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Using the constraints from astrophysical observations and heavy-ion experiments, we investigate the
equation of state (EOS) of hybrid star matter and the properties of quark-matter cores in hybrid stars.
The quark matter interactions in hybrid stars are described based on 3-flavor Nambu-Jona-Lasinio
model with various vector and vector-isovector coupling constants. In this work, we find that the hybrid
star matter EOS is more sensitive to the strength of the vector interaction, and the EOS becomes stiffer
with increasing vector strength RV . The vector-isovector interaction characterized by the coupling
constant RIV make main contributions to the hadron-quark mixed phase. Meanwhile, we note that a step
change of both the sound velocity and the polytropic index γ occurs in the hadron-quark phase
transition, and it is restored with the decrease of nucleon and lepton degrees of freedom in the high
density quark phase. The approximate rule that the polytropic index γ ≤ 1.75 can also be used as a
criterion for separating hadronic matter from quark matter in our work. Using the hybrid star
matter EOS, we predict the radius and mass information of quark-matter cores inside hybrid stars.
Although the coupling constants increase the hybrid star maximum mass up to 2.08M⊙, they also
decrease the mass and radius of the quark core and the mixed core. With different quark coupling
constants, we also find that the maximum mass and radius of the quark matter core in a stable hybrid
star can reach 0.80M⊙ and 6.95 km, which are close to half of the maximum mass and radius of the
complete star. However, properties of quark matter have no effect on the M ¼ 1.4M⊙ hybrid star as a
result of no quark matter inner core, which can also be confirmed by the criterion of the polytropic
index, and thus our results also indicate that the quark interactions have no effect on the tidal
deformability Λ1.4 of hybrid stars.

DOI: 10.1103/PhysRevD.107.094032

I. INTRODUCTION

Studying the equation of state (EOS) of strongly
interacting matter is one of the main scientific goals of
nuclear physics and astrophysics [1,2]. Research based on
astrophysical observations of neutron stars [3–7] have
already led to significant constraints on the EOS of
nuclear matter around but mostly below the saturation
density (ρ0 ≈ 0.16 fm−3). Although the EOS of strongly
interacting matter at densities 2ρ0 < ρ < 5ρ0 has also been
constrained by the measurements of collective flows [8]
and subthreshold kaon production [9] in relativistic
heavy-ion collisions, the lack of accurate first-principles
predictions at supra-saturation density has so far pre-
vented determination of the phase of matter inside neutron
star [10]. In recent years, there have been some inspiring
progress in astrophysical observations on neutron stars,

including the accurate mass determination of the massive
object PSR J1614-2230 (1.908� 0.016M⊙) [11–13]
and PSR J0348þ 0432 (2.01� 0.04M⊙) [14]. The first
simultaneous measurements of the mass and radius of
a neutron star using the Neutron Star Interior Composi-
tion Explorer (NICER) data were those of the millisecond
pulsar PSR J0030þ 0451. The two independent analyses
predict (68% credible interval) M ¼ 1.34þ0.15

−0.16M⊙,
R¼12.71þ1.14

−1.19 km [15] and M ¼ 1.44þ0.15
−0.14M⊙, R¼

13.02þ1.24
−1.06 km [16]. More recently, the measurement

based on NICER and X-ray Multi-Mirror (XMM-
Newton) found that gravitational mass of PSR J0740þ
6620 is declared as 2.08� 0.07M⊙, which is considered
as the highest reliably determined neutron star mass
[17–19]. Its radius were determined with the results
12.39þ1.30

−0.98 [18] and 13.71þ2.61
−1.50 km [19] (68% credible

interval). And the radius range that spans the �1σ
credible intervals of all the radius estimates in the
different frameworks is 12.45� 0.65 km for a canonical
mass M ¼ 1.4M⊙ neutron star [19]. The gravitational
wave events GW170817 [20] and GW190814 [21] have
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provided more additional constraints on the EOS of the
neutron star matter. The analysis of GW170817 by the
LIGO/Virgo Collaboration has found with a 90% confi-
dence that the tidal deformability of the merging compact
stars constrained as the range 70 < Λ1.4 < 580 [22].
Besides, the newly discovered compact binary merger
GW190814 which has a secondary component of mass
ð2.50–2.67ÞM⊙ at 90% credible level has also aroused lots
of debates on whether the candidate for the secondary
component is a neutron star or a light black hole. There are
thus two restrictive observational constraints on the stiff-
ness of the EOS of the neutron star matter: EOSs that
are too soft are eliminated by the discovery of massive
neutron stars, whereas EOSs that are very stiff are
inconsistent with the merger gravitational wave signal
from the binary star merger GW170817, which disfavors
large tidal deformation (and large radii) [23]. The con-
clusions we listed before might be a signal of the existence
of non-nucleonic degrees of freedom at high densities in
neutron star matter, such as quark matter. Some recent
studies, for instance, have also shown that quark-matter
cores can appear in massive neutron stars [10] and the
presence of a first-order phase transition from hadronic
matter to quark matter can imprint signatures in binary
mergers observations [23,24], as well as the binary-
neutron-star (BNS) merger simulations indicate that the
sudden decrease in the gravitational-wave frequency is
closely related to the hadron-quark phase transition [25].
Thus, the above observation events/objects comprise the
multimessenger dataset for our following analysis on
quark matter inside neutron stars.
QCD effective models that incorporate important prop-

erties and symmetries of the strong interaction are widely
used for describing quark degrees of freedom in neutron
star matter. It has been found that large mass constraints
have been used to understand the properties of the hadron-
quark phase transition as well as the EOS of quark matter
in neutron stars with different QCD effective models (see,
e.g., Refs. [26–33]). The Nambu-Jona-Lasinio (NJL)
model is one of such effective models that considers
chiral symmetry preserving interactions [34,35], and that
has been used to study the possible existence of quark
matter inside neutron stars [36–41]. Although the scalar
part of the quark matter interaction in the NJL model can
be constrained by the lattice QCD calculations [42,43], its
vector part or especially the isovector part, which is
relevant to the properties of quark matter at high net
baryon densities and isospin asymmetries, remains poorly
understood. However, a recent study using the transport
approach based on a 3-flavor NJL model has shown that
the strength of the vector interaction can be extracted from
the relative elliptic flow (v2) difference between protons
and antiprotons as well as between Kþ and K− in
relativistic heavy-ion collisions measured in experiments

from the beam-energy scan (BES) program [44]. Again,
the isovector couplings lead to different potentials of u
and d quarks in isospin asymmetric quark matter, and
thus server as a possible explanation of the elliptic flow
splitting between πþ and π− in relativistic heavy-ion
collisions [45]. It is thus of great interest to investigate
properties of quark-matter cores inside neutron stars by
employing the 3-flavor NJL model with vector and
isovector couplings.
In the present study, the neutron stars could be

converted to hybrid stars with the hadron-quark phase
transition. Using the constraints from astrophysical
observations and heavy-ion experiments, the EOS of
hybrid star matter and the properties of quark-matter
cores in hybrid stars are investigated. We describe
strange quark matter in hybrid stars based on the
3-flavor NJL model with vector and isovector couplings,
as well as nuclear matter using an improved isospin- and
momentum-dependent interaction (ImMDI) model. The
ImMDI model is constructed from fitting cold nuclear
matter properties at saturation density and the empirical
nucleon optical potential [46,47], and it has been exten-
sively used in intermediate energy heavy-ion reactions to
study the properties of asymmetric nuclear matter. The
Gibbs construction [48,49] is adopted for the description
of hadron-quark mixed phase, where the coexisting
hadronic and quark phases need to satisfy the β-equi-
librium and charge-neutral conditions. This article is
organized as follows. In Sec. II, we describe the NJL
model with vector and isovector couplings for the quark
matter. The properties of quark-matter cores inside
hybrid stars, such as the EOS of hybrid star matter,
the sound velocity, the polytropic index γ, the mass-
radius relation and the dimensionless tidal deformability,
is presented in Sec. III. Section VI is devoted to the
conclusions.

II. THE THEORETICAL MODEL

The hybrid EOS consists of a hadronic phase connected
to a quark phase through a hadron-quark mixed phase.
The possible appearance of hyperons is neglected, which is
due to the fact that there are still large uncertainties on the
hyperon-nucleon (YN) and hyperon-hyperon (YY) inter-
actions in the nuclear medium [50,51]. Besides, following
the results from Ref. [52], the fraction of hyperons
disappears quickly in hadron-quark mixed phase, which
means that the effect of hyperons at super-saturation
density, especially in the hadron-quark mixed phase, is
expected to be small. Thus, we mainly focus on, in this
work, the properties of quark-matter cores in hybrid stars
without hyperons.
For quark matter, the lagrangian of the 3-flavor NJL

model with vector and isovector interactions can be
expressed as [53]
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LNJL ¼ q̄ði=∂ − m̂Þqþ GS

2

X8
a¼0

½ðq̄λaqÞ2 þ ðq̄iγ5λaqÞ2�

− K½det q̄ð1þ γ5Þqþ det q̄ð1 − γ5Þq�

−
GV

2

X8
a¼0

½ðq̄γμλaqÞ2 þ ðq̄γ5γμλaqÞ2�

þ GIS

X3
a¼0

½ðq̄λaqÞ2 þ ðq̄iγ5λaqÞ2�

−GIV

X3
a¼0

½ðq̄γμλaqÞ2 þ ðq̄γ5γμλaqÞ2�; ð1Þ

where q ¼ ðu; d; sÞT and m̂ ¼ diagðmu;md;msÞ are the
quark fields and the current quark mass matrix with three
flavors, respectively; λa are the flavor SU(3) Gell-Mann
matrices with λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I; GS and GV are the scalar and

vector coupling constant, respectively; as well as the K
term represents the six-point Kobayashi-Maskawa-t’Hooft
(KMT) interaction that breaks the axial Uð1ÞA symmetry
[54]. The additionalGIS andGIV terms represent the scalar-
isovector and the vector-isovector interactions, respec-
tively. The Gell-Mann matrices with a ¼ 1, 2, 3 in
the two isovector interaction term are identical to the
Pauli matrices in u and d space, and thus the isovector
coupling terms break the SU(3) symmetry while keeping
the isospin symmetry. In the present study, we employ
the parameters mu ¼ md ¼ 3.6 MeV, ms ¼ 87 MeV,
GSΛ2 ¼ 3.6, KΛ5 ¼ 8.9, and the cutoff value Λ ¼
750 MeV in the momentum integral given in Refs. [35,55].
In the mean-field approximation, the energy density ϵQ

of quark matter in detail can be written as

εQ ¼ −2Nc

X
i¼u;d;s

Z
Λ

0

d3p
ð2πÞ3 Eið1 − fi − f̄iÞ

þGSðσ2u þ σ2d þ σ2sÞ þGVðρ2u þ ρ2d þ ρ2sÞ
− 4Kσuσdσs þGISðσu − σdÞ2 − GIVðρu − ρdÞ2 − εvac;

ð2Þ
where the factor Nc ¼ 3 represents the color degeneracy of
quark, fi and f̄i are respectively the Fermi distribution
functions of quark and antiquark with flavor i. σi and ρi
stand for the quark condensate and the net quark number
density, respectively [56,57]; EiðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p
is the

single quark energy; and εvac is introduced to ensure εQ ¼ 0

in vacuum. The pressure at zero temperature can be given as

PQ ¼
X

i¼u;d;s

μiρi − εQ: ð3Þ

In the quark phase, the system is composed of a mixture
of quarks (u, d, and s) and leptons (e and μ) under the
charge neutrality condition

2

3
ρu −

1

3
ðρd þ ρsÞ − ρe − ρμ ¼ 0; ð4Þ

and the β-equilibrium condition

μs ¼ μd ¼ μu þ μe; ð5Þ

μμ ¼ μe: ð6Þ

In terms of the electron mass me ¼ 0.511 MeV and the
muon massmμ ¼ 106 MeV, the lepton contributions to the
energy density and the pressure are

εL ¼
X
i¼e;μ

1

π2

Z
pi
f

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
p2dp; ð7Þ

PL ¼
X
i¼e;μ

μiρi − εL; ð8Þ

where pi
f ¼ ð3π2ρiÞ13 is the lepton fermi momentum.

The total energy density and pressure including the con-
tributions from both quarks and leptons in quark phase are
given by

εQ ¼ εQ þ εL; ð9Þ

PQ ¼ PQ þ PL: ð10Þ

In the hadronic phase, an improved isospin- and
momentum-dependent interaction (ImMDI) model is used
to describe the β-equilibrium and charge-neutral nuclear
matter. In our previous study [53], the ImMDI model is
fitted to the properties of cold symmetric nuclear matter
(SNM), which is approximately reproduced by the self-
consistent Greens function (SCGF) approach [58,59] or
chiral effective many-body pertubation theory (χEMBPT)
[60,61]. And the parameters x, y and z are introduced
to adjust the slope L of symmetry energy, the momentum
dependence of the symmetry potential, and the symmetry
energy Esymðρ0Þ at saturation density, respectively.
Recently, the discovery of GW170817 has triggered many
analyses of neutron star observables to constrain nuclear
symmetry energy. The average value of the slope parameter
of the symmetry energy L from the 24 new analyses
of neutron star observables since GW170817 was about
L ¼ 57.7� 19 MeV at a 68% confidence level [62],
which is consistent with the latest report of the slope
parameter L between 42 and 117 MeV from studying
the pion spectrum ratio in heavy-ion collision in an
experiment performed at RIKEN [63]. However, the
Lead Radius Experiment (PREX-II) reported very recently
new constraints on the neutron radius of 208Pb, which

implies a neutron skin thickness of R
208Pb
skin ¼ 0.283�

0.071 fm [64] and constrains the slope parameter to
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L ¼ 106� 37 MeV [65], which is much larger than many
previous constraints from microscopic calculations or
experimental measurements [62,66,67]. In order to better
focus on the properties of quark matter, we thus choose for
the hadronic phase a fixed parameter set, x ¼ −0.3,
y ¼ 32 MeV, and z ¼ 0, that would allow 2.08M⊙ neutron
stars and still satisfy well nuclear matter constraints at
saturation density, i.e., the binding energy E0ðρ0Þ ¼
−15.9 MeV, the incompressibility K0 ¼ 240 MeV, the
symmetry energy Esymðρ0Þ ¼ 32.5 MeV, the slope param-
eter L¼106MeV, the isoscalar effective mass m⋆

s ¼ 0.7m,
and the single-particle potential U0;∞ ¼ 75 MeV at infi-
nitely large nucleon momentum.
The hadron-quark mixed phase is predicted to exist in the

region between hadronic matter and quark matter based on
various theoretical approaches. In the Maxwell construc-
tion, the coexisting hadronic and quark phases have
equal pressure and baryon chemical potential but different
electron chemical potential. The Gibbs construction is more
generally adopted for the description of hadron-quark
mixed phase, where the coexisting hadronic and quark
phases are allowed to be charged separately. Besides, the
mixed phase in the Gibbs construction persists within a
limited pressure range, so it is convenient to form a massive
neutron star containing the mixed phase. Both of the
Maxwell and Gibbs constructions involve only bulk con-
tributions, but the finite-size effects like surface and
Coulomb contributions are neglected. The possible geo-
metrical structure of the mixed phase has been extensively
discussed in Refs. [68–72]. However, the large uncertain-
ties in the structure and density range of the mixed
phase are still present. In the present work, the hadron-
quark mixed phase is described by imposing the Gibbs
construction [48,49]:

TH ¼ TQ; PH ¼ PQ;

μB ¼ μHB ¼ μQB ; μc ¼ μHc ¼ μQc ; ð11Þ

where μB and μc are the baryon and charge chemical
potential, P is the pressure, as well as the labels H and Q
represent the hadronic and quark phases, respectively. The
Gibbs conditions for the chemical potentials can also be
expressed as

μu ¼
1

3
μn −

2

3
μe; ð12Þ

μs ¼ μd ¼
1

3
μn þ

1

3
μe: ð13Þ

Adding baryon number conservation, and charge neu-
trality conditions, the dense matter enters the mixed phase,
in which the hadronic and the quark matter need to satisfy
following equilibrium conditions:

μi ¼ μBbi − μcqi; PH ¼ PQ;

ρB ¼ ð1 − YÞðρn þ ρpÞ þ
Y
3
ðρu þ ρd þ ρsÞ;

0 ¼ ð1 − YÞρp þ
Y
3
ð2ρu − ρd − ρsÞ − ρe − ρμ; ð14Þ

where Y is the baryon number fraction of the quark phase.
The total energy density and pressure of the mixed phase
are calculated according to

εM ¼ ð1 − YÞεH þ YεQ þ εL; ð15Þ

PM ¼ ð1 − YÞPH þ YPQ þ PL: ð16Þ

The crust of hybrid stars, in our calculations, is consid-
ered to be divided into two parts: the inner and the outer
crust as in the previous treatment [73,74]. The polytropic
form P ¼ aþ bε4=3 has been found to be a good approxi-
mation to the inner crust EOS [75], and the outer crust
usually consists of heavy nuclei and electron gas, where we
use the EOS in Ref. [76]. Using the whole EOS from
hadronic to quark phase, the mass-radius relation of hybrid
stars can be obtained by solving the Tolman-Oppenheimer-
Volkoff equation, which can be written as

dPðrÞ
dr

¼ −
MðrÞ½εðrÞ þ PðrÞ�

r2

�
1þ 4πPðrÞr3

MðrÞ
�

×

�
1 −

2MðrÞ
r

�
−1
; ð17Þ

where εðrÞ is the energy density and PðrÞ is the
pressure obtained from the equation of state. MðrÞ is the
gravitational mass inside the radius r of the hybrid star
given by

dMðrÞ
dr

¼ 4πr2εðrÞ: ð18Þ

The gravitational waves emitted from the merge of two
compact stars are considered as another probe to the EOS of
dense matter [77,78]. The tidal deformability Λ of compact
stars during their merger is related to the Love number k2
through the relation k2 ¼ 3=2Λβ5 [77,79], which can be
given by

k2 ¼
8

5
β5ð1 − 2βÞ2½2 − yR þ 2βðyR − 1Þ�

× f2β½6 − 3yR þ 3βð5yR − 8Þ�
þ 4β2½13 − 11yR þ βð3yR − 2Þ þ 2β2ð1þ yRÞ�
þ 3ð1 − 2βÞ2½2 − yR þ 2βðyR − 1Þ� lnð1 − 2βÞg−1;

ð19Þ
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where β≡M=R is the compactness of the star, and yR ≡
yðRÞ is the solution at the compact star surface to the first
order differential equation

r
dyðrÞ
dr

þ yðrÞ2 þ yðrÞFðrÞ þ r2QðrÞ ¼ 0; ð20Þ

with

FðrÞ ¼ r − 4πr3½εðrÞ − PðrÞ�
r − 2MðrÞ ;

QðrÞ ¼
4πr

h
5εðrÞ þ 9PðrÞ þ εðrÞþPðrÞ

∂PðrÞ=∂εðrÞ −
6

4πr2

i
r − 2MðrÞ

− 4

�
MðrÞ þ 4πr3PðrÞ
r2ð1 − 2MðrÞ=rÞ

�
2

: ð21Þ

For a given central density ρc and using the boundary
conditions in terms of yð0Þ ¼ 2, Pð0Þ ¼ Pc,Mð0Þ ¼ 0 and
ϵð0Þ ¼ 0, the massM, radius R, and the tidal deformability
Λ of hybrid stars can be obtained once an complete EOS is
supplied.

III. RESULTS AND DISCUSSIONS

The aim of the present work is to analyze properties of
quark-matter cores in massive hybrid stars. In the quark
(3-flavor NJL) model, for the ease of discussions, we
define the relative strength of the vector coupling, the
scalar-isovector coupling, and the vector-isovector cou-
pling respectively as RV ¼ GV=GS, RIS ¼ GIS=GS, and
RIV ¼ GIV=GS. As is known, the position of the critical
point for the chiral phase transition is sensitive to RV
[55,80,81], which was later constrained within 0.5 < RV <
1.1 from the relative elliptic flow v2 splitting between
protons and antiprotons as well as between Kþ and K− in
relativistic heavy-ion collisions from the beam-energy scan
(BES) program [44]. The strong vector-isovector interac-
tion seems to be needed to reproduce the v2 difference
between πþ and π− with the NJL transport approach [45].
And the strength of RIV also leads to the isospin splittings
of chiral phase transition boundaries, and thus affects the
susceptibilities of conserved quantities [82]. For the scalar-
isovector interaction, it may result in a spinodal behavior in
the EOS of the hadron-quark mixed phase and the
corresponding hybrid star is unstable [56]. We thus mainly
investigate, in this work, that the effect of vector and vector-
isovector interactions on the quark matter in hybrid stars.
We first present in Fig. 1 the EOSs of hybrid star

matter with the hadron-quark phase transition for different
strength of the vector and vector-isovector interactions. The
ImMDI interaction with a fixed parameter set, x ¼ −0.3,
y ¼ 32 MeV, and z ¼ 0, is used for nuclear matter, and the
two cycles with same color in Fig. 1 represent the range of
the hadron-quark mixed phase. It can be seen the EOS is

more sensitive to the strength of the vector interaction,
and the EOS of hybrid star matter becomes stiffer with
increasing vector strength RV for the quark matter. The
vector-isovector interaction characterized by the coupling
constant RIV slightly stiffens the EOS at low densities in the
hadron-quark mixed phase, since its contribution is deter-
mined by the GIVðρu − ρdÞ2 term in Eq. (2), which is
sensitive to quark isospin asymmetry δ ¼ ðρd − ρuÞ=ρB.
The effect of vector-isovector interaction gradually
decreases, even leading to the equation of state being
softer at high density in the mixed phase, which is due
to the rapid decrease of isospin asymmetry with a larger
RIV [53]. The isospin asymmetry of the d and u quark
eventually decreases to zero at high densities, and thus the
vector-isovector interactions have no effects on pure quark
matter. In addition, as shown in Fig. 1, with increasing
coupling constants RV and RIV for the quark matter the
onset of the phase transition is moving to higher densities
since the transition pressure is also increasing under the
Gibbs construction. It should be noted that the hadron-
quark transition in most cases occurs at 2ρ0 ∼ 6ρ0 times
saturation density, where the properties of quark matter are
considered as an important factor affecting the maximum
mass of hybrid stars.
Having the ensemble of EOSs with the hadron-quark

phase transition for different strength of the quark inter-
actions, we can determine the other properties of hybrid star
matter. The quark matter at very high densities (ρB ≥ 40ρ0)
is approximately scale-invariant or conformal, whereas in
hadronic matter the degree of freedom is much smaller and
the scale invariance is also violated by the breaking of
chiral symmetry. These qualitative differences between
hadronic and quark matter are reflected in the values taken

FIG. 1. The equation of states, pressure as a function of the
baryon density, of hybrid star matter based on the ImMDI
interaction for nuclear matter with a fixed parameter set
(x ¼ −0.3, y ¼ 32 MeV, and z ¼ 0) and the NJL model for
quark matter with different coupling constants RV and RIV. The
two cycles with same color represent the range of the hadron-
quark mixed phase.
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by different physical quantities. The sound velocity cs,
which can be calculated from c2s ¼ ∂P=∂ε, takes the
constant c2s ¼ 1=3 in the exactly conformal matter corre-
sponding to free massless fermions. However, the quantity
in hadronic matter varies considerably: below saturation
density, most hadronic models, such as chiral effective
field theory (CET), indicate c2s ≪ 1=3, while at higher
densities the square of maximum is predicted to be greater
than 0.5 [83,84]. On the other hand, the polytropic index
γ ¼ dðlnPÞ=dðln εÞ, which is considered to be another
good approximate criterion for the evidence of the quark-
matter cores, has the value γ ¼ 1 in conformal matter, while
the hadronic models generically predict γ ≈ 2.5 around and
above saturation density [85].
In Fig. 2, we show that the squared speed of sound c2s and

the polytropic index γ as functions of the baryon density
in hybrid star with the hadron-quark phase transition by
varying the coupling constants RV (top panels) and RIV
(bottom panels) from the NJL model. It can be seen that at
saturation density the squared speed of sound c2s ¼ 0.08
and the polytropic index γ ¼ 2.56 from the ImMDI model
with a fixed parameter set, x ¼ −0.3, y ¼ 32 MeV, and
z ¼ 0, is consistent with that in most hadronic models.

And it should be noted that a step change of both the sound
velocity and the polytropic index γ occurs in the hadron-
quark phase transition where the quarks appear and thus
soften the EOS as a result of more degrees of freedom, and
it is restored with the decrease of nucleon and lepton
degrees of freedom in the high density quark phase. Also
shown in panel (a) and (d) of Fig. 2 is the sound velocity
c2s ¼ 1=3 in the conformal limit, and it is seen that our
results with a strong repulsive vector interaction for quark
matter are larger than this limit at high densities, indicating
that the corresponding EOS is stiffer than that of massless
fermions. However, the results as shown in panel (b) and (e)
of Fig. 2 with the vector-isovector interactions are quite
different in quark phase, since the contribution of the
vector-isovector interactions gradually decreases to zero at
high densities. Meanwhile, we also found that γ in the high
density quark phase is insensitive to vector and vector-
isovevtor interactions, and slowly approaches the value
γ ¼ 1 in conformal matter. In Fig. 2(c) and (f), we show the
relation between the polytropic index γ and the squared
speed of sound c2s in hybrid star matter. The approximate
rule following Ref. [10] that the polytropic index γ ≤ 1.75
can also be used as a criterion for separating hadronic from

(a) (b) (c)

(d) (e) (f)

FIG. 2. The squared speed of sound c2s and the polytropic index γ as functions of the baryon density, as well as the relation between the
polytropic index γ and the squared speed of sound c2s in hybrid star with the hadron-quark phase transition by varying the coupling
constants RV (top panels) and RIV (bottom panels) from the NJL model. The dash lines c2s ¼ 1=3, and γ ¼ 1.75 as well as the violet star
indicated the high-density conformal matter limit are also shown for comparison.
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quark matter in our work. It should also be noted that the
values of γ and c2s in the hadron-quark mixed phase are
mostly less than 1 and 1=3 respectively, which may also be
used as a new evidence for the existence of the hadron-
quark mixed phase. Further, the step change of the sound
velocity and the polytropic index in hadron-quark phase
transition is relevant to the frequency of the main peak of
the postmerger gravitational wave (GW) spectrum (f2),
which is expected to be confirmed by future kilohertz GW
observations with third-generation GW detectors [25].
Essentially all available equations of state can be used to

predict the radius and mass information of compact stars.
As shown in Fig. 3, we show the radii and masses of the
hybrid stars containing quark phase, hadron-quark mixed
phase, and hadronic phase as functions of baryon density
based on the NJL model for quark matter with different
coupling constants RV and RIV. The results shown in the
upper panels indicate that both the masses and radii of
quark phase, mixed phase and the complete hybrid star are
sensitive to the strength of the vector interaction.
Qualitatively, the radii of both quark phase, mixed phase
and the complete hybrid star decrease with the increment of
RV , which is due to the fact that quarks appear later by the
increase of RV . Although the similar dependence occurs in
the mass of the quark phase and mixed phase, the mass of
complete star increases with the increase of RV , since the
mass of complete star mainly depends on the stiffness of
the equation of state. However, a larger RV also means that
the fraction of quark matter is smaller in the core of hybrid
star. Particularly, if RV is large enough, the onset density of

quark matter will be larger than the central density of the
star, and thus no pure quark-matter core can appear in the
hybrid stars. By contrast, as shown in the lower panels,
the vector-isovector interactions make more contribution
to the hadron-quark mixed phase, but have slight effects on
the masses and radii of quark phase and the complete
hybrid star. In addition, it should be noted that the
maximum mass of hybrid stars constrains mostly the
EOS of hybrid star matter at 2–5 times saturation density,
which is related to the onset of the hadron-quark transition,
and thus the properties of mixed phase will affect the
maximum mass of hybrid stars. Although decreasing RV
and RIV can soften the EOS of quark matter and thus
decrease the maximum mass of hybrid stars, the softening
of the quark matter EOS also makes the onset of first order
phase transition appear earlier, so that the mass and radius
of the mixed phase contribute more to that of the complete
star. After the mass of hybrid stars reaches the maximum
value, further increasing the central density will reduce
both the maximum mass and the radius, making the hybrid
star unstable. It is clearly seen in Fig. 3(b) and 3(d) that
there is no pure quark matter in the inner core of the stable
hybrid stars. Furthermore, we also can see that properties of
quark matter have no effect on the M ¼ 1.4M⊙ hybrid star
as a result of no quark matter (including pure quark matter
and mixed phase matter) inner core, which can also be
confirmed by the criterion of the polytropic index, since we
find that the polytropic index for neutron stars with M ¼
1.4M⊙ (corresponding to ρB ¼ 0.4 fm−3) always satisfies
γ ¼ 2.25, implying that the stars are composed of hadronic
matter as expected.
We also show in Fig. 4 the mass-radius relations of

hybrid stars based on the NJL model for quark matter
with different coupling constants RV and RIV. Constraints
from multimessenger astronomy observations are shown
in the panel (a) by the different color regions/bands
[15,16,18–20,86,87] and horizontal bars [11–14,17–19].
It can be seen that the observed maximum mass of hybrid
stars depend on the quark coupling constants RV and RIV.
The results of hybrid stars in all parameter sets are mostly
consistent with the constraints from the pulsars PSR
J0030þ 0451 and the neutron stars merger GW170817.
Except for the case RV ¼ 0 and RIV ¼ 0, the maximum
values of other curves are close to the measurements
of massive neutron stars (≈2M⊙), Especially in the case
RV ¼ 1.1 and RIV ¼ 2.0, the maximum mass of hybrid
stars Mmax ¼ 2.08M⊙ is consistent with the measurement
of PSR J0740þ 6620, which is considered as the highest
reliably determined compact star mass. The radii of
hybrid stars are known to be determined by the pressure
at densities around ρ0 ∼ 2ρ0 [3,88], and thus constrain
mostly the nuclear matter but is not sensitive to quark
matter. The hybrid star matter EOS consists of charge-
neutral matter in β-equilibrium that has a hadron-quark
phase transition from hadronic to quark matter.

(a)

(c) (d)

(b)

FIG. 3. The radii and masses of the hybrid stars containing
quark phase, hadron-quark mixed phase, and hadronic phase as
functions of baryon density based on the NJL model for quark
matter with different coupling constants RV (upper panels) and
RIV (lower panels). The different color solid points and dash-
dotted vertical lines represent the maximum mass stars and
corresponding baryon densities with different coupling con-
stants, respectively.
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To better understand the effects of quark matter on the
hybrid stars, the relations between the quark core mass
MQC and radius RQC as well as between the mixed core
mass MQ&M and radius RQ&M are shown in Fig. 4(b)
and 4(c). TheM − R relations of the quark matter cores can
be determined using the TOVequations by integrating them
from the central baryon density to three distinct points:
(1) the pressure of onset of pure quark phase where
r ¼ RQC and MðrÞ ¼ MQC, (2) the pressure of onset of
mixed phase where r ¼ RQ&M and MðrÞ ¼ MQ&M, and
(3) zero pressure where r ¼ R and MðrÞ ¼ M. We also
obtained the tidal deformabilities of the quark matter cores
using the same approach. It is clearly seen from the two
right panels of Fig. 4 that the coupling constants RV and
RIV have a competitive effect: while the coupling constants
increase the hybrid star mass up to 2.08M⊙, they also
decrease the mass and radius of the quark core and the
mixed core. The size of quark cores from Ref. [10] is also
shown by the shaded regions in Fig. 4(b) and 4(c) for
comparison. One should be noted that the shaded regions
are different from that in panel (a), which are not derived
from observational results, but statistical analysis based on
the results of model-independent calculations proposed in
Ref. [10]. It can be seen from the figure that the mass and
radius containing the mixed phase are more approaching to
the results of Ref. [10]. As previously mentioned, once the
mass of the hybrid star reaches its maximum value, the
hybrid star becomes unstable, and no pure quark matter is
found in the inner core of stable hybrid stars. The maximum
mass and radius of the quark matter core in a stable hybrid
star can even reach 0.80M⊙ and 6.95 km, respectively,
which are close to half of the maximum mass and radius of

the complete star. For the hybrid star matter satisfying the
requirement of supporting a 2M⊙ stable star, the maximum
radius of the quark matter core is RQ&M ≈ 3.85 km.
After the GW170817 event, much efforts have been

devoted to constraining the EOS or related model param-
eters by comparing various calculations with the range
of tidal deformability 70 ≤ Λ1.4 ≤ 580 from the improved
analyses reported by LIGO and Virgo Collaborations.
The measurements of the tidal deformability of compact
stars constrain not only the EOS of dense nuclear matter but
also the fundamental strong interactions of quark matter.
The relations between the tidal deformability and the mass
using NJL model by varying the coupling constants RV and
RIV are shown in Fig. 5. For comparison, we display the
error bars at 1.4M⊙ in the panel (a), which correspond to
the constraints on the tidal deformability 70 ≤ Λ ≤ 580
based on the improved analyses of GW170817 by LIGO
and Virgo Collaborations [22] as well as the prediction of
292 ≤ Λ ≤ 680 from heavy-ion collisions [89]. We can see
that Λ decreases rapidly as the mass of the neutron star
increases. This is due to the factor that given the smaller
range of allowed radii for larger massive stars, the spread in
the tidal deformability is also naturally much tighter than
for lower-mass neutron stars. The results in panel (a) show
that the vector and vector-isovector interactions have
slightly effects on the minimum deformability which is
related to the difference in maximum mass of hybrid stars.
For a given mass M ¼ 1.4M⊙, the deformability Λ1.4
increases with increasing radius of hybrid star, and thus
these quark interactions have no effect on the Λ1.4 of hybrid
stars, as expected. However, for the massive hybrid star, the
couplings have effect on the quark matter EOSs and lead to
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FIG. 4. Mass-radius relations of hybrid stars, pure quark cores (only including quark phase), and mixed cores (including quark phase
and mixed phase) based on the NJL model for quark matter with different coupling constants RV and RIV. The constraints from the
bayesian analyses of the observational data from the pulsars PSR J0030þ 0451 [15,16] and PSR J0740þ 6620 [18,19], and from the
analyses of the gravitational wave signal from the neutron stars merger GW170817 [20] are shown in panel (a) by different color shaded
regions. The horizontal bars represent the mass measurements of PSR J1614-2230 (1.908� 0.016M⊙) [11–13], PSR J0348þ 0432
(2.01� 0.04M⊙) [14], and PSR J0740þ 6620 (2.08� 0.07M⊙) [17–19]. The two red bands correspond to excluded regions derived
from GW170817 observations [86,87] are also shown in panel (a) for comparison. Furthermore, the shaded regions in panels (b) and
(c) show the size of quark cores from Ref. [10] for comparison. The different color solid dots in panel (a) and panel (c) represent the
maximum mass stars with different coupling constants, while the cycles represent the onset of quark matter.
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the difference of the tidal deformability of quark-matter
cores. This is illustrated in panels (b) and (c) of Fig. 5
which display the dimensionless tidal deformability of the
pure quark cores and the mixed cores. Generally, a stiffer
EOS will lead to a compact star with the larger mass and
radius, and thus increasing the tidal deformability. In
contrast, in the quark core and mixed core, the mass and
radius of the core decreases due to the stiffening of the
equation of state by the coupling constants, which also
decreases the tidal deformability instead.

IV. SUMMARY AND OUTLOOK

In this work, we have investigated the properties of quark
matter core by using a hybrid star with the hadron-quark
phase transition. The quark matter interactions in hybrid
stars are described based on 3-flavor NJL model by varying
vector and vector-isovector coupling constants. In conclu-
sion, we found that the hybrid star matter EOS is more
sensitive to the strength of the vector interaction, and the
EOS of hybrid star matter becomes stiffer with increasing
vector strength RV . The vector-isovector interaction char-
acterized by the coupling constant RIV make main con-
tribution to the hadron-quark mixed phase. In the study of
other properties of hybrid star matter, it should be noted that
a step change of both the sound velocity and the polytropic
index γ occurs in the hadron-quark phase transition, and it
is restored with the decrease of nucleon and lepton degrees
of freedom in the high density quark phase. The approxi-
mate rule following Ref. [10] that the polytropic index
γ ≤ 1.75 can also be used as a criterion for separating
hadronic from quark matter in our work. Using the hybrid
star matter EOS, we predict the radius and mass informa-
tion of quark-matter cores inside hybrid stars. Although the
coupling constants increases the hybrid star maximum
mass up to 2.08M⊙, they also decrease the mass and
radius of the quark core and the mixed core. With different

quark coupling constants, we also found that the maximum
mass and radius of the quark matter core in a stable hybrid
star can reach0.80M⊙ and6.95 km,which are close to half of
themaximummass and radius of the complete star. However,
properties of quark matter have no effect on theM ¼ 1.4M⊙
compact star as a result of no quark matter inner core, which
can also be confirmedby the criterion of the polytropic index,
and thus the quark interactions have no effect on the tidal
deformabilityΛ1.4 of hybrid stars. The coupling constantsRV
andRIV in theNJLmodel determine the EOS of densematter
and also affect the critical point as well as the QCD phase
structure. To further explore the QCD phase structure and
search for the signal of the critical point between the
crossover and the first-order transition, experimental pro-
grams such as the beam-energy scan (BES) at RHIC and
the compressed baryonic matter (CBM) at Facilities for
Antiproton and Ion Research (FAIR) were proposed. The
promising results are available to providemore constraints on
the EOSs of quark matter, which are helpful in the under-
standing of theQCDphase structure and properties of hybrid
stars. In addition, some of the new discoveries and obser-
vations in astrophysics also provide more rigorous con-
straints on the QCD phase structure. The binary-neutron-star
(BNS) merger simulations, for example, indicate that the
sudden decrease in the gravitational wave frequency is
closely related to the hadron-quark phase transition, which
is expected to be confirmed by future kilohertz GW obser-
vations with third-generation GW detectors.
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FIG. 5. Relations between the dimensionless tidal deformability and the mass of hybrid stars, pure quark cores, and mixed cores based
on the NJL model for quark matter with different coupling constants RV and RIV. The error bars at 1.4M⊙ correspond to the constraints
on the tidal deformability 70 ≤ Λ ≤ 580 based on the improved analyses of GW170817 by LIGO and Virgo Collaborations [22] as well
as the prediction of 292 ≤ Λ ≤ 680 from heavy-ion collisions [89].
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