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Fractional analytic QCD beyond leading order in the timelike region
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In this paper we show that, as in the spacelike case, the inverse logarithmic expansion is applicable for all
values of the argument of the analytic coupling constant. We present two different approaches, one of
which is based primarily on trigonometric functions, and the latter is based on dispersion integrals. The
results obtained up to the 5th order of perturbation theory have a compact form and their acquiring is much
easier than the methods that have been used before. As an example, we apply our results to study the Higgs

boson decay into a bb pair.
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I. INTRODUCTION

The perturbative expansion in QCD works well only for
estimation of the quantities in the region of large squared
momentum Q? (here and further Q> = —g?, where ¢ is the
transferred momentum in the Euclidean domain for space-
like processes). However, for transferred momenta less than
1 GeV?, the situation changes dramatically. The reason for
this is the presence of the singularity of the coupling
constant (couplant) a,(Q?) at the point Q> = A? which is
widely known as Landau (ghost) pole. This singularity is
especially important when we expand various physical
observables in terms of the couplant, which makes the
behavior of the observables nonanalytic in the Q?-plane.
For the correct description of QCD observables in the
region of small Q? values, it is necessary to construct a new
everywhere continuous couplant.

The renormalization group (RG) method allows us to
sufficiently improve the expressions obtained in the frame
of perturbation theory (PT). To show that the RG method
cannot solve the above-mentioned problem, we first write
the differential equation

Q2
Fa
(1)

a0 = p@).  aygd) =%

L =
dL V¥4

with the QCD pS-function
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bj =7, (2)

where the first fifth coefficients, i.e. f; with i <4, are
exactly known [1-3]. Here we use the following definition
of strong couplant:

2
al0) =2 pae. @)
7T
where we absorb the first coefficient of the QCD f-function
into the a, definition, as is usually the case of analytic
couplants (see, e.g., Refs. [4-12]).
Solving Eq. (1) for a,(Q?) with the only leading order
(LO) term on the right side, one can obtain the one-loop
expression

Mgz — 1
ds (Q ) - (4)
i.e. al"”(0?) contains the pole at Q> = A? that indicates
the inability of the RG approach to remove the
Landau pole.

In the timelike region (g > 0) (i.e., in the Minkowski
space), the determination of the running coupling turns
out to be quite difficult. The reason for the problem is
that, strictly speaking, the expansion of perturbation
theory in QCD cannot be determined directly in this
area. Indeed, since the early days of QCD, much
effort has been made to determine the appropriate
coupling parameter in the Minkowski space to describe
important timelike processes such as, for example, the
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ete -annihilation into hadrons, quarkonium and
7-lepton decays into hadrons. Most of the attempts (see,
forexample, [ 13]) were based on the analytical continuation
of the strong couplant from the deep Euclidean region,
where QCD perturbative calculations can be performed, to
the Minkowski space, where physical measurements are
performed. Over the time, it became clear that in the infrared
(IR) regime, the strong couplant can reach a stable fixed
point and stop increasing. This behavior would imply that
the color forces can saturate at low momenta. So, for
example, Cornwall [14] already in 1982 obtained the
appearance of the gluon effective mass, which behaves
as IR regulator in the region of small momenta. Similar
results were obtained by others in subsequent years (see, for
example, [15]) using different methods.

In other developments, analytical expressions for the LO
couplant directly in the Minkowski space were obtained
[16] using an integral transformation from the spacelike to
the timelike region for the Adler D-function (more infor-
mation can be found in Ref. [17]).

The systematic approach, called the analytical perturba-
tion theory (APT), arose in the Shirkov and Solovtsov
studies [4]. In this paper authors proposed to use new
everywhere continuous analytic couplant Ay, (Q?) in the
form of spectral integral

i 1 +0oo d
AW (0?) = ;A Fan)rép(U)v (5)

which is directly related with the appropriate PT order via

the spectral function ry(s)

Y (6) = Imal” (=0 — ie). (6)

Similarly, the analytical images of a running coupling in
Minkowski space are defined using another linear operation

i 1 +o do i
Ui = [T E . (7)

T o

This method, called the minimal approach (MA) (see, e.g.,
[12]), contains a spectral function of a pure perturbative
nature.

The analytic couplants Aya(Q?) and Upa(s) take
almost the same values as a,(Q?) when Q?(s) > A? and
completely different finite values at Q> < A?. Moreover,
the MA couplants Ay (Q?) and Uya (Q?) are related each
other as [8]

'An overview of other similar approaches can be found in [11]
including approaches [18,19] close to APT.

i +eo  doQ? i
a0 = [ LEn U ).

i 1 —s+ie do ;
Vi) =5 [ C Aluto). 0

s—ie O

The APT were extended for the case of noninteger
power of the couplant, which appears in the QFT
framework for quantities with nonzero anomalous
dimensions (see the famous papers [7-9], some previous
study [10] and reviews in Ref. [11]). For these purposes
the fractional APT (FAPT) was developed. Due to the
complexity of FAPT, the main results here until recently
were obtained mostly in LO, however, it was also used
in higher orders by reexpanding the corresponding
coupling constants in the terms of LO ones, as well
as using some approximations.

Following our recent paper [20] devoted to the
couplant in the Euclidean domain, in this article we
extend the FAPT in the Minkowski space to higher PT
orders using the so-called 1/L-expansion of the usual
couplant. For an ordinary couplant, this expansion is
valid only for the large values of L, i.e. for Q% > AZ;
however, as it was shown in [20], if we consider an
analytic couplant, this expansion is applicable through-
out whole axis of squared transfered momentum. This
becomes possible due to the smallness of the corrections
for MA couplant which disappear when Q? — oo and
also 0% - 0.2 Thus, only in the region Q*~ A2 cor-
rections turn out to be important enough (see also
detailed discussions in Sec. III below).

Below we represent two different forms for the MA
couplant in the Minkowski space calculated up to the 5th
order of PT both of which contain the coefficients of the
QCD p-function as parameters (some short version with the
results based on the first three orders can be found
in Ref. [21]).

The paper is organized as follows. In Sec. II we
shortly review the basic properties of the usual strong
couplant, its fractional derivatives (i.e., the v-derivatives)
and the 1/L-expansions, which can be represented as
some operators acting on the v-derivatives of the LO
strong couplant. This was the key idea of the paper [20],
which makes it possible here to construct 1/L-expansions
of the v-derivatives of MA couplant in the Minkowski space
for high-order perturbation theory, see Sec. III. In Sec. IV
we applied our new derivative operators to an integral
representations of the MA couplant in the Minkowski space
and in this manner continued it at the high PT orders.
Section V contains an application of this approach to the
Higgs boson decay into a bb pair. In conclusion, some final
discussions are given. In addition, we have several

*The absence of high-order corrections for Q%> — 0 was also
discussed in Refs. [4-6].
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Appendices. Appendix A presents some alternative
results for the wv-derivatives of the MA couplant

USIL(S), which may be useful for some applications.
Some details related to the derivation of the coefficients
of the running quark mass are gathered in Appendix B.
Appendix C contains formulas for restoring noninteger
v-powers of the usual strong couplant as a series of its
(v + m)-derivatives.

II. STRONG COUPLING CONSTANT
AND ITS FRACTIONAL DERIVATIVES

The strong couplant a,(Q?) can be represented as
1/L-series when Q? > A%. Here we give the first five
terms of the expansion in an agreement with the number of
known coefficients f; in the following short form

1 ; i+1 "
a(@) =2 a"™EY) =al (@) + ) 8" (02,
m=2
(i=0,1,2,...) 9)

where L is defined in Eq. (1).

AT =142 Mev,
A= =87 MeV,

A= =367 MeV,
A= =224 MeV,

We use also Ay = Aj, since in the highest orders A; values
become very similar.

A. Fractional derivatives

As it was done in [29,30], we first introduce the
derivatives of couplant (in the (i + 1)-order of PT)

( 1)11 dnagi""l) (Q2)
n! (dL)y" -

~(i+1)
n+1

‘(0 = (11)
which is a key element in construction of FAPT (see, e.g.,
Ref. [31] and discussions therein).

The derivatives @,(Q?) can be successfully used
instead of a,-powers in the decomposition of QCD
observables. Although every derivative decreases the
power of aj, it produces the additional p-function ~a?,
appeared from the term da,/dL. At LO, the series of
derivatives exactly coincide with the series of powers.
Beyond LO, the relation between &,(Q?) and a*(Q?)
was established [30,32] (the corresponding expansion
a™'(Q?%) in the terms a'j,ilH(Qz) can be found in
Appendix C) and extended to the fractional case, where
n is replaced for a noninteger v, in Ref. [33]. The results

The corresponding corrections 5 (Qz) are repre-
sented in [20]. At any PT order, the couplant a,(Q?)
contains its own parameter A of dimensional trans-
mutation, which is fitted from experimental data for
every single case.

The coefficients f; depend on the number f of flavors,
which increases or decreases at thresholds QJ% ~ m]%, where

some new quark appears at 0> > Q7. Here m; is the MS
mass of f quark, for example, m;, = 4.18 + 0.003 —
0.002 GeV from PDG20 [22].3 Thus, the couplant a;
is f-dependent and its f-dependence can be incorporated
into A, as A/, where f indicates the number of active
flavors. In the MS scheme, the relations between A{ and
A{ ~! are known up to the four—loop order [23-25] and they
are usually used at Q2 = = m> +» where the relations are
simplified (for a recent review, see e.g. [26,27]).

Below we mainly deal with the region of low Q2 where
the only three first lightest quarks appear. Since in this case
we will use the set of A{:3 (i=0,1,2,3) taken from
the recent Ref. [28]. Further, since we will consider the
H — bb decay as an application, we will use also the

results for A{ =5 taken also from [28]

A= =324 MeV,
A= =207 MeV,

A= =328 MeV,

A= =207 MeV. (10)

for evaluation of anl:_rll (Q?) are shown in (11) was

considered in details in Appendix B of [20].

Here we write only the final results of calculations,
which are represented in the form similar to given in
Eq. (9)*:

1

a!(0) = (@) = 7.
le(,iH)(Qz) _ ~(1)(Q2) + Z Czr/n+msl(/m+1)(Q2)’
m=1
2(m+1) A2y B 1 v+m F(U+ m)
v — Rm ) — T i/ N\ 12
2 (Q7) Lvtm ¢ m!T'(v) (12)
where

3Strictly speaking, the quark masses are Q>-dependent in MS-
scheme and m; = m;(Q* = m%) However, the Q?-dependence is
quite slow and it is not shown in the present study.

The expansion (12) is very. §m11ar to those used in
Refs. [7,8] for the expansion of (a5 (Q?))" in terms of powers

V(0.

of a.(c
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N N d N d? N N
R =b,|Z = R, = 212 107 N—+Z 1
1 bl[ 1(”)+dy]’ 2 b2+b1[<dy)2+ (v + )dy+ (v + )],
. by 11 d
Ry =—=+3b,b,|Z 2)——+ —
3 + 21{1(1/+) 6+du}
[ & N 2 . d »
b3 |—— +3Z 2)——+3Z o) P )1,
B[ 3204 2) o+ 32l 2) o 2o+ D)
N 1 13 d
d> 11\ d 11 38
2y |12z - )54z ——7 -2
+6b]b2[(dy)2+ (1(1/+3) 6)d1/+ »(v+3) 3 1(1/+3)+9}
W N 3 . 2 . d 4
b7 |——+4Z 3)——=+6Z 3)——=+4Z 3)—+Z 3)]. 13
8 [ 20004 3) i+ 62l 3) s A+ ) 3+ Zal 3] (13

The representation (12) of the 5" " (0?) corrections as

R,,-operators plays a very important role in this paper.5
Hereinafter, acting these operators on the analytic couplant
in the Minkowski space, we will obtain the results for high-
order corrections.

III. MINIMAL ANALYTIC COUPLING IN
MINKOWSKI SPACE

There are several ways to obtain analytical versions
of the strong couplant a (see, e.g. [11]). Here we will
follow the MA approach [4-6] as discussed in the Introduc-
tion. To the fractional case, the MA approach was gener-
alized by Bakulev, Mikhailov and Stefanis (hereinafter
referred to as the BMS approach), that is presented in three
famous papers [7-9] (see also the previous paper [10], the
reviews [11,12] and Mathematica package in [35]).

We first show the leading order BMS results, and
later we will go beyond LO, following our results for
the usual strong couplant obtained in the previous section
[see Eq. (12)].

A.LO

The LO MA coupling U l(vllky(s) in the Minkowski space
has the following form [8]

_ sinf(w = 1)g(s)]
20— 1)+ L2

(v>0),

(14)

The results for R,,-operators contain the transcendental
principle [34]: the corresponding functions Zk(y) (k < m) contain
the Polygamma-functions W (v) and their products, such as
¥, (v)¥(v), and also with a larger number of factors) with
the same total index k. However, the importance of this property
is not clear yet.

where

s
A2

ﬁ) (15)

The fact that Eq. (14) is applicable only for v > 0 will be
discussed later.

L,=1In

PR

For the cases v =0.5,1,1.5, UI(VIILU(Qz) is shown in

Fig. 3. Strictly speaking, the value of the parameter A is
obtained by fitting experimental data. To obtain its
values (one of the two MA couplants Ay (Q?) and
Unma(s) can be fitted as they are very close to each
other, as will be shown on Figs. 7 and 8 below) within
the framework of analytical QCD, it is necessary to fit
experimental data for various processes® by using, for
instance, formulas obtained in this paper that simplify
the form of higher-order terms. This, however, requires
additional special research. In this article we use the
values Ay_3 and A;_s [see Eq. (10)] obtained in the

®One of the most important applications is fitting experimental
data for the DIS structure functions (SFs) F,(x, Q%) and
F5(x, Q%) (see, e.g., Refs. [36-39] and [40,41], respectively).
One can use the v-derivatives of the MA couplant AI(\Z)AYD(QZ),
which is indeed possible, because when fitting we study the SF
Mellin moments (following Ref. [42]) and only at the end
reconstruct the SF themselves. This differs from the more popular
approaches [43] based on numerical solutions of the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [44]. In the
case of using the [42] approach, the Q*-dependence of the SF
moments is known exactly in analytical form (see, e.g., [45]): it
can be expressed in terms of the v-derivatives AI(\Z)AYV(QZ), where
the corresponding v-variable becomes to be N-dependent (here N
is the Mellin moment number), and the using of the v-derivatives
should be crucial. Beyond LO, in order to obtain complete
analytic results for Mellin moments, we will use their analytic
continuation [46].

094034-4
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framework of a conventional perturbative QCD since PT
and FAPT couplants must coincide in the limit of large
Q? and this requirement is fulfilled. It is clearly seen
that at low Q2
values:

MAD(QZ) agrees with its asymptotic

0 when v>1,
U (0> =0)={ 1 when v=1, (16)

o when v <1,

obtained in Ref. [47]. The corresponding results in the

Euclidean space for AI(VIIL.D(QZ) v=05,1,15 were

numerically obtained and shown on Fig. 1 in [20].
They are very close to those shown above in Fig. 1.

Moreover, the asymptotic values of A](\,IIL,D(Q2 =0) and

U1(v1[3x,y(5 = 0) are completely identical to each other.

B. Beyond LO
Hereafter we repeat for Uy, (s) the procedure that

was applied to ai">(Q2). For this purpose, following to
the representation (14) for the LO MA couplant in the
Minkowski space, we consider its derivatives

ﬂd"UMA(S)

Unansr(s) = === (17)
5 ) = 1 {2
(1/ + m)ﬂ:(ﬂ:z + L?)(Wrm)/z v+m—1

where 5" (s) and 8" (s) are

57 (s) = bi[Zi(w) =Gl 87(s) = by,

7T T T T T T T T T T T T T T T T T T T T T

5[ Ui, (5) ]

(e s s s e e g w7 " -
1072 10720 1071 10710 107 s,GeV?4
FIG. 1. The results for Ul (02 with v=0.5,1,1.5 in

logarithmic scale.

Using the results (12) for the usual couplant we have

fjll\//IA,(iJrl)(S) _ 0](\/1[,)4 + Z Cy+m5 m+1
“(m+1 & (1
5" (s) = RmU&LMm(s), (18)

where f]l(vlh),\,y(s) is given in Eq. (14).

This approach allows to express the high order correc-
tions in explicit form

(s)sin((v+m)g )+3£T_;2_>1(s)gcos((u+m)g)}, (19)

3 (s) = by + B2, (1) —2GZ,(v) + G* = ], 8 (s) = 23(2,(v) - G,
59 (s) = 2 + 301, [Zl< )-§- G} +0125(0) = 3G2(0) + 3(G* ~ A)21(v) — G(G* —3¢P)).

50(s) = 3b,by + 332, (v) — 6GZ, (1) + (3G — ¢?)).

57 (s) :%(m +5b3) + 2b, bs {Zl(v) —16—3— G] + 6b2b, [zz( ) —EZl(v) +%— 2G<Zl(u) —%) +G -y ]
+b1Z4(v) —4GZ3(v) + 6(G? = ) 25 (v) — 4G(G? = 34) 2, (v) + G* - 6G* ¢ + ¢'],
5)(s) = 2b,by + 126%b, {z] (v) - % - G] + 424 (v) = 3G25 (1) + (3G? = )2, (v) - G(G? — @) (20)
and
G(s) = %m (n* + L2). (21)

094034-5
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C. The case v=1

For the case v = 1 we get
O\ (s) = O\ gl 22
MA=1(8) = Upia o1 () + (s), (22)

where LO gives the famous Shirkov-Solovtsov result [4,6]

1 (1 g(S) 1 Ls l (= Ls
UI(VIL(S) = UI(\,[L‘UZI (s) = = —arccos <m =5 —arctan|{ — (23)
and the high order corrections sufficiently simplify
(m+1),\ 1 2(m1) oy A(m+1)
b1 (8) = — 5 {0, (s) sin(mg) 40,7, " (s)g cos(mg) }, (24)

mza(n® + L?)

where 55,':“:1) (s) and Bt 1) (s) can be obtained from the corresponding values in Eq. (20) with v = 1. Using Egs. (A1) and

m—1
(A2) we get

5P(s) = -bi[1+G),  32(s) = by,
5(s) = b+ B[G— =1, 8(s) = —268,

3
by b

) b
3 (s) = = = biba[14+3G] + 211+ 6G +3(G? - ¢?) —2G(G* - 34)].

58 (s) = 3b1by + BI3G? — > = 3G - 3],

- 1 2
39 (s) = 3 (by +5b3) — §b1b3[1 +3G] + 3b715,2G* - 2¢° — 1]
AE oy 10 > 2 4 20, 4
+ b} §+2G—4(G -9 >_?G(G =39°) + G =6G7g +¢°|,
R 5
5&5)(s) = 2bybsy — 12Gb3b, + 2b? {4G -1+ §(3G2 - 7)) —2G(G? - gZ)} (25)

Another form of 3""")(s) is given in Appendix A [see Eq. (A3)].

At the point s = A? the above results are simplified. They are

i

= (i+1 ~ (1 2(m+1
D\nigr (s = A%) = Uk, (5 = A2 + 38 V(s =A%), (26)
m=1
where LO gives
1
1
Usiaa (s = A?) = 2. (27)

and the high order corrections are

2(2m+1), _ (=" S2m+1)
6, (s = Az) = _4m(ﬂz T L%)m Oy (8= Az)’
z(2m -1)" =(2m
32 (5) = 1) 5P (s = A?) (28)

(2m + 1)z(x? + L2)m+1/272m

094034-6
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T T T T =

1.0F Uials (s)

T T T T T T

Ulta1(s)
— = Ufjh1(5)

= === Uh1(s)

0.8f

0.6f

T

T
I
I
I
I
I

0.4

0.2f S ]

I s,GeV?]
0.15 0.20 0.25 0.30

[

0-0 1 PR PR
0.00 0.05 0.10

L

FIG. 2.
(A

1, 3, and 5 orders of U II\;.[IAW:I . The vertical lines indicate

where 52" (s = A2) and 82" (s = A2) can be taken

from Eq. (25) with the following replacement:

G(s=AY) =In(z), g(s =A%) = g (29)

D. Discussions

This subsection provides graphical results of couplant
construction. Figures 2 and 3 show the results for
U, ,_\(s) with i=1,3,5 in usual and logarithmic
scales (the last one was chosen to stress the limit
UI\I[IA,yzl(S — 0) — 1). From Figs. 4 and 5 we can see

the differences between UII\IIIA,DZI(QZ) with i =1,...,5,
which are rather small and have nonzero values around the
position Q? = A?. In Figs. 2, 4, 5, and 8 the values of
(A‘lf :3)2 (i = 0,2,4) are shown by vertical lines with color
matching in each order. Note that Fig. 5 contains only one
vertical line since (A} )% = (AL7)2

So, Figs. 2-5 point out that the difference between

UI\IXI:I:](S) and UI\IIIA,yzl(S) is essentially less then the

[ UnIuI,I1 (s) ]
1.0 8
: O S — 1
0.8F " ]
[ Uma,1(s)
0.6 —— UA1(s) ]
I - mm U(E) s
0.4f Ma,1(S) 1
0.2+ ]
[ s,GeV?]
00 T S S S S T S S S S N S ST S S N S ST S S RN SE ST S S B
1072 10720 10718 10710 107° 1
FIG. 3. 1,3, and 5 orders of UI(\j[)A,D: | with logarithmic scale of s.

[ ot (s) ]
0.05F e ] ]
[ ’ s — —
0.00 H# I 4
| — 5P
—0.05; I —_— 6(13I ‘
-0.10 F | ]
-0.15 } I //5
-0.20 » | s,Gevzg
0.00 0.05 0.10 0.15 0.20 0.25 0.30

FIG. 4. 51@%&:1 with i = 2,3. The vertical lines indicate
(A2

couplants themselves. From Figs. 3, 4, and 5 it is clear

that for s — 0 the asymptotic behavior of UI\/IIA,pzl(S)’

UI?[IA,D:1<S)’ and Uﬁg.’b:l(s) coincides [and is equal to

behavior considered in (16)], i.e.
6§2A‘U:1(s — 0) are negligible. Also Figs. 4 and 5 show
the differences 5&23:1@) (i > 2) essentially less then

512,2[3\‘,/:1@). We note that general form of the results is

exactly the same as in the case of the MA couplants
A&;Ig‘i(Qz), which have been studied earlier in [20].
Indeed, the similarity is shown in Figs. 6 and 7. In
Fig. 6 the results for UL, (s) and AV (0?)
(i=1,3,5) are shown in the so-called mirror form,

which is in accordance with the similar one presented

earlier in [8]. Figure 7 contains UI\/IIA.D:1 (s), AI\/IIA,D:I (0%,

the differences

Ul(\ikp:](s) and A](Vzl)A,y:I(QZ) which are very close to
each others but have different limit values when

0? - 0. Moreover, the differences 5I\/21Ix,y=1(Q2) in the

cases Uﬁkbzl(s) and AIIVZIL’DZI(QZ) are almost the same

although correction of the spacelike couplant decreases

0.00s |2
,—-_--_—~————
0.000 [{ /4 —
\ —_——
~0.005 |
0010} | | s eV

0.00 0.05 0.10 0.15 0.20 0.25 0.30

FIG. 5. 61<\?A_D:1 with i =4, 5. The vertical line indicates
(AR = AT
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1.0—m—————————— ———
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08l LO ]
I == == NNLO ]

0.6F = === NNNNLO |

0.4f

0.2l i
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FIG. 6. 1, 3 and 5 orders of UI(\Z)AWZI and AI(\Z)A.DZI.

more rapidly. The direct relation between A1<\£I>A,y=1 (Q?) and
Ul(\jI)A,,,:1(Q2) gives an interesting picture (see Fig. 8).
A!(\jl)A‘u:l (©°=0)
Uit (Q7=0)
the second similar point

Obviously we have =1 for any order and

AN (02 = (A7)

,» L= (30)
Usiauot (02 = (AF))

for i = 1. Higher order corrections break the identity (30),
shifting the second point from (A/=)2. As we can see in
Fig. 8, the shift is quite small. As can be seen from Fig. 8,
the ratio (30) asymptotically approaches 1 when Q> — co.

Thus, we can conclude that contrary to the case of the
usual couplant, the 1/L-expansion of the MA couplant is

very good approximation at any Q?(s) values. Moreover,
the differences between U&X%gzl(s) and Ul(\jl)A,u:I(S)
become smaller with the increase of order. So, the expan-
sions of U&EZZI(S) i > 1 through the Ul(vl[z&l,:l(s) done in
Refs. [7-9] are very good approximations.

— 77— — 77— T

1.0f - ]

: 52A1 A1 ]

; —_— e UM ]

0.8+ mmmm 6(12)[U] Unia 1 ]

- A ]

0.6 e Uik 1
0.4}

0.2} ]

Zh Q%,GeV?]
0.0

0.00 0.05 0.10 0.15 0.20

FIG. 7. 1 and 2 orders of U\, ,, A%, ,_, and 8, in
Euclidean and Minkowki spaces.

120 ————
[ Anﬂ,)l
] Urﬁ/.i\,)1
1.10}

T T T T T - T T T

1.15

T

1.05F

1.00f

0.95F

0.90 — —
10°® 0.01 100

FIG.8. The relation Aly, ,_, /UL, ,_, fori = 1,5. The vertical

lines indicate (A/7’)2.

IV. INTEGRAL REPRESENTATIONS FOR
MINIMAL ANALYTIC COUPLING

As it was mentioned in the Introduction, the MA
couplants AI(\}[A‘”(Q2) and Ul(\/lh)‘\,y(s> are constructed as
follows: the LO spectral function is taken directly from
perturbation theory but the MA couplants AI(VIIL,D(Qz) and
UI(VIIL.D(S) themselves were obtained using the correct
integration contours. Thus, at LO, the MA couplants
Afvllxy(QZ) and UI(VIIL’U(S) obey Egs. (5) and (7) presented
in the Introduction.

To check Eqgs. (24) and (20) we compare them with an
integral form

) = [T T o) G1)
For LO, we can take the integral form from [8]
0s) =1 / ) (32)
Tt), ©
where
sinfvg(s)]

Ly
1 e~ s (33

In (14) only the case v >0 is considered, it means
that the integral (32) converges to zero at the upper limit.
We would like to note, that dispersion integral (31) does not
converge for some v and, in this case, we will introduce
constant, which corresponds to the upper limit of the
integral. In general, it is better to replace the integral
(31) by the one

Ui(s) = / 2900y~ UP (), (34)

o
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FRACTIONAL ANALYTIC QCD BEYOND LEADING ORDER IN ...

PHYS. REV. D 107, 094034 (2023)

where

0 when v>0,
Uﬁl)(oo): 1  when v=0, (35)

o when v <O.

We see that the expression (32) diverges for v < 0 and
requires additional constant for v = 0. Therefore Eq. (14) is
applicable only when v > 0. Further in this paper we will
only consider the region v > 0.

Using our approach to obtain high-order terms from LO
(32), we can extend the LO integral (32) to the one

09 (s) = / 47,00, (36)

T)s o©

where obviously

VO (s). (37)

57(s) =—Gby,  87(s) = by,
5(s) = by + B2[G* = =G — 1],
_ by b3

59 (s) = 5 = 3Gbiby + 514G ~

89(s) = 3b,b, + B33G* — ¢ = 5G - 2],

b4
+oilg

) 13
50)(s) = 2b,by + 3b2by[1 — 4G + b {3G 4+ (3G~ ) - 4G(G®

Using the results (A1) and (A2) for cos(ng) and sin(ng)
(n £4), we see that with the results [48,49] (see also
Sec. VI in [20]) give more compact results for rE'>(s). We
think that Egs. (40) and (41) give apparently very compact
results for 1 (s).

Note that the results (36) for U7} (s) are exactly the same
as the results in Eq. (18) done in the form of trigonometric
factions. However the results (36) should be very handy in

case of nonminimal versions of analytic couplants (see
Refs. [29,30,32]).

V. H — bb DECAY

In Ref. [20] we used the polarized Bjorken sum rule [50]
as an example for the application of the MA couplant

(3
() =

1+5(G?

+4G——(G2—g)—?G(

The spectral function rgi)(s) has the form

i 1 i m+1
i (s) = V() + 08" () (38)
m=1

In the explicit form:

(i) sin(g) B 1
r(s) = (7 —|—L§)1/2 T2 T
(1) 1 Sm+l)
5" = oy o () sin((m + 1))
+ 8 (s)gcos((m + 1)g)}, (40)

where 5" (s) and 8" (s) can be obtained from the
results in (20) with v = 2. They are

b3[1 - 23],

- ¢°) —2G(G* = 3¢4)].

1 1
50 (s) = 3 (b4 +503) 26, bs {E + G] +3b20,[2G* - 2¢* = G — 1]

-3¢%) + G* - 6G*¢? +g4],

-7)| (41)

Ama(Q?), which is a popular object of study in the
framework of analytic QCD (see [51-54]). Here we
consider the decay of the Higgs boson into a bottom-
antibottom pair, which is also a popular application
of the MA couplant Uy, (Q?) (see, e.g., [8] and reviews
in Ref. [11]).

The Higgs-boson decay into a bottom-antibottom pair
can be expressed in QCD by means of the correlator

1(0?) = (4n)2 / dxe (O[T () I5(0)]0) (42)

of two quark scalar (S) currents in terms of the disconti-
nuity of its imaginary part, i.e., Rg(s) = ImII(—s — i)/
(27s), so that the width reads

094034-9
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I'H —> bb)

MR (s = M), (43)

Direct multiloop calculations were performed in the
Euclidean (spacelike) domain for the corresponding
Adler function Dy (see Refs. [55-58]). Hence, we write
(Dy — Dy and R, > R, because the additional factor m?)

D(0?) = 3m(Q) {1 n Zdnamﬂ L@

n>1
where for f =5 the coefficients d, are

d, =296, d,=1144, d,=50.17, d,=260.24,

(45)

Taking the imagine part, one has
R =3m(o) 1+ X))

n>1

and for f =5 [57,59]

r =296, r,=793, r;=593, r,=-61.84, (47)

Here m?(Q?) has the form (see Appendix B):

k=4
w00 = a1+ e 69
=1
where
_ ek
e = (49)
k(o)
and &, are done in Eq. (B8). For f =5 we have

The normalization constant 71, cab be obtained as (see,
e.g., [11])

k=4 -1/2
iy = (07 = )i ) 1+ Y enab( 07
k=1
= 10.814 GeV?, (51)

since m,(Q* = m7) = my, = 4.18 GeV.
So, we have

R(s)=R"(s), R (s) = 3m2ad(s)

X [1 - kZm: 7ka§(s))] , (52)

where
k=1
Ty =Tt e+ Z r1€j—i- (53)
=1
For f =5 we have
7 =418, 7 =12.76, 73 =19.76, 7, = —42.25.
(54)

We can express all results through derivatives a,. ; (see
Appendix B):

where

k—1
Fo= P+ ki(d) + Y Py (d + 1), (56)
=1

where k;(v) are given in Appendix C.
For d =24/23 and f =5, we have
=417, 7 =986, 73=129, 7 =-7121. (57)
Performing the same analysis for the Adler function we
have

D =D"", D"V =3im2al(0?) {1 +Zzlka’;<Q2>>],
k=0
(58)
where
. k-1
dy =1+ e+ Zdlék—l- (59)
=
For f =5 we have
dy =418, dy=1627. dy=06830, 7, =7337.66.
(60)

We express all results through derivatives a, . ;:

S

k=0

(61)
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T
[ Rs (My) ,GeV? _R(3) PT

—_ = RY, FAPT

----R(S) PT

» R FAPT
30}

25 1
My, GeVH
60 80 100 120 140

FIG.9. The results for R”*! with m = 2 and 4 in the usual PT
and FAPT.

where

~

—1
Zik:ak‘l’];k(d)‘i’ 6_17(
=1

(d+1). (62)

For f =5 and d = 24/23, we have

dy =417, d,=1337, dy=4390, d,=178.18.

(63)

As it was discussed earlier in [8] in FAPT there are the
following representation for R

The results for REerl)(s) are shown in Fig. 9. We see
that the FAPT results (64) are lower than those (55) based
on the conventional PT. This is in full agreement with
arguments given in [11]. But the difference becomes less
notable as the PT order increases. Indeed, for N3LO

the difference is very small, which proves the assumption
(m+1)

about the pos51b111ty of using Ry"""(s) expression for
D" (@2) with AV, (0%) — UL, (s), which was done
in Ref. [8].

The results for ') (H — bb) in the N"LO approxima-
tion using Rgm“)(s) from Eqgs. (52) and (55) are exactly
same and have the following form:

r® =176 Mev, 1

I =238 MeV, I'®) =238 MeV. (65)

The corresponding results for T')(H — bb) with

Rﬁmﬂ)(s) form Eq. (64) are very similar to the ones in
(65). They are

=227 MeV, TI'® =237 MeV,

r=174Mev, T =223MeV, I'® =234 MeV,
® =237MeV, T'¥ =238 MeV. (66)

So, we see a good agreement between the results
obtained in FAPT and in the framework of the usual PT.

It is clearly seen that the results of FAPT are very also
close to the results [60] obtained in the framework of
the now very popular principle of maximum conformality
[61] (for the recent review, see [62]). Indeed, our results
are within the band obtained by varying the renormaliza-
tion scale.

The Standard Model expectation is [63]

FEIM w5 My =125.1 GeV) = 2.38 MeV. (67)
The ratios of the measured events yield to the Standard
Model expectations are 1.01 £0.12(stat.) +0.16 —
0.15(syst.) [64] in ATLAS Collaboration and 1.04 +
0.14(stat.) £ 0.14(syst.) [65] in SMC Collaboration (see
also [660]).

Thus, our results obtained in both approaches, in the
standard perturbation theory and in analytical QCD, are in
good agreement both with the Standard Model expectations
[63] and with the experimental data [64,65].

VI. CONCLUSIONS

In this paper we have used 1/L-expansions of the
v-derivatives of the strong couplant a; expressed [20]

as combinations of operators R, (13) applied to the

LO couplant agl). Applying the same operators to the

v-derivatives of the LO MA couplant UI(\,IIL, we obtained
two different representations [see Egs. (24) and (36)] for the
v-derivatives of the MA couplants, i.e. Ul(\;[)AW introduced
for timelike processes, in each i-order of perturbation
theory: one form contains a combinations of trigonometric
functions, and the other is based on dispersion integrals
containing the i-order spectral function. All results are
presented up to the Sth order of perturbation theory, where
the corresponding coefficients of the QCD pS-function are
well known (see [1, 2])

[20] applied in the Euclidean

space, high-order corrections for U/ 1(\/1) A, are negligible in the

s = 0 and s — oo limits and are nonzero in the vicinity of
the point s = A2. Thus, in fact, there are actually only small
corrections to the LO MA couplant U 1(\/113\.1/(5)- In particular,
this proves the possibility of expansions of high-order
couplants U](\?A‘y(s) via the LO couplants UI(\/][L,L/(S)’ which
was done in Ref. [9].

As an example, we examined the Higgs boson decay into
a bb pair and obtained results are in good agreement with
the Standard Model expectations [63] and with the exper-
imental data [64,65]. Moreover, our results also in good

As in the case of AM A
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agreement with studies based on the principle of maximum
conformality [61].

As a next step, we plan to include 1/L-expansions
for other MA couplants (see Refs. [8,9,47,67]), as
well as for nonminimal analytic couplants (following
Refs. [29,30,32,68,69]). In the case of nonminimal
analytic couplants, one can use the integral representations
(32) and (36) with nonperturbative spectral functions.

supported in part by the Foundation for the Advancement
of Theoretical Physics and Mathematics “BASIS”.

APPENDIX A: ANOTHER FORM FOR U{*"(s)

Using the results in Eq. (15) and transformation rules for
sin(ng) and cos(ng), we have

sin(ng) = _ S(ng) cos(ng) = _ Clng)
ACKNOWLEDGMENTS (7% 4 L2)"?° (n2 + L2)"?’
We are grateful to Andrey Kataev for discussions. (Al)
We also thank the anonymous referee, whose comments
greatly improved the quality of the paper. This work was  where
|
S(g)== Clg9g=L,,  SQ2g)=2aL,  C(2g9)=Li-n*  S(39) =a(3L;-),
C(3g9) = Ly(L? - 37?), S(4g) = 4nL (L2 — 7?), C(4g) = L} — 672°L2? + n*,
S(59) = n(5L —107°L2 + 7*), C(59) = L,(Lt —107°L? + 5z2%). (A2)
Using Egs. (A1), (A2), and (25), the results for 332”1) (s) in (24) can be rewritten in the following form
%(2) b, g
0 =—— (=L, - (14+G) |,
u:l(s) (7T2—|-L%) <ﬂ' N ( + )>
=(3) . 1 gG
0,21(s) = e |:b2Ls - b} <7 (Ly =)+ L(1 + ¢* - Gz))} ;
5 (5) = —— by (P2 232y - (2= 122) 0 4 30)
V= (m* +L2%)° b3 3
bs 2 2 b? 2 2 2 2 3
+€(3LS — %) +2 (3L — 7*)[1 4+ 6G — 3¢*> + 3G? + 64°G — 2G°|
2gL
—L(Lg -3n)3+3G+ ¢ - 3G2}> }
7
50 () = ———d3p2p, (L2 = L2)[1 + 267 =267 =99 (14 — 6122 + 2%)
S T @y E
L 5b3+b
+2b,bs <?S (z2 = L2)[1 +3G] + 4£ (L% — 6L27* + n“)) - %Ls(ﬁ - L?)
7
4 2 2|3 2 2 2 10 5 4 2032 4
+bi| Ly(n* = L3) —§—2G—4g +4G* - 10g G—?G -g¢"+69°G -G
5
n 21 (L4 — 61222 + 7% [4G —1-3¢° +5G* +24G - 203} > } (A3)
T
which is similar to the results for the spectral function r@(s) done in Refs. [48,49] (see also Sec. VI in [20]).
APPENDIX B: m2(0?%)
Here we present evaluation of /m2(Q?), which has the form
_ _ a(@)y,,(a) _ a,(0?)
my,(Q%) = imy(Q?) exp [2/ ] } a,(Q*) =——. (B1)
’ ’ a0y Ba) 4r
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where

v
Ym(@) == yd*! = —ypa <1 + Z5ka"), & =",
k=0 k=1

70

pla) = =) pra*? = —pya’ (1 + chak), e =1k, (B2)
k=0 k=1 Po
|
EValuating the integral in (B]) we haVe the fOllOWing The result for T(le) can be rewritten as
results (see, e.g., also Refs. [8,70])
k=4 -
=d(()2 = (02 =) — k —k
=202 ~-20mM2 aS(Q )T(aS(Q )) T(‘ls) =1+ - 4y (B7)
el . B3 k
e =My gy P
where where
2 k=4 g =ce &y =e,+e? ey =ce +§ee +le3
dzf, T(ax)—exp[z%&’f} -7 R R R
0 — 4 1 1
k=l é3:€4+€%+§€]e3 +§e?+e%€2+8€?, (Bg)
and
elszl, ezzd(Az—ClAl),
. - APPENDIX C: RELATIONS BETWEEN a! AND a,
ez = d(As — c1Ay — CrA),
es = d(Dy — c1As — ErAy — T3A,), (B5) Considering Ref. [33] we have
with al =a,+ Y Kn(V)ym: (c1)
m>1
Ai:5,~—cl~, EZICZ—C%, 53:C3—2C|C2+C?
(B6) where
|
]~<1(V) = _VbIBI(V)’
- - b? .
o) = v+ 1) (<0Ba) + LB 0).
- viv+1D(w+2 - - b3 .
ky(v) = % <_b3B3(V) + blszl,z(V) _?131,1.1(1/)>7
- viv+1)v+2)v+3 - - bibs - b3%b, - bt .
ky(v) = ( I 3 I ) (—b4B4(y)+b§Bzy2(y)—I—%B,;(y)—szB,12(1/)4—?131,,.1 1(’/)>, (C2)

where

B\(v) =Z(v) -1, By(v) = 2(1;111)’
Byfo) = 1 5
S PER e

Bl,l,l(”) = Z3(1/) - 322(1/ + 1) + 321(U + 2) - 1,

By) =13 - :
IR T U D+ +3)

Bz,z(’/)

13 1 I
12 v+l v+2 v+3’
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Bisv)= (1 0 Z(+3)+1+4 > :
v)=|1—-——— v — - - ,
13 v+ 1Dw+2)"! 6 v+1 v+2 v+3
- 3v—-1) - 6 - 8 2 1 8
B =——-7Z 2)—|(l-———r——|Z 3)+-— - ,
L2l) =35 ev+2) ( P 1)(1/—|—2)> R vy i S
Bl.],l,l(l/) = 24(1/) - 423(1/ + 1) + 622(1/ + 2) - 421(1/"‘ 3) +1 (C3)
and
Z\(v) =5(). L) =S1W) +5(0),
Z3(v) = S} (v) +385,(1) S (v) + 285(v),
Z,(v) = St (v) + 65, (1) S (v) + 3S3(v) + 8S3(v)S, (v) + 6S4(v). (C4)
For arbitrary v values, S;(v) are expressed through polygamma-functions as
Si(v)=¥Yr+1)-¥(1) Y1) = iy I'(v) PO (v) = d Y (v)
' dv ' (dv)' ’
-1 .
500 = " (w04 1) w0 (). (c3)
In the case of integer v = n,
"1
S;(n) = ZW (C6)
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