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In this work, we investigate the color-spin interaction of a quark, a diquark and a baryon with their
surrounding baryons and/or quark matter. We extend our previous work by increasing the maximum
number of surrounding baryons to five and additionally consider all possible diquark probes that are
immersed in such surroundings. This is accomplished by classifying all possible flavor and spin states of
the resulting multiquark configuration in both the flavor SU(2) and SU(3) symmetric cases. We also discuss
the three-body confinement potential and show that this does not contribute to the outcome. Furthermore,
we find that a quark becomes more stable than a baryon when the number of surrounding baryons is three or
more. Finally, when we consider the internal color-spin factor of a probe, our results show that the effects of
the color-spin interaction of a multiquark configuration is consistent with the so-called diquarkyonic
configuration.

DOI: 10.1103/PhysRevD.107.094033

I. INTRODUCTION

Recent neutron star observations [1–3], which constrain
the equation of state (EOS) of matter, lead us to understand
the properties of dense matter in a new perspective.
Gravitational wave astrophysics also has begun to provide
EOS constraints measuring tidal deformability from the
neutron star merger [4,5]. Additionally, recent analyses by
NICER from pulsar J0740þ 6620 [6,7] estimated the radii
of neutron stars as R1.4 ≃ 12.45 km, R2.08 ≃ 12.35 km,
whose large mass and radius supports the stiff evolution
of EOS around the core density. The quarkyonic matter
configuration was introduced to explain this stiff evolution
of EOS [8].
The quarkyonic matter was originally discussed in the

limit of largeNC quantum chromodynamics (QCD) descrip-
tion of cold densematter. The quarkyonic configuration with
shell-like phase space distribution of baryon can begenerated
through the hard-core repulsive interaction between nucle-
ons [9–11]. This new picture explains the stiffening of an
EOS in a high density region before the transition to quark
matter. The essential ingredient of this configuration is the
hard-core repulsion and this can be well understood in terms
of quark level interaction with Pauli blocking [12].
In order to probe possible phases in a quark model point

of view, we showed that the short distance repulsion
between the quark and the baryon is smaller than that
between two baryons in the lowest energy channel using a
constituent quark model [13]. Also, the point where the

behavior occurs is consistent with the quarkyonic configu-
ration. When the relevant scales are such that the quark
mass differences can be neglected so that all quarks
involved have similar distributions, the color-color inter-
action can be neglected. In this case, the most important
factor determining the repulsive force at a short distance is
the color-spin interaction. The color-spin interaction is a
key factor explaining the repulsive core between nucle-
ons [12] and also is an important ingredient in examining
the bound state of exotic hadrons such as tetraquark [14].
In Ref. [13], by calculating the energy of a quark and a

baryon using both the color-spin and color-color interac-
tion, it was shown that a quarkyoniclike phase can appear
when the density is high. This state differs from the existing
quarkyonic configuration as we only considered the inter-
action energy of the d quark with the surrounding baryons
leaving out the interaction of the ðudÞ diquark that together
with the d quark comprised the initial neutron in matter.
This was so because such configuration costs the least
amount of excitation energy: hence called a quarkyoniclike
configuration to distinguish it from the quarkyonic con-
figuration where all interaction of all three quarks inside the
neutron is important for long range excitation mode in the
momentum space. As a result, if not only quarks but also
diquarks can appear together, then it can be called a so-
called diquarkyonic matter, a new phase that is distinct
from the existing configuration. However, if the diquark
can exist as an independent state, then the interaction that
the diquark experiences from the surrounding baryons
needs to be calculated as well.
In this paper, we extend our previous work [15] in several

respects. First of all, the maximum number of surrounding
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baryons is increased from three to five. Second, in addition to
considering the interaction of the quark and the most
attractive diquark, which we will henceforth call probes,
with the surrounding, wewill consider all additional diquark
probes to investigate which one is the most stable diquark in
dense matter. Third, when we discuss color-color inter-
actions, we add the investigation on three-body confinement
potential. Fourth, a case for a flavor decuplet baryon is added.
Also, we describe in more detail how we determine the
allowed states for each case.
In this work, we assume the spatial part of the multiquark

wave function to be totally symmetric. Also, since the color
state of entire multiquark state is determined from the
probe, we can determine the possible flavor and spin state
to satisfy the Pauli exclusion principle.
This paper is organized as follows. In Sec. II, the

formulas for the color-spin interaction factor are introduced
for both flavor SU(2) and SU(3). In Sec. III, we discuss
three-body confinement potentials induced by a three-
gluon exchange. In Sec. IV, we construct the multibaryon
states. These states are used for both correlated surrounding
baryons and the multiquark states when a probe is a baryon.
In Sec. V, we construct the multiquark states when a probe
is a quark, a diquark, three correlated diquarks, and a
baryon, respectively. In Sec. VI, we consider the case where
the surrounding is a free quark gas. In Sec. VII, we analyze
the results using all the states we constructed. Sec. VIII is
devoted to summary and concluding remarks.

II. COLOR-SPIN INTERACTION

In this work, we will assume that all quarks occupy the
same spatial configuration. This means that the spatial
potential will be universal for any pair so that the relative
strength is determined only by the color and/or spin factors.
This factor for the color-spin interaction is defined as follows:

VCS ¼ −
Xn
i<j

1

mimj
λci λ

c
jσi · σj;

≡ 1

m2
u
HCS; ð1Þ

where λci ,mi,mu are, respectively, the color SU(3)Gell-Mann
matrices, the constituent quark mass of the ith quark, and the
constituent quark mass of u, d quarks. For flavor SU(3)
symmetric cases, the color-spin factor HCS can be easily
calculated by the following formula:

HCS ¼ −
Xn
i<j

λci λ
c
jσi · σj;

¼ nðn − 10Þ þ 4

3
SðSþ 1Þ þ 4CF þ 2CC;

4CF ¼ 4

3
ðp2

1 þ p2
2 þ 3p1 þ 3p2 þ p1p2Þ; ð2Þ

whereCF is the first kind of the Casimir operator of the flavor
SU(3) andpi is the number of columns containing i boxes in a
column in Young diagram. For the flavor SU(2) case, Eq. (2)
reduces to the following formula:

HCS ¼
4

3
nðn − 6Þ þ 4

3
SðSþ 1Þ þ 4IðI þ 1Þ þ 2CC; ð3Þ

where I is the total isospin.

III. COLOR-COLOR INTERACTION

We can also consider the color-color interaction, which is
responsible for the confining and Coulomb type of inter-
actions. However, as we showed in Ref. [15], this inter-
action between the quarks in the probe and those in the
color singlet configuration cancel out. Additionally, we can
also consider color interaction induced by three-gluon
exchange [16–18]. There are two types of three-body color
operators in color SU(3): dabcFa

i F
b
jF

c
k and fabcFa

i F
b
jF

c
k.

We can represent these operators using the permutations of
symmetric group as follows [19]:

dabcFa
i F

b
jF

c
k ¼

1

4
½ðijkÞ þ ðikjÞ� þ 1

9

−
1

6
½ðijÞ þ ðikÞ þ ðjkÞ�; ð4Þ

fabcFa
i F

b
jF

c
k ¼

i
4
½ðijkÞ − ðikjÞ�; ð5Þ

where ðijÞ and ðijkÞ are two-cycle and three-cycle permu-
tations, respectively.
Let us first consider d-type three-body confinement

potential. Using the fact that
P

i<j<k d
abcFa

i F
b
jF

c
k is

Casimir operator, we can calculate its eigenvalue consid-
ering only the normal Young-Yamanouchi basis and the
axial distance among i, j, and k.

X
i<j<k

dabcFa
i F

b
jF

c
k ¼

p1

27
−
p2
1

18
þp3

1

54
þ 13p2

54
−
5p1p2

36
þp2

1p2

36

−
2p2

2

9
−
p1p2

2

36
−
p3
2

54
þ 10p3

9
; ð6Þ

where pi is the number of columns containing i boxes in a
column in Young diagram. As we can see, the above
formula is linear in p3, which is the number of singlet
baryons in the corresponding color state. It shows that the
d-type three-body confinement potentials between the
singlet and the others cancel out. This holds not only for
SU(3) but in general. We represent the eigenvalue of d-type
three-body confinement potential for SU(4), SU(5), and
SU(6) and how to calculate it in the Appendix.
Now, let us consider the f-type three-body confinement

potential. As we can see in Eq. (5), it is not difficult to
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check that the diagonal component of it vanishes. However,
since f-type three-body confinement potential is not a
Casimir operator, we need to check its off-diagonal
element. By calculating it directly using the permutation
matrices, we can check that all elements vanish only if the
color state is ½m;m;…; m� type for SUðNÞ, where m is any
integer and the number of rows are smaller or equal to N.
However, in this work, since we focus on the diagonal
component of interaction, we only consider the color-spin
factor to study the interaction between a probe and
surrounding baryons in dense matter.

IV. MULTIBARYON STATES

In this section, we first construct the multibaryon states.
To calculate the interaction which a probe experiences from
the surrounding baryons, we subtract the internal color-spin
factor of surrounding baryons from the entire multiquark
state. When there are two or more baryons, there can be
multiple possible states so it is necessary to consider all
possible cases.

A. Two baryons

The color state of two baryons should be color singlet.
Hence, the remaining part of the wave function can be
determined using the conjugate form of the color state. The
color and flavor⊗ spin states of two baryons are as follows:

The flavor⊗ spin coupling state [3,3] with SU(6) can be
decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½3;3�FS ¼ ½6�F ⊗ ½3;3�Sþ½5;1�F ⊗ ½4;2�Sþ½4;2�F ⊗ ½5;1�S
þ½4;2�F ⊗ ½3;3�Sþ½3;3�F ⊗ ½6�S
þ½3;3�F ⊗ ½4;2�Sþ½3;2;1�F ⊗ ½5;1�S
þ½3;2;1�F ⊗ ½4;2�Sþ½2;2;2�F ⊗ ½3;3�S: ð7Þ

However, all flavor and spin states in the above are not
possible as two baryons states. Since we only consider the
flavor octet baryon in this work, the possible flavor states
should be determined using the outer product as follows:
Flavor states of two baryons:

8 × 8 ¼ 1þ 8ðm¼2Þ þ 10þ 10þ 27: ð8Þ

Then the possible flavor and spin states of two baryons are
listed as follows:

Here, the Young diagrams are the flavor states and the possible spin states are shown in the parentheses.

B. Three baryons

The color and flavor ⊗ spin states of three baryons are as follows:

The flavor⊗ spin coupling state [3,3,3] with SU(6) can be decomposed into the states with the flavor SU(3) and the spin
SU(2) as follows:

½3; 3; 3�FS ¼ ½6; 3�F ⊗ ½6; 3�S þ ½6; 2; 1�F ⊗ ½5; 4�S þ ½5; 4�F ⊗ ½5; 4�S þ ½5; 3; 1�F ⊗ ½7; 2�S þ ½5; 3; 1�F ⊗ ½6; 3�S
þ ½5; 3; 1�F ⊗ ½5; 4�S þ ½5; 2; 2�F ⊗ ½6; 3�S þ ½4; 4; 1�F ⊗ ½6; 3�S þ ½4; 3; 2�F ⊗ ½8; 1�S þ ½4; 3; 2�F ⊗ ½7; 2�S
þ ½4; 3; 2�F ⊗ ½6; 3�S þ ½4; 3; 2�F ⊗ ½5; 4�S þ ½3; 3; 3�F ⊗ ½9�S þ ½3; 3; 3�F ⊗ ½7; 2�S þ ½3; 3; 3�F ⊗ ½6; 3�S: ð9Þ

DIQUARKYONIC MATTER: QUARKS, DIQUARKS, AND … PHYS. REV. D 107, 094033 (2023)

094033-3



Similar to the two baryons case, the possible flavor states of three baryons are determined as follows:
Flavor states of three baryons:

8 × 8 × 8 ¼ 1ðm¼2Þ þ 8ðm¼8Þ þ 10ðm¼4Þ þ 10ðm¼4Þ þ 27ðm¼6Þ þ 35ðm¼2Þ þ 35ðm¼2Þ þ 64: ð10Þ

C. Four baryons

The color and flavor ⊗ spin states of four baryons are as follows:

The flavor⊗ spin coupling state [3,3,3,3] with SU(6) can be decomposed into the states with the flavor SU(3) and the spin
SU(2) as follows:

½3; 3; 3; 3�FS ¼ ½6; 6�F ⊗ ½6; 6�S þ ½6; 5; 1�F ⊗ ½7; 5�S þ ½6; 4; 2�F ⊗ ½8; 4�S þ ½6; 4; 2�F ⊗ ½6; 6�S þ ½6; 3; 3�F ⊗ ½9; 3�S
þ ½6; 3; 3�F ⊗ ½7; 5�S þ ½5; 5; 2�F ⊗ ½7; 5�S þ ½5; 4; 3�F ⊗ ½8; 4�S þ ½5; 4; 3�F ⊗ ½7; 5�S
þ ½4; 4; 4�F ⊗ ½6; 6�S: ð11Þ

The flavor and spin states of four octet baryons are as follows:
Flavor states of four baryons:

8 × 8 × 8 × 8 ¼ 1ðm¼8Þ þ 8ðm¼32Þ þ 10ðm¼20Þ þ 10ðm¼20Þ þ 27ðm¼33Þ þ 28ðm¼2Þ þ 28ðm¼2Þ þ 35ðm¼15Þ þ 35ðm¼15Þ

þ 64ðm¼12Þ þ 81ðm¼3Þ þ 125: ð12Þ
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D. Five baryons

The color and flavor ⊗ spin states of five baryons are as
follows:

The flavor ⊗ spin coupling state [3,3,3,3,3] with SU(6)
can be decomposed into the states with the flavor SU(3) and
the spin SU(2) as follows:

½3; 3; 3; 3; 3�FS ¼ ½6; 6; 3�F ⊗ ½9; 6�S
þ ½6; 5; 4�F ⊗ ½8; 7�S: ð13Þ

Flavor states of five baryons:

8 × 8 × 8 × 8 × 8 ¼ 1ðm¼32Þ þ 8ðm¼145Þ þ 10ðm¼100Þ þ 10ðm¼100Þ þ 27ðm¼180Þ þ 28ðm¼20Þ þ 28ðm¼20Þ

þ 35ðm¼100Þ þ 35ðm¼100Þ þ 64ðm¼94Þ þ 80ðm¼5Þ þ 80ðm¼5Þ þ 81ðm¼36Þ þ 81ðm¼36Þ

þ 125ðm¼20Þ þ 154ðm¼4Þ þ 154ðm¼4Þ þ 216: ð14Þ

The flavor and spin states of four octet baryons are as
follows:

Theoretically, we can construct six baryons states with
totally symmetric spatial wave function. However, if we
add a probe to the six baryons state, then the total state does
not satisfy the Pauli principle. Therefore, in this study, we
limit the number of surrounding baryons up to five.

V. FLAVOR, COLOR, AND SPIN STATES
OF A MULTIQUARK SYSTEM

In this section, we construct the entire multiquark states
that are composed of multibaryons and a probe. As a
probe, we consider a quark, a baryon, a diquark, and three
correlated diquarks.

A. Quark case

1. One baryon + one quark

Let us consider the multiquark system consisting of one
baryon and one quark. In this work, we assume that the
spatial part of a wave function is totally symmetric and the
surrounding baryons are in flavor octet states. Since a
baryon is a color singlet, the color state of four quarks
should be a triplet. Then, the flavor⊗ spin coupling state of
four quarks should be the conjugate of the color state to
satisfy the Pauli exclusion principle.

The flavor⊗ spin coupling state [3,1] with SU(6) can be
decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½3; 1�FS ¼ ½4�F ⊗ ½3; 1�S þ ½3; 1�F ⊗ ½4�S þ ½3; 1�F ⊗ ½3; 1�S
þ ½3;1�F ⊗ ½2; 2�S þ ½2; 2�F ⊗ ½3; 1�S
þ ½2;1; 1�F ⊗ ½3;1�S þ ½2; 1; 1�F ⊗ ½2;2�S: ð15Þ

Meanwhile, we can determine the possible flavor states of
multiquark system as follows: Flavor states of four quarks:

8 × 3 ¼ 3þ 6̄þ 15: ð16Þ
Since only the above flavor states are allowed, we can
classify all possible flavor and spin states of a four quarks
configuration from the Eqs. (15) and (16) as follows:

Now, we investigate the relative magnitude of the
interaction which a quark inside the probe sees from the
surrounding n baryons using the following formula:

ΔHnbþp
CS ¼ Hnbþp

CS −Hnb
CS −Hp

CS; ð17Þ
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ΔHavg
CS ¼ 1

npn
P

C;F;SdCFS

X
C;F;S

dCFSΔH
nbþp
CS ; ð18Þ

dCFS ¼ dCdFdSmFS: ð19Þ

Here, nb and p in the superscripts represent n external
baryons and the probe, respectively. The probe will be a
baryon, a quark, a diquark, or three correlated diquarks. np
is the number of quarks in the probe. We will investigate
cases with n ¼ 1, 2, 3, 4, 5, and also consider the case
where nb is replaced by a single quark so as to study the
deconfined phase. dC, dF, and dS are the dimensions of the
color, flavor, and spin states of 3nþ np quarks, respec-
tively, mFS is the multiplicity of the flavor and spin states,
and the summation is taken for all possible states. Here, we
divide it by np to normalize the result with respect to the

single quark case. We also divide by n to keep the
surrounding baryon at constant density for comparison at
the same density.

2. Two baryons + one quark

We now consider a quark around two baryons. The color
and flavor ⊗ spin states of the seven quarks configuration
are as follows:

The flavor ⊗ spin coupling state [3,3,1] with SU(6) can
be decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½3; 3; 1�FS ¼ ½6; 1�F ⊗ ½4; 3�S þ ½5; 2�F ⊗ ½5; 2�S þ ½5; 2�F ⊗ ½4; 3�S þ ½5; 1; 1�F ⊗ ½5; 2�S þ ½5; 1; 1�F ⊗ ½4; 3�S
þ ½4; 3�F ⊗ ½6; 1�S þ ½4; 3�F ⊗ ½5; 2�S þ ½4; 3�F ⊗ ½4; 3�S þ ½4; 2; 1�F ⊗ ½6; 1�S þ ½4; 2; 1�F ⊗ ½5; 2�Sðm¼2Þ
þ ½4; 2; 1�F ⊗ ½4; 3�Sðm¼2Þ þ ½3; 3; 1�F ⊗ ½7�S þ ½3; 3; 1�F ⊗ ½6; 1�S þ ½3; 3; 1�F ⊗ ½5; 2�Sðm¼2Þ

þ ½3; 3; 1�F ⊗ ½4; 3�S þ ½3; 2; 2�F ⊗ ½6; 1�S þ ½3; 2; 2�F ⊗ ½5; 2�S þ ½3; 2; 2�F ⊗ ½4; 3�S: ð20Þ
Here we consider the seven quarks system consisting of two octet baryons and one quark. Then, we can determine the

possible flavor states of seven quarks as follows: Flavor states of seven quarks:

8 × 8 × 3 ¼ 3ðm¼3Þ þ 6̄ðm¼3Þ þ 15ðm¼4Þ þ 150 þ 24ðm¼2Þ þ 42: ð21Þ

Selecting flavor states given in Eq. (21) from Eq. (20), we can represent the possible flavor and spin states as follows:

3. Three baryons + one quark

The color and flavor ⊗ spin states of 10 quarks configuration are as follows:
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The flavor⊗ spin coupling state [3,3,3,1] with SU(6) can be decomposed into the states with the flavor SU(3) and the spin
SU(2) as follows:

½3; 3; 3; 1�FS ¼ ½6; 4�F ⊗ ½6; 4�S þ ½6; 3; 1�F ⊗ ½7; 3�S þ ½6; 3; 1�F ⊗ ½6; 4�S þ ½6; 3; 1�F ⊗ ½5; 5�S þ ½6; 2; 2�F ⊗ ½6; 4�S
þ ½5; 5�F ⊗ ½5; 5�S þ ½5; 4; 1�F ⊗ ½7; 3�S þ ½5; 4; 1�F ⊗ ½6; 4�Sðm¼2Þ þ ½5; 4; 1�F ⊗ ½5; 5�S
þ ½5; 3; 2�F ⊗ ½8; 2�S þ ½5; 3; 2�F ⊗ ½7; 3�Sðm¼2Þ þ ½5; 3; 2�F ⊗ ½6; 4�Sðm¼2Þ þ ½5; 3; 2�F ⊗ ½5; 5�S
þ ½4; 4; 2�F ⊗ ½8; 2�S þ ½4; 4; 2�F ⊗ ½7; 3�S þ ½4; 4; 2�F ⊗ ½6; 4�Sðm¼2Þ þ ½4; 3; 3�F ⊗ ½9; 1�S
þ ½4; 3; 3�F ⊗ ½8; 2�S þ ½4; 3; 3�F ⊗ ½7; 3�Sðm¼2Þ þ ½4; 3; 3�F ⊗ ½6; 4�S þ ½4; 3; 3�F ⊗ ½5; 5�S: ð22Þ

Similar to the two baryons and one quark case, we can determine the possible flavor states of 10 quarks as follows:
Flavor states of 10 quarks:

8 × 8 × 8 × 3 ¼ 3ðm¼10Þ þ 6̄ðm¼12Þ þ 15ðm¼18Þ þ 150ðm¼6Þ þ 21ðm¼2Þ þ 24ðm¼12Þ þ 42ðm¼9Þ þ 48ðm¼2Þ

þ 60ðm¼3Þ þ 90: ð23Þ
Combining the two equation above, we find the following possible states:

4. Four baryons + one quark

The color and flavor ⊗ spin states of 13 quarks configuration are as follows:

The flavor⊗ spin coupling state [3,3,3,3,1] with SU(6) can be decomposed into the states with the flavor SU(3) and the spin
SU(2) as follows:

½3; 3; 3; 3; 1�FS ¼ ½6; 6; 1�F ⊗ ½7; 6�S þ ½6; 5; 2�F ⊗ ½8; 5�S þ ½6; 5; 2�F ⊗ ½7; 6�S þ ½6; 4; 3�F ⊗ ½9; 4�S þ ½6; 4; 3�F ⊗ ½8; 5�S
þ ½6; 4; 3�F ⊗ ½7; 6�S þ ½5; 5; 3�F ⊗ ½8; 5�S þ ½5; 5; 3�F ⊗ ½7; 6�S þ ½5; 4; 4�F ⊗ ½8; 5�S
þ ½5; 4; 4�F ⊗ ½7; 6�S: ð24Þ

Flavor states of 13 quarks:

8 × 8 × 8 × 8 × 3 ¼ 3ðm¼40Þ þ 6̄ðm¼52Þ þ 15ðm¼85Þ þ 150ðm¼35Þ þ 21ðm¼17Þ þ 24ðm¼68Þ þ 36ðm¼2Þ þ 42ðm¼60Þ

þ 48ðm¼20Þ þ 60ðm¼30Þ þ 63ðm¼5Þ þ 90ðm¼16Þ þ 105ðm¼3Þ þ 120ðm¼4Þ þ 165: ð25Þ
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5. Five baryons + one quark

The color and flavor ⊗ spin states of 16 quarks
configuration are as follows:

The flavor⊗ spin coupling state [3,3,3,3,3,1] with SU(6)
can be decomposed into the states with the flavor SU(3) and
the spin SU(2) as follows:

½3;3;3;3;3;1�FS¼ ½6;6;4�F ⊗ ½9;7�S
þ½6;5;5�F ⊗ ½8;8�S: ð26Þ

Flavor states of 16 quarks:

8 × 8 × 8 × 8 × 8 × 3 ¼ 3ðm¼177Þ þ 6̄ðm¼245Þ þ 15ðm¼425Þ þ 150ðm¼200Þ þ 21ðm¼120Þ þ 24ðm¼380Þ þ 36ðm¼25Þ
þ 42ðm¼374Þ þ 45ðm¼5Þ þ 48ðm¼156Þ þ 60ðm¼230Þ þ 63ðm¼61Þ þ 90ðm¼150Þ þ 99ðm¼5Þ

þ 105ðm¼45Þ þ 120ðm¼60Þ þ 132ðm¼9Þ þ 165ðm¼25Þ þ 192ðm¼4Þ þ 210ðm¼5Þ þ 273: ð27Þ

B. Diquark case (C= 3̄;F= 3̄; S= 0)

From Secs. V B to V E, we construct the multiquark state
containing all possible diquarks as a probe. There are four
possible color-flavor-spin states of diquark satisfying the
Pauli principle. Among them, in this section, we construct
the multiquark state containing the most stable diquark.

1. One baryon + one diquark

Let us consider the multiquark system consisting of one
baryon and one diquark. The color state of five quarks
should be an antitriplet. Then, the flavor ⊗ spin coupling
state of five quarks can be determined as follows:

We can decompose the SU(6) flavor ⊗ spin coupling
state into SU(3) flavor and SU(2) spin states as follows:

½3;2�FS ¼ ½5�F ⊗ ½3;2�S þ ½4;1�F ⊗ ½4;1�S
þ ½4;1�F ⊗ ½3;2�S þ ½3;2�F ⊗ ½5�S
þ ½3;2�F ⊗ ½4;1�S þ ½3;2�F ⊗ ½3;2�S
þ ½3;1;1�F ⊗ ½4;1�S þ ½3;1;1�F ⊗ ½3;2�S
þ ½2;2;1�F ⊗ ½4;1�S þ ½2;2;1�F ⊗ ½3;2�S: ð28Þ

Now, we can classify all possible flavor and spin states of
a five quarks configuration as follows:
Flavor states of five quarks:

8 × 3̄ ¼ 3̄þ 6þ 15: ð29Þ

2. Two baryons + one diquark

The color state of eight quarks should be a antitriplet.
Then, the flavor ⊗ spin coupling state of eight quarks
should be its conjugate as follows:

AARON PARK and SU HOUNG LEE PHYS. REV. D 107, 094033 (2023)

094033-8



We can decompose the SU(6) flavor ⊗ spin coupling state into flavor SU(3) and spin SU(2) states as follows:

½3; 3; 2�FS ¼ ½6; 2�F ⊗ ½5; 3�S þ ½6; 1; 1�F ⊗ ½4; 4�S þ ½5; 3�F ⊗ ½6; 2�S þ ½5; 3�F ⊗ ½5; 3�S þ ½5; 3�F ⊗ ½4; 4�S
þ ½5; 2; 1�F ⊗ ½6; 2�S þ ½5; 2; 1�F ⊗ ½5; 3�Sðm¼2Þ þ ½5; 2; 1�F ⊗ ½4; 4�S þ ½4; 4�F ⊗ ½5; 3�S þ ½4; 3; 1�F ⊗ ½7; 1�S
þ ½4; 3; 1�F ⊗ ½6; 2�Sðm¼2Þ þ ½4; 3; 1�F ⊗ ½5; 3�Sðm¼2Þ þ ½4; 3; 1�F ⊗ ½4; 4�S þ ½4; 2; 2�F ⊗ ½7; 1�S
þ ½4; 2; 2�F ⊗ ½6; 2�S þ ½4; 2; 2�F ⊗ ½5; 3�Sðm¼2Þ þ ½3; 3; 2�F ⊗ ½8�S þ ½3; 3; 2�F ⊗ ½7; 1�S þ ½3; 3; 2�F ⊗ ½6; 2�S
þ ½3; 3; 2�F ⊗ ½5; 3�S þ ½3; 3; 2�F ⊗ ½4; 4�S: ð30Þ

Now, we can classify all possible flavor and spin states of eight quarks configuration as follows:
Flavor states of eight quarks:

8 × 8 × 3̄ ¼ 3̄ðm¼3Þ þ 6ðm¼3Þ þ 15ðm¼4Þ þ ¯150ðm¼2Þ þ 24ðm¼2Þ þ 42: ð31Þ

3. Three baryons + one diquark

The color and flavor ⊗ spin states of 11 quarks configuration are as follows:

We can decompose flavor ⊗ spin coupling SU(6) state into flavor SU(3) and spin SU(2) states as follows:

½3; 3; 3; 2�FS ¼ ½6; 5�F ⊗ ½6; 5�S þ ½6; 4; 1�F ⊗ ½7; 4�S þ ½6; 4; 1�F ⊗ ½6; 5�S þ ½6; 3; 2�F ⊗ ½8; 3�S þ ½6; 3; 2�F ⊗ ½7; 4�S
þ ½6; 3; 2�F ⊗ ½6; 5�S þ ½5; 5; 1�F ⊗ ½7; 4�S þ ½5; 5; 1�F ⊗ ½6; 5�S þ ½5; 4; 2�F ⊗ ½8; 3�S
þ ½5; 4; 2�F ⊗ ½7; 4�Sðm¼2Þ þ ½5; 4; 2�F ⊗ ½6; 5�Sðm¼2Þ þ ½5; 3; 3�F ⊗ ½9; 2�S þ ½5; 3; 3�F ⊗ ½8; 3�S
þ ½5; 3; 3�F ⊗ ½7; 4�Sðm¼2Þ þ ½5; 3; 3�F ⊗ ½6; 5�S þ ½4; 4; 3�F ⊗ ½8; 3�S þ ½4; 4; 3�F ⊗ ½7; 4�S
þ ½4; 4; 3�F ⊗ ½6; 5�S: ð32Þ

Now, we can classify all possible flavor and spin states of a 11 quarks configuration as follows: Flavor states of 11 quarks:

8× 8× 8× 3̄¼ 3̄ðm¼10Þ þ 6ðm¼12Þ þ 15ðm¼18Þ þ ¯150ðm¼6Þ þ 24ðm¼12Þ þ 42ðm¼9Þ þ 21ðm¼2Þ þ 60ðm¼3Þ þ 48ðm¼2Þ þ 90: ð33Þ
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4. Four baryons + one diquark

The color and flavor ⊗ spin states of 14 quarks
configuration are as follows:

The flavor⊗ spin coupling state [3,3,3,3,2] with SU(6) can
be decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½3; 3; 3; 3; 2�FS ¼ ½6; 6; 2�F ⊗ ½8; 6�S þ ½6; 5; 3�F ⊗ ½9; 5�S
þ ½6; 5;3�F ⊗ ½8; 6�S þ ½6; 5;3�F ⊗ ½7; 7�S
þ ½6; 4;4�F ⊗ ½8; 6�S þ ½5; 5;4�F ⊗ ½8; 6�S
þ ½5; 5;4�F ⊗ ½7; 7�S: ð34Þ

Flavor states of 14 quarks:

8× 8× 8× 8× 3̄¼ 3̄ðm¼40Þ þ 6ðm¼52Þ þ 15ðm¼85Þ

þ ¯150ðm¼35Þ þ 21ðm¼17Þ þ 24ðm¼68Þ

þ 36ðm¼2Þ þ 42ðm¼60Þ þ 48ðm¼20Þ

þ 60ðm¼30Þ þ 63ðm¼5Þ þ 90ðm¼16Þ

þ 105ðm¼3Þ þ 120ðm¼4Þ þ 165: ð35Þ

5. Five baryons + one diquark

The color and flavor ⊗ spin states of 17 quarks
configuration are as follows:

The flavor ⊗ spin coupling state [3,3,3,3,3,2] with SU(6)
can be decomposed into the states with the flavor SU(3) and
the spin SU(2) as follows:

½3; 3; 3; 3; 3; 2�FS ¼ ½6; 6; 5�F ⊗ ½9; 8�S: ð36Þ

Flavor states of 17 quarks:

8 × 8 × 8 × 8 × 8 × 3̄ ¼ 3̄ðm¼177Þ þ 6ðm¼245Þ þ 15ðm¼425Þ þ ¯150ðm¼200Þ þ 21ðm¼120Þ þ 24ðm¼380Þ þ 36ðm¼25Þ

þ 42ðm¼374Þ þ 45ðm¼5Þ þ 48ðm¼156Þ þ 60ðm¼230Þ þ 63ðm¼61Þ þ 90ðm¼150Þ þ 99ðm¼5Þ

þ 105ðm¼45Þ þ 120ðm¼60Þ þ 132ðm¼9Þ þ 165ðm¼25Þ þ 192ðm¼4Þ þ 210ðm¼5Þ þ 273: ð37Þ

C. Diquark case (C= 3̄;F= 6; S= 1)

As a second diquark state, we consider color triplet,
flavor sextet, and spin one diquark.

1. One baryon + one diquark

The color and flavor⊗ spin states of five quarks configu-
ration are same as in Sec. V B 1. However, the possible flavor
and spin states of multiquark are different after the decom-
position. In the case of the four possible diquarks, there are
many overlapping parts in relation to decomposition or outer
product, so only nonoverlapping results are listed here.
Flavor states of five quarks:

8 × 6 ¼ 3̄þ 6þ 15þ 24: ð38Þ
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2. Two baryons + one diquark

The color and flavor ⊗ spin states of eight quarks
configuration are same as in Sec. V B 2.
Flavor states of eight quarks:

8 × 8 × 6 ¼ 3̄ðm¼3Þ þ 6ðm¼4Þ þ 15ðm¼5Þ þ ¯150 þ 21

þ 24ðm¼4Þ þ 42ðm¼2Þ þ 60: ð39Þ

3. Three baryons + one diquark

The color and flavor ⊗ spin states of 11 quarks configuration are same as in Sec. V B 3.
Flavor states of 11 quarks:

8 × 8 × 8 × 6 ¼ 3̄ðm¼12Þ þ 6ðm¼16Þ þ 15ðm¼24Þ þ ¯150ðm¼8Þ þ 21ðm¼6Þ þ 24ðm¼21Þ þ 42ðm¼15Þ þ 48ðm¼3Þ þ 60ðm¼9Þ

þ 63ðm¼2Þ þ 90ðm¼3Þ þ 120: ð40Þ

4. Four baryons + one diquark

The color and flavor ⊗ spin states of 14 quarks configuration are same as in Sec. V B 4.
Flavor states of 14 quarks:

8 × 8 × 8 × 8 × 6 ¼ 3̄ðm¼52Þ þ 6ðm¼73Þ þ 15ðm¼120Þ þ ¯150ðm¼50Þ þ 21ðm¼38Þ þ 24ðm¼112Þ þ 36ðm¼3Þ þ 42ðm¼98Þ

þ 45ðm¼2Þ þ 48ðm¼32Þ þ 60ðm¼66Þ þ 63ðm¼20Þ þ 90ðm¼34Þ þ 105ðm¼6Þ þ 120ðm¼16Þ

þ 132ðm¼3Þ þ 165ðm¼4Þ þ 210: ð41Þ
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5. Five baryons + one diquark

The color and flavor ⊗ spin states of 17 quarks configuration are same as in Sec. V B 5.
Flavor states of 17 quarks:

8 × 8 × 8 × 8 × 8 × 6 ¼ 3̄ðm¼245Þ þ 6ðm¼357Þ þ 15ðm¼625Þ þ ¯150ðm¼300Þ þ 21ðm¼236Þ þ 24ðm¼619Þ þ 36ðm¼41Þ

þ 42ðm¼610Þ þ 45ðm¼25Þ þ 48ðm¼255Þ þ 60ðm¼450Þ þ 63ðm¼165Þ þ 90ðm¼290Þ þ 99ðm¼9Þ

þ 105ðm¼85Þ þ 120ðm¼160Þ þ 1200ðm¼5Þ þ 132ðm¼45Þ þ 165ðm¼65Þ þ 192ðm¼10Þ þ 210ðm¼25Þ

þ 234ðm¼4Þ þ 273ðm¼5Þ þ 336: ð42Þ

D. Diquark case (C= 6;F= 3̄; S= 1)

As a third diquark state, we consider the color sextet,
flavor antitriplet, and spin one diquark.

1. One baryon + one diquark

The color and flavor ⊗ spin states of five quarks
configuration are as follows:

The flavor ⊗ spin coupling state [3,1,1] with SU(6) can be
decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½3; 1; 1�FS ¼ ½4; 1�F ⊗ ½4; 1�S þ ½4;1�F ⊗ ½3; 2�S
þ ½3; 2�F ⊗ ½4;1�S þ ½3; 2�F ⊗ ½3; 2�S
þ ½3; 1; 1�F ⊗ ½5�S þ ½3; 1; 1�F ⊗ ½4;1�S
þ ½3; 1; 1�F ⊗ ½3; 2�Sðm¼2Þ þ ½2; 2; 1�F ⊗ ½4; 1�S
þ ½2; 2; 1�F ⊗ ½3; 2�S: ð43Þ

2. Two baryons + one diquark

The color and flavor ⊗ spin states of eight quarks
configuration are as follows:

The flavor ⊗ spin coupling state [3,3,1,1] with SU(6) can
be decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½3; 3; 1; 1�FS ¼ ½6; 2�F ⊗ ½4; 4�S þ ½6; 1; 1�F ⊗ ½5; 3�S þ ½5; 3�F ⊗ ½5; 3�S þ ½5; 2; 1�F ⊗ ½6; 2�S þ ½5; 2; 1�F ⊗ ½5; 3�Sðm¼2Þ
þ ½5; 2; 1�F ⊗ ½4; 4�S þ ½4; 4�F ⊗ ½6; 2�S þ ½4; 4�F ⊗ ½4; 4�S þ ½4; 3; 1�F ⊗ ½7; 1�S þ ½4; 3; 1�F ⊗ ½6; 2�Sðm¼2Þ

þ ½4; 3; 1�F ⊗ ½5; 3�Sðm¼3Þ þ ½4; 3; 1�F ⊗ ½4; 4�S þ ½4; 2; 2�F ⊗ ½6; 2�Sðm¼2Þ þ ½4; 2; 2�F ⊗ ½5; 3�S
þ ½4; 2; 2�F ⊗ ½4; 4�Sðm¼2Þ þ ½3; 3; 2�F ⊗ ½7; 1�S þ ½3; 3; 2�F ⊗ ½6; 2�S þ ½3; 3; 2�F ⊗ ½5; 3�Sðm¼2Þ: ð44Þ
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3. Three baryons + one diquark

The color and flavor ⊗ spin states of 11 quarks configuration are as follows:

The flavor⊗ spin coupling state [3,3,3,1,1] with SU(6) can be decomposed into the states with the flavor SU(3) and the spin
SU(2) as follows:

½3; 3; 3; 1; 1�FS ¼ ½6; 4; 1�F ⊗ ½7; 4�S þ ½6; 4; 1�F ⊗ ½6; 5�S þ ½6; 3; 2�F ⊗ ½7; 4�S þ ½6; 3; 2�F ⊗ ½6; 5�S þ ½5; 5; 1�F ⊗ ½6; 5�S
þ ½5; 4; 2�F ⊗ ½8; 3�S þ ½5; 4; 2�F ⊗ ½7; 4�Sðm¼2Þ þ ½5; 4; 2�F ⊗ ½6; 5�Sðm¼2Þ þ ½5; 3; 3�F ⊗ ½8; 3�S
þ ½5; 3; 3�F ⊗ ½7; 4�S þ ½5; 3; 3�F ⊗ ½6; 5�S þ ½4; 4; 3�F ⊗ ½9; 2�S þ ½4; 4; 3�F ⊗ ½8; 3�S
þ ½4; 4; 3�F ⊗ ½7; 4�Sðm¼2Þ þ ½4; 4; 3�F ⊗ ½6; 5�S: ð45Þ

4. Four baryons + one diquark

The color and flavor ⊗ spin states of 14 quarks configuration are as follows:

DIQUARKYONIC MATTER: QUARKS, DIQUARKS, AND … PHYS. REV. D 107, 094033 (2023)

094033-13



The flavor ⊗ spin coupling state [3,3,3,3,1,1] with SU(6) can be decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½3; 3; 3; 3; 1; 1�FS ¼ ½6; 6; 2�F ⊗ ½7; 7�S þ ½6; 5; 3�F ⊗ ½8; 6�S þ ½6; 4; 4�F ⊗ ½9; 5�S þ ½6; 4; 4�F ⊗ ½7; 7�S
þ ½5; 5; 4�F ⊗ ½8; 6�S: ð46Þ

5. Five baryons + one diquark

The color and flavor ⊗ spin states of 17 quarks
configuration are as follows:

There are no allowed states that satisfy the Pauli principle.

E. Diquark case (C= 6;F= 6; S= 0)

As a final diquark case, we consider color sextet, flavor
sextet, and spin zero diquark.

1. One baryon + one diquark

The color and flavor ⊗ spin states of five quarks
configuration are same as in Sec. V D 1. In addition, flavor
states of five quarks are same as in Sec. V C 1. Therefore,
for the rest of the cases, we only represent the possible
flavor and spin states.

2. Two baryons + one diquark

3. Three baryons + one diquark
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4. Four baryons + one diquark

5. Five baryons + one diquark

There are no allowed states that satisfy the Pauli principle.

F. Three correlated diquarks

When we consider the interaction involving a free
quark or a free diquark, the problem of the infinite thermal
Wilson line in the confining phase arises. To avoid that
problem, we consider the color singlet state of three
diquarks additionally. Among several possible states, the
most attractive one is the flavor singlet and spin zero state
that is the same quantum number as H-dibaryon. In this
study, we construct the three correlated diquarks using the
most stable diquark state, which is color antitriplet, flavor
antitriplet, and spin zero. Also, it should be noted that this
state is not allowed in the flavor SU(2) case because it
should contain two strange quarks.

1. One baryon + three diquarks

The color and flavor ⊗ spin states of nine quarks
composed of one baryon and three correlated diquarks
are as follows:

Flavor states of nine quarks:

8 × 1 ¼ 8: ð47Þ

Using the decomposition in octet baryon case, we find
that there is one possible flavor and spin states as follows:

2. Two baryons + three diquarks

The color and flavor ⊗ spin states of 12 quarks are as
follows:

Flavor states of 12 quarks:

8 × 8 × 1 ¼ 1þ 8ðm¼2Þ þ 10þ 10þ 27: ð48Þ

Using the decomposition in octet baryon case, we
can determine the possible flavor and spin states as
follows:

3. Three baryons + three diquarks

The color and flavor ⊗ spin states of 15 quarks are as
follows:

Using the decomposition in octet baryon case, we
can determine the possible flavor and spin states as
follows:
Flavor states of 15 quarks:

8×8×8×1¼ 1ðm¼2Þ þ8ðm¼8Þ þ10ðm¼4Þ þ10ðm¼4Þ

þ27ðm¼6Þ þ35ðm¼2Þ þ35ðm¼2Þ þ64: ð49Þ
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Now, we can determine the possible flavor and spin
states as follows:

4. Four baryons + three diquarks

The color and flavor⊗ spin states of 18 quarks consist of
four baryons and three correlated diquarks are as follows:

Flavor states of 18 quarks:

8 × 8 × 8 × 8 ¼ 1ðm¼8Þ þ 8ðm¼32Þ þ 10ðm¼20Þ þ 10ðm¼20Þ

þ 27ðm¼33Þ þ 28ðm¼2Þ þ 28ðm¼2Þ

þ 35ðm¼15Þ þ 35ðm¼15Þ þ 64ðm¼12Þ

þ 81ðm¼3Þ þ 81ðm¼3Þ þ 125: ð50Þ

Using the decomposition in octet baryon case, we can
find that there is one possible flavor and spin states as
follows:

5. Five baryons + three diquarks

There are no allowed states that satisfy the Pauli principle.

G. Baryon (octet) case

Now, we consider the case that a probe is a flavor octet
baryon. Since we can refer the multiquark states composed
of baryons only in Sec. IV, here we represent the five
baryons plus one baryon case only.

1. Five baryons + one baryon

The color and flavor ⊗ spin states of 18 quarks
configuration are as follows:

The flavor ⊗ spin coupling state [3,3,3,3,3,3] with SU(6)
can be decomposed into the states with the flavor SU(3) and
the spin SU(2) as follows:

½3; 3; 3; 3; 3; 3�FS ¼ ½6; 6; 6�F ⊗ ½9; 9�S: ð51Þ

Flavor states of 18 quarks:

8 × 8 × 8 × 8 × 8 × 8 ¼ 1ðm¼145Þ þ 8ðm¼702Þ þ 10ðm¼525Þ þ 10ðm¼525Þ þ 27ðm¼999Þ þ 28ðm¼161Þ þ 28ðm¼161Þ

þ 35ðm¼630Þ þ 35ðm¼630Þ þ 55ðm¼5Þ þ 55ðm¼5Þ þ 64ðm¼660Þ þ 80ðm¼70Þ þ 80ðm¼70Þ

þ 81ðm¼315Þ þ 81ðm¼315Þ þ 125ðm¼215Þ þ 154ðm¼70Þ þ 154ðm¼70Þ þ 162ðm¼9Þ þ 162ðm¼9Þ

þ 216ðm¼30Þ þ 260ðm¼5Þ þ 260ðm¼5Þ þ 343: ð52Þ

H. Baryon (decuplet) case

In this subsection, we additionally consider the flavor
decuplet baryon case. In Ref. [20], we studied the delta isobar
in normal nuclear matter using a constituent quark model.
Investigatingthestabilityof thedecupletbaryonindensematter
could be interesting subject, so we include this case here.
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1. One baryon + one baryon (decuplet)

Let us consider the six quarks state, which is composed
of one flavor octet baryon and one flavor decuplet baryon.
The color and flavor⊗ spin states are same as in Sec. IVA.
However, the possible flavor and spin states are different
after the decomposition; we need the following outer
product:
Flavor states of six quarks:

8 × 10 ¼ 35þ 27þ 10þ 8: ð53Þ

Then, using the decomposition in the octet baryon case, we
can determine the possible flavor and spin states as follows:

2. Two baryons + one baryon (decuplet)

The color and flavor ⊗ spin states are same as in
Sec. IV B.

Flavor states of nine quarks:

8 × 8 × 10 ¼ 1þ 8ðm¼4Þ þ 10ðm¼4Þ þ 10ðm¼2Þ þ 27ðm¼5Þ

þ 28þ 35ðm¼4Þ þ 35þ 64ðm¼2Þ þ 81: ð54Þ

3. Three baryons + one baryon (decuplet)

The color and flavor ⊗ spin states are same as in
Sec. IV C.

Flavor states of 12 quarks:

8 × 8 × 8 × 10 ¼ 1ðm¼4Þ þ 8ðm¼20Þ þ 10ðm¼17Þ þ 10ðm¼12Þ þ 27ðm¼27Þ þ 28ðm¼6Þ þ 28þ 35ðm¼21Þ þ 35ðm¼11Þ

þ 64ðm¼15Þ þ 80ðm¼2Þ þ 81ðm¼9Þ81ðm¼3Þ þ 125ðm¼3Þ þ 154: ð55Þ
Using the decomposition in the octet baryon case, we can determine the possible flavor and spin states as follows:

4. Four baryons + one baryon (decuplet)

The color and flavor ⊗ spin states are same as in Sec. IV D.
Flavor states of 15 quarks:

8 × 8 × 8 × 8 × 10 ¼ 1ðm¼20Þ þ 8ðm¼100Þ þ 10ðm¼85Þ þ 10ðm¼70Þ þ 27ðm¼150Þ þ 28ðm¼38Þ þ 28ðm¼15Þ þ 35ðm¼116Þ

þ 35ðm¼80Þ þ 55ðm¼2Þ þ 64ðm¼104Þ þ 80ðm¼20Þ þ 80ðm¼4Þ þ 81ðm¼66Þ þ 81ðm¼36Þ þ 125ðm¼34Þ

þ 154ðm¼16Þ þ 154ðm¼6Þ þ 162ðm¼3Þ þ 216ðm¼4Þ þ 260: ð56Þ
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5. Five baryons + one baryon (decuplet)

The color and flavor ⊗ spin states are same as in Sec. VG 1.
Flavor states of 18 quarks:

8 × 8 × 8 × 8 × 8 × 10 ¼ 1ðm¼100Þ þ 8ðm¼525Þ þ 10ðm¼451Þ þ 10ðm¼400Þ þ 27ðm¼855Þ þ 28ðm¼240Þ þ 28ðm¼135Þ

þ 35ðm¼675Þ þ 35ðm¼535Þ þ 55ðm¼25Þ þ 55ðm¼4Þ þ 64ðm¼690Þ þ 80ðm¼165Þ þ 80ðm¼65Þ

þ 81ðm¼460Þ þ 81ðm¼315Þ þ 125ðm¼300Þ þ 143ðm¼5Þ þ 154ðm¼160Þ þ 154ðm¼90Þ

þ 162ðm¼45Þ þ 162ðm¼10Þ þ 216ðm¼65Þ þ 260ðm¼25Þ þ 260ðm¼10Þ þ 280ðm¼4Þ þ 343ðm¼5Þ

þ 405: ð57Þ

VI. FREE QUARK GAS

Finally, we consider the case where the surrounding is a
free quark gas. In such a case, we assume that the
surrounding free quarks are not correlated with each other
but are correlated with the probe to satisfy the Pauli
principle.

A. Quark case

When a probe is a quark, we only need to calculate the
average value of the color-spin interactions for all possible
diquark configurations. There are four diquark states
satisfying the Pauli principle. We represent them in the
Table I. If we compare it with the results for baryons and a
quark, then we should multiply it by 3 to ensure compari-
son at the same density.

B. Diquark ðCA; FA; SAÞ case
For a diquark with color antitriplet and a free quark,

since 3 × 3̄ ¼ 1þ 8, there are two possible color states of
three quarks, which will come with the flavor ⊗ spin
configuration as below.

The flavor ⊗ spin coupling state [3] with SU(6) can be
decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½3�FS ¼ ½3�F ⊗ ½3�S þ ½2; 1�F ⊗ ½2; 1�S: ð58Þ

The flavor ⊗ spin coupling state [2,1] with SU(6) can be
decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½2; 1�FS ¼ ½3�F ⊗ ½2; 1�S þ ½2; 1�F ⊗ ½3�S þ ½2; 1�F ⊗ ½2; 1�S
þ ½1; 1; 1�F ⊗ ½2;1�S: ð59Þ

TABLE I. Classification of two quark interaction due to the
Pauli exclusion principle. We denote the antisymmetric and
symmetric state as A and S, respectively. The symbols inside
the parentheses represent the multiplet state.

qiqj

Flavor A S A S
Color Að3̄Þ Að3̄Þ Sð6Þ Sð6Þ
Spin Að1Þ Sð3Þ Sð3Þ Að1Þ
−λci λcjσi · σj −8 8

3
− 4

3
4

λci λ
c
j − 8

3
− 8

3
4
3

4
3
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Considering both cases, we can calculate the average
value of the color-spin interaction. We multiply it by 3

2
to

compare this results with that for baryons and a quark.

C. Diquark ðCA;FS; SSÞ case
In this case, there are two possible color states as in

Sec. VI B.

D. DiquarkðCS;FA; SSÞ case
For a diquark with color sextet, since 6 × 3 ¼ 8þ 10,

there are two possible color states of three quarks, which
will come with the flavor ⊗ spin configuration as below:

The flavor ⊗ spin coupling state [1,1,1] with SU(6) can
be decomposed into the states with the flavor SU(3) and the
spin SU(2) as follows:

½1; 1; 1�FS ¼ ½2; 1�F ⊗ ½2; 1�S þ ½1; 1; 1�F ⊗ ½3�S: ð60Þ

E. Diquark ðCS; FS; SAÞ case
Here as elsewhere, there are two possible color states.

F. Three correlated diquarks case

For the color-spin interaction between three correlated
diquarks and a free quark, the color and flavor ⊗ spin
coupling state is as follows:
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Flavor states of seven quarks: 1 × 3 ¼ 3.

In order to compare the result with the interaction
factor when one baryon looks at one quark, we need to
divide by 2.

G. Baryon (octet) case

The multiquark state of this case is the same as in
Sec. VA 1.

H. Baryon (decuplet) case

The color and flavor ⊗ spin states of four quarks
configuration are as follows:

Flavor states of four quarks: 10 × 3 ¼ 150 þ 15.

VII. RESULTS

Table II shows the averaged color-spin interaction factors
calculated using the multiquark states and Eq. (18). In the
case of flavor SU(2), the result was obtained by excluding
the states that must contain a strange quark from among the
possible states in flavor SU(3). In the case of flavor SU(2),
since there is no strange quark, the combinations that
make up an antisymmetric flavor state are quite limited.
Therefore, from four surrounding baryons, it is not possible
to create a state that satisfies the Pauli principle regardless
of the probe type.
There are a few points on these results. First of all, as we

can see in the Table II, when the number of surrounding
baryons is increased to two, the strength of the interaction
increases, but from three it steadily decreases for most
cases. Also, comparing the interaction between a quark and
a octet baryon, it can be seen that the quark is more
repulsive when the number of surrounding baryons is up to
two, but a baryon becomes more repulsive relatively from
three onwards. It shows that the interaction experienced by
a quark is relatively more attractive than that of a baryon
once the density increases to a point where three or more
baryons are correlated.
It should be noted that, in the case of three correlated

diquarks, the averaged interaction factor does not differ
when the number of surrounding baryons changes. The
reason is that the states of the three correlated diquarks are
all singlets, so when we multiply it by the multibaryon
state, the multiplet state of multibaryon remains intact.
The results when the surrounding is a free quark gas are

also noteworthy. In the case of free quark gas, it can be seen

TABLE II. ΔHavg
CS for different probes (column) in various surroundings (row). The upper and lower tables are for flavor SU(2) and

SU(3), respectively. “None” represents that there is no state that satisfies the Pauli principle.

SUð2ÞF 1b 2b 3b 4b 5b Free quarks

Quark 8 8.533 6.133 None None 4.364
DiquarkðCA; FA; SAÞ 8 8 8 None None 8
DiquarkðCA; FS; SSÞ 8 8.267 4.889 None None 2.667
DiquarkðCS; FA; SSÞ 8 8.533 None None None 4.471
DiquarkðCS; FS; SAÞ 8 8.4 None None None 2.118
Baryon(octet) 7.111 7.111 7.111 None None 8
Baryon(decuplet) 7.111 7.111 3.556 None None 2.872

SUð3ÞF 1b 2b 3b 4b 5b Free quarks

Quark 6 6.446 4.644 4.167 3.657 2.823
DiquarkðCA; FA; SAÞ 6 6.176 5.551 5.257 4.8 6.3
DiquarkðCA; FS; SSÞ 6 6.107 3.799 3.359 2.933 1.12
DiquarkðCS; FA; SSÞ 6 6.4 4.884 4.376 None 3.28
DiquarkðCS; FS; SAÞ 6 6.185 3.869 3.304 None 0.643
Three correlated diquarks 6 6 6 6 None 6
Baryon(octet) 5.714 5.78 4.944 4.667 4.267 6
Baryon(decuplet) 4.647 4.456 2.916 2.26 2.133 1.455
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that the interaction factor of quark is much more attractive
than that of baryon as we expected. Additionally, for free
quark gas, the interaction factor is more attractive compared
to the case where the surroundings are multibaryon states.
However, there are exceptions that will be explained below
when discussing the internal structure of a probe.
When we compare the octet baryon and the decuplet

baryon, the interaction of the decuplet baryon seems more
attractive. Even in the case of diquarks, it can be seen that
the diquark with (CA, FS, SS) is more attractive than the
diquark with (CA, FA, SA), which is considered the most
attractive. However, these results are because of the internal
color-spin factor of the probe. The diquark with (CA, FS,
SS) and the decuplet baryon have one thing in common: the
flavor and spin states are totally symmetric.
As we can find out in Eq. (2), the color-spin factor is more

attractive when there are more antisymmetric combinations
in the flavor state because the correspondingCF is small. The
possibility that the surrounding baryons can form an anti-
symmetric combination with the probe increases when the
flavor state of the probe is symmetric. Then the color-spin
interaction between a probe and the surrounding baryons
becomes attractive. However, in this case, we need to
consider their internal structures because when the flavor
state is symmetric then the color-spin factors are repulsive.
Therefore, we show the results of considering the probe’s
internal color-spin factor as well as the interaction between
the probe and the surrounding baryons in Table III.
Considering the internal color-spin factors of probes, it can

be seen that when the surrounding is baryons, and more
baryons are correlated, the most stable state is the diquark
with (CA,FA, SA). Therefore, if a baryon is decomposed into
a quark and a diquark and the accumulated quarks further
form diquarks it can be seen that this result is consistent with

the so-called diquarkyonic matter configuration in which
quark and diquark can coexist at high density. Even at higher
density when the surrounding turns into the free quark gas,
the most stable state is three correlated diquarks.

VIII. SUMMARY

In this work, we constructed the multiquark states to
calculate the interaction energy of a probe. To examine the
behavior of dense matter, we calculated the relative magni-
tude of the interaction experiencedby the probe as the number
of correlated surrounding baryons increased but density kept
constant. As a result, we found that a quark experiences the
less repulsive interaction than a baryon when the number of
correlated surrounding baryons is three or more.
On the other hand, we showed that the diquark may be

the most stable state in dense matter when the internal
interactions of a probe are considered. These results show
the possibility of a new phase called diquarkyonic matter.
There are a few additional things that need to be done in

relation to this. If a diquark can exist as an independent
state, then the interaction between diquarks cannot be
ignored. Investigation on the interactions between diquarks
can be an important factor in the study of diquark
condensation as well as diquarkyonic configuration.
Additionally, it is also necessary to consider the inhomo-
geneous matter. It can be important to look at how the
behavior of an interaction changes when the spatial part of a
multiquark state is not totally symmetric.
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APPENDIX: THREE-BODY CONFINEMENT
POTENTIAL IN SUðNÞ

The commutation and anticommutation relations for
generators of SUðNÞ are as follows:

½Ta; Tb� ¼ ifabcTc; ðA1Þ

fTa; Tbg ¼ 1

N
δab þ dabcTc; ðA2Þ

where a; b; c ¼ 1; 2;…; N2 − 1. Normalization condition
is as follows:

TrðTaTbÞ ¼ 1

2
δab: ðA3Þ

We can also represent the color-color interaction
between ith and jth quarks using the permutation

Ta
i T

a
j ¼

1

2
ðijÞ − 1

2N
I; ðA4Þ

where I is the ðN2 − 1Þ by ðN2 − 1Þ identity matrix. Then,
we can represent the d-type and f-type three-body confine-
ment forces as follows:

dabcTa
i T

b
jT

c
k ¼

1

4
½ðijkÞ þ ðikjÞ� þ 1

N2
I

−
1

2N
½ðijÞ þ ðikÞ þ ðjkÞ�; ðA5Þ

fabcTa
i T

b
jT

c
k ¼

i
4
½ðijkÞ − ðikjÞ�: ðA6Þ

Now, consider the following general color state of
SUðNÞ:

Since the d-type three-body confinement potential is
Casimir operator, we can get the eigenvalue of it by
calculating the diagonal component for the normal
Young-Yamanouchi basis.

There are four cases: (1) i, j, k are in the same row. (2) i,
j are in the same row and k is in the lower row. (3) j, k are
in the same row and i is in the upper row. (4) i, j, k are in
different rows. Here we show work for cases (1)
and (2). For cases (3) and (4), we can calculate it in a
similar way.
For case (1), since i, j, k are in the same row, any

permutation between i, j, k is just the identity. And the
number of this case is as follows:

N1 ¼
�
p1þ� � �þpN

3

�
þ
�
p2þ �� �þpN

3

�
þ �� �þ

�
pN

3

�
:

ðA7Þ

For case (2), we can calculate it step by step. First,
consider the case when i, j are in the first row. Then the
possible number of this case is as follows:

N2;1¼
�
p1þ���þpN

2

���
p2þ�� �þpN

1

�
þ�� �þ

�
pN

1

��
:

ðA8Þ

Also, the diagonal components of each permutation are
as follows:

ðijÞ ¼ 1; ðikÞ ¼ ðjkÞ ¼ −
1

p1 þ � � � þ pN
;

ðijkÞ ¼ ðijÞðjkÞ ¼ ðjkÞ ¼ ðikjÞ: ðA9Þ

We can continue this calculation when i, j are in the
second row, third row, � � � and finally the (N − 1)th row.
The possible number of the final cases and the diagonal
components of each permutation are as follows:

N2;N−1 ¼
�
pN−1 þ pN

2

��
pN

1

�
: ðA10Þ

ðijÞ ¼ 1; ðikÞ ¼ ðjkÞ ¼ −
1

pN−1 þ pN
;

ðijkÞ ¼ ðijÞðjkÞ ¼ ðjkÞ ¼ ðikjÞ: ðA11Þ

For cases (3) and (4) we can use a similar method.
Collecting all the terms, we can get the eigenvalue of d-type
three-body confinement force. Here, we represent it for
SU(4), SU(5), and SU(6).
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For SU(4),

X
i<j<k

dabcTa
i T

b
jT

c
k ¼

p1

16
−
3p2

1

32
þ p3

1

32
þ 3p2

8
−
p1p2

4
þ p2

1p2

16
−
3p2

2

8
þ 23p3

16
−
3p1p3

16
þ p2

1p3

32
−
p2p3

2
−
15p2

3

32
−
p1p2

3

32

−
p2p2

3

16
−
p3
3

32
þ 15p4

4
: ðA12Þ

For SU(5),

X
i<j<k

dabcTa
i T

b
jT

c
k ¼

2p1

25
−
3p2

1

25
þ p3

1

25
þ 23p2

50
−
33p1p2

100
þ 9p2

1p2

100
−
12p2

2

25
þ 3p1p2

2

100
þ p3

2

50
þ 41p3

25
−
8p1p3

25
þ 3p2

1p3

50

−
21p2p3

25
þ p1p2p3

25
þ p2

2p3

25
−
39p2

3

50
−
p1p2

3

50
−
p2p2

3

25
−
p3
3

50
þ 103p4

25
−
21p1p4

100
þ 3p2

1p4

100

−
13p2p4

25
þ p1p2p4

50
þ p2

2p4

50
−
93p3p4

100
−
p1p3p4

50
−
p2p3p4

25
−
3p2

3p4

100
−
18p2

4

25
−
3p1p2

4

100
−
3p2p2

4

50

−
9p3p2

4

100
−
p3
4

25
þ 42p5

5
: ðA13Þ

For SU(6),

X
i<j<k

dabcTa
i T

b
jT

c
k ¼

5p1

54
−
5p2

1

36
þ 5p3

1

108
þ 14p2

27
−
7p1p2

18
þ p2

1p2

9
−
5p2

2

9
þ p1p2

2

18
þ p3

2

27
þ 16p3

9
−
5p1p3

12
þ p2

1p3

12

−
13p2p3

12
þ p1p2p3

12
þ p2

2p3

12
− p2

3 −
118p4

27
−
13p1p4

36
þ p2

1p4

18
−
8p2p4

9
þ p1p2p4

18
þ p2

2p4

18

−
19p3p4

12
−
11p2

4

9
−
p1p2

4

36
−
p2p2

4

18
−
p3p2

4

12
−
p3
4

27
þ 475p5

54
−
2p1p5

9
þ p2

1p5

36
−
19p2p5

36
þ p1p2p5

36

þ p2
2p5

36
−
11p3p5

12
−
25p4p5

18
−
p1p4p5

36
−
p2p4p5

18
−
p3p4p5

12
−
p2
4p5

18
−
35p2

5

36
−
p1p2

5

36
−
p2p2

5

18

−
p3p2

5

12
−
p4p2

5

9
−
5p3

5

108
þ 140p6

9
: ðA14Þ

Note that the eigenvalue of d-type three-body confinement potentials for SU(4), SU(5), and SU(6) are linear in p4, p5, and
p6, respectively.
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