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High-energy heavy-ion collisions generate an extremely strong magnetic field which plays a key role in a
number of novel quantum phenomena in quark-gluon plasma (QGP), such as the chiral magnetic effect.
However, due to the complexity in theoretical modelings of the coupled electromagnetic fields and the QGP
system, especially in the preequilibrium stages, the lifetime of the magnetic field in the QGP medium
remains undetermined. We establish, for the first time, a kinetic framework to study the dynamical decay of
the magnetic field in the early stages of a weakly coupled QGP by solving the coupled Boltzmann and
Maxwell equations. We find that at late times a magnetohydrodynamical description of the coupled system
emerges. With respect to realistic collisions at RHIC and the LHC, we estimate the residual strength of the
magnetic field in the QGP when the system starts to evolve hydrodynamically.
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I. INTRODUCTION

Quantum chromodynamics (QCD), the modern theory
of strong interaction, predicts that at a sufficiently high
temperature, quarks and gluons are liberated from
hadrons and form a new state of matter—the quark-gluon
plasma (QGP). Creating and investigating QGP is the main
purpose of the BNL relativistic heavy ion collider (RHIC)
and one of the main purposes of the CERN Large Hadron
Collider (LHC). In these experiments, due to the relativistic
motion of ions and the smallness of the colliding systems,
extremely strong magnetic fields (with peak strength jeBj ∼
1019 G at RHIC and ∼ 1020 G at the LHC) are generated
[1–5]. Strong magnetic fields can significantly influence
QGP and drive a number of interesting quantum phenom-
ena [6–18]. One famous example is the chiral magnetic
effect (CME), which provides a feasible means to monitor
the topological fluctuations of QCD in high-temperature
environments [6,7]. However, theoretical studies on such
phenomena suffer from considerable uncertainties due to
the lack of knowledge on the dynamical evolution of the
magnetic fields in QGP. Especially, the lifetime of these
fields, which essentially relies on how they decay along
with the QGP evolution, remains unknown.
Shortly after the nucleus-nucleus collisions, the created

magnetic fields start to decay drastically due to the departure

of the Lorentz contracted nuclei from the colliding zone,
inducing strong electric fields in the QGP. It is a theoretical
challenge to consistently describe the subsequent evolution
of the coupled electromagnetic (EM) fields and QGP. Efforts
have been provoked assuming a fully thermalized QGP with
charge conductivity of the QGP as input, either solving
Maxwell equations or based on magnetohydrodynamics
(MHD) [19–26], indicating that induction in a QGP fluid
indeed slows down the decay of the magnetic fields.
However, the dominant effects on the decay of magnetic
fields from the very early stages, in which the magnetic fields
decay most violently and the QGP is highly out of
equilibrium, have not been discussed so far.
It is the purpose of this paper to perform a consistent

computation of the dynamical evolution of EM fields in the
preequilibrium QGP. We will establish a framework that
based on a kinetic description for a weakly coupled QGP
system, i.e., assuming the strong coupling constant αs to be
small, and the Maxwell equations for the evolution of the
EM fields. Since the kinetic description has been applied
extensively to analyzing the onset of hydrodynamics in
QGP [27–29], it is also our interest to investigate the
emergence of MHD from the QCD plasma, in the presence
of dynamically evolving EM fields.

II. FORMULATION OF THE
ELECTROMAGNETIC FIELD IN QGP

We start from the coupled equations that consist of the
Maxwell equations that determine the dynamical evolution
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of the EM fields and a Boltzmann equation that determines
the evolution of QGP,

∂μFμν ¼ jνex þ jνind; ð1aÞ
½pμ

∂μ þ eQapμFμν
∂pν �faðt;x;pÞ ¼ C½fa�: ð1bÞ

In these equations, Fμν ¼ ∂
μAν − ∂

νAμ is the EM-field
strength tensor and fa is the distribution function of
QGP constituents, viz. a ¼ q; q̄, or g for quark, antiquark,
or gluon, with Qa being the corresponding charge number.
The couplings between the EM fields and QGP are

formulated in Eqs. (1) in a complex way. For the EM fields,
it is self-consistently introduced through the induced charge
current,

jμind ¼ e
X

Qq

Z
d3p
ð2πÞ3

pμ

Eq
hqðt;x;pÞ; ð2Þ

where we have defined the splitting distribution hq ≡
fq − fq̄ to characterize the deviation between quark and
antiquark distributions due to the presence of EM fields.
The summation in Eq. (2) is over spin, flavor (Nf ¼ 2), and
color (Nc ¼ 3). In addition to jμind, in heavy-ion collisions
there is also an external charged current, jμex, generated by
the moving spectators of the colliding nucleus, whose
evolution is independent of the QGP medium. On the other
hand, for quarks, the couplings are represented via the
Coulomb-Lorentz force in Eq. (1b). Note, however, gluons
do not directly couple to the EM fields since they are
electrically neutral.
Unlike electromagnetic plasmas, scatterings in QGP

among quarks, antiquarks, and gluons are dominated
by QCD interactions, which are much stronger than the
electromagnetic forces. Therefore, response in the quark
and antiquark distribution functions to EM fields can be
treated as small corrections to the background distributions,

fq ¼ f̄q þ δfq; fq̄ ¼ f̄q̄ þ δfq̄: ð3Þ
As a consequence of the smallness of δfq=q̄, one could treat
the background distributions of quark and antiquark f̄q=q̄ as
being entirely determined by QCD interactions, so they are
solutions to the Boltzmann equations:

pμ
∂μf̄q=q̄ ¼ C½fq=q̄; fg�: ð4Þ

Due to the charge conjugation symmetry of QCD, one has
f̄q ¼ f̄q̄ and whence hq ¼ δfq − δfq̄.
We now examine the condition δfq=q̄ ≪ f̄q=q̄. By sub-

stituting Eq. (3) into Eq. (1b), one obtains an equation
for δfq=q̄,

pμ
∂μδfq=q̄ þ eQq=q̄pμFμν

∂pνðf̄q=q̄ þ δfq=q̄Þ ¼ C0½δfq=q̄�;
ð5Þ

where the collision kernel is deduced from the QCD
interactions and is linear in δfq=q̄. The left-hand side of
the equation reads parameterically: δfq=q̄Λ2

c þ f̄q=q̄jeBj,
with Λc a characteristic energy scale introduced from the
kinematic term. To the leading order in αs, the collision
term is further suppressed by α2s, giving rise to α2sΛ2

cδfq=q̄.
Therefore, one finds δfq=q̄ ∼ f̄q=q̄jeBj=Λ2

c, from which
δfq=q̄ ≪ f̄q=q̄ translates into the condition jeBj ≪ Λ2

c.
Recall that at the top energies of RHIC and the LHC, at
initial time the external magnetic field is estimated as
jeBj ∼m2

π with mπ the pion mass, while the only character-
istic energy scaleΛc in QGP is determined by the saturation
energy, which is Qs ∼ 1 GeV. As the system expands, both
the magnetic field and the energy scale of the QGP medium
decrease, but the condition jeBj ≪ Λ2

c remains valid for a
sufficiently long time. Eventually, the condition breaks
down when the system approaches local thermal equilib-
rium and becomes describable by MHD. For such a system,
multiple energy scales emerge, including a typical hard
energy scale corresponding to temperature T and a soft
energy scale corresponding to spatial gradient ∇, and
jeBj ≫ T∇ [30,31]. More detailed discussions on the
separation of scales will be given in Sec. III.
Given δfq=q̄ ≪ f̄q=q̄, for each flavor, the splitting dis-

tribution can be shown approximately satisfying a colli-
sionless Boltzmann-Vlasov equation,

pμ
∂μhq þ 2eQqpμFμν

∂pν f̄q ¼ 0; ð6Þ

where the Coulomb-Lorentz force is dominated by the
leading order mean-field effect, i.e., the drifting of the
background quarks and anti-quarks in the EM fields. With
regards to Eq. (6), the charge carriers of the system that are
coupled to the dynamical evolution of the EM fields are
effectively the splittings between quarks and anti-quarks.
For the leading order analysis, collisions are neglected as
they are suppressed by α2s in comparison to the Coulomb-
Lorentz force. In an alternative aspect, the collisionless
approximation is also supported by the fact that the
frequency of the charge carriers, ∼Λc, is much greater
than that from collisions, which is ∼α2s jeBj=Λc [32]. Note
that the collisionless approximation should be recognized
as a consequence subject to the condition jeBj ≪ Λ2

c,
namely, when the system is far away from equilibrium.
For a system close to local equilibrium, neglecting the
collisions would give rise to infinite conductivity in QGP,
which is apparently nonphysical. Accordingly, while the
background distributions of quarks and antiquarks can be
solved independently from Eq. (4), the couplings between
the EM fields and the preequilibrium evolution of QGP are
characterized by Eq. (1a) and Eq. (6).
In high-energy heavy-ion collisions, in the absence of the

EM fields, the preequilibrium evolution of QGP can be well
approximated with respect to the Bjorken symmetry [33].
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That is to say, the background distribution of quarks and
antiquarks are boost invariant along the beam axis (we refer
to as the z axis) and translationally invariant in the trans-
verse plane (x⊥). Corresponding to realistic heavy-ion
collisions, this approximation applies to the x⊥ ∼ 0 region
in collisions that are not too peripheral.
For the QCD interactions, we consider 2-to-2 elastic

scatterings among massless up-quarks, down-quarks, and
gluons: qq̄ ↔ gg; qg ↔ qg; q̄g ↔ q̄g; gg ↔ gg, at small
angle approximation [34]. We are allowed to vary the
strong coupling constant in these scatterings when solving
the equation, for which we shall choose as αs ∼ 0.2. The
inelastic collisions are not included since, at the very early
stages as we are focusing on, they are expected subdomi-
nant [35], which thereby would not significantly change the
results we find in the current work. Nevertheless, the role of
inelastic collisions on the EM fields is an interesting topic
to investigate, which we leave for future studies. More
details on solving the background quark and antiquark
distributions can be found in Refs. [36,37], and Ref. [38]
for a recent application to the computations of electromag-
netic probes.
In heavy-ion collisions, the magnetic fields on average

are perpendicular to the reaction plane, which we set to be
along the y direction. In the reaction plane, there exist
electric fields which are induced partly by the decay of the
magnetic field and partly by the moving spectators. In
accordance with this geometrical configuration, we choose
the following gauge potential,

Aμ ¼ Aμ
ex þ Aμ

ind ¼ ð0; Ax
exðt; zÞ þ Ax

indðt; zÞ; 0; 0Þ; ð7Þ

which satisfies the Lorentz gauge condition ∂μAμ ¼ 0.
Correspondingly, the independent EM-field components
are given by

Exðt; zÞ ¼ −∂tAxðt; zÞ; Byðt; zÞ ¼ ∂zAxðt; zÞ: ð8Þ

In Eq. (8), translational invariance in the transverse plane is
implicitly assumed in analogous to the background QGP,
which again makes our calculation mostly applicable at the
central region of the transverse plane.
The external EM fields generated by the spectator

nucleons have been extensively studied. Near x⊥ ∼ 0 they
can be well expressed via effectively a Lienard-Wiechert
potential [39,40]

Ax
exðt; zÞ ¼ A0

�
zþ vt

½b2=4þ γ2ðzþ vtÞ2�1=2

þ z − vt

½b2=4þ γ2ðz − vtÞ2�1=2
�
; ð9Þ

where b is the impact parameter, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2m=

ffiffiffi
s

p Þ2
p

is

the velocity of the nucleus, and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. A0 is a

constant parameter to specify the colliding systems,
which depends on the atomic number of the colliding
nucleus. The external EM fields evolve independently and
satisfy by themselves the Maxwell equation, corresponding
to which is the external charged current jμex. Accordingly,
the Maxwell equation for the induced fields reduces to

ð∂2t − ∂
2
zÞAx

ind ¼ −∂tEx
ind − ∂zB

y
ind ¼ jxind; ð10Þ

with jxind being given in Eq. (2).

III. SEPARATION OF SCALES IN
PREEQUILIBRIUM QGP

To verify the separation of scales in the coupled system
of preequilibrium QGP and EM fields, we present here
parametric descriptions of the evolution of these corre-
sponding scales, jeBj and T∇.
The approaching to local thermal equilibrium of the

QGP in the very early stages of heavy-ion collisions can be
well captured by Bjorken expansion of interacting quarks
and gluons, where the longitudinal expansion and scatter-
ings among the quarks and gluons are two competing
effects, driving the system towards free streaming and ideal
fluidity, respectively.
Although the QGP system created via nucleus-nucleus

collisions differs from event to event, how its energy
density decay follows an universal solution known as
the attracor. For illustrative purposes, we define the relative
decay rate of the energy density,

gðtÞ≡ t
ε

dε
dt

→ εðtÞ ∼ tgðtÞ; ð11Þ

for which the properties of the attractor are well known
(cf. Refs. [41,42]),

(i) For a conformal system as we are considering,
positiveness of the pressures along longitudinal
and transverse directions leads to constraints on
the relative decay rate of the energy density,
gðtÞ ∈ ½−2;−1�, where the two extremes correspond
to the cases of vanishing transverse pressure and
longitudinal pressure, respectively.

(ii) With respect to the QGP medium that evolves from
the free streaming to ideal fluidity, attractor solution
of gðtÞ is a smooth transition from gðtÞ ¼ −1 at very
early times to gðtÞ ¼ −4=3 at late times, irrespective
of the details of interaction among quarks and
gluons. Here, gðtÞ ¼ −1 is a stable fixed point of
free streaming while gðtÞ ¼ −4=3 is the pseudo-
fixed point corresponding to the ideal hydrodynamic
evolution.

For arbitrary evolutions, although gðtÞ may be randomly
initialized between −2 and −1, it merges to the attractor
solution when effects of interactions become comparable to
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the longitudinal expansion, and evolves towards to −4=3 at
late times.
It has been shown from our numerical solutions, that

the magnetic field evolves from t−3 decay at early times,
and approaches to t−1 decay eventually. These are actually
decay patterns correspond to the external magnetic field
created by (dominantly) the spectators of nucleus-nucleus
collisions, and ideal MHD, respectively. Since the external
field evolution and induction from the QGP medium are the
two competing contributions to the magnetic field, t−3

decay and t−1 should be recognized as the two extremes
of the observed behavior of the magnetic field. In general,
one thus has

t
jeBj

djeBj
dt

∈ ½−3;−1�: ð12Þ

Moreover, in analogous to the attractor picture of QGP
hydrodynamization, one may expect some universal evolu-
tion pattern of the magnetic field whose decay rate connects
−3 from early times to −1 at late times, with negligible
dependence on the details of medium interactions.
Since T ∼ ε1=4 and the gradient of the Bjorken expanding

medium is ∇ ∼ 1=t, the characteristic energy scale in the
QGP medium T∇ can be related to gðtÞ as T∇ ∼ tgðtÞ=4−1.
Correspondingly, the relative decay rate of T∇must satisfy,

gðtÞ
4

− 1 ∈
�
−
3

2
;−

5

4

�
; ð13Þ

which is slower than the early-time decay rate of the
magnetic field, jeBj ∼ t−3. It is only at late times, when the
evolution of the magnetic field becomes describable by
ideal MHD, that jeBj ∼ t−1, can one realize a faster decay
of ∇T than jeBj. Therefore, accounting for also the initial
scale separation T∇ ∼Q2

s ≫ jeBj ∼m2
π , and taking the

fastest decay of T∇ (∼ t−3=2) and the slowest decay of
the magnetic field (∼ t−1), an estimate can be obtained that
the scale separation cannot be violated before time ts,

ts ∼ ðQ2
s=m2

πÞ2t0: ð14Þ

As an illustration, Fig. 1 depicts the evolution behavior
of jeBj and T∇ from our numerical solutions of AuAu
collision with initial quarks. A smooth transition between
the early-time t−3 decay and late-time t−1 decay in the
evolution of jeBj (blue solid line) is observed. In this
particular event, the early-time decay of energy density
differs from free streaming with gðtÞ ≈ −1.28, which leads
to the relative decay rate of T∇ as −1.32. Onset of ideal
hydrodynamics has not yet been achieved during the
calculations, with the decay of T∇ approaches −1.27 at
t ∼ 8=Qs. Nonetheless, at the later stages, a faster decay of
T∇ than jeBj is realized, but the scale separation is still
obvious.

IV. EVOLUTION OF MAGNETIC FIELD

With the above setup, we are able to solve the time
evolution of both the QGP and the EM fields for given
initial conditions. We take an initial condition for the gluon
and quark distribution functions inspired by the saturation
physics [43]:

fg=q=q̄ðt0; z ¼ 0;pÞ ¼ fð0Þg=q=q̄θ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
zξ

2 þ p2⊥
p

Qs

!
: ð15Þ

Parameters in the initial condition will be taken according
to the same strategy as in Ref. [38], namely, to be
determined with respect to the multiplicity yields in
realistic heavy-ion collisions. For instance, for the param-
eter ξ which initializes the QGP out-of-equilibrium, we
only consider the case ξ ¼ 1.4, accounting for the effects of
attractor solutions (cf. Ref. [41] and Ref. [42] for a recent
review). We choose the saturation scale Qs ¼ 1 GeV, and
accordingly we set t0 ¼ 1Q−1

s ∼ 0.2 fm=c as the initial time

of the system evolution. The constants fð0Þq=q̄ and f
ð0Þ
g specify

the occupation of quarks and gluons at initial time. Except

the constraint fð0Þq=q̄ ≤ 1 from Pauli exclusion principle,
initial quark occupation should be further determined by
the study of quark production before the kinetic regime
through, e.g., the Schwinger mechanism in classical gluon
fields [44–48]. In this work, we consider two limiting

cases: Without initial quarks with fð0Þq=q̄ ¼ 0 and quarks are

fully populated initially with fð0Þq=q̄ ¼ 1. The initial gluon

occupation fð0Þg is then determined to reproduce the
multiplicity yields in the 20%–30% centrality class of

10-3

10-2

10-1

100

 1  2  3  4  5  6  7  8  9  10

sc
al

es
(Q

s2 )

t(Qs
-1)

t-1.32

t-1.27

t-1

t-3

T
|eB|

FIG. 1. Evolution of jeBj (blue solid line) and T∇ ∼ ε1=4=t (red
solid line) in AuAu collisions with initial quarks, where ε is the
energy density. The dashed lines and dotted lines indicate,
respectively, early-time and late-time decay patterns.
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AuAu collisions at RHIC with
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV [49] and
PbPb collisions at LHC with

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV [50].
With all these parameters given, we can solve the

coupled differential equations numerically. Results shown
in Fig. 2 are the time evolution of the magnetic field relative
to its initial value at z ¼ 0, i.e., the center in the QGP
medium, for AuAu collisions at RHIC and PbPb collisions
at the LHC. For comparison, we also present the results of
two extreme scenarios in which analytical solutions exist.
The first is the evolution of the magnetic field in vacuum,
where the decay of magnetic field is entirely determined by
the spectator nucleons moving relativisticly, resulting a
time dependence ∼t−3 [40]. This is exactly the evolution of
the external field in our study. The second corresponds to
solutions of ideal MHD, with regard to an infinite electric
conductivity σ → ∞. The evolution of the magnetic field is
then determined by the magnetic flux conservation in the
conducting QGP. For the Bjorken expansion it is estimated
as ∼ t−1 [4,25]. For more realistic heavy-ion collisions, as a
consequence of the QGP evolving towards local equilib-
rium, the evolution of the magnetic field interpolates these
two limits. For example, for the solution with respect to

fð0Þq ¼ 1 (green lines in Fig. 2), the magnetic field starts
following the vacuum solution t−3, then tends to behave
∼ t−1 at late times. Deviations from the vacuum solutions
are those generated from induction.
In analogous to the hydrodynamization process charac-

terized by the evolution of energy density in a preequili-
brium QGP (cf. Ref. [27]), the evolution of the magnetic
field can be used to monitor the onset of MHD. However,
the evolution of the magnetic field is more involved as it

reflects not only the dynamical aspect of the QGP, but also
depends on its chemical evolution. Initially, irrespective to
quark occupation, QGP is dominated by gluon saturation,
which leads to approximately a charge neutral medium
that barely couples to the EM fields, so it explains the t−3

behavior at early times. As the system evolves towards
chemical equilibrium with quarks generated gradually via
scatterings, the medium becomes more and more con-
ducting and eventually evolves according to the MHD
description. In particular, the t−1-decay of the magnetic
field is characteristic in ideal MHD in the Bjorken flow,
hence it is the final and the slowest decay pattern of the
magnetic field. However, from our simulations the t−1-
decay of the magnetic field emerges much earlier than the
applicability of MHD when the coupled system is still out
of equilibrium, a phenomenon that is also observed in the
collisionless electromagnetic plasmas [32]. Of course, the
condition jeBj ≫ T∇ for local equilibrium and MHD
should eventually be realized at later times, because
T∇ ∼ t−4=3 decays faster than the magnetic field.
Comparing to a system initialized purely by gluons,
chemical equilibrium in the QGP is more easily realized
when quarks are populated initially, which explains in
Fig. 2 the slower decay of magnetic field in QGP with
initial quarks than that without initial quarks.
Although the effects of induction from the out-of-

equilibrium QGP are comparable at RHIC and LHC, as
being recognized from the relative decay in Fig. 2, the
absolute strength of the magnetic field is much stronger at
RHIC. This is because the field strength relies, to a larger
extent, on its external field component. Shown in Fig. 3, are
the magnetic fields along the z axis, plotted in units of pion

10-3

10-2

10-1

100

1.0 3.0 5.0 7.0 9.0

B(
t,z

=0
)/B

(t 0
,z

=0
)

t(Qs
-1)

RHIC AuAu 200GeV LHC PbPb 2.76TeV

t-1

vacuum
ideal MHD

1.0 3.0 5.0 7.0 9.0
t(Qs

-1)

t-1

fq
(0)=0

fq
(0)=1

FIG. 2. Evolution of the magnetic field at z ¼ 0 for the AuAu
collisions at RHIC (left) and PbPb collisions at the LHC (right),
relative to its initial strength at t ¼ t0. In comparison to the decay
of the magnetic field in vacuum (brown dashed lines), effects due
to the QGP medium with initial quarks (red solid lines) and
without initial quarks (green solid lines) are obvious. The
expected t−1 decay from ideal MHD is plotted as the black solid
lines and blue dotted lines.

10-6

10-4

10-2

100
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1.0 3.0 9.0

eB
(t,

z)
/m

2

z(Qs
-1)

RHIC AuAu 200GeV LHC PbPb 2.76TeV

t = 2 Qs
-1

t = 10 Qs
-1
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(0)=0

fq
(0)=1
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1.0 3.0 9.0

z(Qs
-1)

t = 2 Qs
-1

t = 10 Qs
-1

FIG. 3. Distribution of the magnetic field along the z axis at
t ¼ 2Q−1

s and t ¼ 10Q−1
s , in units of m2

π , for AuAu collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV (left) and PbPb at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV (right).
Numerical solutions with respect to QGP medium initialized with

fð0Þq ¼ 0 and fð0Þq ¼ 1 are plotted as red solid lines and green solid
lines, respectively. For comparison, the distributions of the
magnetic field in vacuum are shown as brown dashed lines.
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mass square, at t ¼ 2Q−1
s and 10Q−1

s . We emphasize that at
t ¼ 10Q−1

s ∼ 2 fm=c, the QGP system is expected to
evolve hydrodynamically, yet it may be not fully equili-
brated [28,36]. The peaks of these distributions point to the
positions of the colliding nuclei at the respective instants.
Again, an induced magnetic field can be noticed as the
difference between the vacuum solution and the solution
with respect to QGP, which, as expected, only becomes
significant at late times and in the spatial area where the
QGP medium exists. The critical scales in a QGP medium
correspond to the mass of light quarks, ðmq=mπÞ2 ∼ 10−4,
and temperature ðT=mπÞ2 ∼ ðΛQCD=mπÞ2. In comparison
to these scales, we found, by the time the QGP starts to
evolve hydrodynamically, the residual strength of the
magnetic field satisfies the hierarchy, ðmq=mπÞ2 ≪
jeBj=m2

π ≪ ðT=mπÞ2 at RHIC, but can be negligible at
the LHC. This is possibly the reason why CME has not
been detected at the LHC experiments [51].
Figure 4 presents the ratio jxind=E

x at the RHIC and the
LHC collisions, in units of Qs ¼ 1 GeV. The purpose of
studying this ratio is twofold. First, as a straightforward
generalization of the electric conductivity to systems
out of equilibrium, jxind=E

x characterizes the conducting
ability of the QGP during its preequilibrium stages. Note,
however, due to the influence of the magnetic fields on
the QGP medium, one should not simply identify the ratio
to the electric conductivity. Since the background QGP
experiences Bjorken expansion, the ratio is nonzero only
in the region with z < t. As shown in Fig. 4, the QGP
becomes more conducting as it evolves towards equilib-
rium, reflecting the continuous quark and antiquark
production, in consistency with what we have learned
before.

Secondly, jxind signifies the motion of charged particles in
the reaction plane due to the presence of EM fields. It gives,
in particular, one major origin of the charge dependent
flow v1 observed in experiments [52,53]. Importantly, the
induced current contains contributions from both the
electric and the magnetic fields, but in opposite directions:
jxind ∝ Ex − vzBy. These distinct field components are
relevant to the rapidity dependence of the observed v1
[16,23,54,55],1 whose relative significance can be inves-
tigated in term of the sign of jxind=E

x. For all the cases we
are considering, the induced current is dominated by the
electric field component, thus jxind=E

x > 0. However, an
exception jxind=E

x < 0 is observed in the central region at
the RHIC AuAu collisions when initially quarks are fully
populated (top-right panel). Here the dominant effect
comes from the magnetic field. It is worth mentioning
that, couplings to EM fields are more substantial for the
transport of heavy-flavor quarks, leading to a more sig-
nificant effect. Nonetheless, the preequilibrium motion of
charged particles due to the EM fields does not seem to be
consistent with the observed sign change of heavy flavor v1
from RHIC to the LHC experiments.

V. SUMMARY AND DISCUSSION

We have presented the evolution of magnetic field in the
preequilibrium stages of the QGP for realistic heavy-ion
collisions, from the numerical solutions to the coupled
Boltzmann-Vlasov equation and Maxwell equations. We
showed that the electric induction in QGP slows down the
decay of magnetic field and found that the residual
strength of the magnetic field after preequilibrium evo-
lution is still strong at RHIC in comparison to the critical
scale given by light quark mass, but negligible at the LHC.
We found that the evolution of the magnetic field
approaches the description of an ideal MHD, namely,
t−1 decay, at later times, although the applicability con-
dition jeBj ≫ T∇ for MHD has not been achieved. We
also studied the ratio jxind=E

x, which is in general domi-
nated by its electric field component. However, when the
effect of the magnetic field is enhanced such as in the
RHIC collisions with initial-state quarks, the induced
charged current follows the direction determined by the
magnetic field. Our findings can provide initial input for
MHD simulations for heavy-ion collisions and may also
underlie the quantitative computations of the magnetic-
field induced observables like the CME signal and the
charge-dependent directed flow of heavy flavors.

FIG. 4. The ratio jxind=E
x from AuAu collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV (up) and PbPb at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV (down), with initial
quarks (right) and without initial quarks (left), in unit of Qs.

1Note that the orientations of the electromagnetic fields in
this work are opposite to those considered by experiments
(cf. Refs. [52,53]), for the positively charged hadrons, the electric
field can lead to dv1ðyÞ=dy < 0, while the magnetic field tends to
drive dv1ðyÞ=dy > 0.
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