞ ¼ sinðgÞ
πðπ2 þ L2

sÞ1=2
¼ 1

π2 þ L2
s
;

δ̃ðmþ1Þ
1 ðsÞ ¼ 1

πðπ2 þ L2
sÞðmþ1Þ=2 fδ̄

ðmþ1Þ
m ðsÞ sinððmþ 1ÞgÞ

þ δ̂ðmþ1Þ
m ðsÞg cosððmþ 1ÞgÞg; ð40Þ

where δ̄ðmþ1Þ
m ðsÞ and δ̂ðmþ1Þ

m ðsÞ can be obtained from the
results in (20) with ν ¼ 2. They are

δ̄ð2Þ1 ðsÞ ¼ −Gb1; δ̂ð2Þ1 ðsÞ ¼ b1;

δ̄ð3Þ2 ðsÞ ¼ b2 þ b21½G2 − g2 −G − 1�; δ̂ð3Þ2 ðsÞ ¼ b21½1 − 2G�;

δ̄ð4Þ3 ðsÞ ¼ b3
2
− 3Gb1b2 þ

b31
2
½4G − 1þ 5ðG2 − g2Þ − 2GðG2 − 3g2Þ�;

δ̂ð4Þ3 ðsÞ ¼ 3b1b2 þ b31½3G2 − g2 − 5G − 2�;

δ̄ð5Þ4 ðsÞ ¼ 1

3
ðb4 þ 5b22Þ − 2b1b3

�
1

12
þG

�
þ 3b21b2½2G2 − 2g2 −G − 1�

þ b41

�
7

6
þ 4G −

3

2
ðG2 − g2Þ − 13

3
GðG2 − 3g2Þ þ G4 − 6G2g2 þ g4

�
;

δ̂ð5Þ4 ðsÞ ¼ 2b1b3 þ 3b21b2½1 − 4G� þ b41

�
3G − 4þ 13

3
ð3G2 − g2Þ − 4GðG2 − g2Þ

�
: ð41Þ

Using the results (A1) and (A2) for cosðngÞ and sinðngÞ
(n ≤ 4), we see that with the results [48,49] (see also

Sec. VI in [20]) give more compact results for rðiÞ1 ðsÞ. We
think that Eqs. (40) and (41) give apparently very compact

results for rðiÞ1 ðsÞ.
Note that the results (36) for ŨðiÞ

ν ðsÞ are exactly the same
as the results in Eq. (18) done in the form of trigonometric
factions. However the results (36) should be very handy in
case of nonminimal versions of analytic couplants (see
Refs. [29,30,32]).

V. H → bb̄ DECAY

In Ref. [20] we used the polarized Bjorken sum rule [50]
as an example for the application of the MA couplant

AMAðQ2Þ, which is a popular object of study in the
framework of analytic QCD (see [51–54]). Here we
consider the decay of the Higgs boson into a bottom-
antibottom pair, which is also a popular application
of the MA couplant UMAðQ2Þ (see, e.g., [8] and reviews
in Ref. [11]).
The Higgs-boson decay into a bottom-antibottom pair

can be expressed in QCD by means of the correlator

ΠðQ2Þ ¼ ð4πÞ2i
Z

dxeiqxh0jT½JSbðxÞJSbð0Þ�0i ð42Þ

of two quark scalar (S) currents in terms of the disconti-
nuity of its imaginary part, i.e., RSðsÞ ¼ ImΠð−s − iεÞ=
ð2πsÞ, so that the width reads
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ΓðH → bb̄Þ ¼ GF

4
ffiffiffi
2

p
π
MHm2

bðM2
HÞRsðs ¼ M2

HÞ: ð43Þ

Direct multiloop calculations were performed in the
Euclidean (spacelike) domain for the corresponding
Adler function DS (see Refs. [55–58]). Hence, we write
(Ds → D̃s and Rs → R̃s because the additional factor m2

b)

D̃ðQ2Þ ¼ 3m2
bðQ2Þ

�
1þ

X
n≥1

dnans ðQ2Þ
�
; ð44Þ

where for f ¼ 5 the coefficients dn are

d1 ¼ 2.96; d2 ¼ 11.44; d2 ¼ 50.17; d4 ¼ 260.24;

ð45Þ

Taking the imagine part, one has

R̃sðsÞ ¼ 3m2
bðsÞ

�
1þ

X
n≥1

rnanðsÞ
�
; ð46Þ

and for f ¼ 5 [57,59]

r1 ¼ 2.96; r2 ¼ 7.93; r3 ¼ 5.93; r4 ¼ −61.84; ð47Þ

Here m̄2
bðQ2Þ has the form (see Appendix B):

m̄2
bðQ2Þ ¼ m̂2

ba
d
s ðQ2Þ

�
1þ

Xk¼4

k¼1

ēkaksðQ2Þ
�
; ð48Þ

where

ēk ¼
ẽk

kðβ0Þk
ð49Þ

and ẽk are done in Eq. (B8). For f ¼ 5 we have

ē1 ¼ 1.23; ē2 ¼ 1.20; ē3 ¼ 0.55; ē4 ¼ 0.54: ð50Þ

The normalization constant m̂b cab be obtained as (see,
e.g., [11])

m̂b ¼ m̄bðQ2 ¼ m2
bÞa−d=2s ðm2

bÞ
�
1þ

Xk¼4

k¼1

ēkaksðQ2Þ
�−1=2

¼ 10.814 GeV2; ð51Þ

since m̄bðQ2 ¼ m2
bÞ ¼ mb ¼ 4.18 GeV.

So, we have

R̃sðsÞ ¼ R̃ðm¼5Þ
s ðsÞ; R̃ðmþ1Þ

s ðsÞ ¼ 3m̂2
ba

d
s ðsÞ

×

�
1þ

Xm
k¼0

r̄kaksðsÞÞ
�
; ð52Þ

where

r̄k ¼ rk þ ēk þ
Xk−1
l¼1

rlēk−l: ð53Þ

For f ¼ 5 we have

r̄1 ¼ 4.18; r̄2 ¼ 12.76; r̄3 ¼ 19.76; r̄4 ¼ −42.25:

ð54Þ

We can express all results through derivatives ãdþk (see
Appendix B):

R̃sðsÞ ¼ R̃ðm¼5Þ
s ðsÞ; R̃ðmþ1Þ

s ðsÞ ¼ 3m̂2
b

�
ãd þ

Xm
k¼0

r̃kãdþk

�
;

ð55Þ

where

r̃k ¼ r̄k þ k̃kðdÞ þ
Xk−1
l¼1

r̄lk̃k−lðdþ lÞ; ð56Þ

where k̃iðνÞ are given in Appendix C.
For d ¼ 24=23 and f ¼ 5, we have

r̃1 ¼ 4.17; r̃2 ¼ 9.86; r̃3 ¼ 1.29; r̃4 ¼ −71.21: ð57Þ

Performing the same analysis for the Adler function we
have

D̃s ¼ D̃ðm¼5Þ
s ; D̃ðmþ1Þ

s ¼ 3m̂2
ba

d
s ðQ2Þ

�
1þ

Xm
k¼0

d̄kaksðQ2ÞÞ
�
;

ð58Þ

where

d̄k ¼ rk þ ēk þ
Xk−1
l¼1

dlēk−l: ð59Þ

For f ¼ 5 we have

d̄1 ¼ 4.18; d̄2 ¼ 16.27; d̄3 ¼ 68.30; r̄4 ¼ 337.66:

ð60Þ

We express all results through derivatives ãdþk:

D̃s ¼ D̃ðm¼5Þ
s ; D̃ðmþ1Þ

s ¼ 3m̂2
b

�
ãdðQ2Þþ

Xm
k¼0

d̃kãdþkðQ2Þ
�
;

ð61Þ
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where

d̃k ¼ d̄k þ k̃kðdÞ þ
Xk−1
l¼1

d̄lk̃k−lðdþ lÞ: ð62Þ

For f ¼ 5 and d ¼ 24=23, we have

d̃1 ¼ 4.17; d̃2 ¼ 13.37; d̃3 ¼ 43.90; d̃4 ¼ 178.18:

ð63Þ
As it was discussed earlier in [8] in FAPT there are the

following representation for R̃s

R̃sðsÞ ¼ R̃ðm¼5Þ
s ðsÞ;

R̃ðmþ1Þ
s ðsÞ ¼ 3m̂2

b

�
Ũðmþ1Þ

d ðsÞ þ
Xm
k¼0

d̃kŨ
ðmþ1Þ
dþk ðsÞ

�
; ð64Þ

The results for R̃ðmþ1Þ
s ðsÞ are shown in Fig. 9. We see

that the FAPT results (64) are lower than those (55) based
on the conventional PT. This is in full agreement with
arguments given in [11]. But the difference becomes less
notable as the PT order increases. Indeed, for N3LO
the difference is very small, which proves the assumption

about the possibility of using R̃ðmþ1Þ
s ðsÞ expression for

D̃ðmþ1Þ
s ðQ2Þ with AðiÞ

MAðQ2Þ → UðiÞ
MAðsÞ, which was done

in Ref. [8].
The results for ΓðmÞðH → bb̄Þ in the NmLO approxima-

tion using R̃ðmþ1Þ
s ðsÞ from Eqs. (52) and (55) are exactly

same and have the following form:

Γð0Þ ¼ 1.76 MeV; Γð1Þ ¼ 2.27 MeV; Γð2Þ ¼ 2.37 MeV;

Γð3Þ ¼ 2.38 MeV; Γð4Þ ¼ 2.38 MeV: ð65Þ

The corresponding results for ΓðmÞðH → bb̄Þ with

R̃ðmþ1Þ
s ðsÞ form Eq. (64) are very similar to the ones in

(65). They are

Γð0Þ ¼ 1.74 MeV; Γð1Þ ¼ 2.23 MeV; Γð2Þ ¼ 2.34 MeV;

Γð3Þ ¼ 2.37 MeV; Γð4Þ ¼ 2.38 MeV: ð66Þ

So, we see a good agreement between the results
obtained in FAPT and in the framework of the usual PT.
It is clearly seen that the results of FAPT are very also

close to the results [60] obtained in the framework of
the now very popular principle of maximum conformality
[61] (for the recent review, see [62]). Indeed, our results
are within the band obtained by varying the renormaliza-
tion scale.
The Standard Model expectation is [63]

ΓSM
H→bb̄

ðMH ¼ 125.1 GeVÞ ¼ 2.38 MeV: ð67Þ

The ratios of the measured events yield to the Standard
Model expectations are 1.01� 0.12ðstat:Þ þ 0.16 −
0.15ðsyst:Þ [64] in ATLAS Collaboration and 1.04�
0.14ðstat:Þ � 0.14ðsyst:Þ [65] in SMC Collaboration (see
also [66]).
Thus, our results obtained in both approaches, in the

standard perturbation theory and in analytical QCD, are in
good agreement both with the Standard Model expectations
[63] and with the experimental data [64,65].

VI. CONCLUSIONS

In this paper we have used 1=L-expansions of the
ν-derivatives of the strong couplant as expressed [20]
as combinations of operators R̂m (13) applied to the

LO couplant að1Þs . Applying the same operators to the

ν-derivatives of the LO MA couplant Uð1Þ
MA, we obtained

two different representations [see Eqs. (24) and (36)] for the

ν-derivatives of the MA couplants, i.e. ŨðiÞ
MA;ν introduced

for timelike processes, in each i-order of perturbation
theory: one form contains a combinations of trigonometric
functions, and the other is based on dispersion integrals
containing the i-order spectral function. All results are
presented up to the 5th order of perturbation theory, where
the corresponding coefficients of the QCD β-function are
well known (see [1,2]).

As in the case of ÃðiÞ
MA;ν [20] applied in the Euclidean

space, high-order corrections for ŨðiÞ
MA;ν are negligible in the

s → 0 and s → ∞ limits and are nonzero in the vicinity of
the point s ¼ Λ2. Thus, in fact, there are actually only small

corrections to the LO MA couplant Uð1Þ
MA;νðsÞ. In particular,

this proves the possibility of expansions of high-order

couplants UðiÞ
MA;νðsÞ via the LO couplants Uð1Þ

MA;νðsÞ, which
was done in Ref. [9].
As an example, we examined the Higgs boson decay into

a bb̄ pair and obtained results are in good agreement with
the Standard Model expectations [63] and with the exper-
imental data [64,65]. Moreover, our results also in good

FIG. 9. The results for R̃mþ1
s with m ¼ 2 and 4 in the usual PT

and FAPT.
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agreement with studies based on the principle of maximum
conformality [61].
As a next step, we plan to include 1=L-expansions

for other MA couplants (see Refs. [8,9,47,67]), as
well as for nonminimal analytic couplants (following
Refs. [29,30,32,68,69]). In the case of nonminimal
analytic couplants, one can use the integral representations
(32) and (36) with nonperturbative spectral functions.
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APPENDIX A: ANOTHER FORM FOR Uði + 1Þ
1 ðsÞ

Using the results in Eq. (15) and transformation rules for
sinðngÞ and cosðngÞ, we have

sinðngÞ ¼ SðngÞ
ðπ2 þ L2

sÞn=2
; cosðngÞ ¼ CðngÞ

ðπ2 þ L2
sÞn=2

;

ðA1Þ

where

SðgÞ ¼ π; CðgÞ ¼ Ls; Sð2gÞ ¼ 2πLs; Cð2gÞ ¼ L2
s − π2; Sð3gÞ ¼ πð3L2

s − π2Þ;
Cð3gÞ ¼ LsðL2

s − 3π2Þ; Sð4gÞ ¼ 4πLsðL2
s − π2Þ; Cð4gÞ ¼ L4

s − 6π2L2
s þ π4;

Sð5gÞ ¼ πð5L4
s − 10π2L2

s þ π4Þ; Cð5gÞ ¼ LsðL4
s − 10π2L2

s þ 5π4Þ: ðA2Þ

Using Eqs. (A1), (A2), and (25), the results for δ̃ðmþ1Þ
ν¼1 ðsÞ in (24) can be rewritten in the following form

δ̃ð2Þν¼1ðsÞ ¼
b1

ðπ2 þ L2
sÞ
�
g
π
Ls − ð1þGÞ

�
;

δ̃ð3Þν¼1ðsÞ ¼
1

ðπ2 þ L2
sÞ2

�
b2Ls − b21

�
gG
π

ðL2
s − π2Þ þ Lsð1þ g2 − G2Þ

��
;

δ̃ð4Þν¼1ðsÞ ¼
1

ðπ2 þ L2
sÞ3

�
b1b2

�
gLs

π
ðL2

s − 3π2Þ −
�
L2
s −

1

3
π2
�
ð1þ 3GÞ

�

þ b3
6
ð3L2

s − π2Þ þ b31
6

�
ð3L2

s − π2Þ½1þ 6G − 3g2 þ 3G2 þ 6g2G − 2G3�

−
2gLs

π
ðL2

s − 3π2Þ½3þ 3Gþ g2 − 3G2�
��

;

δ̃ð5Þν¼1ðsÞ ¼
1

ðπ2 þ L2
sÞ4

�
3b21b2

�
Lsðπ2 − L2

sÞ½1þ 2g2 − 2G2� − gG
π

ðL4
s − 6L2

sπ
2 þ π4Þ

�

þ 2b1b3

�
Ls

3
ðπ2 − L2

sÞ½1þ 3G� þ g
4π

ðL4
s − 6L2

sπ
2 þ π4Þ

�
−
5b22 þ b4

3
Lsðπ2 − L2

sÞ

þ b41

�
Lsðπ2 − L2

sÞ
�
−
5

3
− 2G − 4g2 þ 4G2 − 10g2G −

10

3
G3 − g4 þ 6g2G2 −G4

�

þ g
2π

ðL4
s − 6L2

sπ
2 þ π4Þ

�
4G − 1 −

5

3
g2 þ 5G2 þ 2g2G − 2G3

���
; ðA3Þ

which is similar to the results for the spectral function rðiÞ1 ðsÞ done in Refs. [48,49] (see also Sec. VI in [20]).

APPENDIX B: m̄2
bðQ2Þ

Here we present evaluation of m̄2
bðQ2Þ, which has the form

m̄2
bðQ2Þ ¼ m̄2

bðQ2Þ exp
�
2

Z
āsðQ2Þ

āsðQ2
0
Þ

γmðaÞ
βðaÞ

�
; āsðQ2Þ ¼ αsðQ2Þ

4π
; ðB1Þ
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where

γmðaÞ ¼ −
X
k¼0

γkakþ1 ¼ −γ0a
�
1þ

X
k¼1

δkak
�
; δk ¼

γk
γ0

;

βðaÞ ¼ −
X
k¼0

βkakþ2 ¼ −β0a2
�
1þ

X
k¼1

ckak
�
; ck ¼

βk
β0

: ðB2Þ

Evaluating the integral in (B1) we have the following
results (see, e.g., also Refs. [8,70])

m̄2
bðQ2Þ ¼ m̄2

bðQ2Þ ā
d
s ðQ2Þ

āds ðQ2
0Þ
TðāsðQ2ÞÞ
TðāsðQ2

0ÞÞ
; ðB3Þ

where

d ¼ 2γ0
β0

; TðāsÞ ¼ exp

�Xk¼4

k¼1

ek
k
āks

�
ðB4Þ

and

e1 ¼ dΔ1; e2 ¼ dðΔ2 − c1Δ1Þ;
e3 ¼ dðΔ3 − c1Δ2 − c̃2Δ1Þ;
e4 ¼ dðΔ4 − c1Δ3 − c̃2Δ2 − c̃3Δ1Þ; ðB5Þ

with

Δi ¼ δi − ci; c̃2 ¼ c2 − c21; c̃3 ¼ c3 − 2c1c2 þ c31

ðB6Þ

The result for TðāsÞ can be rewritten as

TðāsÞ ¼ 1þ
Xk¼4

k¼1

ẽk
k
āks; ðB7Þ

where

ẽ1 ¼ e1; ẽ2 ¼ e2 þ e21; ẽ3 ¼ e3 þ
3

2
e1e2 þ

1

2
e31;

ẽ3 ¼ e4 þ e22 þ
4

3
e1e3 þ

1

2
e31 þ e21e2 þ

1

6
e41; ðB8Þ

APPENDIX C: RELATIONS BETWEEN aνs AND ãν

Considering Ref. [33] we have

aνs ¼ ãν þ
X
m≥1

k̃mðνÞãνþm; ðC1Þ

where

k̃1ðνÞ ¼ −νb1B̃1ðνÞ;

k̃2ðνÞ ¼ νðνþ 1Þ
�
−b2B̃2ðνÞ þ

b21
2
B̃1;1ðνÞ

�
;

k̃3ðνÞ ¼
νðνþ 1Þðνþ 2Þ

2

�
−b3B̃3ðνÞ þ b1b2B̃1;2ðνÞ −

b31
3
B̃1;1;1ðνÞ

�
;

k̃4ðνÞ ¼
νðνþ 1Þðνþ 2Þðνþ 3Þ

6

�
−b4B̃4ðνÞ þ b22B̃2;2ðνÞ þ

b1b3
2

B̃1;3ðνÞ −
b21b2
2

B̃1;1;2ðνÞ þ
b41
4
B̃1;1;1;1ðνÞ

�
; ðC2Þ

where

B̃1ðνÞ ¼ Z̃1ðνÞ − 1; B̃2ðνÞ ¼
ν − 1

2ðνþ 1Þ ; B̃1;1ðνÞ ¼ Z̃2ðνÞ − 2Z̃1ðνþ 1Þ þ 1;

B̃3ðνÞ ¼
1

6
−

1

ðνþ 1Þðνþ 2Þ ; B̃1;2ðνÞ ¼
ν − 1

6ðνþ 1Þ
�
6Z̃1ðνþ 1Þ − 1þ 4

νþ 2

�
;

B̃1;1;1ðνÞ ¼ Z̃3ðνÞ − 3Z̃2ðνþ 1Þ þ 3Z̃1ðνþ 2Þ − 1;

B̃4ðνÞ ¼
1

12
−

2

ðνþ 1Þðνþ 2Þðνþ 3Þ ; B̃2;2ðνÞ ¼
13

12
−

1

νþ 1
−

1

νþ 2
−

1

νþ 3
;
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B̃1;3ðνÞ ¼
�
1 −

6

ðνþ 1Þðνþ 2Þ
�
Z̃1ðνþ 3Þ þ 1

6
þ 4

νþ 1
−

5

νþ 2
−

2

νþ 3
;

B̃1;1;2ðνÞ ¼
3ðν − 1Þ
2ðνþ 1Þ Z̃2ðνþ 2Þ −

�
1 −

6

ðνþ 1Þðνþ 2Þ
�
Z̃1ðνþ 3Þ þ 8

3
−

2

νþ 1
þ 1

νþ 2
−

8

νþ 3
;

B̃1;1;1;1ðνÞ ¼ Z̃4ðνÞ − 4Z̃3ðνþ 1Þ þ 6Z̃2ðνþ 2Þ − 4Z̃1ðνþ 3Þ þ 1 ðC3Þ

and

Z̃1ðνÞ ¼ S1ðνÞ; Z̃2ðνÞ ¼ S21ðνÞ þ S2ðνÞ;
Z̃3ðνÞ ¼ S31ðνÞ þ 3S2ðνÞS1ðνÞ þ 2S3ðνÞ;
Z̃4ðνÞ ¼ S41ðνÞ þ 6S2ðνÞS21ðνÞ þ 3S22ðνÞ þ 8S3ðνÞS1ðνÞ þ 6S4ðνÞ: ðC4Þ

For arbitrary ν values, SiðνÞ are expressed through polygamma-functions as

S1ðνÞ ¼ Ψðνþ 1Þ −Ψð1Þ; ΨðνÞ≡ d
dν

lnΓðνÞ; ΨðiÞðνÞ≡ di

ðdνÞiΨðνÞ;

Siþ1ðνÞ≡ ð−1Þi
i!

ðΨðiÞðνþ 1Þ −ΨðiÞð1ÞÞ: ðC5Þ

In the case of integer ν ¼ n,

SiðnÞ ¼
Xn
m¼1

1

mi : ðC6Þ
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