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Hadronic structure on the light front. VII. Pions
and kaons and their partonic distributions
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This work is a continuation in our series of papers that addresses quark models of hadronic structure on
the light front, motivated by the QCD vacuum structure and lattice results. The spontaneous breaking of
chiral symmetry on the light front is shown to parallel that in the rest frame, where the nonlocal instanton
induced ’t Hooft interaction plays a central role. By rewriting this interaction solely in terms of the good
component of the fermionic field, a scalar chiral condensate emerges in the mean-field approximation,
which is identical to the one obtained in the rest frame. The pions and kaons emerge as deeply bound
Goldstone modes in the chiral limit, with the scalar-isoscalar sigma meson mode as a threshold state with
zero binding. We explicitly derive the light front distribution amplitudes (DAs) and parton distribution
functions (PDFs) for these mesons. The DAs and PDFs are in good agreement with those extracted from the
QCD instanton vacuum in the rest frame, using the large momentum effective theory (LaMET). The QCD
evolved DAs and PDFs compare well with available measurements, as well as recent lattice results.
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I. INTRODUCTION

Parton distribution functions (PDFs) are important for
the description of hadrons at high energy. They are
currently central for the description of high energy cross
sections at the Large Hadron Collider (LHC). The PDFs
describe unidimensional distribution of the quark and
gluons in the infinite momentum frame, and are inherently
nonperturbative. In the leading twist approximation, they
can be gleaned from experiments [1], or more recently from
first principle lattice simulations [2] using the large
momentum effective theory (LaMET) as suggested in
[3], and some variants [4,5]. The generalized PDFs offer
a multidimensional description of the quarks and gluons,
but their extraction from current or future experiments, as
well as numerical lattice simulations, is more challenging.

A physical understanding of the quark and gluon
distributions in hadrons at low resolution requires an
understanding of the QCD vacuum. Cooled lattice simu-
lations whereby the gauge configurations are iteratively
pruned of quantum fluctuations [6] suggest a semiclassical
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landscape dominated by tunneling instanton and anti-
instanton configurations, with large actions and finite
topological charge. Their inclusion in the determination
of the PDFs for the light pseudoscalar mesons is one of the
essential thrusts of this work.

The QCD instanton liquid model (ILM) is a compre-
hensive model of QCD at low resolution that is currently
supported in its details by current lattice cooling simula-
tions. It unequivocally captures the essentials of the
spontaneous breaking of chiral symmetry, with the emer-
gence of the quark zero mode zone. It provides a semi-
classical description of the QCD ground state at low
resolution, hence a well-defined organizational principle
that enforces chiral and gauge Ward identities [7—11].

However, the QCD instanton liquid model is inherently
spacelike, making the ensuing physics less transparent
timelike. This is particularly acute for the PDFs which
capture the nonperturbative timelike structure the partonic
constituents of hadrons, as probed by deep inelastic
scattering. Recently, two of us in a series of papers [12-16]
have put forth a program on how to export the successes of
the QCD instanton liquid model, spacelike. The program is
based on the idea of deriving the essential of the central and
spin forces on the light front by analytically continuing
in (Euclidean) rapidity pertinent correlators spacelike. In a
way, this construction is similar in spirit to the one put forth
by Ji [3].

This paper is a continuation of this series [17], whereby
we show in detail how chiral symmetry is spontaneously
broken on the light front, using solely the emergent

Published by the American Physical Society
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’t Hooft effective interactions from the QCD instanton
liquid model. It fufills for the schematic argument we put
forth in [13]. The light front formulation of the QCD
vacuum supports a scalar chiral condensate, which is
identical to the one derived in the rest frame, as expected.
The ensuing light front (LF) pion and kaon wave functions
are characterized by the same masses and decay constants
as in the rest frame. In addition, they provide a detailed
description of the partonic content of these mesons for the
leading twist-2 operators. For the latter, a number of models
has been also used [5,18-38].

The organization of the paper is as follows. In Sec. I we
briefly review the emergent 't Hooft multiflavor and non-
local fermionic interactions in the QCD ILM vacuum. In
Sec. III we address the role of these effective interactions on
the light front. The central new element on the light front is
the decomposition of the fermionic fields into good plus
bad components along the light cone directions. The bad
component is a constraint, as it does not propagate in the
light front direction. The elimination of the constraint in the
mean-field approximation yields a constituent quark mass
much like in the rest frame, and renormalized 't Hooft
multiflavor interactions, as initially proposed in [39-41]
for local interactions of the Nambu-Jona-Lasinio (NJL)
type. In Sec. IV we derive the corresponding light front
Hamiltonian solely in terms of the good fermionic compo-
nent. In Sec. V we show that the emergent constituent quark
mass and chiral condensate on the light front are identical to
the ones in the rest frame. As expected, the spontaneous
breaking of chiral symmetry is driven by the induced
multiflavor instanton and anti-instanton interactions in the
ILM. It is universal and frame independent.

In Sec. VI we diagonalize the light front Hamiltonian in
the two-body sector for light u, d quarks, with a strongly
bound pion as a Goldstone mode. All other scalar and
pseudoscalar modes are unbound on the light front, in the
mean-field approximation, and away from the chiral limit.
The pion distribution amplitude (DA) stemming from the
diagonalization is also discussed. In Sec. VII we derive the
pion PDFE. The result is QCD evolved with a detailed
comparison to existing measurements, lattice results, and
models. In Sec. VIII we extend our analysis to include
strangeness, and derive the pertinent gap equations and
chiral condensates. In Sec. IX the light front wave functions
and masses for the kaons using U and V spin are discussed.
The kaon DA and PDF are derived. The results are also
evolved and compared with available empirical data, recent
lattice results, and models. Our conclusions are in Sec. X. A
number of appendices are included to complement some of
the derivations.

II. FLAVOR INTERACTIONS IN ILM

In the ILM, the QCD vacuum is composed of instanton
and anti-instanton gauge fields, tunneling and topologically
active gauge configurations, surrounded by swaths of

empty space-time free of perturbative fields [42-44].
These configurations are self-dual and strong, with a typical
size of 1 fm, and a mean tunneling density of 1/R*~
1 fm™* [45]. As a result, the starting and complex gauge
dynamics can be reduced to the dynamics of a dilute
ensemble of pseudoparticles on their pertinent moduli, and
organized using the packing fraction

2772[74
K41 =g~ 0.1, (1)

The remarkable thing about the self-dual instantons
(anti-self-dual anti-instantons) is their ability to trap quark
states as zero modes with fixed helicity (left for instantons
and right for anti-instantons). The collectivization of these
zero modes gives rise to a zero mode zone in a narrow band
of virtualities

e
|A4] ~ 75 ~20 MeV (2)

with a mean density o(0) of near-zero Dirac eigenvalues.
As noted initially by Banks and Casher [46], this mean
density gives rise to a finite quark condensate

(wy) = —70(0). (3)

Equation (2) is also characterized by universal fluctuations
of the chiral condensate in the microscopic limit, which are
captured by chiral random matrix theory [47]. In many
ways, the spontaneous breaking of chiral symmetry in the
ILM is tantamount of the onset of conductivity in dirty
metals.

The delocalization of the quark zero modes and the
emergence of (2) is a direct proof of the importance of the
gauge topology in the spontaneous breaking of chiral
symmetry. It provides for a microscopic origin of the
spontaneous breaking of chirality in QCD, as noted
originally by 't Hooft [48]. It generates four-dimensional
fermionic zero modes, which lead to multifermion flavor
mixing interactions,

uu <> dd < ss,

which are quasilocal.

For Ny = 3 and in the instanton zero size approximation,
the interactions between the u, d, s quarks in the current
mass limit is [49]

VL+R _ GHooft 2Nc +1
W =N, 2-1) [ \2(N, +2)

) det(UDS)

+2(Nc1+1)(det(U#UD/wS) +Cyclic)] +(L<R)
(4)
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with U = iiguy, and U, = iigo,,u;,, and similarly for D, S. The strength of the 6-quark operators is related to the instanton

plus anti-instanton density

s
GHooft = % (4”2/03)3 <

mIZp> <m§$p> <m12‘p> (5)

with the effective quark masses my. For most of the analyses to follow in this work, we will specialize to Ny = 2 with u, d
species with almost degenerate quark masses. Strangeness will be addressed also in the same spirit, using U and V spin.

With this in mind, (4) reduces to

(ZNL‘_ 1)

VL+R —
9 TN (NT- D)

1
det(UD) + ————
(e(U )i <1

)det(Uﬂ,,DW)> + (L < R) (6)

with k) = 3Gy (55) < 0 and attractive. Equation (6) breaks explicitly U, (1) axial symmetry, but otherwise preserves
flavor left-right symmetry. This can be made explicit through Fierzing, with the full Lagrangian now of the form

Lo B(id—m)W4—O {ZNC_l

8(N2—1) | 2N.

It is strongly attractive in the sigma and pion channel,
and repulsive in the 7’ channel thereby solving the U4(1)
problem. Equation (7) in QCD is a replacement to the
posited Nambu-Jona-Lasinio model [50] of pre-QCD.

For the small size mesons such as pions and kaons (and
also Upsilons), the quasilocal approximation is not reliable,
and the full nonlocality of the instanton zero modes need to
be retained. This amounts to the shift

w(x) = VF(io)(x) (®)

in (7). The explicit form of F (k) in momentum space is

F(k) = [(zF'(2))*]

i ©)
where

F(z) = I(2)Ko(z) — 11 (2)K, (2)
and k = V2 is the Euclidean 4-momentum.

II1. T HOOFT EFFECTIVE LAGRANGIAN ON THE
LIGHT FRONT

On the light front, the old lore was that the QCD vacuum
is trivial owing to the vanishing of the backward diagrams
in perturbation theory [51]. However, more careful analyses
reveal that the vacuum physics is encoded in the longi-
tudinal zero modes of the fields [52], which is rather
manifest in two-dimensional QCD [53] (and references
therein). In effective models of QCD such as the NJL
model, the nontrivial aspects of the vacuum on the light

[(‘i“l’)z — (‘i‘r”‘l’)2 — (‘i‘i}/5‘P)2 + (‘i’i}/sr"‘l‘)z]—L [(‘i‘aﬂ,,‘}’)z - (‘i’aﬂﬂ“‘l’)2]}.

4N,
(7)

front are explicitly tied to the tadpole contributions,
generated by the constrained part of the fermion field
[39-41]. Most of the analysis to follow in the ILM will
make use of this observation.

More specifically, the projection of the fermion field
along the light front splits the field into a good plus bad
component, with the latter nonpropagating or constraint.
The elimination of the constraint induces multifermion
interactions in terms of the good component. In the mean-
field approximation, using N% counting rules, these inter-
actions account for the spontaneous breaking of chiral
symmetry on the light front through tadpoles [39-41]. In
this section, we will show that this approach can be applied
to the emergent multiflavor interactions in the ILM, with
finite size form factors from the quark zero modes.

For simplicity and clarity of the analysis, we consider
first the local form of (7) in the large N, approximation.
The modifications for the finite instanton sizes will be
quoted at the end. More specifically, we have

L P(id—m)¥ + % [(PY)? — (Pr9P)?
— (Piy’¥)? + (Piy’s*?)?| (10)

with Gy = ;.

customary to use the semibosonized form of (10), through
the use of the auxillary fields o, ¢¢, 7, and z¢

In the mean field or NLL approximation, it is

L xP(id—m)¥ + Gg¥(o — 6°1° — iny® + in®t"y)¥
Gy

5 07 = (0 =7+ (2*)7], (11)
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where m = m, = m, represents the current mass of the u,
d quarks. Note that the combination

02 _ (O.a)Z _ 71'2 + (77;“)2

is flavor U,(1) violating. The extension to s quarks with
larger mass will be discussed below, by reduction to U and
V spin.

To proceed, we now split the fermionic field ¥ into a
good component ¥, and a bad component ¥_

1 1
Y=V, +¥_= Ey‘y“P + 5]/*3/"1‘. (12)

The bad component does not propagate along the light front
x* direction, and therefore can be eliminated from (10)
using the equation of motion. The latter is readily solved in
terms of the good component ¥

yt—i, . .
Vo =5 (=irio, + M)¥,, (13)

where M denotes
M = m — GS(G - O'aTa - iﬂ-ys + iﬂafa}/5>7 (14)

54 is equal to the Green’s function G(x~, y~) for id_ where

the Green’s function can be defined as

odict 1 .. -
G(x‘,y‘):/ ﬁkje_lk (=) :?e(x -y7). (15)

In terms of (12), the semibosonized Lagrangian (11) can be
solely rewritten in terms of the good component

- G
Lo P iy o, ¥, ——[0* - (0°) — n* + (n)]

— W (i, 0, — M) - — (i’ 0, = M)V (16)

It is now clear that the elimination of the Gaussian
mesonic fields from (16) generates strings of multifermion
interactions, of increasing complexity on the light front.
Fortunately, they are tractable in 1/N,, with the leading
order referred to as the mean-field approximation. For that,
we shift the scalar field by 6 = N .oy + d0 in (16) with a
finite vev o) ~ N, as all other vevs are excluded by isospin
symmetry and parity. We can now use the counting rules

86 ~O(y/N,)

with gg = N.G4 ~ N, in the semibosonized Lagrangian
(16) to resum all of the leading tadpole diagrams, by setting
the coefficient of do to zero,

o, m, 7%

(Fw) = Neog = 0 (17)
with now the effective fermionic field

y i

oML (18)

As aresult, the good component of the quark field acquires
a constituent mass of order N

M =m - Gs(py). (19)

Equations (17) and (19) reflect on the spontaneous break-
ing of chiral symmetry. Equation (19) is a gap equation as
we detail below.

As the remnant fluctuation of the bosonic fields ¢¢, z, z¢,
and 66 = 6 — N_.oy are of order O(y/N,), these fields
compensate the O(1/N,) contribution from the 't Hooft
coupling Gg = gs/N,, leaving the semibosonized
Lagrangian at the leading order of large N. of the form

L=y(id— My
1 A N N N
~3 GsléoD 66 — 6°D_o6" — nD_n + n°D 7“|
+ Gslpwé — pryo" — iy wr + wiy>tya“]. (20)

Higher order contributions have not been retained. The

factors D, inside the quadratic bosonic potential are
defined as

b.=1 iGs<w+_:’w>, (21)
0_

where —i/ J_in (25), is defined such that for any fields y(x)
and w(x),

A0 ) = ) 40 T v (22

D_. follows from the resummation of the tadpole diagrams
in the mean field, or leading order in 1/N,. Indeed, each
virtual quark tadpole is of order O(N,.), thereby compen-
sating the 't Hooft coupling Gy~ O(1/N,.), with a net
factor of O(N?). Note that the fermionic contributions {y,
Wy, Wiy y, and Wiy %y in (20) are all of the same order
as the remnant quantum fluctuations or O(y/N,.). With this
in mind, we can now eliminate the auxillary bosonic fields,
to obtain the light front Lagrangian,
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. Gg . ~_j_ Al s A, _. A
L = (ig = My + == [y DX gy — ey DNty — iy DX’y + iy ey D3 iy ey (23)

In the mean field or leading order in 1 /N approximation, the light front Lagrangian can be solely written in terms of the
good fermionic component. The elimination of the bad component generates a constituent mass, introduces an effective
quark field (18), and renormalizes by D7' (tadpole resummation) each of the original multifermion interaction in the ILM in
the zero size limit.

Most of the arguments presented above carry for the nonlocal effective Lagrangian in the ILM. More specifically, the
mean-field version of (20) is now

1 N N N N
L= J/(iH—M)l//—EGS 66D 66 —0“D_o* —nD_n+n"D |

+Gy (17/ VF(i0) 6o/ F(id)y — i/ F(i0) 6“2/ F (i) —pr / F (i0) iy mr/ F (id)y +p \/ F (i0) iy> v 7/ F (i0) )

Here /7 (id) is a derivative operator acting on all of the
fields on its right-hand side. In momentum space, it
generates the pertinent form factors inherited from the
underlying quark zero modes. Also,

D -1+ G5<y‘/y+]—"(ia)a:l[]:(ia)w]> (25)

following from the mean-field resummation of the leading
tadpoles. The auxillary bosonic fields can be eliminated by
carrying explicitly the Gaussian integration, as in the zero
size limit. The astute reader may object that (24) may suffer
from abnormal characteristics and light propagation.
However, since \/F(id) vanishes rapidly at large |pd|,
this is not the case.

IV. LIGHT FRONT HAMILTONIAN

The effective light front Hamiltonian associated with the
mean-field Lagrangian (20) in the zero size limit, or (24) in

(24)

the finite size limit, can be derived using the canonical
rules. The light front Hamiltonian allows for the explicit
derivation of the boost-invariant meson spectra and their
corresponding light-cone wave function. We now detail
the canonical Legendre transformation from (20) to the
Hamiltonian, and quote the results for (24) at the end.
Given a fermionic field theory in Lagrangian form, the
corresponding symmetric energy-momentum tensor is

1
T = S iy oy + iy d'y] - L. (26)
The light front Hamiltonian is then
P~ = /dx‘d2xlT+‘
IS L
= [ dx°d X5 Wiy o w +wiy o_w] — L. (27)

Applying this to (20) gives

—0% + M?
P—:/dx—dlxlu',w}ﬁw
2i0_
Gs - - —17 —ay, )—1,7 a =5 =175 =5 ay =175 a
- [ dx &x [y D oy =y D ety — iy wD iy + wiy vy DY Wiy ty] (28)

or in momentum Space

P = [1en. [iea, L por via s k- )

2k

" / K], / g, / dp, / (1), (228 (p + k= g = DV (k.. p. 1). (29)
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The first term in the light front Hamiltonian corresponds to the kinetic term. The second term is the two-body interaction
relevant to two-particle bound states where the interaction kernel in the scalar and pseudoscakar channels can be defined as

G _ 7ok+M 7L-4d+M
V(k.q.p.l) = —7506+(k+ — g ) (k) <l2k+y+ + ﬁlzT v (q)

_ JLoPAM | 7o+ M
xy(p) <7l e Al i L280)

G Tk M s TG+ M
+ e (k" = g ") (k) <L2T irty’ + l}’57+l27 . (q)
_ y.o-p+M 7o+ M
XW+(P)(l2TW y + iy +LT w (1)

_ k+M ws¥1q+M
+2a_(k+—q+)y/+(k)<2ky T+ erT v (q)

- D -0 (B e s ey BT, )
x . (p) (77l -213; M iy Tyt + ipdy el 7o it M 27; M) w (D). (30)
Here
a,(P) = [1 iZQS/%%]_l. ], = %e(m (33)
The fermionic field in momentum space is defined as which sums over the positive k™ region for particle modes

and over the negative k™ region for antiparticle modes. For

B N it ik the ’t Hooft interaction in the zero size limit, the interaction
w7 xy) = [ [dk] w(k)e e (31) is generically of the form

It annihilates a particle in a u,(k) mode, or creates an  V(k,q, p,l)
antiparticle in a v,(k) mode, i.e.
P W = 3 Vogullag.p DB, Rk @eg ()b ()

$1,81,52,5%

;
Zu O(kt) +vy(=k)ci(=k)O(=kT). (32) (34)
The measure in momentum space is with
|
Vsl,sz,s’l .85 (k’ q.P; l) = —9s0y (k+ + q+)ﬁsl (k)vsz(q)@s’z (p)us’] (l) + gsa- (k+ + q+)ﬁs1 (k)i}/SUSZ(q)TJs/z (p)iysus/] (l)
+gsa_ (k" +q7)a, (k)tir’v,, (q) vy (p)tir ug, (1)
— gsay (K + gy, (k)ziy v, (q) vy, (p) ey uy (1). (35)

In the large N, limit, only the s-channel contribution of the ’t Hooft interaction dominates. Further details regarding the
interplay of the s- and #-channel exchanges can be found in Appendix B.
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These arguments carry to the mean-field Lagrangian (24) through the substitutions

V(k.q.p.1) - \/F (k) F()F )V (k. q,p.1) (36)
and
2 € -1
a.(P*) - [1 1 205 / dgi)ii Pf’j )ﬁ FOFP-1) (37)
so that

P = [wn, [led, S e wr v ears k- o

+ [, [ea, [@n, [@n.eos o +k-g- ) VFRFQFGFOVea.p.. (38)

The interaction kernel is now

V(k’ q,D; l) -
—a (kT

where the tadpole resummed vertices read as

+ e(l™ -1
a,(PH) = [u:z / déﬁ?%f@)ﬁ(})—l) .

Again, the astute reader may have noticed that for the
Lagrangian (24) in nonlocal form, the symmetric form of
the energy-momentum tensor may require further amend-
ment in the presence of the nonlocal form factors. This is
not the case, as we now explain. Indeed, boost invariance
and parity suggests the substitution

2PtP™ I3+ MP
lim \/F(k)F(P-k)— f( —= l;L_ ) (40)
As AgxX

The same substitution was developed in the analysis of the
ILM using the large momentum effective theory (LaMET)
[54,55]. The substitution (40) guarantees the consistency
of the two approaches. Ag is a parameter of order 1.
Remarkably, the same boost-invariant substitution with
As =1 was argued long ago by Lepage and Brodsky in
[51] in their analysis of two-body bound states on the light
front using Bethe-Salpeter vertices. Note that the substi-
tution (40) eliminates the metric component g_, from the
nonlocal form factors, with consequently no change in the
symmetric energy-momentum tensor component 77,
Finally, we note that it is straightforward to generalize
the Hamiltonian formalism to consider meson bound states
in the U-spin or V-spin sectors relevant for kaons. In the
case of kaons, the coupling constant will be replaced by

- % lay (k= g™ ) (kw(q)w(p)w(l) —a (k" = g (k) iy’ w(q)w(p)iry(l)

— g (k)tw(q)w(p)ey(l) + at (kT — g™ ) (k) iz*yw(q)w(p)it*yYw(l)]. (39)

gx = N.Gg, with a constituent mass matrix M =
diag(M,,M,) in the flavor basis, as the s quark is
significantly heavier than u, d quarks. This construction
will be detailed below.

V. CONSTITUENT MASS AND CHIRAL
CONDENSATE

The emergent chiral condensate (17) and constituent
quark mass (19) are frame-invariant scalars. Whether
evaluated in the rest frame or on the light front, they
should give the same results. We now show that this is the
case for the resummed tadpoles provided careful consid-
erations are given to the form factor arising from the zero
mode in the ILM.

A. Rest frame

The emergent constituent quark mass in the rest frame
follows readily from (19) supplemented by (8) in the mean-
field approximation. In Euclidean signature, we have

d'q  4M(q)
(27)*¢* + M*(q)

M(K) = m + 2957 (k) / Flg).  (41)

where g¢ = G/N, is the coupling strength for the 't Hooft
interaction. At low momenta kp < 1, the dynamical mass
M (k) is about constant M = M(0). This is consistent with
the 't Hooft interaction in the zero instanton size limit.

094024-7
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At high momenta, the dynamical constituent mass asymp-
totes the current mass m.
The formal solution to (41) is

M(k) =m[l — F(k)]| + MF (k) ~MF (k) (42)

for which (41) turns to a gap equation for the constant
part M,

m dk F(k)
M _1_ggg | 25 T 43
M gs/(2zz)4k2+M2 (43)

Solutions for M only exist for a critical gg, which in
ILM is fixed by the mean instanton-anti-instanton density.
Following the arguments in [55], we have dropped the k
dependence of the running mass in the denominator of (43),
thanks to the smallness of the packing fraction (1).

The chiral condensate follows similarly,

4
o) = = [ TS

4

It reduces the scalar mean-field expectation (o) =
(ww) /N, only in the zero instanton size limit. In the latter,
43)) and (44) are seen to diverge logarithmically, both in the
IR and UV limits. So the quark zero mode induced form
factor F (k) is key for a finite result.

In Fig. 1(a) we show the dependence of the constituent
mass M on the current mass, for different multifermion
couplings gg in the ILM of the QCD vacuum. In Fig. 1(b)
we show the scalar quark condensate dependence on these
parameters.

g v = 2.981 2% 2
pM
1.2

1.0
0.8

— gs/85§=0.7
— gs/gg=1.
— gs/g¥=13
— gs/g§=1.6
— gs/g5=19

0.0 .
0.00 0.05 0.10 0.15 0.20 0.25 0.300 m

(@

FIG. 1.

B. Light front frame

On the light front only the physical modes of the good
fermionic component y, are present after removal of the
bad component in the mean-field approximation. The
running quark mass on the light front is M(k™) ~
MF (k™) with the on-shell condition 2k=k* = k3 + M?,
where M is fixed by the scalar gap equation (43). In terms
of the physical modes for y, (43) can be rewritten as

dktd?k, e(k*
—1—295/ Le(k)

== e W (45)

2 a2
_ KM
2kt

assuming that F(k?) is free of physical poles. This is the
case of (9) after analytical continuation, except for spurious
branch points, which contributions can be disregarded in
leading order in the diluteness factor (1) as detailed in [55].

For the chiral condensate on the light front, the quark
propagator for the effective light front effective field (18),
with the bad component fully reexpressed in terms of the
good component, reads as

S(k) — [w_ "q . [W iyt

K —M(K2)? 2kF K —M> 2kt
(46)

The quark condensate in the light front signature is then

(fy) = —2N .M / dszk” )]-"(k‘). (47)

More specifically, the gap equation with the ILM induced
form factor is

m 4gs /oo z3
R 1 d -
i 71'2p2 V4

x [z(lo(2)Ko(z) = 11(Z)K1 (Z))’I“- (48)

&8 ry =2.981 77 7

2K

0.20

— 8s/8§=0.7
_— o
0.15F 8s/g5=10
— gs/g¥=13
0.10f, — g5/g%=16
— 8&s/8§=19

0.05/

0.2 0.4 0.6 0.8 10 P

(b)

(a) Quark constituent mass M versus the current quark mass m in the ILM for increasing strength of the ’t Hooft coupling gg

(from bottom to top), with the critical coupling g§'pry = 2.9817%p? and fixed instanton size p. (b) Quark condensate () versus the

current quark mass in the ILM.
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In the chiral limit, the constituent mass is nonzero only when the 't Hooft coupling is stronger than the critical coupling

9$rry> Which is defined as

Fray = 2507 [s 7 asletto(@ota) - @K )

Similarly, the quark condensate is explicitly given by

P (y) = dz

In the small size expansion, apart from the quadratic
dependence of p in leading order, the next-to-leading-order
dependence in pM is dominated by polynomials. In the
ILM, a slightly stronger coupling ¢gy = 2.9817%p?
(instanton density) is required to produce a quark con-
densate that breaks chiral symmetry spontaneously.

For comparison, we will also quote the results in the zero
instanton size limit for which 7 — 1. This case necessitates
the introduction of a sharp cutoff. For vacuum loops in the
zero-body sector, we will always enforce the on-shell
condition k*> =2k*k~ — k% and use the boost-invariant
and parity-even cutoffs,

V2KE[ < A~ 1/p.

More discussions on this point can be found in Appendix E.
In the two-body sector and higher, boost invariance
requires a different cutoff as we detail in Appendix F.

VI. LIGHT FRONT SPECTRUM

Now, we can use the light front Hamiltonian (38) to solve
the eigenvalue equation for the meson wave functions,

2

PIX.P) = ZX|X.P). (51)

In the valence approximation, which is compatible with the
mean-field analysis in leading order in 1/N,., the meson’s
state is dominated by valence constituent quark dynamics,

/ deL
VN Jo vaxx) (2z)°
XZ(I)X X,kJ_,Sl,Sz)bsl<k)C:2(P—k)|O>-

51,82

|meson X, P) =

(52)

~2.9817%p? (49)
2M2|Z( 0(2)Ko(2) =11 (2)K:(2))'*. (50)
|
The wave function is normalized by (P|P') =

(2z)32Pt 8 (P - P'),

1 &k, ,
Adx/WZ@X(x,kL,s,,sQﬂ =1. (53)

51,52

A. Boost-invariant bound state equations

For two light flavors (u, d) with equal current masses,
we expect light scalar and pseudoscalar mesons o, o5, a0,
and ngt’o. A heavy scalar o meson is commensurate with the
order parameter of the spontaneous breaking of SU(2),, x
SU(2), to SU(2),. The broken SU(2), symmetry gen-
erates near massless Goldstone modes 77 with the valence
quark assignments

1 ua-aa).

1 -
o =——(un+dd),
V2

V2
(54)

Both of these channels are strongly attractive in the ILM. In
contrast, the ILM interaction in the pseudoscalar meson o
(") and flavor nonsinglet scalar partners ﬂsi'o is strongly
repulsive. They are unbound both in the rest frame and on
the light front. Irrespective of binding, the generic light

front vertices @y in (52) for all these mesonic channels are

®, (x.k,.51.52) —¢a<x,mas,<k>%vh<P—k>,

@, (v.ky.51.5) =¢65<x,mas,(k)%iyﬁvsxp—kx
®3(x,k,51,5,) :qs,,(x,kl)asl<k>;—;iy5v52<P—k>,
<1>::5<x,ki,s1,sz>=¢ﬂ5<x,kl>uﬁ<k>j§v52<P—k>. (55)
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For convenience the spin-flavor part is made explicit using the light front spinors u, (k) for a particle spinor, and v (k) for an
anitparticle spinor, with the remaining ¢y a scalar-isoscalar wave function. The spinors are explicitly given in Appendix A.

Inserting (55) in (52) and then in (51), and unwinding the various contractions from the 4-Fermi interaction terms, yields
the boost-invariant eigenvalue equation

K2 + M? d q
mg(q)x(x,kL,Sl,Sz) :LT®X()C,]€J_,S1,S2 \/ P k / \/27 J_
XY Vi s (k. P =k, q. P - q)fbx(y, 41,88 )W F(q)F(P - fI) (56)

with the ILM interaction kernel Vy ¢ ¢
Vs.s’,sl,sz (6], (]/, k, k/) = _GS [a+ (P+)ﬁsl (k>052(k1)@5’(q/)us(Q) —a_ <P+>ﬁs1 <k>i}/svs2(k/)l_)s’(q/)iysus (Q)
=+ a; (P+)ﬁs1 (k)Tai75 Vs, (kl)@s’(q,>7ai75us (Q) —a_ <P+>ﬁsl (k)T”USZ (k,>1_]s’<q,)7aus<qn' (57)

Channel by channel, the explicit form of the kernel is

sz,s’,s],sz(q’ q/’ k’ k/)cDa(yv q1,S, S/) = —gsay (PJF)TIA[(Q(+ M)(ql - M)]¢O’(y7 QL)ESI (k)ltr(l)vsz (k/)

5.8

— _dgga, (P (‘“ - (yy = M )my, 0., (K)o, (K. (8)

D Vv (@ 4 K )P (v, 91, 5.5") = gsa (PO)Tr[(g+ M)(d + M), (v, 1), (k)ir (D)o, (K)

5,8

2 2
— dgsa (PY) (%) Bos (v 01 )ity (R)ir v, (). (59)

D Vivsnl@d k)@ (v.q1.5.5") = gsa (PT)Trl(g+ M) (' = M)]dbe, (3. 1), (k)7 te(zc") v, (K)

5,8

— dgga_(P") (qL - (yy = LM )4»,,5 (3. 1)ty (K)ev,, (K. (60)

D Vs (@.d K K)PL(y. g1 5.5") = —gsa, (P)Tel(g+ M)(d + M)l (y. . )iy, (k)ir’ Puu(ee’)v,, (K)

s,

2 2
q1 +M _ .
— —tgpa, () (L ), (Wi, (), (61)
The corresponding eigenvalue equations for the scalar-isoscalar wave functions ¢y are

mip,(x.ky) = x—¢o’('x ki)

29s“+ W/ quL ( L (yjy)2M2>¢a(y,61L) F(q)F (P -q) (62)

Yy

ki + M?
mg by (x. ki) = 74505 (x,ky)

a_ 1 1 2
ng ) FOFE D / dq (q *M)qs%(y,qi) FQFP—q). (63

2z \ vy
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kz 2
m7215¢ﬂ5 ('x’kl) +M ¢ﬂ5 ()C kJ_)
) 2 S\2 172
+2W:’/‘_}J\/7f(k)}"(P—k / ‘“ﬂ <‘ﬁ+<y_y)M)¢,,5<y,qu F@F(P-q), (64)
XX yy
k2 +M2

mag(x, k) = quﬂ(x ki)
a 2 2
- 205 * D JFOFE =B / d‘“ (‘“M)qz,(y G OVFDFE—q).  (65)

Yy

B. Meson masses

The generic solution to the boost-invariant equations (62)—(65) is

_ [ Vy(y.q1)
1= [Cay [ g, I F ) PP g), (66)

where for each of the mesonic channels we have for Vy in the numerator

2 (v M2
+ éf,‘;s a.(PF) (w) scalars o, 75

Vy = (67)

F éfgz a.(P") (#) pseudo scalars 7, o5

For the scalar ¢ and pseudoscalar z channel, the potential is negative and a bound solution exists, while for ¢5 and 75, the
potential is positive and a solution is ruled out in the mean-field approximation.

To deal with the coupling renormalization a(P") induced by the bad component through the constraint equation, we
separate the k™ integral into an integral in the physical range 0 < k* < P where the quark momentum can be associated
with the momentum fraction x in the bound state, plus an integral outside the physical range k™ < 0 or k™ > P*. The latter
contribution can be identified with a similar contribution in the mass gap equation

+ 2 € +
(P! =122 | dlzz:)f L) FwFE -k
_ 295 0 + o 0 N 1 )
1i(2ﬂ)3/d21qu dk F(k)F(P—k) /_de s FRF(P k)}

4 éi; / 2k, < A "t k2+ FOF(P —k) - /_ : dk+€(::>f2(k)>. (68)

When the integration runs outside of the physical range of the two-body bound state, the virtual quark momentum will
overtake the two-body bound light front momentum P logarithmically. For fixed P* but large, the difference between
F (k) and F (P — k) is then negligible. Hence, in the second part of the integral in (68) where k™ runs outside 0 < k™ < P*,
we have replaced F (k).F (P — k) by F2(k), which gives a contribution identical to that in the mass gap equation (45). With
this in mind, (68) simplifies to

(69)

5ok [dky [ dxy F(k)F (P~ k)
(P+)_1 == { 4 )
2 -5 ohs [ dky J§ dx L F(k)F (P~ k)

where x = k™ /P is the momentum fraction of the quark inside the bound state.
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1. Scalars

For the scalar type particle ¢ and 7§, the mass eigenvalue equations are

0=a.(P*)"

m

M

gs y y)2M2)/yy _

m{21_ —(v—7)2 Zy-
”ﬂk@ffmk a+;g@%%{ﬂﬂmfw—m

m 2 mi —(1=(y=3))M?/yy
21 2 fodyfdij_[—y—ly—l— g iy }f() (P-q)

m

2 —

= é;ﬁ’ fol dy fd2qL [W] F(q)F(P-gq), =msmeson.

m2—4M?
295 fO dy fd2ql {W%} f(q)]:(P — q), o meson

(70)
m,z,S —4M?

The boost-invariant property of the form factor guarantees the cancellation between the integral [ dy% and [} dy ﬁ

2. Pseudoscalars

For the pseudoscalar type particle o5 and 7%, the mass eigenvalue equations are

1 295 / / (41 +M)/yy
0= '+ F(q)F(P-
P Gy oM
m2
2= pms fody [ dq. [‘ 5T }’5’_m,2,5—(qsi+_M2)] Fla)F(P=q)
2
Mt ng = Jo dedQC]L{ w"’m}]’-(qv—w—‘ﬂ
2 _%_ o fo dy fd q1 [m]f(fI>f(P— q), o©smeson
= (71)
2
m 2gs fo dy [d?q, {m] F(g)F(P-q), 7 meson.
3. 6 meson
With the transverse cutoff regularization from the ILM, the mass eigenvalue of the ¢ meson is
/d/d i L O
M y q1 ym ql T M2) Zr\z Z:ﬂm
25VVy
== (4M? — m3) / dy/M [zF’( a8 mZ < 4M>. (72)

245y

In the chiral limit m = 0 of the scalar-isoscalar ¢ meson is a threshold state, with mass m, = 2M. The same threshold mass
has been observed for the standard ILM in the rest frame, as it should be. For m # 0, since the integration in the second line
of (72) is always positive, the ¢ meson unbinds in the ILM. In the mean-field approximation and away from the chiral limit,
the ’t Hooft interaction in the ILM is not strong enough to bind ¢ = iiu + dd.

4. 65 and n5 mesons

The same observation applies to the scalar-isovector x5 and the pseudoscalar-isoscalar o5 channels. The eigenvalue

equation for 75 is
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2 M T4 / / da1 Lymﬂs - _Qiﬂf MZ)] (R _ymme

VAR
2 (4M?* — m2, / dy / — ———[zF'(2)]*, mk, < 4M? (73)
4@2"5
and the eigenvalue equation for 75 is
2-— d d F'(z))*
e L e
SVYY

—— B [y [ a p%kFU] (74)

2i5Vyy

Regardless of the chiral limit, 75 and 65 cannot be bound in the mean-field approximation of the ILM on the light front.

5. m meson

The interaction induced by the ILM in the pion channel is very strong and attractive, leading to a triplet of massless
Nambu-Goldstone modes 7. The pion decay constant in the chiral limit is solely given by the zero mode form factor on

the light front
VN.M /1 /00 5 1 1/2
= d ki | 5=——— | F(k)F(P -k
T X 0 X 0 1 ki+M2 ( ) ( )

V2
\/_M [/ dx//) dzz} (F'( ))] \/\/_—f\/i-l-(?(p). (75)
sV

In the small p expansion, it can be defined as

1 C
fz= EMZN In <p2M2)

where C = 0.361 is the constant determined numerically with the input parameter 1¢ = 3.285, in total agreement with the
result obtained also in the ILM using the large momentum effective theory [54]. The pion mass is a solution to the
eigenvalue equation

fx

%7 / dy / dﬂ{yym '(’Z - Mz):| [(zF" (Z))]z—zg JEE

/ / L PR, mi <4 (76)

25y - 4,12

with clearly a massless pion in the chiral limit. Away from the chiral limit and with a nonvanishing constituent quark mass
M, the pion mass following from (76) can be assessed in perturbation theory, with the result

2m

mz = 7 1wl + O(m?), (77)
where the quark condensate
|(pw)| = () + (dd)| = —= (M — m)
9s
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2s=1.844 g¥ 1y, p = (630 MeV)™!
pmy
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FIG.2. Change of the pion mass with the current quark mass m,
for a fixed fermionic coupling gg = 1.844¢¢,;y and instanton

size p = (630 MeV) ™.

is given by the gap equation. Equation (77) is the expected
Gell-Mann-Oakes-Renner relation for Nambu-Goldstone
modes. In Fig. 2 we show the pion mass solution to (76) in
the ILM on the light front, as a function of the current quark
mass m, for the fermionic coupling g5 = 1.844g¢'pyy and a
fixed instanton size p = (630 MeV)~L.

The parameters p, m, g, Ag in the mean-field approxi-
mation of the ILM are fixed as follows: the instanton size
is set at its mean canonical value p = 0.313 fm; the light
current quark mass is set to m = 16.0 MeV; the multi-
fermion coupling is set to gg = 1.844¢¢%;y to give a
constituent quark mass of M = 444.8 MeV and a chiral
condensate |(yy)|'/3 = 337.9 MeV; the cutoff parameter

is set to Ag = 3.285 to give a pion decay constant fRIV =
130.3 MeV and pion mass mR"Y = 135 MeV, very close to
the empirical results. In Fig. 2 we show the change of the
pion mass with the current quark mass. We note the rapid
vanishing of the mass in the chiral limit, for a nonvanishing
constituent quark mass M and a chiral condensate, as
expected for a Goldstone mode.

C. Pion DA from LFWF

In the mean-field approximation to the ILM, the generic
solution for the valence light front wave functions (LFWFs)
is generically of the form

1 Cy

2 2
V2XX 2 _ ki tM”
my

xX

dx(x.ky) = F(k)F(P—k) (78)

with the constant Cy fixed by the normalization (53).
Alternatively, the LFWFs can also be deduced from the
quark-meson interaction amplitude (by integration over k™)
in which case Cy corresponds to the effective quark-meson
coupling gy in the interaction, i.e. Cx = —/N_.gx. The
minus sign is chosen to ensure a positive-definite LFWF.

Since of all the light scalars and pseudoscalars made out
of u, d light quarks, only the pion is strongly bound in the
mean-field approximation (the sigma meson is a threshold
state), we now construct the pion DA using the pion LFWF.
More specifically, using the pion DA as defined through the
forward matrix element of the twist-2 operator on the light
cone,

Ba(x) = =i [ G OO WO, ) (P) (79)

with the normalization fixed by the pion weak decay constant

Ol %W(F» — if.P", (80)

we obtain

Cr

por) = VM [ 4y

222 S txxml = (K + MP)

F(k)F (P —k). (81)

The on-shell normalization (80) fixes the dependence of the pion weak decay constant f,(m,) on the pion mass m,,

Jo dx J§° di (W) F(k)F (P —k)

(82)

with f, given in (75).

2 2 1/2
Ji dx 52 i g s F O F (P k)] [ Ji dx fio di: (gt ) F (O F (P - k)}

1/2
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In the zero instanton size approximation with a fixed transverse momentum cutoff |k, | < A, the pion DA amplitude is a

step function

- \/ MC _ A2 m,,—>0 \/ M A2 1/2 _
dr(x) = BV Z60(xx) In 1—|—M2 2 N In 1+W 0(xx) (83)
in agreement with a result established first in the local NJL model [23]. The pion weak decay constant is
VNMC, |1 A? AM? — m2 1
fr=—"—="|zIn(1+— |- M an~! (84)
\/577;2 2 M2 m,zr 4M2—m,2,
4(M2 + Az) m%t 1 1 m,[—>0 /N M 1 Az /
5 tan — +— (85)
2 4(m +A NGY: M
In the ILM with a finite instanton size, the pion DA is
VN .M b
¢ﬂ(x) = \/j > Cy dzpzm,z[ , (F/<Z))4 (86)
4 2/1\/?; a2
which simplifies in the chiral limit to
VN M 0
(X)) =—-—"="C, dzz*(F'(z))*. 87
b (x) N L 422 (F'(2)) (87)

2,/x%

In general, we note that the induced form factors 1/ F (id) give rise to extra contributions to the Noether axial vector current,
and possibly the axial source current in (79). Indeed, the semibosonized Lagrangian £ in (24) with the minimal substitution

: . S5.aAa
l&M—maﬂerrA”,

where Aj is a local external flavor gauge field, yields the conserved SU(2), current in the chiral limit,

oL

A, —l//y”r l//—l—m//\/]-" 16

0=6

with /F(x)" =4 \/F(x). From (40) it follows that the
extra contributions in Sec. VIC are absent for the leading
twist-2 operator on the light front. Therefore, the Gell-mann-
Oakes-Renner (GOR) relation and the normalization of the
pion DA are unchanged. The results (86) and (87) are in
agreement with those derived from the ILM using the large
momentum effective theory, in the dilute approximation [54].

D. ERBL evolution of the pion DA

The evolution of the pion DA is governed by ERBL
equation

f:o ( Qz))y"/ﬂ(’ci/z(x—x) (89)

a,(Q5)

a\/F(io)y + &y /F(id) v/ F(i0) v

(88)

which is an expansion in Gegenbauer polynomials C'(z)
of increasing powers, with anomalous dimension

n+1
4 <
=G| 4 ) @)
where Cp = %
Az
as(Q) = ﬁ,
poin(32)

Bo=4N.—3n;, and Agep =226 MeV. Due to the
orthogonality of the Gegenbauer polynomials, the initial
coefficients can be evaluated by
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(a) The pion DA with different pion mass m,, in the zero instanton size limit. (b) The pion DA with different pion mass 7, in the

ILM with finite instanton size p = (630 MeV)~!. (¢) The Efremov-Radyushkin-Brodsky-Lepage (ERBL) evolution of pion DA in zero
instanton size limit. (d) The ERBL evolution of pion DA in RIV with finite instanton size p = (630 MeV)~!.

() = 5ot

1 3/2 -
oty A dyCY(y = 9)d(y, Qo).

)

In Fig. 3(a) we show the pion DA versus x in the zero
instanton size limit for fixed fermionic coupling gy =
1.32g¢'\y. and different current quark masses. In Fig. 3(b)

fermionic coupling gg = 1.844g¢;y and different current
quark masses. There is a dramatic change at the endpoints
following the emergence of the instanton induced form
factors from the quark zero modes. In Fig. 3(c) we show
the ERBL evolved pion DA in the zero instanton size limit
and in Fig. 3(d) the same evolution in the ILM. The initial
scaleusedis py = 0.313 GeV tou = 6 GeV. The pion mass

we show the same pion DA versus x in the [LM for a similar 15 "z = 135 MeV.

:() /[ fr

¢=)/ fr
15 Lol
15
——— NIL, p=6 GeV
——— NIL+RIV, y = 6 GeV ——— NIL, p=2 GeV
o Kock et. al, p=6 GeV 1.0 NIL+RIV, p =2 GeV
{ ————— asymptoticQcD | /2 S/ NN T DSE (2015)
E791 dijet ——— MSULat (2020)
05 05
00 ) 02 04 06 08 10 % 00
(@)
FIG. 4. (a) Pion DA in the ILM with zero instanton size (NJL-like) as given in (99) (solid blue curve), in the ILM with finite instanton

size as given in (103) (solid orange curve), after ERBL evolution from gy = 0.313 GeV to u =6 GeV. The pion mass is
m, = 135 MeV. The results are compared to the DAs obtained in [54,55] (green solid curve) by applying the LaMET in the
ILM, also evolved to 4 = 6 GeV. We also show the asymptotic pQCD result of 6xX from [56] (dashed red curve). The measured DA
(purple) is from z~ into dijets via diffractive dissociation, with invariant dijet mass of 6 GeV [57], as extracted and normalized in [58].
(b) The same evolved pion DAs from (99) (solid blue curve) and from (103) (solid orange curve) now evolved to only 4 = 2 GeV are
compared to recent lattice results using LaMET (purple band) from [60]. The DSE curve (dashed black curve) follows from Dyson-
Schwinger equations with Bethe-Salpeter wave functions [59].
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In Fig. 4(a) we compare the ERBL evolved pion DAs to
u =6 GeV with the QCD asymptotic result of 6xx [56]
(dashed red curve) and the measured pion DA by the E791
dijet collaboration [57] (purple points). The data are from
#~ into dijets via diffractive dissociation with invariant
dijet mass 6 GeV [57], as compiled in [58]. The evolved
DAs are for zero size insantons (blue solid curve), the
current light front analysis of the ILM (orange solid
curve), and the LaMET analysis of the ILM in [54,55].
In Fig. 4(b) we compare our pion DA to the Dyson-
Schwinger result [59] (dashed black curve) and the
more recent lattice result done by the lattice group in
Michigan State University (MSULAT) using the LaMET

procedure [60] (filled purple band). The evolution is now
from ug = 0.313 GeV to ¢ = 2 GeV. Our evolved results
are for zero size instantons (solid blue curve), and the ILM
(solid orange curve).

VII. PARTON DISTRIBUTION FUNCTIONS

In general, the partonic structures in a hadron are related
to pertinent leading twist matrix elements, following
factorization of various observables. The PDFs are
Fourier transforms of fermionic (gluonic) correlators at
fixed separation on the light cone. They follow from the
LFWFs. More specifically, the quark twist-2 PDF in a
bound meson state, is given by

ax(x) = / A e (Pl (0) - W0, & Yy ()| P) = / KL\ (ks o) (92)

w 4r

while the antiquark PDF is given by

ax(x) = / A i e (Pl (0) W0, E Yy (E)|P) = /

w 4r

Here

(27)?

2k,

W@X()‘c, ks, s")|?. (93)

W(E,0) = exp {—ig A : dﬂ_fﬁ(ﬂ_)} -1

is a gauge link, which will be set to 1 throughout. For the meson PDFs, the quark and antiquark distributions are related by

charge symmetry

Gx(x) = qx(x) = gx(1 = x) = gz(1 —x).

Also, the PDFs are normalized to 1 by charge conservation

X(P)p 57 yIX(P) = 1. (94)

A. ¢ and pion PDFs

The ¢ PDF is
1 [« 1 C k2 + (x —x)°M?
_ 2 o e kK)F(P —k).
q()’('x) 4”2A Ly . _ki-q—_M2 X F( )}—( ) (95)
Also, the pion PDF is
1 fo 1 2k1 +M?
=— — P—k).
) = 5 [Tkt | e TWFP-H) (%)

In the chiral limit, the normalization constant can be determined by the cutoff function induced by the nonlocal quark
form factor as well. Thus, the normalization constant can be related to the pion decay constant f, and the constituent

mass M,
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S 1
Co=-2n | dd ———F(k)F(P-k
. ”/o ey (k)F (P — k)

_ _VANM (97)

fx

Again, the minus sign is chosen to make the wave function
positive-definite for convenience.

In the zero instanton size limit, we can use the same hard
cutoff described in Appendix E, with the result for the
sigma PDF as

where

A? A M-
—C, =2x |:1I1 (1 +W) + ZMtan‘l X:| .

Recall that the sigma meson is only bound in the chiral limit
with m, = 2M. For comparison, we note that in the same
approximation of zero instanton size, the pion PDF is

c: o A?
gs(x) = 4—”29(xx) In (1 + m), (98)
|
2 T2 A2
arl2) = 5007 | o
m,—0 C]Z[ A2
— m&(xx) In (1 +W>’

where in the chiral limit

A2\ 1-1/2
C, = —2;:{111 (1 +W>} .

This result agrees with the result in the zero instanton size
limit p — 0 in [54,55] using the large momentum effective
theory. It was first established in the NJL model in [21].
However, it is at variance with the endpoint expectation
fon(x > 1,0%) ~(1-x) at Q> - oo, from the Drell-
Yan-West result [61,62]. The discrepancy is expected to
wane out with QCD evolution, which depletes the large-x
part of the PDF as we show below.

oLl _ 'y + 65 \/F(i0) \/F(id)y + 6 / F(id) / F(id) y,

OV |v.rco

n M? — xxm>
(M? — xxm?2)(M? + A* — xxm32) M? + A% — xxm>

(99)

For a finite instanton size, all integrations are tamed by
the induced zero mode form factor \/F(id) discussed
earlier. The ensuing nonlocal interactions are expected to
contribute to the currents, hence to the twist-2 part of the
PDFs in general [63,64], as we noted earlier for the axial-
vector current in Sec. VI C. For the vector current, the extra
contributions follow from minimal substitution,

id, = i, +V,, (100)
where V, is the external U (1) flavor gauge field. The vector

current for the nonlocal semibosonized Lagrangian (24)
follows from the Noether construction in the form

(101)

d

where again, the derivative on the functional form of the form factor is defined as \/F(x)' = £ | /F(x). Now we recall that

dx

in the two-body channel, the boost-invariant substitution (40) is only dependent on the relative transverse momentum of the
pair. From (101), it follows that the leading twist-2 light front current is not modified, leaving the chiral relation and
normalization of the twist-2 meson PDF and DA unchanged.

With this in mind, the sigma PDF in the ILM in the chiral limit is

(F'(2))* (102)

1 [e 1 C; [ 2
- [Tarc FO)F(P—k :—"/ dz s
S A L e WP =50 | S a T s

2AgVxx

while the pion PDF, in general, is
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C2(kX + M?)

- 2 kYF(P—k
0:0) = g [T S s FOF(P )
C2 [o z
=22 | iy QL
2% (4,1§ -z )

In the chiral limit,

m;—0 C,2[ o0

Gz(x)=— 32 [ dzz3 (F'(2))*, (103)
T zagx/x_fc
with the normalization constant
1 00 -1/2
C. = —\an [ / dx / ) dzz3(F’(z))4]
0 2/1/;\/%}
=—\/2NM/f,~—7.993 (104)

with M =421.5MeV, p=0.313fm, and f, = 130.3 MeV.
At the endpoint x,x =0, the asymptotic form of
F(z) ~ 1/4z> dominates the integral. The endpoint behavior

of the pion PDF in the ILM at a resolution of Q% ~ 1/p? is
softer than the one expected from the Drell-Yan-West relation
at much larger resolution [61,62] with

C2 108/1}92
~ ﬁpleu

qz(%) (xx)°. (105)

In Fig. 5(a) we show the sigma PDF in the chiral limit, with
a threshold sigma mass 2M = 418.3 MeV, in the instanton
zero size approximation. The PDF is sharply picked at x = %
and does not vanish at the endpoints x = 0, 1. In Fig. 5(b) we
show the pion PDF for different current quark masses, also in
the zero instanton size approximation. In Fig. 5(c) we show
the sigma PDF in the ILM, with a much sharper distribution
at x = % that reflects on the threshold state, in the zero
instanton size limit. In Fig. 5(d) the pion PDF in the ILM is
shown for different current quark masses. The instanton
induced form factors cause it to vanish at the endpoints, with
little sensitivity to the current quark masses.

gs=1328 g§\oL

— m=0 MeV, m,=0 MeV

—— m=5 MeV, m,=85.9 MeV
—— m=10MeV, m,=120.0 MeV
— m=15MeV, m,=145.6 MeV

L
0.2

s M
0.6 0.8

(b)

s
0.4

gs=1.844 g§' RIV

— m=0.0 MeV, m,=0.0 MeV

— m=5.0 MeV, m,=74.8 MeV
— m=10 MeV, m,=106.3 MeV
— m=15 MeV, m,=130.7 MeV

gs = 1.328 g% L » my = 4183 MeV 9x(X)
90 104}
3.0 1.02
25 1.00
2.0 098]
5 0.96
1.0
0.94 1+
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0.92
‘ ; ; ; -
0.2 0.4 0.6 0.8 1.0 0.0
(@
x)
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1t]g(x) 14l
12}
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6
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4
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2
0.2
0.0 0.2 04 0.6 0.8 1.0
©
FIG. 5.

0.2

0.4 0.6 0.8

d

(a) The o PDF in zero instanton size and in the chiral limit, with a threshold ¢ mass 2M = 418.9 MeV. (b) The pion PDF with

zero instanton size, but with different pion masses varying with quark current masses. (c) The o PDF with the finite instanton size
1/p = 630 MeV, with a threshold ¢ mass 2M = 418.9 MeV in the chiral limit. (d) The pion PDF with the finite instanton size

p = 0.313 fm with different pion masses.

094024-19



LIU, SHURYAK, and ZAHED PHYS. REV. D 107, 094024 (2023)

m,=135 MeV m,=135 MeV
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f 1.0F
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4 — u=0313Gev 08| — §=0313 GeV
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FIG. 6. (a) DGLAP evolution of pion PDF for zero instanton size and in the chiral limit. (b) DGLAP evolution of the pion valence
quark momentum distribution for zero instanton size and in the chiral limit. (c) DGLAP evolution for the pion PDF with a finite
instanton size p = 0.313 fm. (d) DGLAP evolution of the pion valence quark momentum distribution with a finite instanton size
p = 0.313 fm in the chiral limit. All evolutions start from the initial scale py = 0.313 GeV.

B. DGLAP evolution with the available experiments in [38,65,66], we evolve the

In the ILM the partonic distributions are defined at a PDFs in (99).and (103), starting from say iy = 313 MeV, a
factorization scale yo which is smaller than the inverse size ~ nonperturbative scale that is not large enough to resolve the
1/p ~ 630 MeV of an instanton. To compare our result instantons and anti-instantons in the ILM. The PDFs are

X gz(%) X g(X)
04 - 05 } {
i N\, ——— NIL, u=4 GeV {
0al P 04} — NIL, u=2GeV
: I E\ ~——— NIL+RIV, u=4 GeV
—— NJIL+RIV, u=2 GeV
2 Kocket. al, y=4 GeV 0.3
02l ) —— Kocket al, u=2 GeV
4 \. = E615 (1989), u=4 GeV o « LCS, u=2GeV
MYE me——- E615 (2020), evol. u=4 GeV
041} \
NS 0.1
02 04 06 08 10 02 0.4 06 08 10 *
(a) (b)

FIG. 7. (a) Pion parton momentum distribution function for zero instanton size (solid blue curve) and finite instanton size of
p =0.317 fm (solid orange curve), both of which are evolved to ¢ =4 GeV with a pion mass m, = 135 MeV. The results are
compared to the those extracted from the ILM using the LaMET (solid green curve) [54,55] also evolved to 4 = 4 GeV. The E615 data
from 1989 (red) are from [65], corresponding to a fixed-invariant muon pair mass n1,+,- > 4.05 GeV. The improved E615 data from
2020 (dashed purple curve) are from [66] using the original E615 experimental data from [65]. (b) The same pion parton distribution
functions as in (a), but now evolved to u = 2 GeV, for comparison with the lattice data using cross sections (LCS) (red) from [67].
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evolved to 2 GeV for comparison to also lattice data [67].
Since only the valence quark dynamics is retained in our
analysis, we will only keep the quark splitting in the
DGLAP evolution. The reader may be concerned that at
such a low energy scale, an altogether nonperturbative
evolution of the type discussed recently in [16] may be
required. This point will be addressed in a sequel. Here, we
will only implement the perurbative DGLAP evolution for
a qualitative comparison.

In Figs. 6(a) and 6(b) we show the DGLAP evolved pion
PDF in the zero instanton size approximation, starting from
the initial scala gy = 313 MeV up to 4 GeV. In Figs. 6(c)
and 6(d) we show the same DGLAP evolution for the
results in the ILM, with a finite instanton size
p =0.313 fm. In both cases, the pion mass is fixed at
its physical value m, = 135 MeV.

In Fig. 7(a) we compare our DGLAP evolved results
with the original E615(1989) data [65] (red) and the
subsequent E165(2020) improved analysis [66] (dashed
purple curve) at y =4 GeV. The data are compiled from
measurements of an invariant muon pair mass
my+,~ 2 4.05 GeV. Our evolved results are for the zero

|

=w(id =My +—-|

with the tadpole resummed vertices
. 1

by = . (107)
1+ <W ~w>

G is the corresponding 't Hooft coupling strength in the
Kaon channel. The quark constituent mass is now matrix
valued M = diag(M,, M), where u denotes the lighter
quark u or d, and s denotes the heavier strange quark.

A. Gap equation
In the U-spin (V-spin) sector, the effective momentum-
dependent form factors /F (k) for each flavor will also
be introduced to the interacting quark fields. Effectively,
the quark fields in the ’t Hooft interaction terms will be
dressed by a form factor,

F(i0)y (). (108)

w(x) —

The assignment suggested on mass shell in (40) that
enforces boost invariance in the two-body state implies that

F.G0) 0

Flig) > ( 0 F.i0)

>. (109)

GK_ ALy AL s Al _. N
gDy — gt w DRy — Wiy DR wivdy + iy 'y DL wiy ty]

instanton size (solid blue curve) and finite instanton size in
the ILM model (solid orange curve). They are also
compared to the extracted pion PDF from the ILM model
using LaMET [54,55] (solid green). Our results are evolved
from an initial scale py = 313 MeV below the instanton
resolution scale 1 /p = 631 MeV to a final scale of 4 GeV.
In Fig. 7(b) our evolved results are compared to the LCS
lattice results [67] (red) at 4 = 2 GeV. All of the theoretical
results are also evolved to the same scale.

VIIL Ny =2 INSTANTON-INDUCED INTERACTION
WITH UNEQUAL MASSES

To construct the kaon partonic distributions, we need to
address the three flavor case with u, d, s quarks. For
simplicity, we will consider the reduced mass case with
light m, = m, and heavier m,. In this case, the 2-flavor
kaon sectors of SU(3) with U spin and V spin are amenable
to the same light front effective Lagrangian (23). The only
difference is the large difference in the assigned current
quark masses. More specifically, we have

(106)

[
The nonlocal ’t Hooft interaction given by the momentum-
dependent form factors yields momentum-dependent gap
equations with running constituent masses M, /S(kz) for
each flavor,

M u/s (kz)

= Mu/sj:u/s(kz) = Mu/s[(zF,(Z))z] kp

=75

(110)

In the low momentum regime (kp < 1), the dynamical
constituent masses are constant and a solution to the gap
equations in the mean-field approximation reads

M;—m dk*td’k, e(k") _,
s N — k2
M, K / 2z} Kkt o Tull):

M,—m dk*d*k | e(k")

L' _ 2(k2). 111
MS gK/ (271_)3 k+ FS( ) ( )

Since the two-flavor quark doublet carries different masses,
both (py) and (pzly) receive contributions from the
explicit flavor symmetry breaking. In the mean-field
approximation, they amount to different scalar condensates

) = -, [P A 7 ),
+ 2 c
(ss) ——NCMS/% (]ﬁ)ﬂ(kz), (112)
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with

(55) = 5 ((7w) — ()
(i) = 3 () + i) (113)
|
My—mg dk*d’k €(k+)
i, =2 e
M,—m, dktd*k e(k+)
M, 29x / (zﬂ)3l

Using the result in (E2), the solutions of the gap
equations in zero size limit are

Ms_ms_gKAz 1— Mlzt le M%{
M,  2x? AT AT Az
M,—m, geN [ M7 M M;
M, 222 | A2 +A21 A (113)

In the chiral limit m,, = m, = 0, the constituent masses are

equal. The nonzero solution in the chiral limit exists only
When gy is less than gy = ZA, , no quark condensate will
be formed in the chiral limit. However, as long as the
coupling gr is strong enough, chiral symmetry is

for sufficiently strong couplings larger than gy =

0NV = KA VE= )|

O(A/V2—k")0 (A/\fz—k—)'k

To accommodate the effective dynamical mass with the
light front formalism, we have to analytically continue
the Euclidean momentum dependence k? to the Minkowski
space. The argument of the form factor will become 2k k™.

For simplicity, we first analyze the gap equations and
quark condensates in the zero instanton size limit.
Using the boost-invariant cutoff A scheme discussed in
Appendix E, we have for the gap equations

2 2
R
2%

(114)

2 a2t
kS M3
2kt

dynamically broken, with a nonvanishing scalar quark
condensate, in the chiral limit. The constituent mass ratio
of two quarks M;/M, will be controlled by the coupling
gx and the two current quark mass m,, m,. The quark
condensates for two flavors are

o, (),

= T - .
A3 47> \ A Az—’—/\2 A?

< 2 2 2
B (), 0
A 4 A A

For a finite instanton size, the integrals in the emergent
constituent masses and chiral condensates are naturally
regulated by the boost-invariant cutoffs given in (110).
More specifically, the mass gaps are given by

Moo 3 [ dzzﬁi%m lo(2)Ko(2) = LKL ()
et 2 [ dzzzzj;TMg 2(lo()Ko(2) — L (@)K () I, (117)
and the scalar condensates are given by
p(au) = e deZszZIZ( 0(2)Ko(2) = 11 (2) K, (2))' %,
P’ (5s) dzz 7 |2(Io(2)Ko(2) = 11 (2)K, (2))'*. (118)

In Figs. 8(a) and 8(b) we show the change of the constituent # quark mass M, and the constituent s quark mass M with
the strange quark mass m,, for different multifermion couplings gk, respectively. The current u quark mass is set to zero. In

Flg 8(c) we show the ratio M /M, for fixed gx/g¥ but varying m,

. In Fig. 8(d) we show the ratio M;/M, for fixed

= 12.7 MeV and varying gg. All Figs. 8(a)-8(d) are for the zero instanton size limit but a finite transverse cutoff A.
Figures 8(e)-8(h) display the same results for the ILM with a finite instanton size p.
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FIG. 8. (a),(b) The constituent masses M, ; versus the strange quark mass m; for different couplings gx /g% and fixed m, = 0 in the
zero instanton size limit. (c),(d) The constituent mass ratio M, /M, versus m/m,, for fixed coupling gx /g% = 1.418 with varying m,,
and fixed m, = 12.7 MeV with varying gx /g% in the zero instanton size limit. (e)-(h) The same constituent masses as in (a)—(d) in the
ILM with a finite instanton size.
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(a) The ratio of the quark condensates (5s)/(au) versus m,/m, for fixed gx /g% = 1.418 and different m,,. (b) The ratio of the

quark condensates (5s)/(uu) versus m,/m, for fixed m, = 12.7 MeV and different gx/g¢.

In Fig. 9(a) we show the change in the ratio of the strange
to nonstrange condensates (3s)/(iu), with the ratio of the
strange to nonstrange current masses m,/m,,, for different
u quark masses but fixed coupling gx/¢¢ = 1.418. In
Fig. 9(b) we show the same but now with fixed u quark
mass m, = 12.7 MeV and increasing coupling gx /g% .

IX. KAONS FROM U AND V SPIN:
LFWFs AND MASSES

The general light fron state (52) can be readily adapted to
kaons with K* = u3, sii in the U-spin sector. In the V-spin
sector, we have the pseudoscalars K°, K° = d5, sd, with
their scalar counterparts K2, K2. Without loss of generality,
we will assume that isospin symmetry still holds. Thus,
the result in U spin and V spin will be identical, ®g+ =
Do = @y With this in mind, the LFWFs for the pseudo-
scalar kaons K* and their scalar counterparts K5 are given by

= i, (x. k), (k)rtvg, (P — k),
= i (x, k)i, (k) iy e8v,, (P = k),
(119)

(I)Ks ('x? kL’ St SZ)
CDK(X7 kL’ S1» SZ)

where 7= = ] (7! £ iz?) are the Pauli matrices for U or V
spin. Again, we have separated the spin-independent part of

the wave functions and express the spin part in terms of light
front Dirac spinors.

A. Bound state equations for kaons

In the kaon channels, there are still two quark species,
but their masses are different, compared with the isospin
sector. The constituent mass of the s quark is heavier than
the u and d quarks. However, we can still assume that
isospin symmetry holds for simplicity, i.e. the induced
instanton coupling G is the same for U-spin and V-spin
sectors. With this in mind, we can generalize the light front
Hamiltonian in (38) to the U-spin and V-spin sectors. Since
the current mass of the s quark is significantly different
from that of the u and d quarks, we will treat M as a
diagonal matrix M = diag(M,, M,). This will slightly
break the U spin in the K* channels, or the V-spin
symmetry of the K and K° channels.

To be consistent with the boost-invariant light front
symmetry requirement in the two-body process, the
momentum-dependent cutoff function F (k) induced from

the finite size effect of the instanton ensemble has to be a
. . . . K2 +M3 K +M?
function of boost-invariant variables and <

related to the quark kinetic energies. In light of the

substitution (40), we use

Jim VF () F(P—k) - f<2P+P— _M tM%‘ + il ;M%) (120)
As a result, the bound-state equation for the kaons (K¥) is
my@g(x,ky,s1,5,) = i —;Mﬁ + ut —;M%} Dy (x.ky.s1.52)
+—\/ () F( / Non aaq)L ZV (.4 kK )Dg(y.q,.5.5)
x \/Fu(q)F,(P - q). (121)
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The interaction kernel includes the K pseudoscalar meson channel and the K5 scalar meson channel,

Vi (-4 k. K) = =gglag, (P, (k)7 iy vy, () 0y (¢')tir us(q) — ag_(P*)iy, (k)7 vy, () Dy (¢')r"u,(q)
+ag, (P, (k)7 irv,, (K)oy ()7 iy us(q) — ax—(P*)ay, (k)7~v,, (K) Dy (¢') 7 us(q)].  (122)

where

-1

+ 72 e(k*
ag+ = {1 igl{/dlzzj)iﬂpf]i I)€+ [F (k) F (P —k) -|-j-"5(k)]-"u(P—k)]} : (123)

The interaction kernels for KT are

D Vi@ 05 K) Pk (v, 91, 5.8") = 2ax_(PF)Tr[(q+ M) (f = M)k, (v, 4.1)i,, (k)25 0, (K)

5,8

= 4-@1(_([)+

2 2a402 < =212
q1 +y Mg —2yyM M, + y-M;, _
>( i y b (.00, (KA 0, (K).

(124)

D Ve (@4 kK )Pk (v, g1, 5,8') = =2 (POTr[(g+ M) (df + M)lbx (v, g1, (K)iy* v, (K)

5,8

2 2172 5 2172
q1 +y" M5 +2yyM M, + "M, o
— g (1) (2 ¢ Py L), ()ir ., (1),
(125)
The kernel for K~ follows similarly from the exchange u <> s and t* <> 7~. Hence, the bound state equations
w2 g (eoky) = [ M KM k) 2P e o / “q,
K: K\ R = X T K\ R \/ﬁ u s \/— (27_[
2 2002 5 52102
q; +y Ms _2yyMuMs +y Mu
< (4 g b 024 I F D FP—q).
K —l—M2 KA + M3 2gkak (PT) Ldy [dq
m% ., g (x.k :{L L ] c(xk mfuk}"sP—k// = px (v,
K¢K( 1) X T b (x,ky) = N (k)F( ) o (27[)3¢K (v.q1)
2 2102 5 2102
q1 +y M +2yyM M + "M,
x ( - - VFu(@)F(P~-q). (126)
Yy
The bound state equations for K* and K° follow by interchanging u <> d.
B. Kaon spectrum
The bound state masses are solutions to the gaplike equation
’ Vx(v.41)
1= [Cay [ g FL(a)F(P~a). (127)
0 Cyymk = (4 + M?)

The contribution of different quark flavors will change as the momentum fraction changes. When y ~ 0, most of the
hadronic momentum is taken by the s quark. The dynamics of the constituent quark mass will be dominated by the u quark
in that region. The mass difference between the two constituents slightly shifts the center of the longitudinal momentum
distribution to the lighter constituent, which tends to carry more momentum fraction. The potential for K and K5 will be
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2 2002 S 2142
+y M5=2yyM M+ M,
+ é%‘z ag_(P7) (1“ = : ) scalars K,
Vx = 29 1 (@Y M2y M M A MG,

T2y ag(P) - 75 , pseudo scalars K.

(128)

To solve the gap equation (127) for the kaon spectra, we proceed as in the pion case. More specifically, we split the k™
integral in ag (P") to isolate the part carrying the longitudinal momentum fraction x in the bound state with P*, from the

part which is UV dominated by the one-body integral in the gap equation

dk+dPk, e(k*)
(271.)3 Pt — kt

— 1+ K /deL[/ dx——/ dx— +/ dxl][]-"u(k)]-"s(P—k)+}'s(k)}'u(P—k)}

(27
%ﬂ+% A i [ Rk, [ O, (P K) + FLOF, (P~ )

e (PP) = 14 gy / FuR)F, (P = k) + F, () F (P = K]

24 (i + ) + et - B [ @l [ A2 FL(R)F (P = )+ FL () F (P = ).
In the last split identity, we made use of the solution of the gap equation in (111), namely

dictdk | e(k*) dict d?k | e(k*) L /mg  mg\ (M, —M,)
1- —_— 2 AT P2k = s wy _\u Fs)
K / arp ke Ko / o K =3 (M +M> 2MM,

Now we insert (129) for ag.(P") back into (127) and obtain the mass eigenvalue equation for the kaons

1 M, —M,)?
0:2__<ﬂ+ﬂ>+w

2\m, "M 2MM
2gK/ / [ my, — (M, — M) }
- — _ Fu@)F(P=q)+ Fy(q) Fu(P -
~ a) cuy 5 yymK5 @ o +yM%,)[ (@)F (P —q) + Fo(q)F(P~q)]
_ (M, +M,) - M,m,
2MM

20x myg. — (M, + M,)?
(2” / dy/d qg1 [mes qL—FyMz—i—yMz)] [fu(Q)}—s(P_LI)+~7:s<q)*7:u(P_QH

and

Y (WA U

[\

M, 2MM

N

M; s
28y [ gL M 5, (- + F @ P -a)
R A A Iy v eV 7))

1 my M\ _ (M, —M,)?
- 2\M, MS 2M M,

g (M - M,)*

ymK (q1 +yM; +3M3)

dy d’q,

im0 -0+ 7@ 7P - a)
The boost-invariant cutoff guarantees the cancellation between the integral [, dy% and [} dy # The integral

/ dx / Pk, [FHK) + ) = FLOF (P k) = FAR)F (P )
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in the last line will be dropped, since the difference between  with the quark condensate
these two integrals only depends on the boost-invariant UV
cutoff. Indeed, as the cutoff scale 1/p increases, (133)

becomes vanishingly small. B B N,
In leading order of the chiral expansion around the small [(ttu) + (3s5)| = 20w (M, +M;—m, —my)
. 9k
quark mass, we recover to the GOR mass relation as a
solution

following from the gap equation. The kaon weak decay
(i) + (35)] + O(m2, m2, mym,) (134) constant fx in leading order of the chiral expansion is
Ik described by the quark form factor
|

2 _mu+ms
My =——»

fe =L [Ny [" a2 (e R 0F -0+ FE-0) a3

where M = (M, + M,)/2.
In the zero instanton size limit, we can use the transverse cutoff described in Appendix E to analyze the kaon spectra and

their dependence on the UV cutoff explicitly. For instance, the eigenvalue equation for the scalar counterpart of the kaon or
K 5 is

(MWLMS)Z‘Msms‘Mumu:g—K/ldY/Aquz{ e } (136)
2M M, 472 Jo o tlyymi - (¢ + yM? +5M2)

The mass of K5 is above the cutoff scale, m Ks > A, and clearly unbound. In contrast, the pseudoscalar kaons bind. Indeed,
the mass eigenvalue myg is a solution to

L(mg m\ _ (M, =M, /d/ ) M —M,)?
2\m, "m,) T 2mom, Y 9 ymK T yM? + M)
(Mu_Ms) 9k 2 2/ A2
S R VR Sy S-S VR V) dyln (1 137
WM4MMK“‘”Uy“+W%W%W% 7

with the condition that (M, — M,)> < m% < (M, + M,)?. The last integration can be carried out explicitly, with the final
result for the zero instanton size

1/mg m (M,—M)* gk . , 1 M2—M? A? 1 M?-M> A?
=Sy )y e s IR — (M. —M.)N? 4 U nl1+e— 8 " n | 1+—
2<MM+MS) i, e M= MO (Gt e (U )+ (5= ) In( e

M-M; MM,
AMIAMY)-my (Mi-Mp| L TR » S
_ 5 — 7} tan +tan
my my 2AMIAME) - (MP-M2)? 2AMIAM) =y (M2-M2)?
m%( m‘,‘( mi m;‘(
4N +2(M3 + M) —my (M -M3)?
my my
2_Ag2 2_ a2
1 1 _'_Ml\szu 1 1 _M.;nzMu
x | tan” £ +tan~ X (138)
AN 2AMI+ME) -3 (MP—M3)? AN R2(MIHME)—my  (M2-M2)?
mﬁ( m‘[‘< m%{ mé}(
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()

(a) The change in the kaon mass versus m,/m,,, for different m, and fixed gx /g% = 1.418 in the zero instanton size. (b) Same

as in (a) for fixed m, = 0 MeV and different gx /g% in the zero instanton size. (c),(d) Same as in (a),(b) in the ILM with a finite

instanton size.

In the second line of (137), the finiteness of the ¢,
integration requires the inequality yym?% < yM2 + yM? to
hold. This inequality restricts the range of the y integration.
To ensure the y integration can run over 0 to 1 smoothly, the
kaon mass is constrained as noted.

We show in Fig. 10 the dependence of my on the current
quark masses m,,, mg, as well as the multifermion coupling
g Although the current quark mass of the strange quark s is
substantially larger than that of the u, d quarks, the difference
between the two constituent masses M, and M, remains
small. If we expand Eq. (137) in terms of the current mass
difference AM /M, where AM = (M — M) /2, the squared
kaon mass m% depends linearly on the quark current masses

AM?
1 —

m, and my at leading order, leading to the expected GOR
relation

m, + my
2
fx

where M = (M, + M,)/2, AM = (M;—M,)/2, and

m% = |(au) + (5s)] + O(AM?), (139)

— NC
29x

\(iu) + (5s))| (M —m, —my).  (140)

With the first-order correction of the constituent mass differ-
ence around the chiral limit, the Kaon decay constant is

1+ 3A2/M?

WM [N
fK = \/jﬂ— In <1 + W)

In the zero size approximation, the ILM is NJL-like. We
can fix its parameters by fixing the kaon mass, kaon decay
constant, and the ratio between the s and u current mass
mg/m, = 22.77. As a result, the transverse cutoff is fixed to
A =720.1 MeV, slightly higher than p = 0.313 fm in the

M2 6(1 4+ a2 /M) (14 45)

+ (’)(AM‘*/M“)] . (141)

M2

ILM. The current quark masses are then m, = 12.7 MeV
and m; = 287.2 MeV, and the fermionic coupling is fixed
to gg = 1.418¢gy .- The constituent masses are found to
be M, = 155.8 MeV and M, = 466.1 MeV. The quark
condensate will thus be |[(iu)|'/? =170.7 MeV and
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|(55)|'/3=158.4MeV. Conversely, by fixing A, gg.m,/m,,  Fig. 10(a) we show the same ratio for now fixed m, =

the kaon mass and the kaon decay constant are m’L = O'but increasing fermionic coupling gx (t(?p to bottom).

NIL Figures 10(a) and 10(b) are for zero size instantons

435 MeV and f™ = 155 MeV, respectively. but a fixed cutoff A. In Figs. 10(c) and 10(d) we

In Fig. 10(2) we show the behavior of the kaon mass  ¢y,w the same ratios for the ILM with fixed instanton
my /4 versus the ratio of strange to nonstrange current .,

masses m,/m, for fixed coupling gx/gixy and for In the ILM, the boost-invariant cutoff for the kaon
increasing light quark mass m, (bottom to top). In  channels is

2Pt P~ AN
Fulk)Fs(P—k) > F|—5—] = [(zF'(2))"] T o (142)
’11( = ALJ;MM kLtMY
with 1g a parameter of order 1. The mass eigenvalue for K5 is fixed by
(Mu + Ms>2 - M;m; — M, m, _ ’
2,0, = 2 (o, M =] [y . Nz FRCIEN 04)

Regardless of the chiral limit, the scalar kaon state K5 cannot be formed, due to a repulsive (positive) potential in this
channel. The mass eigenvalue for the pseudoscalar kaon is

1(mg; m (M, —M,)?* gk
) = s M, —M,) d s d F'(2))*. 144
2 <ML, Ms> i, o M (M / y/¢ Ca_m 4 GF@). - (4)

The solution to (144) satisfies the GOR relation in (77). The kaon weak decay constant f is fixed by (135) in the chiral
limit,

\/_“M+M
fr=

U /Wdzz (F/(2)) ]]/2 (145)

20 Vax

With the empirical inputs fx = 156.4 MeV, my = 445.0 MeV, and p = 630 MeV~!, we fix the ILM parameters in
the kaon sector. 1g is fixed to be 3.970 in the chiral limit. The light current quark mass is m, = 12.3 MeV and
my = 296.9 MeV. The fermionic coupling is gx = 1.542¢% 1y The constituent mass with fixed current masses m,,, m, and
fixed coupling is M, = 366.1 MeV and M, = 605.8 MeV. The quark condensate for u and s quarks are |(iu)|'/3 =
257.2 MeV and |(5s)|'/3 = 283.5 MeV.

C. Kaon DAs and PDFs
The positive kaon LFWFs are generically of the form

1 Ck
V2xx ml — K +xM3+xM3,
-

XX

b (x, kL) =

F . (k)F (P —k), (146)

where Cg is the normalization constant determined by (53). They enter in the definition of the kaon PDFs in the leading
twist-2 approximation, as defined by
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4

d*k
_ / <2n>L Z@K (v kp. st 8)2 )

dx(x) = / GE pmist's (K (P)|p(& )y W(E. O (0)|K (P))

where the gauge link W(£~,0) = exp [—ig [§ dy~A*(57)] is to 1. In the case of meson PDFs, quark and antiquark
distributions are related by the charge symmetry

Gx(x) = qx(x) = gx(1 = x) = gz(1 —x).

For charged positive kaons, the u quark PDF is

1o fo 1
I/LK+()C) —m‘/o dklg

Gk [, K+ XEME A+ 2xXM M, + XM,
4 Jo L xxmi — (K2 4 xM? + xM2)]?

Cx 2k2 + x2M? 4 2xXM M, + X*M?,
m%( _ ki+xM§+;cMu XX
XX

“F (k) F (P —k)

F . (k)F (P —k). (148)

In the ILM, the result is

) 2 _ /- (M -M )2
C g Y sS4
- (x) = ,/—er“Mz dz- & (F(@)" (149)
et ()

Note that charge symmetry implies

ug+(x) = iig-(x) = Sg+ (1 = x) = sg-(1 = x).

Due to the unequal masses of the u and s quarks, the heavier s quark will carry more momentum fraction inside the kaon.
Thus, the positive kaon PDF ug+(x) will tilt to a small x region.
For comparison, (149) for zero size instantons, and using the transverse cutoff detailed in Appendix F, reduces to

Cx my — (M — M, )?)xXA? A?
Ck i) |y = (M = ML) )xXA” (14— )| (150)
4z (xM? + xM?% — xxm?%)(xM? + XM2 + A> — x¥m?%) xM; + XM, — xXmy,

ug+(x) =

The normalization constant Cy is related to the effective kaon-quark coupling. In leading order in an expansion using
AM /M expansion, we have

V2N M 2 N\?
Cyx=— < (1 - W;K ~ T O(AMZ/Mz,m%(/MZ)) (151)
fx M1+ ) 1+ 4)
In the chiral limit, Cy satisfies the Goldberger-Treiman relation.
|
D. Kaon PDF evolution available lattice data [67] as well. Since our analysis

As we noted earlier for the pion, the PDFs in the LM are ~ reduced the PDFs to their valence quark content, only
defined at a low renormalization scale o, below the quark splitting will be considered in the DGLAP evolution.
instanton size resolution 1/p ~631 MeV. To compare A more realistic evolution, starting from this low renorm-
our result with the experiments in [38,65,66], we evolve alization, may require the iteration of the instanton inter-
the PDFs in (99) and (103) starting from yy = 313 MeV.  action as recently suggested in [16]. This point will be
The evolution will be carried to 2 GeV to compare with the  considered elsewhere.
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(a) The kaon charged PDF versus x in the zero instanton size limit for fixed coupling and m,, but varying m/m,,. (b) DGLAP

evolution from py = 0.313 GeV to 4 = 4 GeV, of the kaon charged PDF versus x in the zero instanton size limit for fixed kaon mass
myg = 435 MeV. (c) Same as (b) for the charged kaon momentum distribution. (d)—(f) Same as (a)—(c) for the charged kaon in the ILM

with a finite instanton size p = 0.313 fm.

In Fig. 11(a) we show the kaon PDF at a low renormal-
ization point uy = 0.313 GeV. The displayed results are
for fixed fermion coupling gx and light u quark mass
m, = 12.7 MeV, with increasing strange quark mass (bot-
tom to top starting from the left). In Figs. 11(b) and 11(c) we
show the DGLAP evolution of the result with my =
435 MeV from u = puy = 0.313 GeV to u =4 GeV (bot-
tom to top starting from the left). All Figs. 11(a)-11(c) are
carried with zero size instantons but a finite cutoff A. The
analogous results for the ILM with a finite size instanton
p = 0.313 fm are shown in Figs. 11(d)-11(f). With increas-
ing strange quark mass, the PDF is skewed in favor of 5.

In Fig. 12(a) we show our results for the ratio of the u
quark PDF in Kt to that in #zt versus parton-x, in

comparison to experimental data and lattice measurements.
The experimental data are from CERN-NA3 [68] (red dots)
which measure the muon pair production within the
invariant mass cut between 4.1 and 8.5 GeV to eliminate
the meson production on resonance. The lattice measure-
ments are those reported by the MSULAT [69] (purple
band) using LaMET at y = 5.2 GeV. Our DGLAP evolved
result from u = py = 0.313 GeV to u =5.2 GeV corre-
sponds to the zero instanton size limit (solid blue curve),
the ILM with finite instanton size (solid orange curve), and
the LaMET in the ILM [54,55] (solid green curve). For
additional comparison, we show the results from the
Dyson-Schwinger equation with full Bethe-Salpeter wave
function from [70] (black dashed curve).

094024-31



LIU, SHURYAK, and ZAHED PHYS. REV. D 107, 094024 (2023)

Ug+(X) [ U (X) XOS;r (x)
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FIG. 12. (a) The ratio of positive charge kaon to pion PDF versus parton x, in the zero instanton size limit, with mx = 435 MeV and
evolved to 4 = 5.2 GeV (solid blue curve), in the ILM with finite instanton size p = 0.318 fm with mg = 431 MeV and evolved to
u = 5.2 GeV (solid orange curve). The comparison is to the results of the ILM using the LaMET extraction in [54,55] and evolved to
1 =152 GeV (solid green curve) and the results from the Dyson-Schwinger equation with full Bethe-Salpeter wave function [70]
(dashed black curve). The data for the measured ratio (red) are from [68] using muon pair production and using the invariant mass cuts
between 4.1 and 8.5 GeV to eliminate the meson production on resonance. The recent lattice data MSULAT (purple band) are from [69]
using the LaMET construction at 4 = 5.2 GeV. (b) The same as in (a) but for the strange quark momentum distribution for the negative
kaon xsg-(x) versus x.

E. ERBL evolution of kaon DA
The kaon DAs are also tied to the kaon LFWFs,
A&~ . pie 74
= —i [ == POl (0)y Ty —
bils) = =i [ S 00y

- \/\/g; / i ¢I§%l) (M F (P = k) + 3M, F, (k) 132

W(0.&7)w(&7)K*(P))

with the standard normalization
_ ¢
{Olgy*y> —=

\/EU/|K“(P)> = ifxP". (153)

In the ILM, the kaon DA is

Pk (x) =

\/NC(XMS +XMM) /oodkz CK
2V/272 0 L ximl — (k% + xM? + XM2)

From the normalization condition of the kaon DA, we can extract the kaon mass dependence of the kaon weak decay
constant,

F . (k)F (P —k). (154)

fK(mK) _ fOl dx fOOO dki (kiHM%,JrlMg—me%()Fu(k)]:s(P_k)
2 4 IM?+xM? 1/2
T (Wb an S m 07, P b))
Ve [T a2 ! FFP-0" 155
[l [7 a8 (o ) o0 =) (155)

with fx = f, given in (75). In the ILM, the kaon DA is

VN (xM, + iM, o 2
Px+(x) = (\/5”2 )CK /\/xMﬁﬂM% de(F’(z))“. (156)
T pvar 2

2
gV 7z — <

Its evolution, starting from p, = 313 MeV, will also follow from (C2) in the ERBL regime.
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(a) The positive charged kaon DA versus parton-x for fixed coupling gs/g¢ = 1.418 and fixed m, = 12.7 MeV but with

different ratios m/m,, in the zero instanton size limit. (b) The positive charged kaon DA versus parton-x for fixed myx = 435 MeV using
the ERBL evolution from the initial # = 0.313 GeV to u = 6 GeV. (c),(d) Same as (a),(b) but in the ILM for a fixed instanton size

p =0.313 fm.

For completeness, we note that in the zero instanton size limit, the form factor will reduce to the transverse cutoff

discussed in Appendix F, with the result for the kaon DA as

¢+ (x) =

2272
\/NC(XMS + )_CMM)CK

=- 0(xx) In (1 +

2\/5752

VA M, +xM A2
0

with ¢g-(x) = g+ (1 — x). The kaon decay constant f simplifies to

_ o VM [

=C x
fK K2\/§ﬂ,’20 M

In Fig. 13(a) we show the kaon DA at the low
renormalization point py = 0.313 MeV with increasing
quark mass (top to bottom from the left). The results are
for instantons of zero size, a fixed cutoff A, a fixed fermion
coupling gg, and a light quark mass m, = 12.7 MeV. In
Fig. 13(b) the same results for myx = 435 MeV are evolved
from u = puy = 0.313 GeV to 4 = 6 GeV (top to bottom
from the left). Figures 13(c) and 13(d) are the results for the
ILM with a finite instanton size, with a slight difference in
the input parameters.

xM, +xM,,

xxmy — (k3 + xM? + xM2)
A2
5 -5 (157)
xM5 + XMy, — xxmx
A2
In{1 . 158
n< +xM§+)'cM%—x5cm2> (158)

In Fig. 14 our results for the kaon DA are compared to
the recent lattice results MSULAT [60] using LaMET
(purple band). Our results are for instantons of zero size
evolved to y = 2 GeV (blue solid curve), the ILM with
finite size instantons (orange solid curve), and the ILM
using the LaMET construction [54,55] (solid green curve).
For further comparison, we show the asymptotic QCD
result of 6xx [56] (dashed red curve) and the results from
the Dyson-Schwinger equation with Bethe-Salpeter wave
functions [59] (dashed black curve).
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ox-(x)/ fx
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——— NIL, u =2 GeV
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10 ——— Kock et. al, p=2 GeV
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’,"/ -------- DSE (2015)
,’9
osl /7 ——— MSULat (2020)
0.0 02 04 06 08 10 X

FIG. 14. Evolution of the negative kaon DA in (157) with myx = 435 MeV from g = 0.313 GeV to y = 2 GeV in the zero instanton
size limit (solid blue curve) and in the ILM with a finite instanton size in (156) with mx = 431 MeV (solid orange curve). The results are
compared to those obtained also from the ILM (solid green curve) using the LaMET construction in [54,55], also evolved to y = 2 GeV.
The results using the Dyson-Schwinger equation with Bethe-Salpeter wave functions (dashed black curve) are from [59]. The QCD
asymptotic result of 6xx (dashed red curve) is from [56]. The recent lattice data MSULAT (purple band) are from [60] using the LaMET

construction.

X. CONCLUSIONS

We presented a comprehensive analysis of the sponta-
neous breaking of chiral symmetry on the light front in the
context of the ILM with induced nonlocal multifermion
interactions. The new element in the light front analysis is
the splitting of the effective fermion fields into good plus
bad components, with the latter nonpropagating in the
light front direction. It is a constraint that, once elimi-
nated, generates additional multifermion interactions
between solely the good fermionic components in the
emergent multiflavor and nonlocal 't Hooft interaction.
This construction generalizes the original arguments
presented in [39-41] using local NJL interactions. The
nonlocality is important in the characterization of the
partonic distributions.

In the mean-field approximation (leading contribution in
1/N,), the spontaneous breaking of chiral symmetry
parallels that in the rest frame. A running constituent mass
and chiral condensates are generated, that are identical to
the ones derived in the rest frame, thanks to boost
invariance. More importantly, we have shown that the pion
and kaon DAs and PDFs derived on the light front in the
mean-field approximation are all in agreement with those
established in the ILM using the LaMET construction.

The results we presented for the pion and kaon partonic
distributions are all evaluated at a low factorization scale
Ho < 1/p ~ 630 MeV. A comparison with experimental
data and lattice results at larger scales requires evolution.
For simplicity, we assumed that factorization holds at this
relatively low scale and used perturbative QCD evolution.
Good agreements with the existing data for the pion and
kaon were found.

The present analysis of the pion and kaon parton
distributions relies on the mean-field approximation in
the ILM. It is the leading contribution in a 1/N_. book-
keeping analysis, that can be improved a priori. Clearly, the
present analysis can be extended to study the formation of
light diquarks on the light front, as well the nucleon and
delta baryons.

A major goal of the upcoming physics at the electron ion
collider (EIC) is to understand the partonic composition of
nucleons and nuclei as they enter in their composition of
mass and spin. The present analysis shows that for pions
and kaons, most of their composition follows from the
QCD vacuum. At low resolution, it is mostly due to the
emerging multifermion 't Hooft interactions induced by
the light quark zero modes as captured by the ILM. The
pion and kaon longitudinal parton distributions are sensi-
tive to the nature of the quark zero modes in the vacuum.

Contrary to common lore, on the light front the vacuum
is anything but trivial. Its main effect is to induce the
spontaneous breaking of chiral symmetry with a running
constituent quark mass for the valence partons. It also,
induces nonperturbative multifermion interactions among
the flying leading partons and a scalar chiral condensate
much like in the rest frame. How this analysis in the context
of the ILM squares with the recently suggested superfluid
at zero x-parton [52] would be of future interest.
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APPENDIX A: CONVENTIONS USED ON THE LF

Throughout this paper, our conventions of the light front
frame follows Kogut-Soper convention based on the Weyl
chiral basis of the gamma matrices,

() (L) w

The light front components are normalized to be

0 3
+_VEY A2
Y 7 (A2)

with light front projection defined by

ryt= (A3)

3
+
|
SIS
o o o o
o o o o
- o o o

S O O =

and P_ =1 —"P,. The free LF spinors for the quarks and
antiquarks are

uy(p) = <p+M>() (Ad)
\/§p+ s
and
B 1 B 28y
)=t m( ) ws

respectively, with y, a 2-spinor with a spin pointing in the z
direction and M the constituent quark mass.

To denote the spin states in the creation of a quark-
antiquark pair, the matrix elements with different spin states
can be written as a matrix with [s;s,] entries,

_ - L ky M(x —x)
(o p=0 == (T g
for the scalar, and
_ . i (ke M
Wit (P = (T ) )

for the pseudoscalar, with k; x = k' F ik? and x = k* /P
the quark momentum fraction on the LF. Similarly, for the
quark-quark pair, the spin matrix elements with entries [s’s]
are

k
ML+ L bk
- pt kT Ptk
k

ﬁs’(p)us(k) = ])+k . . >
g4 M p—++k—+)
(A8)
ML) f-n
(P)7us(k) =/ pTk* ' ! :
ke _ pr _M(L_L)
k+ p+ p+ kTt
(A9)
—M(%Jrk%) o—b
Us(k>vs’<p) =V p+k+ ' ! )
ot M)
(A10)

Z_)s(k>y51}s' (p) =

The lowest Fock states for the scalar o and pseudoscalar
7 are explicitly

&k .
08) = [ [ s k)L W] (P = 1)+ 6] (06} (P )
5 (KB ()L (P — )+ 5 (B (R)e (P = K)HO), (A12)
&k .
wp) == [ [ SRR kB (0] (P = ) = B (0] (P )
5 (KB (R)EL (P — )+ 5 (KB (R)e (P = K HO), (A13)

with the light front normalizations subsumed, provided that
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: &k, 02 +112 -112
dX 3 |¢a| + |¢O‘ | + |¢0 | - 1 (A14)
0 (271')
and
1 d’k
| ax [ S50 18+ g =1 (A15)
0 (277.’)
Each spin-wave function can also be redefined to extract out the corresponding normalization of their spin state with
M(x — X) kL _kR
b= ="t o= o ;= . Al6
and
0_ iM 1 —ik, o —ikp AL
¢7[ \/x'_x¢”’ b \/x__x¢7[’ ¢7[ \/x__x¢ﬂ' ( )

APPENDIX B: TWO-BODY T HOOFT HAMILTONIAN ON THE LIGHT FRONT

The general form of the two-body bound state equation can be written as

dq-u{l‘Il a ’oo 2

(ZTHflszsﬁs’z(k’ P—k.,q,P—q)Px(q,P—q.s),s,) = mx®@x(k,P —k,s1,5,). (B1)
where the light front Hamiltonian in the momentum space is
. K +M K+ M - 1 1
HSIstI]Sé(k,P—k, k/,P—k,) = |: X + 3 (271') 5+(k_k/) +Evsl,s2,sq,s’2(k,P—k, k/,P—k/)W

(B2)

for a pair of identical constituents. The labels 1, 2 refer to the two constituents. To address the s-channel and #-channel on
equal footing, we use the Fierze rearranged instanton induced ’t Hooft interaction,

G (N2-1__ . _ .
Litioort = SV 1) ( N (o) = (pirw)® = (pew)* + (wir'sw)’]
N, —

+

2 — — . a — N0 - - a o 1 vy Vi 1 vy V1A d
an @Ay)? = (i 2%y)? = (Faety)? + (i s 2% )] + < (FoA%y)? = o (B A7 v/)2>. (B3)

1. s-channel
The interaction in the s-channel follows solely from the first contribution in (B3) through the substitution
(pw)* = iy vy Dyuy,

G = = = a = a
Vfl,sz,s’l 5 (kla k2v kll* k/2) == m [a+ (P+)”s’] (k/l)vs’2 (ké)”sz (kZ)”sl (kl) —o_ (P+)”s’l (k,I)T ”5’2 (k/z)vsz (k2)T Ug, (kl)
—a_ (P, (ky)ir vy, (ko) by, (Ky)ir ug (k) + ay (PF)ay, (ky )iy v, (ko) By, (K5 )iy ug, (k)]
(B4)

in leading order in 1/N .. The colored vertices in (B3) do not contribute in the s-channel to this order, since the bound two-
body eigenstate is colorless. The extra vertex factors of a.(P") resum the tadpoles.
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2. t-channel
The interaction in the f-channel follows from the second and third contributions in (B3), through the substitution
(py)* = —ityu, 30y,

G -1 i _ . _ .
VST, 62515, (ky ky K K) :4(N2— 1)( 7{75) N ( (kl)us’] (k) rz(k’) 5, (ko) — 0t r](k’l)lysus1 (kl)vSQ(kz)lysvs/z(ké))
Ni-1_ . _ ,
+ 4N us’l (kl)o-ﬂ Uy, (kl)ysz (kZ)G/wUs’ (k2) (BS)

also in leading order in 1/N .. The minus sign arises from Fermi statistics. We made use of the color averaging (4{ - 15) =

2N

, since the interaction kernel acts on a color-singlet two-body eigenstate.

3. Eikonal approximation

In the eikonal or large momentum limit, k; ~ k|" and k3 ~ k5" as the in-out particles fly on straight trajectories. The
bound state equation simplifies by replacing the y dependence in the interaction kernel by x, with the result

mi®y(x,ky,s1,5,) = lxx Dy (x,ki,s1,5) ——\/ F(P- k/dy

« [ o Z{vf{;,s,swk,P—k, 4.P-q) f(q)f(P—qﬂ Dy(vq.5.5).  (BO)

(27)* 4 x=y
In coordinate space, the LFWF is defined as
dxd*k e
O b)) = /x—glq>(x, kL)e—mP*g Tk, b, (B7)
(27)-
and the bound state equation is now a standard Schrodinger equation,
-Vi +M? .
ij—)-ctssls’l 6szs’2 + Vslsz,slls’z (5_’ bl):| (I)X(g_’ bl’ s/l’ 512) - m%((I)X(f_? bL’ S, SZ) (BS)
with the spin-flavor-dependent potential
V(E, b)) = —2g5(1 — 742§) == F? | —=——) V(1,2). B9
(6 b2) = =251 - stsp) 5P (v, (89)
The momentum fraction in coordinate space is % w1th o_ P+ 05, In the large N limit, the interaction kernel in (B9)

simplifies to
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V(1,2) = {Mu]m2 —%(m <V, ) (M) +%(M1] N ow x V)
(Uu X VL)(GZL X VJ_) —%(Wu VJ_)(ZGZJ_ VJ_):| 52(%)

T4
1 . 1 .
- [Mﬁleﬁzz + 2 (io1, - V1)(Moy,) - E(MGIZ)(”’ZJ_ V)

%(lﬁu Vi )iy - V)= i(ffu x V)6, x VL):|52(17L)
[

(1L XV )(02, x VL)]‘SZUM)

(Gu : VL)(Uu : VL(SZ(bl))]

~Moy.65,) iV + (01 -V)(62 - V)~
(611 - V18 (b))) (o - V1) +

(010 x V18 (b1 ))(020 x V1) + (010 x V) (621 x V18 (b1))]. (B10)

The first two lines in (B10) stem from the nontensor parts in (B3), in agreement with [14]. The remaining contributions in
(B3) are from the tensor part in (B3). Note that the minus sign from the Fermi statistics is compensated by the minus sign
from the antispinor contraction 7v, with net attraction in the #-channel for the pion and sigma.

APPENDIX C: DGLAP EVOLUTION AND ERBL EVOLUTION
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution is governed by

() ) [ (T T ()

q qu’(x/y)

(C1)

with the splitting functions defined as follows:

1+x* 3

(1 —X)+ +§5(1 —x):| s

distribution to small x, and eventually softening the
x =1 tail behavior.

On the other hand, the evolution of the light front wave
function and its associated distribution amplitudes is
governed by the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) equation, which expands the LFWF and DA from
the asymptotic form 6x(1 —x), in a complete basis of
Gegenbauer polynomials,

%mzq[

P,y (x) = %[x2 +(1=x)2,

pyta) = ¢ [P,

ng(x)—ch[ a +1xi+x(1—x)}+ﬁ°5(1—)

(1-x), ¢(x.0) —6XXZG Qo) <

where Cp :1\;31\]—1, C, = N,, and the one loop running
coupling fy = 4N, —3n;.

The full evolutlon of the quark parton distribution inside
a hadron is described by the DGLAP equations. At low
energy, where the valence degrees of freedom dominate,
the valence quark distribution is sufficient to describe the
hadronic structure. Only the quark-to-quark splitting
process denoted by P,,(x), has to be taken into account.
As the energy scale increases, the sea quark and gluon
production spreads the momentum distribution on more
partons, effectively shifting the momentum valence quark

(C2)

The anomalous dimension associated with the evolution is
defined as

n+1
[ 3+4Z

n+1) n+2)|’ (C3)

where
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4
a(Q) =—
pin(i)

and Agcp = 226 MeV. C'(z) are Gegenbauer polyno-
mials. Due to the orthogonality of the Gegenbauer poly-
nomials, the initial coefficients can be evaluated by

a,(00) = ; 2(2n+3)

S S A ! 320 =
(n+1)(n+2)/) dyCi/“(y = ¥)9(y, Qo)-

(C4)

APPENDIX D: RANDOM INSTANTON VACUUM

Here we briefly review the emergence of the running
constituent quark mass M (k) in the ILM by resummation of
the leading 1/N .. contributions [7,9]. The analysis is in the
rest frame in Euclidean signature. For a sufficiently dilute
vacuum composed of instantons and anti-instantons, the
gauge fields are

N_

AW =40 + Y A,

I=1

(D1)

S -85t =

with the apparent diluteness factor p*N/N.V ~x; ;/N..
The dominant contribution to (D4) stems from the quark
zero modes with a running constituent quark mass [54]

x[e(lo(2)Ko(2) ~ @K @)F| L, (D3)
with
£ Ncnsz(o, 0)
472’ N|V

If we define M = M(0,m) and M (k*) = M(k,m), then

M(k*) = M(zF'(z))* + m[1 = (zF'(z))?] (D6)

with
F(z) = Iy(2)Ko(z) = 11 (2)K 1 (2)

the profile of the quark zero mode in singular gauge. The
running quark mass asymptotes the current mass m

N 1 1
d*z,dU; ——— d*z;dU; ———
sy |3 [ st gy o 3 [ arsavs

where I, I refer to the instanton and anti-instanton moduli.
More specifically, each instanton is localized at z;, with size
p; and color orientation U,

Ay(x) = UA(x = 2. p1) Uj. (D2)

For a topologically neutral vacuum, the mean number of
instantons match that of the anti-instantons N, = N_.

Light quarks in the ILM scatter randomly at each
instanton and anti-instanton site, with the light quark
propagator

e = (Wl gmmb)  03)

averaged over (D1) with N =N, + N_ fixed in an
Euclidean 4-volume V. The average runs the entire instan-
ton ensemble with equal sampling. The planar rescattering
contributions to the light quark propagator in leading order
in 1/N, counting gives [7,71]

(D4)

|
for kp > 1, and reduces to the constant mass M for
kp < 1.

APPENDIX E: GAP EQUATION FOR ZERO
INSTANTON SIZE

In the zero instanton size limit, the induced form factor
from the quark zero modes F(k?) — 1 and the induced
't Hooft effective interactions become local in Euclidean
space. While their continuation to Minkowski space is
straightforward, they lead to diverging results both in the IR
and UV in the mean-field treatment. This situation is
familiar for local fermionic or NJL type interactions in
the rest frame, and therefore carry to the light front.

For virtual loops with running momenta k in Euclidean
space, the cutoff choice should preserve O(4) symmetry,

which naturally means Vi < Apg. For virtual loops in
Minkowski space, the cutoff should preserve boost invari-
ance on the light front, which translates to \/ikjE < A or
equivalently [40,41]
2 M A
kM <kt <—.

JAA 7 (El)

094024-39



LIU, SHURYAK, and ZAHED

PHYS. REV. D 107, 094024 (2023)

g5 =277/ A
M/A
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— gs/g§=1
— gs/gg=13
— gs/g5=16

06|
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m/A
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g§n =277/ A
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0.005

0.2 0.4 0.6 0.8 1.0

(b)

FIG. 15. (a) The change of the constituent mass M versus the current mass m, for different couplings gs/g§" with g§" = 272/ A? in the
zero instanton size limit. (b) Same as in (a) for the chiral condensate.

The lower bound follows from the on-shell condition k* = 2k"k~ — k3 = M.
With this in mind, the diverging integrals in (45) and (47) after the boost-invariant regularization yield

dk* k| e(k™)
2n)p} Kk

As a result, the gap equation in the zero instanton size
limit is

N[ M MM
" Js [1 } (E3)

1= el Rl Ml
M 7 | TR
and the quark condensate (py) is

Gw)  No (M\[, M M M?
T2\ a )|t At

v } (E4)

A2
A nonzero constituent quark mass M develops whenever
the fermionic interaction is sufficiently attraCtive with

cr _ 2
9s = gsNjL = AT

In Fig. 15(a) we show the dependence of the constituent
quark mass M /A versus the current quark mass m/A, with
increasing fermionic coupling gg (bottom to top from left)
for a fixed cutoff A and a critical coupling g§/\, = 27/ A,
The same display for the chiral condensate is shown in In
Fig. 15(b).

APPENDIX F: BOUND STATES FOR ZERO
INSTANTON SIZE

In the zero instanton size limit, the emergent form factor
from the quark zero modes reduces to 1, F — 1. To

O(A/V2 = kD)O(A/V2 - k)

(E2)

A? M?> M?* M?
_ 2w 4z A A A

e

regulate the vacuum or zero-body integrals to one loop,
we use the parity-even and boost-invariant sharp cutoff
discussed in Appendix E. In an n-body state on the light
front, the natural cutoff from time ordered perturbation
theory relates to the light front energy K~ = ), k; of free
valence quarks [51],

K_:z":kii+M%<

2A
= kK"

(F1)

Here k,; and x;, are the transverse momentum and the
longitudinal momentum fraction of the valence parton-i,
respectively. This cutoff is boost invariant and parity even.
For two-body bound states with unequal masses, it trans-
lates to

ki+M§+ki—tM§<
X

1
2A% ~ t (F2)

A similar cutoff was used in [40] for equal quark masses
and independently argued in the context of the LaMET
analysis of the ILM in [54].
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1. 6 meson
S m2 — 4M?
M = 4 dy d‘h 2 ]
72 ym QL + M)
= —i(4M2 mg)/ i (14— ) e <aw
4n? 0 M? = yymg

— 55 (4M? = m2)

1 A2 4M2 - m2 M2 + A2
X Eln 1 + W - \/—_};;

m? 1
Mo an! . (F3)
4(MP+A?)—m3
2

The sigma is a threshold state with a mass m, = 2M in the chiral limit but otherwise unbound in ILM with a sharp or a

smooth cutoff on the light front.

2. 75 meson

A2 ﬂj _ 4M2
3 a1 M2 }
* ymz, — (¢7 +M?)
2 A? 2 2
a4M- — dyln |1 +-———5], < 4M

Sy (i

_ 9 2 2

=3 (4M?> —m3,)

1 A? 4M2 4(M?* + A2 1
x |=In (1 —|——2> - ”Stan ”Stan ! (F4)
2 M mﬂs H(MP+A?)—m3,
My Mz
3. 65 meson
m gy [ A2 m;
2—— = / dy/ dq? [ — 2
M 4z% )y 0 + yymg, — (q1 + M?)
)
a2
1 A2 4M2 - M2 A2 m2 1
x |=In (1 + —2> o, + “tan~! . (F5)
2 M 4M? = 4(M?+A%)—mg,
e

The instanton induced interactions are repulsive in both of the o5, 75 channels on the light front. There are no bound states in

this channel in the chiral limit or otherwise.
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4. £ meson
1 A2 m2
— = d d Ma
M 47[2 0 Y 0 ql ym i_ + MZ):|
1
. gszm,%/ dyIn (1 > m2 < AM>
A 0 — yym
95 51 A M? — m? 4 4(M? + A?) —m2 4 1
= —In{l1+—] - t t . F6
272 T 2 n < + M? m2 an + m2 an 4(M24+-A2)—m?2 (F6)

This is by far the strongest channel in the ILM with a
strongly bound 7 state. The dependence of the pion m, on
the current mass m for fixed A is shown in Fig. 16. The pion
mass m, increases as m increases to eventually reach the
2-constituent quark threshold 2M. It is a true Goldstone
mode, with the mass vanishing in the chiral limit

m/M _2m
(1+&) f2

3
BN

()| + O(m?)  (F7)

which is the expected Gell-Mann-Oakes-Renner relation.
In the chiral limit, the pion decay constant is

gs=1.328 g\

my/A

* . : — m/A
0.1 0.2 0.3 0.4
FIG. 16. Pion mass versus the current quark mass with fixed

cutoff A and a fermion coupling gg in the zero instanton
size limit.

m]!

o= \/\;]T” [n (1 +A[;—22>T/2. (F8)

With the physical input of the pion decay constant and
pion mass, we can fix the best parameters for our NJL-type
model. The transverse cutoff is fixed to be A = 729 MeV,
roughly higher than inverse instanton size p = 0.313 fm.
The current quark mass we obtained is m = 12.4 MeV and
the coupling will be fixed to be gg = 1.314g{'y; . The
constituent mass with the given current mass and fixed
coupling will be M = 207.7 MeV. The quark condensate
will thus be |(§y)|'/? = 228.9 MeV. The pion mass and
the pion decay constant with the given parameters will be
mN = 135.0 MeV and ' = 130.3 MeV, respectively,
which is very consistent with the physical values.

APPENDIX G: FERMIONIC CONSTRAINT IN
THE OPERATOR FORM

One of the key features of the light front approach is the
elimination of the fermionic constraint on the bad compo-
nent of the fermionic field. In the main text, we have used
an auxiliary field approach and the mean-field approxima-
tion to eliminate the bad component in leading order in
1/N.. Here, we briefly show that the elimination can be
enforced solely at the operator level, without recourse to
auxiliary fields, using power counting in 1/N..

The multifermion interactions generated in the ILM are
essentially determinantal, owing to the induced U,(1)
flavor symmetry breaking by instantons. By Fierzing, they
consist of combinations of only twist-3 operators, 6 = yy,
7 = yiy’y, 6 = gy, and ¢ = yit’y y, which form a
closed set. The elimination of the bad component y_ in
favor of the good component y, amounts to the closed
hierarchy in 1/N,,
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A

o(x) = 0% (x) - zi\s,. [V(x)o(x) = A(x)z(x) = V(x)o" (x) + A?(x)a (x)].

A

70 (x) - 2’% [~A(x)a(x) = V(x)z(x) + A (x)o" (x) + V(x)2 (x)],

N

—
=

N—
Il

A

- [V(x)o(x) = A(0)(x) = V4 (x)0” (x) + A (x)a® (x)],

2N

7(x) = 2O (x) - 2?5, [~A(x)o(x) = V(x)z(x) + A (x)o" (x) + V (x)a"(x)],

with g¢ = GgN, assumed of fixed order in N, and

60 (x) = . (x) 5 (ir', 0, +m)y* <g—_il//+(X)) + <ail/7+ ) % (ir', 9 + m)yy (),

N[ =

#00) =, 03 (i34 i (S ) = (00 3L T+ mir'r v 0,

—

_ . = . a _l l _
#1000 =9 (03 (i, 3+l (T ) = (5w o)
In this hierarchy, the active operators generate

VN =7 07t = s ) + —

3 (W+(x)[ Dyt (x),

o_

A = 0 7 S s F) = - LD P ),

P =7 e S WF) + 5 WD e ),

A0 =gy (x)irtye —(W+(X)H) —é(l/h(X)['DiV*}'ST“W(X),

P = 0 @7 7 = (s ()1]) + - (4 )7 2o (1),

o_ o_
AW = 9, )iy 7w =2, (1) = o @ LIy 7 ey (1),

(G1)
(G2)
(G3)

(G4)

(G6)

(G7)

(G8)

(G9)

(G10)

(G11)

(G12)

(G13)

(G14)

In the light front vacuum |0) empty of valence particles and anitparticles, these operators can develop a vev. Parity and

isospin symmetry (chiral limit) restrict these vevs,

d*k 4ik* dktd*k kt
(60 (x)) = ~2Nm / l = 2N / Le(k)

(2x)* (kK = M? 2z} Kk
v, /dk*c{llqe (k*)

(Ve (x)) = (V(x))5,
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A ~

(A)) = (V4(x)) = (A (x)) = (A" (x)) = 0.

Here e(k™) = sgn(k™) is the signum function. A non-
vanishing vev for the scalar operator in (G15) reflects on
the spontaneous breaking of chiral symmetry and is mainly

|

(G18)

(o) i

which is a resummation of all the tadpole diagrams in
leading order in 1/N,. The elimination of the bad compo-
nent of the fermionic field on the light front amounts to a
mass renormalization.

To characterize the operator hierarchy (G1)-(G4) in
different Fock sectors, it is best to shift to momentum
space:

o(P) = /dx‘dzxLa(x)eiP+"_PL"‘i, (G20)
n(P) = /dx_aaxj_og (x)eP' ¥ =Prxi  (G21)
o%(P) = / dx~d?x, ml(x)et ¥ —Prr o (G22)
7(P) = / dx~dx w(x)et? ™ =Prx o (G23)
with the expectation values
diktd*k; e(kT) .

(Ffe™) = an, [ S e

(V8 ()fem™]) = 6V ()],
|

dktdPk,  e(k*)

dktd’k | e(k*
(00) 1429, [ FEE A

driven by the accumulation of the k™ = 0 zero modes on
the light front. With this in mind, the vev of the
scalar ¢ = yy operator can be unwound to all orders
in 1/N,,

(G19)

[

In the two-body Fock space, with P the total momentum of
the pair, we have

dk*dPk, e(k*)

o(P) = 6" (P) = 2g, / ) Pk o(P), (G24)
o k- dk, e(k*)

x(P) =7Y(P) + 2g_v/ Ga) PPk z(x), (G25)

o (P) = 0P 429, [P ) o), (G20

w(p) =0 () =29, [P L) ). (20

Again, the elimination of the bad component of the
fermionic field amounts to a resummation of the tadpole
contributions, which is equivalent to a vertex renormaliza-
tion of the multifermion interaction by the factor

APk, e(kt) 1!
(2z)3 Pt —kt]

o (P = [1 + 293/

More specifically, we have

dktdPk,  e(k*)

o) =) 130 [T ([T ) 2
a(P) = 02) 1429, [PE SLgp(([EC S ) ) (©29)
w(p) = 0(p) 1429, [ LT SO, (R L e
R R e e A )

The zeroth order operators in 1/N, in momentum space are
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Op) = [0h. [1@dp, 0| ILIE L TLEEN N, () (P4 k-g) (G32)

w00) = [, [l {iy5y+(y2lq;é ) YLk m)} vi(@)@n)P 8 (P +k—q).  (G33)

()= [0, [l g0 [FEETEN T, (omys i k-g) (634

w0 = [12n), [l o w LT IR, () orpst (p+ k- ). (G3)

with [d*h], = ks e(k).

APPENDIX H: LIGHT FRONT ZERO MODES

In the ILM, the spontaneous breaking of chiral symmetry and the emergence of a scalar quark condensate are due to the
instanton and anti-instanton fermionic zero modes as we noted above. In the rest frame and in Euclidean signature, this is
manifest in (42) with the k> = 0 pole for M — m. In Minkowski signature on the light front, this is manifest in (45) with the
k*t = 0 pole. Technically, there is a subtlety in trying to relate (42)—(45) by analytical continuation since

Pk | dic* dk 4i dk*d?k, e(k)
I(M?) = - F2(k / L2 2k HI1
(M) / Qn) 2k Tk — KL — M+ ie 0= | =g = 7 W (HI)

2 2
assumes that the pole k= = l;;w remains within the closing contour. However, as k™ — 0, the pole pinches the contour,
hence the subtlety [72]. Another way to see this is to rewrite (H1) using the Schwinger trick.

In the zero instanton size limit,

2 F - e
I(MZ) _)/d kJ(-jk)4dk / da4eia(2k+k__k2i_M2+i€), (HZ)
T 0

the k&~ integration yields a singular delta function,

dk™ i 1
el - —6(k1). H3
/ > S o(k) (H3)

The spontaneous breaking of chiral symmetry on the light front stems from the accumulation of the k™ = 0 fermionic
modes in the gap equation. The singularity can be regulated by the covariant Bogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ) subtraction scheme

oI (M?) Pk, 2
wm: / EEY A (H4)
hence
+ 72 + 2 2
/dkdkle(k)ZZ/dkLln A (HS)
(2z)* kT (2z)} \KF + M?

with A a dimensionful scale left over by the substraction.
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