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Dipole polarizabilities of light pseudoscalar mesons are calculated in the framework of the mean field
approach to QCD vacuum and bosonization based on the statistical ensemble of almost everywhere
homogeneous Abelian (anti-)self-dual gluon fields, the domain model of QCD vacuum. In this approach,
a nonlocal effective action of meson fields is derived that describes all possible strong, weak, and
electromagnetic interactions of meson fields including their excited states. The considered mean field
implements confinement and chiral symmetry, which manifests itself both in the properties of quark and
gluon fields as well as upon bosonization, in the mass spectrum, decays constants and form factors of
nonlocal colorless hadrons, and leads to the qualitatively distinctive features of the effective meson
action. Particularly relevant to the subject of the present paper are the nonlocality of meson-quark-
antiquark vertices and the absence of poles at real momenta in the propagators of scalar meson fields
composed of light quark-antiquark pairs. In view of this, studying the role of manifest nonlocality of
mesons and contribution of intermediate scalar meson fields in formation of the polarizabilities is of
special interest. It turns out that, for charged pions and kaons, this contribution is substantial but not
the largest one. Nonlocal nature of mesons provides an additional contribution so that calculated
polarizabilities are in reasonable agreement with COMPASS experimental data and chiral perturbation
theory.

DOI: 10.1103/PhysRevD.107.094027

I. INTRODUCTION

Polarizabilities of hadrons characterize their response to
an applied electromagnetic field, which cannot be attributed
to pointlike particles and are of fundamental interest for
low-energy QCD. Experimental measurement of polar-
izabilities is challenging, so most data are available for
lightest mesons π�, π0, but there is a long-standing
discrepancy in the values (see papers [1–3] for a review
of the theoretical and experimental status of the meson
polarizability problem). Among the reported experimental
results, only the most recent data on charged pion polar-
izability by COMPASS collaboration at CERN [4] is
consistent with chiral perturbation theory (ChPT). The
leading-order result of ChPT [5] is equivalent to the value
found in Ref. [6] based on the hypothesis of partially
conserved axial-vector current.

The polarizabilities were investigated theoretically
within chiral perturbation theory up to two loops [7–11],
with the methods of lattice QCD [12–22], within various
phenomenological models [23–30], and with the help of
dispersion relations [31–33]. Several studies [27,28,30,32]
found that the dominating part of pion polarizabilities is
due to the σ meson. In the present study, polarizabilities are
extracted from the nonlocal effective meson action deduced
within the domain model of the QCD vacuum and
hadronization (see Refs. [34–38]).
In this action meson fields appear as collective colorless

excitations of confined dynamical quark-antiquark, heavy
and light ones, and gluon fields. A highly nonlocal effective
meson action contains information about the strong, weak,
and electromagnetic interactions of mesons as well as their
two-point correlation functions. In particular, the model
systematically describes various phenomena related to
confinement and chiral symmetry realization, the heavy
quark limit. Meson masses, including the Regge spectrum
of excited states of mesons, their decay constants, and
form factors are in good agreement with experimental
values [34–40].
The specific feature of this approach is that mesons

appear as extended composite fields due to nonlocal
meson-quark vertices. Meson masses are identified as
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the poles of the nonlocal meson propagators. As it turns
out, there are no poles at real momenta in the nonlocal
propagators of the scalar mesonlike composite fields, and
therefore light scalar mesons as quark-antiquark states are
absent in the physical spectrum of the stable collective
excitations. This property relates to the peculiarities of
realization of chiral symmetry in the presence of an
Abelian (anti-)self-dual gluon mean field and agrees with
expectation that the lightest scalar state σ is not intuitively
made of a quark and an antiquark [41]. At the same time,
scalar mesonlike fields contribute to the amplitudes of
various processes. It has to be noted that physical scalar
states occur in the hyperfine splitting of the orbital
excitations of the vector mesons with the masses
above 1 GeV.
We describe the formalism and its features in Sec. II. In

Sec. III we calculate polarizabilities and find that charged
pion polarizability is consistent with ChPT [7] and
COMPASS data [4]. The contribution of intermediate
scalar meson fields to polarizability of pion and kaon is
substantial, especially for the neutral ones, while for
charged pion and kaon polarizability the intermediate scalar
meson turns out to be less important.

II. EFFECTIVE MESON ACTION

The mean-field approach based on the random Abelian
(anti-)self-dual vacuum gluon fields allows us to deduce a
generating functional via bosonization of one-gluon
exchange interaction of quark currents, which has the
form [34–39]

Z ¼ N
Z

DϕQ exp

�
−
Λ2

2

h2Q
g2C2

Q

Z
d4xϕ2

QðxÞ

−
X∞
k¼2

1

k
Wk½ϕ�

�
;

ð1Þ

Wk½ϕ� ¼
X

Q1…Qk

hQ1
…hQk

Z
d4x1…

Z
d4xkΦQ1

ðx1Þ…

×ΦQk
ðxkÞΓðkÞ

Q1…Qk
ðx1;…; xkÞ; ð2Þ

ΦQðxÞ ¼
Z

d4p
ð2πÞ4 e

ipxOQQ0 ðpÞϕ̃Q0 ðpÞ;

CQ ¼ CJ; C2
S=P ¼ 2C2

V=A ¼ 1

9
: ð3Þ

The condensed index Q≡ faJLng includes all quantum
numbers of a meson, Λ is a scale related to the strength of
the vacuum gluon field, and finally to the value of gluon

condensate hg2F2i. The physical color neutral meson fields
ϕQ are obtained by means of orthogonal transformation
OQQ0 of fields ΦQ. The quadratic part of the action for ϕQ
is diagonal with respect to all quantum numbers. The
masses of mesons correspond to the poles of nonlocal
propagators

DQðp2Þ ¼ h−2Q

�
Λ2

g2C2
Q

þ Γ̃ð2Þ
Q ðp2Þ

�−1
ð4Þ

and can be found as zeroes of the inverse propagator from
the equation

0 ¼ Λ2

g2C2
Q

þ Γ̃ð2Þ
Q ð−M2

QÞ; ð5Þ

where Γ̃ð2Þ
Q is two-point correlation function diagonalized

with respect to all quantum numbers. Constants hQ are
defined by the equation

1 ¼ h2Q
d

dp2
Γ̃ð2Þ
Q ðp2Þj

p2¼−M2
Q

;

which ensures that the residue at the pole of the propagator
is equal to unity. The results of calculation of the masses
of various mesons as well as analytical expressions of

Γ̃ð2Þ
Q ðp2Þ can be found in Ref. [35]. In the one-loop

approximation, the meson propagators given by Eq. (4)
are real, and therefore mesons are stable with respect to
decay into quarks by virtue of the optical theorem. It is also
quite plausible that correlation functions of a greater
number of external mesons are suppressed as the
number of colors Nc approaches infinity because the
functional (1) is deduced from QCD. A thorough inves-
tigation of this limit is an interesting topic to be studied in
the future.
Correlation functions include “connected” and “discon-

nected” contributions of quark loops in the background
field. For example, the two-point nonlocal vertex function

Γ̃ð2Þ
QQ0 ðpÞ is given by

Γð2Þ
Q1Q2

¼ Gð2Þ
Q1Q2

ðx1; x2Þ − Ξ2ðx1 − x2ÞGð1Þ
Q1
Gð1Þ

Q2
; ð6Þ

where Ξ is correlation function of the background field that
belongs to the statistical ensemble of the almost everywhere
homogeneous Abelian (anti-)self-dual fields. Quark loops

GðkÞ
Q1…Qk

are averaged over the ensemble of background
field configurations with the measure dσB:
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GðkÞ
Q1…Qk

ðx1;…; xkÞ ¼
Z

dσBTrVQ1
ðx1ÞSðx1; x2Þ…VQk

ðxkÞSðxk; x1Þ; GðlÞ
Q1…Ql

ðx1;…; xlÞGðkÞ
Qlþ1…Qk

ðxlþ1;…; xkÞ

¼
Z

dσBTrfVQ1
ðx1ÞSðx1; x2Þ…VQk

ðxlÞSðxl; x1ÞgTrfVQlþ1
ðxlþ1ÞSðxlþ1; xlþ2Þ…VQk

ðxkÞSðxk; xlþ1Þg:

ð7Þ

Here Sðx; yÞ is the quark propagator and VQ are nonlocal
meson-quark-antiquark vertices.
The quark propagator and meson-quark vertices in the

presence of the almost everywhere homogeneous fields are
approximated by those in the homogeneous (anti-)self-dual
Abelian background field. The averaging over mean field
ensemble is achieved by averaging the quark loops over
configurations of the homogeneous background fields,
supplemented by taking into account n-point correlators
of the mean fields Ξn. The averaging is performed over self-
dual and anti-self-dual Abelian (anti-)self-dual configura-
tions and their directions in Euclidean and color spaces.
Averaging over spatial directions in R4 is performed with
the help of generating formula

Z
dσB expðifμνJμνÞ ¼ hexpðifμνJμνÞi

¼
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJμνJμν � JμνJ̃μνÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJμνJμν � JμνJ̃μνÞ

q ; ð8Þ

where Jμν is an arbitrary antisymmetric tensor. Tensor fμν is
an appropriately normalized Abelian (anti-)self-dual back-
ground field with strength Λ:

B̂μ ¼ −
1

2
n̂Bμνxν; n̂¼ t3 cos ξþ t8 sin ξ;

B̃μν ¼
1

2
ϵμναβBαβ ¼�Bμν; B̂ρμB̂ρν ¼ 4υ2Λ4δμν;

fαβ ¼
n̂

2υΛ2
Bαβ; υ¼ diag

�
1

6
;
1

6
;
1

3

�
; fμαfνα ¼ δμν;

ð9Þ

where the upper sign in “�” should be taken for a self-dual
field, and the lower for an anti-self-dual field. Nonlocal
vertices VaJln

μ1…μl are given by the following formulas:

VaJln
μ1…μl ¼ ClnMaΓJFnl

�
D
↔2ðxÞ
Λ2

�
TðlÞ
μ1…μl

�
1

i
D
↔
ðxÞ
Λ

�
;

C2ln ¼
lþ 1

2ln!ðnþ lÞ! ; FnlðsÞ ¼ sn
Z

1

0

dttnþl expðstÞ;

D
↔ff0

μ ¼ ξfD⃖μ − ξf0D⃗μ; D⃖μðxÞ ¼ ∂⃖μ þ iB̂μðxÞ; D⃗μðxÞ ¼ ∂⃗μ − iB̂μðxÞ;
ξf ¼ mf0

mf þmf0
; ξf0 ¼

mf

mf þmf0
: ð10Þ

Here Ma and ΓJ are flavor and Dirac matrices corresponding to a given meson field, constantsξf, ξf0 ensure that x is the
center of mass of a meson and n, l are radial and orbital quantum numbers, respectively. Radial part Fnl is defined by the
propagator of the gluon fluctuations charged with respect to the Abelian background and TðlÞ are irreducible tensors of
four-dimensional rotation group. Propagator of the quark with mass mf in the presence of the homogeneous Abelian
(anti-)self-dual field has the form

Sfðx;yÞ¼ exp

�
−
i
2
n̂xμBμνyν

�
Hfðx−yÞ;

H̃fðpÞ¼
1

2υΛ2

Z
1

0

dseð−p2=2υΛ2Þs
�
1−s
1þ s

�
m2

f=4υΛ
2�
pαγα� isγ5γαfαβpβþmf

�
P�þP∓

1þ s2

1−s2
−
i
2
γαfαβγβ

s
1− s2

��
; ð11Þ
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where the anti-Hermitean representation of Dirac matrices
is used, and the “�” signs are arranged in accordance with
formula (9). The translation-invariant part Hf of the
propagator is an analytical function in the finite complex
momentum plane and matches the behavior of free Dirac
propagator at large Euclidean momentum. The analyticity
of the quark propagator is interpreted as the confinement of
dynamical quarks.
Overall, the mass spectrum of the ground state and

excited mesons composed of light and heavy quarks is
described rather accurately, in complete agreement with
expectations based on confinement (Regge mass spectrum
of radially and orbitally excited states) and chiral symmetry
breaking (light pseudoscalar and heavy vector nonets, etc.)
as well as asymptotic heavy-quark relations.
A peculiar property of the quark propagator in the mean

gluon field under consideration is that, unlike the case of
the pseudoscalar and vector ground-state mesons, there
are no real solutions to Eq. (5) for their parity partners, the
ground-state scalar and axial mesons. Axial and scalar
mesons appear with a mass above 1 GeV in the hyperfine
splitting of the orbital excitations. The inverse propagators
of pseudoscalar and scalar meson fields are shown in
Fig. 1, which manifestly illustrates the absence of a
pole for the scalar field propagator. This feature is
particularly relevant to the present study. Contributions
of intermediate scalar mesonlike fields to various proc-
esses are available and can be computed but a contro-
versial issue of existence of the light scalar mesons does
not occur.

Though the meson-quark coupling constant hQ is obvi-
ously undefined for mesonlike composite fields if the
corresponding Eq. (5) has no solutions, it is convenient to
retain it in order to have universal notation. Such fields can
only be virtual, and hQ cancels out in the final expressions
(h2Q for two vertices cancel h−2Q in propagator DQ).
Electromagnetic interactions are included in gauge-

invariant way using the prescription of Ref. [42], which
yields expansions (see Refs. [35,43])

Sfðx; yjAÞ ¼ Sfðx; yÞ þ
X∞
n¼1

ðQfeÞn
Z

dz1 � � �
Z

dznSfðx1; z1Þγμ1Aμ1ðz1Þ � � � Sfðzi−1; ziÞγμiAμiðziÞ � � � Sfðzn; yÞ;

VQðxjAÞ ¼ VQðxÞ þ
X∞
n¼1

en
Z

dz1 � � �
Z

dznVQμ1…μnðx; z1;…; znÞAμ1ðz1Þ � � �AμnðznÞ;

where Q is a diagonal matrix of quark charges in units of electron charge e, and meson-photon vertices appear due to
nonlocality of meson-quark interactions. One-photon and two-photon meson vertices are given by

VQμðx; qÞ ¼
Z

1

0

dτ
1

τ

∂

∂qμ
f−QfVQðD

↔
ðxÞ − iqτξÞ þQf0VQðD

↔
ðxÞ þ iqτξ0Þg; ð12Þ

VQμνðx; q1; q2Þ ¼
1

2

Z
1

0

dτ1

Z
1

0

dτ2
1

τ1τ2

∂

∂q1μ

∂

∂q2ν
½QfQf0VQðD

↔
ðxÞ − iq1τ1ξ − iq2τ2ξÞ

−QfQf0VQðD
↔
ðxÞ − iq1τ1ξþ iq2τ2ξÞ −Qf0QfVQðD

↔
ðxÞ þ iq1τ1ξ − iq2τ2ξÞ

þQf0Qf0VQðD
↔
ðxÞ þ iq1τ1ξþ iq2τ2ξÞ�; ð13Þ

where Qf is the electric charge of a quark with flavor f.
The generating functional and the effective meson action take the form

FIG. 1. Left-hand side of Eq. (5) (which is proportional to the
inverse propagator) for pion and ground-state scalar quark-
antiquark field with respect to Euclidean momenta p2. The zero
of inverse pion propagator [correspondingly, the pole of propa-
gator Dπðp2Þ] is located at −M2

π , while inverse propagator
D−1

S ðp2Þ has no zeroes at real momenta.
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Z ¼ N
Z

DϕQ

Z
DAμ exp

�
−
1

4

Z
d4xFμνFμν −

Λ2

2

h2Q
g2C2

Q

Z
d4xϕ2

QðxÞ − ΓðAÞ −
X∞
k¼2

1

k
Wk½ϕjA�

�
;

Wk½ϕjA� ¼
X

Q1…Qk

hQ1
…hQk

Z
d4x1…

Z
d4xkΦQ1

ðx1Þ…ΦQk
ðxkÞΓðkÞ

Q1…Qk
ðx1;…; xkjAÞ; ð14Þ

where

ΓðAÞ ¼
Z

dσBTr log ½1þQeγμAμðxÞSðx; yÞ�

and ΓðkÞ
Q1…Qk

ðx1;…; xkjAÞ are obtained from

ΓðkÞ
Q1…Qk

ðx1;…; xkÞ by substitutions

Sfðx; yÞ → Sfðx; yjAÞ; VQðxÞ → VQðxjAÞ:

The free parameters of the model are scale Λ (scalar
gluon condensate), infrared limits of dynamical quark
masses and strong coupling αs, which has been determined
by fitting to the masses of mesons π, ρ, K, K�, J=ψ , ϒ, η0
(for details see Ref. [35]).
As it has been mentioned, the diagonalization of the

quadratic part of the effective action (2) with respect to the
radial quantum number is a part of the calculation pro-
cedure. In practice some finite number of excited states can
be taken into account. As it has been analyzed in [35],
though typically about five lowest radial states have to be
taken into account for robust stability of the computation, a
consistent overall description of the mass spectrum of
mesons is achieved irrespective to a number of accounted
radial excitations. Just the values of the free parameters
have to be adjusted when the number of accounted radial
excitation changes.

III. EVALUATION OF POLARIZABILITIES

The polarizabilities are defined by the Compton scatter-
ing amplitude

PðpÞ þ γðq; εÞ → Pðp0Þ þ γðq0; ε0Þ

of a pseudoscalar meson P

outhPðp0Þγðq0; ε0ÞjPðpÞγðq; εÞiin
¼ ið2πÞ4δð4Þðp0 þ q0 − p − qÞεμðqÞε�νðq0ÞMμν:

We concentrate on the electric αE and magnetic βM dipole
polarizabilities that appear in expansion of the amplitude in
small photon momenta as

εμðqÞε�νðq0ÞMμν ¼ −2e2ε⃗ · ε⃗0� þ 8πMðαEωω0ε⃗ · ε⃗0�

þ βMðε⃗ × q⃗Þ · ðε⃗0� × q⃗0ÞÞ þ…;

where M is the mass of a pseudoscalar meson. The tensor
Mμν can be separated into two parts

Mμν ¼ MBorn
μν þMNB

μν ; ð15Þ

where the part MNB
μν describes the response of a meson as a

composite system to the applied electromagnetic field. The
term MBorn

μν given by

MBorn
μν ¼ e2

�
2gμν −

ð2pμ þ qμÞð2p0
ν þ q0νÞ

ðpþ qÞ2 −M2

−
ð2pν − q0νÞð2p0

μ − qμÞ
ðp − q0Þ2 −M2

�
ð16Þ

describes real Compton scattering of a structureless pseu-
doscalar particle.
In the case of real Compton scattering (q2 ¼ q02 ¼ 0,

εμðqÞqμ ¼ ε�μðq0Þq0μ ¼ 0), the tensor Mμν contains only
two independent tensor structures [44–46]

εαðqÞε�βðq0ÞMαβ ¼ εαðqÞε�βðq0ÞðAT1αβ þ BT2αβÞ;
T1αβ ¼ −

t
2
gαβ − qβq0α;

T2αβ ¼ −
t
2
PαPβ þ ν2gαβ − νðPαqβ þ Pβq0αÞ;

ð17Þ

where

P ¼ pþ p0

2
; s ¼ ðpþ qÞ2; t ¼ ðq − q0Þ2;

u ¼ ðp − q0Þ2; ν ¼ 1

4
ðs − uÞ:

In accordance with Eqs. (15) and (16), amplitudes A and B
can be split in two parts

Aðν2; tÞ ¼ ABornðν2; tÞ þ ANBðν2; tÞ;
Bðν2; tÞ ¼ BBornðν2; tÞ þ BNBðν2; tÞ;

where ABorn, BBorn are given by
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ABornðν2; tÞ ¼ −
e2t

ðs −M2
πÞðu −M2

πÞ
;

BBornðν2; tÞ ¼ −
8e2

ðs −M2
πÞðu −M2

πÞ
:

The electric αE and magnetic βM polarizabilities are related
to ANB, BNB by means of the following equations (see
Refs. [47,48]):

αE þ βM ¼ −
M
8π

BNBð0; 0Þ; ð18Þ

αE − βM ¼ −
1

8πM
ð2ANBð0; 0Þ þM2BNBð0; 0ÞÞ: ð19Þ

The diagrams that contribute to Compton tensor are
shown in Fig. 2. Consider contribution of the diagrams
shown in Figs. 2(a)–2(c) that form a gauge-invariant
combination. The diagrams shown in Figs. 2(b), 2(c)
contain kinematic singularities that are canceled by
corresponding Born terms in Eq. (16). One can
notice that, among these diagrams, only the diagram in
Fig. 2(a) contains tensors proportional to gαβ and can be
parametrized as

MðaÞ
αβ ¼

�
−
t
2
Aðν2; tÞ þ ν2Bðν2; tÞ

�
gαβ

þ other tensor structures;

MðaÞNB
αβ ¼

�
−
t
2
Aðν2; tÞ þ ν2Bðν2; tÞ − 2

�
gαβ

þ other tensor structures; ð20Þ

according to formulas (16) and (17). The amplitudes A, B
that appear in definition of polarizabilities (18), (19) can
be extracted from coefficient of gαβ in MNB

αβ with the help
of formulas

ANBð0; 0Þ ¼ −2
∂

∂t

�
−
t
2
Aðν2; tÞ þ ν2Bðν2; tÞ − 2

�				
t¼0;ν¼0

;

BNBð0; 0Þ ¼ 1

2

∂
2

∂
2ν

�
−
t
2
Aðν2; tÞ þ ν2Bðν2; tÞ − 2

�				
t¼0;ν¼0

:

It is therefore sufficient to calculate only the diagram in
Fig. 2(a) of gauge-invariant combination of the diagrams in
Figs. 2(a)–2(c) in order to extract electric and magnetic
dipole polarizabilities. This is more straightforward
because the diagram in Fig. 2(a) does not contain kinematic
poles. One-loop contributions of this type are shown in
Fig. 3 [the Feynman rules in Euclidean space are given by
formulas (2), (6), and (7) for loops, Eqs. (10), (12), (13)

FIG. 3. The one-loop diagrams (a)–(j) contributing to MðaÞ
αβ . Wavy filling represents the vacuum gluon field (9). The diagrams related

by crossings are not shown.

FIG. 2. Diagrams (a)–(d) contributing to Compton scattering tensor Mμν. The gray circles denote all possible one-particle irreducible
contributions.
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describe nonlocal vertices that should bemultiplied by corresponding hQ, the local vertices are the same as in QED, and the
quark propagators are defined by Eq. (11)]. For example, Fig. 3(e) corresponds to

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;eÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z expðipxþ iqx − ip0y − iq0zÞ

× ð−1ÞTrVaP00
μ ðx;−qÞSðx; yÞVbP00ðyÞSðy; zÞQγνSðz; yÞ

þ crossed term;

for two external pseudoscalar ground-state mesons (see the
Appendix for details).
The contribution to the amplitude corresponding to the

diagram with intermediate scalar fields shown in Fig. 2(d)
is separately gauge invariant and can be represented as

εαðqÞε�βðq0ÞMðdÞ
αβ ¼ εαðqÞε�βðq0Þ

X
S

ΓSγγ
αβ DSh2PΓSPP; ð21Þ

where ΓSγγ parametrizes the S → γγ subprocess, DS is a
scalar meson field propagator, h2PΓSPPðtÞ describes the
transition of the scalar field to a couple of pseudoscalar
mesons (corresponding one-loop diagrams are shown in
Fig. 4, the formulas are given in the Appendix). Diagram
MðdÞ does not contain the tensor T2αβ [see formula (17)]
and hence contributes only to amplitude A.
The computational complexity of the amplitudes that we

need to evaluate in order to extract polarizabilities quickly
grows with increasing the radial number n taken into
account for the diagonalization of the quadratic part of
the action. In the present paper, for numerical calculation
only n ¼ 0 states are taken into account, such that the
matrix O in Eq. (3) is reduced to the unity matrix, and the
higher radial states are neglected. The values of parameters
in this lowest approximation with respect to the “radial
excitation mixing” are given in Table I (for detailed
discussion see Ref. [35]).
The values of polarizabilities found in the present work

are presented in Table II. Since no small-momentum
expansion is employed, we can also calculate polarizabil-
ities of kaons. In contrast with results obtained in several
distinct quark-meson models [27,28,30], the main contri-
bution in the model under consideration comes from one-
loop diagrams, while the contribution of the intermediate

scalar field is less important. However, this can be
considered as a rearrangement of contributions because
only their sum is observable.

IV. DISCUSSION

We investigated dipole polarizabilities of the light
pseudoscalar mesons in the framework of the nonlocal
effective meson action obtained within the mean-field
approach to QCD vacuum. The model described by the
functional (14) allows consistent treatment of various
phenomena of low-energy hadronic physics: spectra of
mesons, their decay constants, and form factors.
Comparison of the present formalism with other
approaches like functional renormalization group,
Dyson-Schwinger equations, lattice QCD, and anti–de
Sitter/QCD is outlined in [35].
The values of charged pion polarizabilities calculated in

the present study are in agreement with COMPASS data
and most recent two-loop ChPT calculation [7]. The pion
mass and leptonic decay constant evaluated in the same
framework earlier [35] agree with experimental data, and
these values serve as phenomenological input for the basic
Lagrangian of ChPT. The agreement with ChPT then
follows from the identification of a pion as a pseudo-
Goldstone boson of broken chiral symmetry. Moreover, an
effective low-energy Lagrangian for pions can be obtained
from generating functional (14) if one integrates out heavier
fields and performs an expansion in small momenta of
pions. It is clear that such an analysis would be technically
complicated, and it deserves a separate investigation that
would be interesting to perform, and we hope to do it in due
course.
The prediction of lattice QCD for polarizabilities

depends on parameters such as the lattice volume, lattice

FIG. 4. One-loop diagrams contributing toMS
αβ in formula (21)

(crossed diagrams are not shown). Diagrams (a),(b),(c) are related
to ΓSγγ , diagram (d) results in h2PΓSPP.

TABLE I. Values of parameters used for calculations of polar-
izabilities that were extracted from the experimental values of
masses of π, ρ, K, K� via Eq. (5). The values of quark masses are
largely affected by the presence of background gluon field, and
they are not in exact one-to-one correspondence with the values
of masses in models without background gluon field, see, e.g.,
Ref. [35].

mu=dðMeVÞ msðMeVÞ ΛðMeVÞ αs

174.8 393.3 439.7 6.23
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spacings, and quark masses. The value of dipole magnetic
polarizability of charged pion found in paper [16] with the
finest lattice is βπ� ¼ −2.06� 0.76 × 10−4 fm3, which
supports the data of the COMPASS collaboration [4],
ChPT [7], and the findings of this paper.
The distinctive feature of the present approach is that

mesons are extended collective excitations of quark-
antiquark and gluon fields in the confining gluon back-
ground field. The structure of meson is encoded in the
nonlocal meson-quark vertices (10), which are straightfor-
wardly calculated. The nonlocality of meson-quark vertices
leads to meson-quark-photon interactions given by
Eqs. (12), (13). Another feature of the present approach
is that the intermediate scalar quark-antiquark field cannot
be identified with physical light scalar meson because
corresponding propagator has no pole at real momenta.
Even though there are no light scalar quark-antiquark
particles, the corresponding field contributes to dipole
polarizabilities. As a result of these features, the contribu-
tions to polarizabilities are arranged differently from other
quark-meson models [27,28,30], and the main contribution
to polarizabilities in the model under consideration comes
from one-loop diagrams in Fig. 3.
Besides ground-state scalar fields, the effective meson

action (14) contains other scalar fields. For instance, it
includes the scalar component of orbitally excited vector
meson field emerging from hyperfine splitting, with meson-
quark vertices given by

Va01n
μμ ¼ 1

4
C1nMaγμFn1

�
D
↔2ðxÞ
Λ2

�
1

i

D
↔

μðxÞ
Λ

:

The inverse propagator of a corresponding isosinglet field
in ground radial state n ¼ 0 at real momenta is shown in
Fig. 5. One expects that the contribution to dipole polar-
izabilities of these fields via diagram in Fig. 2(d) is smaller
than the contribution of a ground-state scalar quark-
antiquark field (the inverse propagator is shown in
Fig. 1) if for no other reason than their propagator is also

smaller at p2 ¼ 0. A thorough investigation of this con-
tribution, however, is even more complex than the con-
tribution of ground-state scalar quark-antiquark field. The
zero of the inverse propagator shown in Fig. 5 is located atffiffiffiffiffi
p2

p
¼ 1252 − i203 MeV. In contrast, it was found that

the inverse propagator of the ground-state scalar quark-
antiquark field has no zeroes in the complex plane in a
physically relevant region jp2j < ð2 GeVÞ2.
The computation has been performed in the lowest

approximation with respect to the mixing of radially
excited states in the functional (14), and it would be
interesting and important to check the stability of obtained
results in this respect by accounting the higher radial
excitations, which will also allow one to estimate the
polarizabilities of radially excited pion and kaon states.
However, the latter has mostly purely theoretical impor-
tance as an experimental measurement seems to be hardly
achievable. More detailed discussion about the relation of
the present approach to ChPT is an interesting issue that we
expect to address in future work.

TABLE II. Numerical results for polarizabilities of pseudoscalar mesons in Gaussian units of 10−4 fm3. Column “Diagrams in Fig. 3”
corresponds to the leading-order contribution of the diagrams shown in Figs. 2(a)–2(c), which is extracted from diagrams in Fig. 3 with
formula (20). “Diagrams in Fig. 4” labels the leading-order contribution of the diagrams with intermediate scalar quark-antiquark fields
shown in Fig. 2(d), which is given by formula (21).

Diagrams in Fig. 3 Diagrams in Fig. 4 Total Experiment ChPT

π� αE þ βM 0.13 0 0.13 0.5� 0.5stat [4] 0.16 [7]
αE − βM 4.82 1.48 6.3 4.0� 1.2stat � 1.4syst [4] 5.7 [7]

π0 αE þ βM 0.71 0 0.71 0.98� 0.03 [32] 1.15 [11]
αE − βM −0.26 1.48 1.22 −1.6� 2.2 [32] −1.9 [11]

K� αE þ βM 0.41 0 0.41
αE − βM 1.22 0.47 1.69

K0; K̄0 αE þ βM 0.62 0 0.62
αE − βM −0.29 0.17 −0.12

FIG. 5. The inverse propagator for scalar field emerging from
hyperfine splitting of orbital excitation of vector meson field with
respect to Euclidean momenta p2.
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APPENDIX: EVALUATION OF DIAGRAMS

1. Formulas for diagrams in Fig. 3

The notations are given in Secs. II and III. Indices a, b
correspond to combination of flavor matrices for a given

pseudoscalar ground-state meson. The one-loop contribu-

tion to MðaÞ
μν in Fig. 2 is given by

MðaÞ
μν ¼

X
k¼a;b;c;d;e;f;g;h;i;j

Mða;kÞ
μν þ crossed diagrams:

Here Mða;kÞ
μν are given by diagrams in Fig. 3:

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;aÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y expðipxþ iqx − iq0x − ip0yÞ

× ð−1ÞTrVaP00
μν ðx;−q; q0ÞSðx; yÞVbP00ðyÞSðy; xÞ; ðA1Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;bÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y expðipxþ iqy − iq0y − ip0yÞ

× ð−1ÞTrVaP00ðxÞSðx; yÞVbP00
μν ðy;−q; q0ÞSðy; xÞ; ðA2Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;cÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z1

Z
d4z2 expðipx − ip0yþ iqz1 − iq0z2Þ

× ð−1ÞTrVaP00ðxÞSðx; yÞVbP00ðyÞSðy; z1ÞQγμSðz1; z2ÞQγνSðz2; xÞ; ðA3Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;dÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z1

Z
d4z2 expðipx − ip0yþ iqz1 − iq0z2Þ

× ð−1ÞTrVaP00ðxÞSðx; z1ÞQγμSðz1; z2ÞQγνSðz2; yÞVbP00ðyÞSðy; xÞ; ðA4Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;eÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z expðipxþ iqx − ip0y − iq0zÞ

× ð−1ÞTrVaP00
μ ðx;−qÞSðx; yÞVbP00ðyÞSðy; zÞQγνSðz; yÞ; ðA5Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;fÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z expðipxþ iqx − ip0y − iq0yÞ

× ð−1ÞTrVaP00
μ ðx;−qÞSðx; yÞVbP00

ν ðy; q0ÞSðy; xÞ; ðA6Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;gÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z expðipxþ iqx − iq0z − ip0yÞ

× ð−1ÞTrVaP00
μ ðx;−qÞSðx; zÞQγνSðz; yÞVbP00ðyÞSðy; xÞ; ðA7Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;hÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z expðipxþ iqy − ip0y − iq0zÞ

× ð−1ÞTrVaP00ðxÞSðx; yÞVbP00
μ ðy;−qÞSðy; zÞQγνSðz; xÞ; ðA8Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;iÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z1

Z
d4z2 expðipx − ip0yþ iqz1 − iq0z2Þ

× ð−1ÞTrVaP00ðxÞSðx; z1ÞQγμSðz1; yÞVbP00ðyÞSðy; z2ÞQγνSðz2; xÞ; ðA9Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞMða;jÞ
μν ¼ e2h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z expðipxþ iqz − ip0y − iq0yÞ

× ð−1ÞTrVaP00ðxÞSðx; zÞQγμSðz; yÞVbP00
μ ðy; q0ÞSðy; xÞ: ðA10Þ
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The trace is taken with respect to flavor, color, and spinor indices. Crossed diagrams can be obtained by q ↔ q0, μ ↔ ν. The
vertex operator

VaP00ðxÞ ¼ Maiγ5

Z
1

0

dt exp

�
D
↔2ðxÞ
Λ2

t

�

is a function of D
↔

μ, which acts as

Sfðy − xÞD
↔

μðxÞSf0 ðx − zÞ ¼ e−
i
2
yμB̂μνxν

Z
d4p
ð2πÞ4 e

−ipðy−xÞH̃fðpÞD
↔

μðxÞe−i
2
xμB̂μνzν

Z
d4q
ð2πÞ4 e

−iqðx−zÞH̃f0 ðqÞ;

¼
Z

d4p
ð2πÞ4

Z
d4q
ð2πÞ4 e

−i
2
yμB̂μνxνe−ipðy−xÞH̃fðpÞ

�
ξf

�
ipμ −

i
2
B̂μνðxν − yνÞ

�

þ ξf0

�
iqμ −

i
2
B̂μνðxν − zνÞ

��
× e−

i
2
xμB̂μνzνe−iqðx−zÞH̃f0 ðqÞ:

The loop integrals are finite due to nonlocal meson vertices, so no regularization is needed. With meson vertices and quark
propagators given by formulas (10) and (11), the space and momentum integrals are Gaussian and can be computed
analytically. The averaging over the background field is performed with the help of formula (8) where tensor Jμν is a
combination of external momenta of mesons and photons.
After these straightforward transformations one arrives at integrals over proper times si, ti that originate from vertices and

propagators. These integrals are computed numerically. Unfortunately, the analytical expressions are too cumbersome to be
presented here.

2. Formulas for diagrams in Fig. 4

The one-loop contribution to ΓSγγ
μν is given by

ΓSγγ
μν ¼ ΓðaÞSγγ

μν þ ΓðbÞSγγ
μν þ ΓðcÞSγγ

μν þ crossed diagrams;

where ΓðkÞSγγ
μν are given by the diagrams in Figs. 4(a)–4(c). The one-loop contribution to ΓSPP is given by the diagrams in

Fig. 4(d):

ð2πÞ4δð4Þðp0 þ q0 − p − qÞΓðaÞSγγ
μν ¼ e2

Z
dσB

Z
d4x expðipx − ip0xþ iqx − iq0xÞð−1ÞTrVaS00

μν ðx;−q; q0ÞSðx; xÞ; ðA11Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞΓðbÞSγγ
μν ¼ e2

Z
dσB

Z
d4x

Z
d4z expðipx − ip0xþ iqx − iq0zÞ

× ð−1ÞTrVaS00
μ ðx;−qÞSðx; zÞQγνSðz; xÞ; ðA12Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞΓðcÞSγγ
μν ¼ e2

Z
dσB

Z
d4x

Z
d4z1

Z
d4z2 expðipx − ip0xþ iqz1 − iq0z2Þ

× ð−1ÞTrVaS00ðxÞSðx; z1ÞQγμSðz1; z2ÞQγνSðz2; yÞ; ðA13Þ

ð2πÞ4δð4Þðp0 þ q0 − p − qÞh2PΓSPP ¼ h2P

Z
dσB

Z
d4x

Z
d4y

Z
d4z expðiqx − iq0x − ip0yþ ipzÞ

× ð−1ÞTrVaS00ðxÞSðx; yÞVbP00ðyÞSðy; zÞVcP00ðzÞSðz; yÞ: ðA14Þ

The scalar two-point correlation function is an example where the final formula used for numerical computation has a
concise form:
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Γð2Þ
abSðx − yÞ ¼

Z
dσBTrVaS00ðxÞSðx; yÞVbS00ðyÞSðy; xÞ;

Γ̃ð2Þ
abSðpÞ ¼ TrðMaMbÞ Λ

2

4π2
Trυ

Z1

0

dt1

Z1

0

dt2

Z1

0

ds1

Z1

0

ds2

�
1 − s1
1þ s1

�
m2

f=4υΛ
2�

1 − s2
1þ s2

�
m2

f0=4υΛ
2

×
1

Φ2
2

�
p2

Λ2

F1

Φ2
2

þmfmf0

Λ2

F2

ð1 − s21Þð1 − s22Þ
þ F3

Φ2

�
exp

�
−

p2

2υΛ2

Φ1

Φ2

�
;

where

Φ1 ¼ s1s2 þ 2ðξ2f0s1 þ ξ2fs2Þðt1 þ t2Þv;
Φ2 ¼ s1 þ s2 þ 2ð1þ s1s2Þðt1 þ t2Þυþ 16ðξ2f0s1 þ ξ2fs2Þt1t2υ2;
F1 ¼ ð1þ s1s2Þ½2ðξf0s1 þ ξfs2Þðt1 þ t2Þυþ 4ξfξf0 ð1þ s1s2Þðt1 þ t2Þ2υ2 þ s1s2ð1 − 16ξfξf0 t1t2υ2Þ�;
F2 ¼ ð1þ s1s2Þ2;
F3 ¼ 4υð1þ s1s2Þð−1þ 16ξfξf0 t1t2υ2Þ:

Analogous formulas for ΓV;P obtained in Ref. [35] describe the spectrum of radially excited mesons: light, heavy-light
mesons, and heavy quarkonia.

[1] M. A. Ivanov, Pion polarizabilities: Theory vs experiment,
Int. J. Mod. Phys. Conf. Ser. 39, 1560104 (2015).

[2] M. Moinester and S. Scherer, Compton scattering off pions
and electromagnetic polarizabilities, Int. J. Mod. Phys. A
34, 1930008 (2019).

[3] M. Moinester, Pion polarizability 2022 status report,
arXiv:2205.09954.

[4] C. Adolph et al. (COMPASS Collaboration), Measurement
of the Charged-Pion Polarizability, Phys. Rev. Lett. 114,
062002 (2015).

[5] J. Bijnens and F. Cornet, Two pion production in photon-
photon collisions, Nucl. Phys. B296, 557 (1988).

[6] M. V. Terentev, Pion polarizability, virtual compton-effect
and π → eνγ decay, Yad. Fiz. 16, 162 (1972) [Sov. J. Nucl.
Phys. 16, 87 (1973)].

[7] J. Gasser, M. A. Ivanov, and M. E. Sainio, Revisiting
γγ → πþπ− at low energies, Nucl. Phys. B745, 84 (2006).

[8] U. Burgi, Charged pion pair production and pion polar-
izabilities to two loops, Nucl. Phys. B479, 392 (1996).

[9] U. Burgi, Charged pion polarizabilities to two loops, Phys.
Lett. B 377, 147 (1996).

[10] S. Bellucci, J. Gasser, and M. E. Sainio, Low-energy
photon-photon collisions to two loop order, Nucl. Phys.
B423, 80 (1994); B431, 413(E) (1994).

[11] J. Gasser, M. A. Ivanov, and M. E. Sainio, Low-energy
photon-photon collisions to two loops revisited, Nucl. Phys.
B728, 31 (2005).

[12] H. R. Fiebig, W. Wilcox, and R. M. Woloshyn, A study of
hadron electric polarizability in quenched lattice QCD,
Nucl. Phys. B324, 47 (1989).

[13] F. X. Lee, L. Zhou, W. Wilcox, and J. C. Christensen,
Magnetic polarizability of hadrons from lattice QCD in
the background field method, Phys. Rev. D 73, 034503
(2006).

[14] M. Lujan, A. Alexandru, W. Freeman, and F. Lee, Electric
polarizability of neutral hadrons from dynamical lattice
QCD ensembles, Phys. Rev. D 89, 074506 (2014).

[15] W. Freeman, A. Alexandru, M. Lujan, and F. X. Lee, Sea
quark contributions to the electric polarizability of hadrons,
Phys. Rev. D 90, 054507 (2014).

[16] E. V. Luschevskaya, O. E. Solovjeva, and O. V. Teryaev,
Magnetic polarizability of pion, Phys. Lett. B 761, 393
(2016).

[17] M. Lujan, A. Alexandru, W. Freeman, and F. X. Lee, Finite
volume effects on the electric polarizability of neutral
hadrons in lattice QCD, Phys. Rev. D 94, 074506
(2016).

[18] G. S. Bali, B. B. Brandt, G. Endrődi, and B. Gläßle, Meson
masses in electromagnetic fields with Wilson fermions,
Phys. Rev. D 97, 034505 (2018).

[19] H. Niyazi, A. Alexandru, F. X. Lee, and M. Lujan, Charged
pion electric polarizability from lattice QCD, Phys. Rev. D
104, 014510 (2021).

[20] R. Bignell, W. Kamleh, and D. Leinweber, Pion magnetic
polarisability using the background field method, Phys.
Lett. B 811, 135853 (2020).

[21] H. T. Ding, S. T. Li, A. Tomiya, X. D. Wang, and Y. Zhang,
Chiral properties of (2þ 1)-flavor QCD in strong
magnetic fields at zero temperature, Phys. Rev. D 104,
014505 (2021).

DIPOLE POLARIZABILITIES OF LIGHT PSEUDOSCALAR … PHYS. REV. D 107, 094027 (2023)

094027-11

https://doi.org/10.1142/S2010194515601040
https://doi.org/10.1142/S0217751X19300084
https://doi.org/10.1142/S0217751X19300084
https://arXiv.org/abs/2205.09954
https://doi.org/10.1103/PhysRevLett.114.062002
https://doi.org/10.1103/PhysRevLett.114.062002
https://doi.org/10.1016/0550-3213(88)90032-6
https://doi.org/10.1016/j.nuclphysb.2006.03.022
https://doi.org/10.1016/0550-3213(96)00454-3
https://doi.org/10.1016/0370-2693(96)00304-8
https://doi.org/10.1016/0370-2693(96)00304-8
https://doi.org/10.1016/0550-3213(94)90566-5
https://doi.org/10.1016/0550-3213(94)90566-5
https://doi.org/10.1016/j.nuclphysb.2005.09.010
https://doi.org/10.1016/j.nuclphysb.2005.09.010
https://doi.org/10.1016/0550-3213(89)90180-6
https://doi.org/10.1103/PhysRevD.73.034503
https://doi.org/10.1103/PhysRevD.73.034503
https://doi.org/10.1103/PhysRevD.89.074506
https://doi.org/10.1103/PhysRevD.90.054507
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1103/PhysRevD.94.074506
https://doi.org/10.1103/PhysRevD.94.074506
https://doi.org/10.1103/PhysRevD.97.034505
https://doi.org/10.1103/PhysRevD.104.014510
https://doi.org/10.1103/PhysRevD.104.014510
https://doi.org/10.1016/j.physletb.2020.135853
https://doi.org/10.1016/j.physletb.2020.135853
https://doi.org/10.1103/PhysRevD.104.014505
https://doi.org/10.1103/PhysRevD.104.014505


[22] W. Wilcox and F. X. Lee, Towards charged hadron polar-
izabilities from four-point functions in lattice QCD,
Phys. Rev. D 104, 034506 (2021).

[23] A. I. L’vov, Pion polarizabilities in the sigma model with
quarks, Sov. J. Nucl. Phys. 34, 289 (1981).

[24] M. K. Volkov and D. Ebert, Pion polarizability in a chiral
quark model, Phys. Lett. B 101, 252 (1981).

[25] M. K. Volkov and A. A. Osipov, Polarizability of pions and
kaons in superconductor quark model (in Russian), Yad. Fiz.
41, 1027 (1985).

[26] V. Bernard, B. Hiller, and W. Weise, Pion electromagnetic
polarizability and chiral models, Phys. Lett. B 205, 16 (1988).

[27] M. A. Ivanov and T. Mizutani, Pion and kaon polarizabil-
ities in the quark confinement model, Phys. Rev. D 45, 1580
(1992).

[28] A. E. Dorokhov, M. K. Volkov, J. Hufner, S. P. Klevansky,
and P. Rehberg, Pion polarizabilities at finite temperature,
Z. Phys. C 75, 127 (1997).

[29] J. F. Donoghue and B. R. Holstein, Photon-photon scatter-
ing, pion polarizability and chiral symmetry, Phys. Rev. D
48, 137 (1993).

[30] B. Hiller, W. Broniowski, A. A. Osipov, and A. H. Blin,
Quadrupole polarizabilities of the pion in the Nambu–
Jona-Lasinio model, Phys. Lett. B 681, 147 (2009).

[31] L. V. Filkov, I. Guiasu, and E. E. Radescu, Pion polar-
izabilities from backward and fixed-u sum rules, Phys. Rev.
D 26, 3146 (1982).

[32] L. V. Fil’kov and V. L. Kashevarov, Compton scattering on
the charged pion and the process γγ → π0π0, Eur. Phys. J. A
5, 285 (1999).

[33] L. V. Fil’kov and V. L. Kashevarov, Determination of π�

meson polarizabilities from the γγ → πþπ− process,
Phys. Rev. C 73, 035210 (2006).

[34] A. C. Kalloniatis and S. N. Nedelko, Realization of chiral
symmetry in the domain model of QCD, Phys. Rev. D 69,
074029 (2004); 70, 119903(E) (2004).

[35] S. N. Nedelko and V. E. Voronin, Regge spectra of excited
mesons, harmonic confinement and QCD vacuum structure,
Phys. Rev. D 93, 094010 (2016).

[36] S. N. Nedelko and V. E. Voronin, Influence of confining
gluon configurations on the P → γ�γ transition form factors,
Phys. Rev. D 95, 074038 (2017).

[37] S. N. Nedelko and V. E. Voronin, Domain wall network as
QCD vacuum and the chromomagnetic trap formation under
extreme conditions, Eur. Phys. J. A 51, 45 (2015).

[38] S. N. Nedelko and V. E. Voronin, Energy-driven disorder in
mean field QCD, Phys. Rev. D 103, 114021 (2021).

[39] G. V. Efimov and S. N. Nedelko, Nambu–Jona-Lasinio
model with the homogeneous background gluon field, Phys.
Rev. D 51, 176 (1995).

[40] Ja. V. Burdanov, G. V. Efimov, S. N. Nedelko, and S. A.
Solunin, Meson masses within the model of induced non-
local quark currents, Phys. Rev. D 54, 4483 (1996).

[41] J. R. Pelaez, From controversy to precision on the sigma
meson: A review on the status of the non-ordinary f0ð500Þ
resonance, Phys. Rep. 658, 1 (2016).

[42] J. Terning, Gauging nonlocal Lagrangians, Phys. Rev. D 44,
887 (1991).

[43] S. Nedelko, A. Nikolskii, and V. Voronin, Soft gluon fields
and anomalous magnetic moment of muon, J. Phys. G 49,
035003 (2022).

[44] R. Tarrach, Invariant amplitudes for virtual compton scat-
tering off polarized nucleons free from kinematical singu-
larities, zeros and constraints, Nuovo Cimento A 28, 409
(1975).

[45] W. A. Bardeen and W. K. Tung, Invariant amplitudes for
photon processes, Phys. Rev. 173, 1423 (1968); 4, 3229(E)
(1971).

[46] A. I. L’vov, S. Scherer, B. Pasquini, C. Unkmeir, and D.
Drechsel, Generalized dipole polarizabilities and the
spatial structure of hadrons, Phys. Rev. C 64, 015203
(2001).

[47] I. Guiasu and E. E. Radescu, Higher multipole polarizabil-
ities of hadrons from compton scattering amplitudes, Ann.
Phys. (N.Y.) 120, 145 (1979).

[48] I. Guiasu and E. E. Radescu, Higher multipole polarizabil-
ities of hadrons from compton scattering amplitudes. II,
Ann. Phys. (N.Y.) 122, 436 (1979).

SERGEI NEDELKO and VLADIMIR VORONIN PHYS. REV. D 107, 094027 (2023)

094027-12

https://doi.org/10.1103/PhysRevD.104.034506
https://doi.org/10.1016/0370-2693(81)90306-3
https://doi.org/10.1016/0370-2693(88)90391-7
https://doi.org/10.1103/PhysRevD.45.1580
https://doi.org/10.1103/PhysRevD.45.1580
https://doi.org/10.1007/s002880050454
https://doi.org/10.1103/PhysRevD.48.137
https://doi.org/10.1103/PhysRevD.48.137
https://doi.org/10.1016/j.physletb.2009.10.018
https://doi.org/10.1103/PhysRevD.26.3146
https://doi.org/10.1103/PhysRevD.26.3146
https://doi.org/10.1007/s100500050287
https://doi.org/10.1007/s100500050287
https://doi.org/10.1103/PhysRevC.73.035210
https://doi.org/10.1103/PhysRevD.69.074029
https://doi.org/10.1103/PhysRevD.69.074029
https://doi.org/10.1103/PhysRevD.70.119903
https://doi.org/10.1103/PhysRevD.93.094010
https://doi.org/10.1103/PhysRevD.95.074038
https://doi.org/10.1140/epja/i2015-15045-8
https://doi.org/10.1103/PhysRevD.103.114021
https://doi.org/10.1103/PhysRevD.51.176
https://doi.org/10.1103/PhysRevD.51.176
https://doi.org/10.1103/PhysRevD.54.4483
https://doi.org/10.1016/j.physrep.2016.09.001
https://doi.org/10.1103/PhysRevD.44.887
https://doi.org/10.1103/PhysRevD.44.887
https://doi.org/10.1088/1361-6471/ac4a82
https://doi.org/10.1088/1361-6471/ac4a82
https://doi.org/10.1007/BF02894857
https://doi.org/10.1007/BF02894857
https://doi.org/10.1103/PhysRev.173.1423
https://doi.org/10.1103/PhysRevD.4.3229.2
https://doi.org/10.1103/PhysRevD.4.3229.2
https://doi.org/10.1103/PhysRevC.64.015203
https://doi.org/10.1103/PhysRevC.64.015203
https://doi.org/10.1016/0003-4916(79)90285-9
https://doi.org/10.1016/0003-4916(79)90285-9
https://doi.org/10.1016/0003-4916(79)90209-4

