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We extend our studies of a new class of 2 — 3 exclusive processes using the collinear factorization
framework by considering the exclusive photoproduction of a yp pair, in the kinematics where the pair has
a large invariant mass, and the outgoing p meson has a sufficiently large transverse momentum to not
resonate with the nucleon. We cover the whole kinematical range from medium energies in fixed-target
experiments to very large energies of colliders, by considering the experimental conditions of JLab 12-GeV,
COMPASS, and future EIC and LHC (in ultra-peripheral collisions) cases. One of the main interests in
studying the present process is that it provides access to both chiral-even and chiral-odd generalized parton
distributions, depending on the polarization of the outgoing p meson, both at leading twist. Our analysis
covers both neutral and charged p mesons. We find that the orders of magnitude of the obtained cross
sections are sufficiently large for a dedicated experimental analysis to be performed, especially at JLab,
for both longitudinally and transversely polarized p. Furthermore, we compute the linear photon beam
polarization asymmetry which is sizable for a longitudinally polarized meson. These predictions are

obtained for both the asymptotic distribution amplitude (DA) and the holographic DA.

DOI: 10.1103/PhysRevD.107.094023

I. INTRODUCTION

In the present study, we extend our previous analysis
in Ref. [1] of generalized parton distributions (GPDs)
in 2 — 3 exclusive processes, e.g. Refs. [2-10], by
considering

7(q.€4) + N(p1,41) = v(k, &) + N'(p2. 42) +p(pp-€,),
(1.1)

in the kinematical range from medium energies in fixed-
target experiments to very large energies of colliders,
which correspond to the experimental environments of
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JLab 12-GeV, COMPASS, the future EIC and LHC in ultra-
peripheral collisions (UPCs). The main motivation for
considering the above photoproduction process is that it
gives access to both leading-twist chiral-even (CE) and
chiral-odd (CO) GPDs, depending on the polarization of
the outgoing p meson, described using its distribution
amplitude (DA), also at the leading twist. In particular,
this process allows us to learn more about the badly known
chiral-odd GPDs. Factorization for this process was
recently proved in Refs. [11,12], in which the hard scale
is provided by the large relative transverse momentum of
the outgoing y/p meson. The work presented here builds
upon our earlier publications [13,14] and our more recent
work [1]. One should note that the present paper extends
the study performed in Ref. [13], which focused on the
neutral p° meson, to p** mesons of any possible charge.

The paper is organized as follows. Details regarding the
kinematics are recalled in Sec. II. In Sec. III, the non-
perturbative inputs, namely the GPDs and the DAs, are
presented. In Sec. IV, we show how the amplitude can be
expressed in terms of tensorial structures, and how the
computation reduces to that of basic building blocks. This
section ends with a discussion of polarization asymmetries.
Results for the cross sections and linear polarization
asymmetries with respect to the incoming photon are the

Published by the American Physical Society
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subject of Sec. V. This section ends with an estimation of
counting rates at various experiments. We end with con-
clusions in Sec. VI. In Appendix A, the diagrams for the
chiral-odd case are given in terms of building block
integrals, for both the asymptotic and holographic DAs.
In Appendix B, we discuss the effect, on the cross section,
of the experimental constraints at JLab on the angle of the
outgoing photon. Finally, in Appendix C, the vanishing of
the circular polarization asymmetry with respect to the
incoming photon for the chiral-even case is discussed.

II. KINEMATICS

From Eq. (1.1), one can define the following momenta:
LY

5 AM:pg—plf

(2.1)

All momenta are decomposed in a Sudakov basis, such that
a generic vector » can be written as

vf = an* + bp* + '), (2.2)
with the two light-cone vectors p and n given by
p":§(1,0,0,1), nﬂ:§(1,o,o,—1), p-n:%. (2.3)

For the transverse vectors,
convention:

we use the following

v = (0,05, 1,0), 3 = =77 (2.4)

The particle momenta for the process now read

2

=1 H H, 2.5
M? + A?
p’zl =(1=¢p* +S(17—€)tnﬂ + A, (2.6)
q" = n*, (2.7)
5, —A,/2)? A*
K = an* + 7(1)[ ast/ ) pr+pl - TL (2.8)
(B + A, J2)% + M? A
Ph = apn + = ;s ”p"—p’i—jl, (2.9)

P

where M and M, are the masses of the nucleon and the p
meson respectively. The square of the center-of-mass
energy of the photon-nucleon system is then

Sw=1(q+p)=0+&s+M, (210

while the square of the transferred momentum is

1+&~, 48M?
t=(py—p1)=- A; - . 2.11
(P2 —p1) 1—eo 1-& ( )
The invariant mass squared of the yp system, M f,,, provides

the hard scale for factorization. This is guaranteed by
having a large relative transverse momentum p, between
the outgoing photon and meson.

Collinear QCD factorization implies that

—u'=(p,—q)*. —t'=(k—q)*. Mj,=(p,+k)*. (2.12)
are large, while

—t=(pa—p1)* (2.13)

needs to be small. In practice, we employ the cuts

—u', - > 1 GeV?, —1 < 0.5 GeV2. (2.14)
We note that these cuts are sufficient to ensure that
Mﬁl, > 2 GeV2. Furthermore, the above kinematical cuts
ensure that the pN’ invariant mass, M ,y:, is completely out
of the resonance region. Indeed, through a numerical

analysis, taking into account Eq. (2.14), we find that'

M2, > 3.11 GeV?, (2.15)

which is much larger than the mass squared of the A
baryon, mi ~ 1.52 GeV2. Thus, unlike the case of the
charged pion in Ref. [1], we find that the larger mass of the
p meson with respect to the pion mass is such that M/z) v 18
pushed to larger values.

Neglecting &, in front of p,, as well as hadronic masses,
we have that the approximate kinematics, as used in the
hard part of the factorized amplitude, is

=)
2 Pi ~ =5 —
MW)Nﬁ, a,rl-a=a, 5_2_1_, (2.16)
sz
TNSN—YMQ’ —'~aMi,, —u' ~aMi,. (2.17)
v

We choose as independent variables (—t), (—u') and M2,.

Regarding the polarization vectors, we work in the axial
gauge, such that p - € = 0. In particular, this implies that
the polarization vector of the initial photon is given by

=, 2.18)

'In all rigor, we should also exclude the kinematical region
where one of the pion decay products from the p meson resonates
with the final nucleon. Such a constraint is however difficult to
fulfill at our level since we do not specify the kinematics of the p
decay.
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i.e. it only has nonzero components in the transverse plane.
For the polarization vector of the outgoing photon,
one obtains

e k
LT & (2.19)

Regarding the polarization of the p meson, we have?

L M,

—ph =
Mp g (ppﬂ)

&(py L) = pr. (2.20)

for the longitudinally polarized case. For the transversely
polarized p meson, we exploit the transversity relation
P, €,(p,.T) = 0 to write the polarization vector as

Epl " P
%(pva):gﬁJ__ Pp.p/)p”’
P

(2.21)

where we have chosen the basis for which p - €,(p,. T) = 0.
The sum over all three polarizations gives

H v
N . PpD
> Py ey (pyi) = =g +=5F

i=L.T »

(2.22)

Using Egs. (2.20) and (2.21), restricting the sum to only
transverse polarizations leads to
|

Y

> &y T)e (9, T)
T

:_g,erP“pZﬁrp”pﬁL_ Py
p-p, (p-p,)

5 PP (2.23)

where p,| = —p, — 455 see Eq. (2.9).
Further details on the kinematics can be found in our
previous works [1,13,14].

III. NONPERTURBATIVE INPUTS

For the self-consistency of the paper, we choose to recall
the basic nonperturbative ingredients needed for computing
the amplitude.

A. Generalized parton distributions

For our case, both the p — n and n — p quark transition
GPDs are needed. By isospin symmetry, they are identical
and are related to the proton GPD by the relation [15]

(n|dCu|p) = (p|ald|n) = (p|alulp) - (p|dTd|p). ~(3.1)
Therefore, we only use the proton GPDs in practice. The
chiral-even GPDs of a parton g (where ¢ = u, d) in the
nucleon target are defined by [16]

_( ! it )y = i N
(o2 22)a(=3)r () ppran) = [ e i ) [y B (5, 600) 50 BB )y, ),

2 2

1

for the chiral-even vector GPDs, and

2

(3.2)

_ y y 1 —ix(p* - ~ 1 -
(p(p2a)la(=3)r7a(3) Ip(p1. ) = / dx eV (py. o) [ P HI (0, E0) 4 A ES (0. E0)|u(pa. )

(3.3)

for chiral-even axial GPDs. In the above, 4; and 4, are the light-cone helicities of the nucleons with momenta p; and p;.
In our analysis, the contributions from E9 and E? are neglected, since they are suppressed by kinematical factors at the

cross-section level; see Eq. (4.32).

The transversity (chiral-odd) GPD of a quark ¢ is defined by

—( Y\. i (Y 1 _ix(ptapt)y = gy
(oo ila (=) i a(3) p(pra) = [ axe 0T i) lia Y. £00) + a2,

-1

(3.4)

where ... denotes the remaining three chiral-odd GPDs whose contributions are omitted in the present analysis.

2Our conventions are such that e ( Py L) =(0,0,0,—1) in the p-meson rest frame.
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The GPDs are parametrized in terms of double distri-
butions [17]. The details can be found in Refs. [13,14], and
we do not repeat them here. The # dependence of the GPDs
is modeled by a simplistic dipole ansatz, discussed in
Appendix E of Ref. [1].

In our current study, which is performed at leading
order in a,, we neglect any evolution of the GPDs/parton
distribution functions (PDFs), and take a fixed factorization
scale of y2. = 10 GeV2. Asin Refs. [1,13,14], the PDF data
sets that we use to construct the GPDs are as follows:

(1) For xq(x), we use the GRV-98 parametrization [18],
as made available from the Durham database.

(2) For xAgq(x), we use the GRSV-2000 parametrization
[19], also available from the Durham database. Two
scenarios are proposed within this parametrization:
(a) The standard scenario, for which the light sea

quark and antiquark distributions are flavor
symmetric.
(b) The valence scenario, which corresponds to flavor-
asymmetric light sea quark densities.
The above two scenarios can be used to obtain an
order-of-magnitude estimate of the theoretical un-
certainties.’

B. Distribution amplitudes

The chiral-even light-cone DA for the longitudinally
polarized p; meson is defined, at the leading twist 2, by the
matrix element [20],

. . 1 .
OO T a0y e)) = pif) [ dze e ),
(3.5)
with £} = 216 MeV and i = 0, +.* In the above, ¢ = (ud)

is a two-dimensional vector in flavor space, and the
matrices 7" (in flavor space) are defined by

o) (D) () e

The chiral-odd light-cone DA for the transversely polarized
meson vector pr is defined as

(01g(0)o* T'q(x)|p}(p,-€,))

= i(eﬁPZ - pl’/))fp / dz e_izpp-x‘fh_(z)’ (3.7)

where ¢, is the p-meson transverse polarization and
f7 =160 MeV.

3Using more recent tables for the PDFs leads to variations that
are smaller than the above-mentioned theoretical uncertainties.
This effect was studied in Ref. [13] (see e.g. Fig. 8). _

The wave functions are 1) (luit) — |dd)), |pT) = |ud)
and |p~) = |di) for the p°-, p*- ané p~ mesons respectively.

For the computation, we use the asymptotic form of
the distribution amplitude, ¢*, as well as an alternative
form, which is often called the “holographic” DA, ¢"'.
They are given by

P®(z) = 62(1 —z),
P (z) = = /z(1 - 2),

where both are normalized to 1. With the above two forms
of the DA, the integration over z can be performed
analytically. For the chiral-even case, including the building
block integrals, the results can be found in Appendix D of
Ref. [14] for the asymptotic DA case, and in Appendix C of
Ref. [1] for the holographic DA case. For the chiral-odd
case, the results can be found in Appendix A.

(3.8)

(3.9)

IV. THE COMPUTATION

A. Gauge-invariant decomposition
of the hard amplitude

In the framework of collinear factorization, we set

&, =0 in the hard amplitude, which implies that
(—=t) = (—1),y;,» Where
4 62 M2
) = 4.1
(Doin =72 (@.1)

For the sake of completeness, we remind the reader of
the properties of the diagrams contributing to the coef-
ficient function, which significantly simplify the calcula-
tion. The hard part is described at leading order in @, by
20 Feynman diagrams. As discussed in Refs. [1,14], half of
the diagrams are related by C-parity transformations.’

The sets of diagrams (without including charge factors)
are denoted as (---). We denote the A and B diagrams
by the order in which the incoming photon and virtual gluon
join one of the quark lines. The numbers (1 to 5) denote the
five different ways of attaching the outgoing photon to the
quark lines. The remaining set of diagrams, C and D, is
obtained by exchanging the role of the two quarks in the ¢
channel. In practice, one obtains four separately QED gauge-
invariant sets of diagrams, namely (AB),3, (AB)4s, (CD),
and (CD),s5 [1,14]. Figure 1 shows the first two sets.

Defining the charges Q, through e, = Q,|e|, by QED
gauge invariance, one can write any amplitude for photon
meson production as the sum of three separate gauge-
invariant terms, in the form

= (07 + 03) M + (07 = Q3) Maigr + 201 Qo Mproq,

(4.2)

>This corresponds to a C-parity transformation (z <> 1 — z and
x <> —x) after the electric charges have been factored out, such
that effectively, ¢ and g have a charge of 1.
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R
T

FIG. 1.

where Q) is the charge of the quark entering the DA and Q,
is the charge of the quark leaving the DA, in each diagram.

B. Chiral-even case

The parity properties of the gg correlators appearing in
the DA and in the GPDs allow the separation of the
contributions for parity (4), denoted as S and parity (—),
denoted as P. Only two structures occur in the hard part,
namely SS (no y° matrices, vector GPD case) and SP
(one y5, axial GPD case).’

A careful examination of the C-parity transformation
which relates the two sets of ten diagrams gives the
following results. For the vector contribution, the sum of
diagrams reads

MX = Q3[(AB) 133)55s ® f + Q10:[(AB)4s)ss ® f

+ Q%[(AB)123](S§> f+ Qle[(AB)45](s§) ® f.
(4.3)

while for the axial contribution, one gets

= Q[(AB) 13]5p ® f + Q1 Q1[(AB)4s]sp ® f

— Q2[(AB)1)\S) @ T — 0105[(AB),s] Y ® T.
(4.4)

In the above two formulas, f denotes a GPD of the set
H, E appearing in the decomposition of the vector
correlator (3.2), while f denotes a GPD of the set H, E
appearing in the decomposition of the axial correlator (3.3).

®Note that the SS structure is equivalent to the PP structure that
enters the amplitude for the charged pion [1] since the two 7
matrices can be combined through anticommutation relations.
They are of course associated with different GPDs in each case.

O

Half of the Feynman diagrams contributing to the hard part of the amplitude.

The symbol ® represents the integration over x. The
integration over z for the p-meson DA is implicit, since
the DA is symmetric over z <> 1 — z. The superscript (C)
denotes x - —x and z — (1 — z).

The above decomposition is convenient since the inte-
gration over z is performed analytically, while the inte-
gration over x is performed numerically. This allows us to
evaluate the amplitude in blocks which can be used for
computing various observables. Equations (4.3) and (4.4)
are obtained by making the identification

[(CD)sus]se = ~[(AB) 123)55 (4.5)
[(CD) 2]sp = —[(AB)s]s7 (4.6)
[(CD)suslss = [(AB) 12355 - (4.7)
[(CD) 2]ss = [(AB)s]ss (4.8)

We introduce a few convenient notations. A superscript
s (a) refers to the symmetric (antisymmetric) structures of
the hard amplitude and of the GPD with respect to x, i.e.

£0) = 5 (F00) + £ (=) + 5 (Fx) = £ (=)
= f*(x) + f(x). (4.9)
This thus leads to
M) = (07 + Q3)[(AB) 5355 ® f*
+ (07 = 0)(AB) 13)¢s ® f*
+2010,[(AB)ys]ss ® f°, (4.10)

for the vector GPD contribution, and
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= (0} + O)[(AB) 1 3)¢p ® [
+ (01 - O3)[(AB) 135 ® f*

+20,0;[(AB)s)ép ® f¢, (4.11)

for the axial GPD contribution, i.e. SP. In the above
formulas, O, = Q, and Q, = Q, correspond to a p*,
Q, =0, and O, = Q, correspond to a p~, and Q; =
0, = Q,.4 corresponds to p°.

In the case of p° meson production [13], which is C(-),
the exchange in the 7 channel is fixed to be C(—). In
Eq. (4.10), this implies that only the symmetric part of
the vector GPD contributes, while in Eq. (4.11), only the
antisymmetric part of the axial GPD contributes. On the
other hand, p™* production (and similarly for p~) involves
both C-parity exchanges in the ¢ channel, which explains
why both symmetrical and antisymmetrical parts of the
GPDs are involved in Egs. (4.10) and (4.11).

The detailed evaluation of one diagram was already
illustrated in Ref. [14], and therefore, we do not repeat
it here.

1. Tensor structure

For convenience, we introduce the common normaliza-
. . . 7
tion coefficients

4
cl = -3 Ly mars 2. (4.12)

Note that we include the charge factors Q, and Q, inside
the hard matrix element, using the decompositions obtained
in Egs. (4.10) and (4.11).

For the SS§ sector, two tensor structures appear, namely

Ty= (g4 1)
Tg= (g1 P1)(PL-€1) (4.13)

while for the SP sector, the two following structures
appear:

TA5 — (pl . gzl)enpsqlpl’

Ty, =—(p.- qu_)e”peiipi. (4.14)

2. Organization of the chiral-even amplitude

The scattering amplitude of the process (1.1), in the
factorized form, is expressed in terms of form factors H,,,
5,,, ﬂ,,, ép, analogous to Compton form factors in DVCS,
and reads

Mh = ulp) [y (60 + T 6
ST + ). (419

We isolate the tensor structures of the form factors as

Hp(g’ t) = H/)A(é’ t)TA + HpB(éE’ t)TB’
ﬂ/,(é, t) - ﬂ,ﬂAs (5, t)TAS + ﬂ/JBS (f, t)TBS.

These coefficients can be expressed in terms of the
sum over diagrams of the integral of the product of their
traces, of GPDs and DAs, as defined and given explicitly in
Appendix C of Ref. [1] for the case of the holographic DA,
and Appendix D of Ref. [14] for the asymptotic DA case.
We introduce dimensionless coefficients N and N as
follows:

(4.16)

1
HA:;CHNPA, H

1
, B = s—chNpB (4.17)

and

- | . ~ |
HPAS = FC”NﬂAs’ HPBS = ;CHNﬂBs’ (418)
In order to emphasize the gauge-invariant structure and to
organize the numerical study, we factorize out the charge
coefficients, and put an explicit index g for the flavor of the
quark GPDs f¢ and f9. In accordance with the decom-

positions (4.10) and (4.11) we thus introduce®

N4 (01, Q2) = (07 + Q3)NA(AB) 3] + (QF — Q3)NA[(AB) 23] + 20,0, N4[(AB)s]°, (4.19)
Ni5(01, 02) = (07 + Q3)N3[(AB) 123]° + (07 — Q3)NE[(AB) 23] + 201 0o N3[(AB) 5], (4.20)
and
N1\ (01, Q2) = (O + Q3)N] [(AB) 23] + (07 = Q3)N] [(AB) 53] + 201 02N [(AB),5]“, 4.21)
N5 (01, 02) = (0F + QD)NE [(AB)25]° + (OF = Q3)N}, [(AB)55]° + 2010,V [(AB) 5] (4.22)

"Note that the sign has been corrected here with respect to our previous publication [13]. We note however that this does not
affect the cross section, which corresponds to the square of the amplitude and is therefore insensitive to the sign.

Effectlvely, what changes here for the p-meson case from the pion case is that the association of the coefficients in Egs. (4 21) to
(4.20) to the GPDs is swapped, i.e. vector for axial and vice versa. This explains why the tildes are swapped with respect to the pion case.
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9

The above four terms, which have a superscript “g,” are not
to be confused with the coefficients that appear in
Eqgs. (4.17) and (4.18). Instead, the four terms are used
in Egs. (4.23)-(4.30) below to construct the coefficients.

For the specific case of our four processes, namely yp°
production on a proton (denoted by p9), yp° production
on a neutron (denoted by p?), yp* production on a proton
and yp~ production on a neutron, taking into account the
structure (3.1) of the transition GPD structure we thus need
to compute the coefficients

1
N/)([],A = ﬁ [NZA(QM’ Qu) - NgA(de Qd)]’

1
N/)(,’,B ZE[NZB(QW Qu) _NgB(de Qd)]’ (423)
1
NpgA = E[NZA(Q‘]’ Qd) - NZA(QM’ Qu)]’
1
Npr = 7§ [NZB(Qd’ Qd) - NgB(Qu» Qu)]’ (424)
Np*A = NZA(QM’ Qd) - NgA(Qua Qd)»
N/J*B :NZB(QM’ Qd) _NZB(QLH Qd)v (425)
Nya = Nty(0u Q) = N9y (04, 0,),
Np’B :NzB(Qd9 Qu) _NZB(Qd’ Qu)? (426)

corresponding to the case with vector GPDs, as well as

1 - -
= ﬁ [NZAj(qu Qu) - NZAS (Q(h Qd)}a

1 - -
Nprs = %[ ZB5(Qu’ Qu) - N;d)Bs(Qd’ Qd)]’ (427)

MM} = ZME(ﬂlvﬂz)Mﬂ*(ll»%)

oA

=8(1 — &) (H,(E (&, 1) + H, (& 1) (£, 1) + 8

=8 (H, (& 1)E5(&.1) + HH(E DE (& 1) + T, (£ 0)E (&, 1) + T (£ 1)E, (&.1)).

For moderately small values of &, this becomes

MIMY =~ 8(H, (& )H(E, 1) + H, (& ) FL(E,1)).

- 1 - -
Nyps, =—=[N%.(Qa. Qu) = N9, (Q.- Q).

V2

Fun, =5 . (00.00) - M (0,0 (428
Nyia, = Ny (s Q) = Ni,y (Qu: Q).

Nyig, = N (04 Q4) = N (Qu Q) (4.29)
Npag = Ny (04, Qi) = N,y (Qu Q)

Nyp, = Nip (Q4. Qu) = Nip (Qu. Qu). (4.30)

which correspond to the case of axial GPDs. Therefore,
for each flavor u# and d, by knowing the 12 numerical
coefficients

Ni[(AB) ', NL[(AB)yy3]".  Nj [(AB)ys],
N%S[(AB%B]Sv N%S[(AB)m]a’ N;’;S[(AB)%]“»
Nil(AB)53]*.  N3[(AB)i3]®.  NZ[(AB)ys]*,
NE[(AB)55]°.  Nil(AB)153]".  Ni[(AB)ys).  (4.31)

for two given GPDs f and f (in practice H and H; see next
subsection), one can reconstruct the scattering amplitudes
of the two processes. These 12 coefficients can be
expanded in terms of five building block integrals which
we label as 1, 1., I, I; and I, for the asymptotic DA case,
and two extra building blocks labeled as y,, y.. for the case
of the holographic DA. The building block integrals can be
found in Appendix C of Ref. [1], and in Appendix D
of Ref. [14].

3. Cross section
In the forward limit A| = 0 = P, one can show that the

square of the M,‘l from Eq. (4.15) reads, after summing
over nucleon helicities

54
1-¢2

(E,(ENEE )+ ENENE(E 1))
(4.32)

(4.33)

Hence we will restrict ourselves to the GPDs H, H to perform our estimates of the cross section.” We note that this
approximation remains valid for the linear polarization asymmetry with respect to the incoming photon, as the above
equation still contains the helicities of the incoming and outgoing photons.

’In practice, we keep the first term on the rhs of Eq. (4.32), i.e. including the (1 — &) prefactor.
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We now perform the sum/averaging over the polar-
izations of the incoming and outgoing photons,

|Hﬂ(§7 t)|2 = ZH/)(é’ t’/lkvllq)
Asdg
= 2|H/)A(§’ t)|2 + pi|H/)B(§v t)|2
+ PL[Hpa (G H (E1) + H s (6.1 M5 (8, 1)),

H,(E 1, A Ay)

(4.34)
|ﬂ/,(§, t)|2 = Z,}:[/J(é" Z, /lkv Aq)ﬂ:(fv L, Akvlq)
Aishg
SZPJ_
(IHpas (& 0P + [Hyp, (£.0P).  (4.35)

Finally, we define the averaged amplitude squared |./\/l 2,
which includes the factor 1/4 coming from the averaging
over the polarizations of the initial particles. Collecting all
prefactors, which read

1 1
S8(1-)[ClIP 5, (436)
we have that
iz 2 211l 12 ,  PL 2
|MP| :?(1_5 )|C | 2|N/1A| +?|N/)B|

4 4

Pl % Pl %
gl P

(4.37)

Here p corresponds to p%, p3), pi or p,, where the subscript
denotes the target. The corresponding coefficients N ,,
N,p, IV,,AS, N B, are given by Egs. (4.23)-(4.30).

p.
The differential cross section as a function of ¢z, M f,,, —
then reads

/

do! M

T =P (4.38)
dtdi dM2,| 3282, M2, (22)°

I:(_t>min

i
TAJ_ -

+ P (pL-gy ) (e -ry) —aler, 65, )(Pr-gq)] +egu[=(pr-€) ) (po-epy) +aa(a—2)Es(e, -1 )])

T = el (py-e,)(po€i0)

+ qu [~(pL- fh)(lh &y, ) —aags(e - le)] + Pi[—a

-8 ' ,
%{aﬁ’ﬁ[(lh &y Py 5 1) +adgs(e qi"E‘;J_)]_ag;)i[a(a_z)fs(sqL'gltL)_

—aRa—1)s(e,) - €5, )] +aef [a(2a

(P& )(eqr-er ) —aleqr €, )(pL-er )}

C. Chiral-odd case

As before, one can group diagrams based on their charges.
Using the same notations as in Sec. IV B, exploiting the
C-parity symmetry of the process, one obtains

M/J)_ QZKAB)IZS]TT ® fT + Q Qz[(AB)45}TT ® fT
+ QZKAB)IB]TT ® fr+ QlQZ[(AB)45]TT ® fr

(4.39)

where
[(CD)saslrr = [(AB) 12517, (4.40)
(CD)lrr = [(AB)s]i7, (4.41)

have been used. In the above, f; represents a generic
“tensor” chiral-odd GPD (in practice, Hr). Only eight
diagrams out of the 20 diagrams are nonvanishing in the
chiral-odd case. They are As, By, A4 and Bs, and the
corresponding ones given by the symmetry transformation in
Egs. (4.40) and (4.41). Writing the GPDs in terms of
symmetric and antisymmetric parts, we have

= (01 + O)[(AB)\3)5r ® f7

+ (07 = O)(AB) 1551 ® [

+20,05[(AB)ys]7r ® f7- (4.42)

The detailed evaluation of one diagram was performed in
Ref. [13], and we do not repeat this here.

1. Tensor structure

It is convenient to introduce the common normalization
10
factor

4
Cct= §ff;aema37r2. (4.43)

Note that we include the charge factors Q, and Q, inside
the hard matrix element, using the decomposition obtained
in Eq. (4.42).

In this case, two tensor structures appear, namely

(po- SqL)(pl &)
(4.44)

—1)és(e,1 €, )+(pi'€qi)(pL'8;J_)]
(4.45)

""Note that the sign has been corrected here with respect to our previous publication [13]. We note however that this does not affect the
cross section, which corresponds to the square of the amplitude and is therefore insensitive to the sign.
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When summing over the polarizations ¢,, of the p meson
in order to compute the square of the amplitude, only

Zejp‘lsﬁ = g7, (4.46)
T

is needed, since we have chosen the basis as defined in
Sec. II.

2. Organization of the chiral-odd amplitude

Following the same steps as the chiral-even case, we can
write the chiral-odd amplitude in terms of form factors
J Ay J i
Hz, Hyys €

Tp: E”T " analogous to Compton form factors in

Deeply Virtual Compton Scattering (DVCS),

1 o P-nAJ—A.-nP/ .
My = n”(Pz,ﬂz) i6" Hr,; (&, 1) + 2 Hr,j(&, 1)
+T5ij(§v 1)+ & (& )| ulpr, 4), (4.47)
|
where j corresponds to a transverse vector index. From N . J
the form factors, one can isolate the following tensor N1 _%[NTPA(Q”’Q“) = N7pa(Qa- Q).
structures: 1
. . . NTp?,B = 75 [N%/)B(Qu’ Qu) - NCTI'/)B(Qd’ Qd)]? (453)
Hr(6,1) = Hrpa (& 0T4y + Hrpp(80)Tp . (448)
. . 1
We further express the above coefficients in terms of 7 _ ° rpu 0,,0,) =N (0.,0
dimensionless ones through T V2 | T 2(Qa- Q) v 2(Qu Qu)]
1
1 Nyop = ——=|N¥ , — N¢ 0, 4.54
HTpA — s_3CJ_NTpAa (449) Tp)B \/i[ T/)B(Qd Qd) T/)B(Q Q )] ( )
1 u
HT/)B = ;*,CJ_NT/)B' (450) NT/J*A = NTpA(qu Qd) - N;i"pA(Qua Qd)»
NTp+B = N?"pB(Qu’ Qd) _N?'pB(qu Qd)7 (455)
Proceeding as in Sec. IV B2, the electric charges are
factorized, and we introduce an explicit index ¢ to denote Nppa = N& (Q4. Q) — Nd (04.0.)
the flavor of the quark GPDs f% and f%. Thus, using the ! Zp ZP
decomposition in Eq. (4.42), we have that Nrpp = NT/;B(Qd’ 0.) - NT/JB(Qm Q.) (4.56)

N%}A(Qh Q2> - (Q% + Q%)N?A[(AB)IB]S
+ (07 = Q3)N74[(AB) 3]

+2010,N7,[(AB)s)°, (4.51)
N(YI"pB(Ql’ 0,) = (07 + Q3)N75[(AB),15]°

+ (07 — Q3)N73[(AB) 53]°

+20,0,N75[(AB),s)*. (4.52)

Just like in the chiral-even case, the above two terms,
which have a superscript “g,” are not to be confused with
the coefficients that appear in Eq. (4.49). Instead, the two
terms are used in Egs. (4.53)—(4.56) below to construct the
coefficients.

For the specific case of our four processes, namely yp°
production on a proton (denoted by p9), yp° production
on a neutron (denoted by p?), yp* production on a proton
and yp~ production on a neutron, taking into account the
structure (3.1) of the transition GPD structure, we find that
the following coefficients need to be computed:

In practice, we deduce that the following six numerical
coefficients need to be computed, for each flavor u and d,

N7Al(AB) 3], N7a[(AB)133]". N7al(AB)ys)*.

N7g[(AB) 153", N7g[(AB)15s]", Nipl(AB)ysl'.  (4.57)
for a given chiral-odd GPD f; (in practice, Hy). This is
sufficient to reconstruct the amplitude for all four processes
we are interested in. The six coefficients can be expressed
in terms of three building block integrals, which we label
as I, I; and I, for the asymptotic DA case, and one extra
building block integral labeled y, for the case of the
holographic DA. The expressions for the coefficients in
Eq. (4.57) in terms of the building block integrals are given
in Appendix A.

3. Cross section

In the forward limit A;, = 0 = P, one can show that the
square of M, in Eq. (4.47) reads, after summing over
nucleon helicities,
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M/J)_M/J;* = ZMé‘(/{l N /12)M/J;* (/11, /12)
A
. '* 2
=38 |:_(1 - 52) lTp(i? tyf(é"p(f? t) - ﬁ
+ é{HIT/) (5’ t) [éngp(é:’ t) Tp (5 t)]
For moderately small values of &, it reduces to

Hence, we will restrict ourselves to Hy, to perform our
estimates of the cross section.' Perfomnng the sum over
the transverse polarizations of the p meson, and the
incoming and outgoing photons, one obtains

My (& Ak 2. 2,)

q°p

- gJ_l] Z HlT[J(f? t’ A’k? )“q’ A’/))

Adgt,

= 512854 (a* [Hrpa (& 0> + [Hrps(E. 1)]7). (4.60)

We can now compute the averaged amplitude squared
| M2, which includes a factor of 1/4 coming from the
averaging of the polarizations of the incoming particles.
Collecting all prefactors,

51225 X% |Cl|2 >< x8(1—&2),  (4.61)
we have that
1024
My P = =581 = &)|CPla N7y (&, 1)
+ IN7,5(E 1)) (4.62)

Here p corresponds to p%, p3), p)i or p,, where the subscript
denotes the target. The corresponding coefficients Nr,,
and Nyp,p are given by Egs. (4.53)—(4.56).

As for the longitudinally polarized p-meson case, the
differential cross section as a function of (—1), M2,, (—u’)
then reads

dot B M [?

d(-t)d(=u')dM3,| _ ., 328;yM;,(2x)*

(4.63)

"In practice, we keep the first term on the rhs of Eq. (4.58).

(€8 (£.1) = & (& 0]EET (& 1) = & (£.1)]

M (601687, (60) = E,(& 01 gy (4.58)

D. Polarization asymmetry

1. Chiral-even case

In the chiral-even case, as discussed in Appendix C, the
circular polarization asymmetry vanishes as a result of
conservation of parity P for an unpolarized target, which is
the case we consider here.'” Therefore, we compute the
linear polarization asymmetry (LPA) with respect to the
incoming photon, which is defined by

fda fda

LPA = fda —I—fdz)'

(4.64)

where do,(,) corresponds to the differential cross section
with the incoming photon linearly polarized along the x(y)
direction. The integral symbol in Eq. (4.64) corresponds
to phase space integration and hence, the LPA can be
calculated at the fully differential (by dropping the integral
altogether), single differential or integrated level.

The LPA is usually calculated in the lab frame, which
corresponds to fixing the directions of the polarization
vectors. However, for convenience in performing the
computation, we first take the polarization vector in the
x direction to be along p,, which changes on an event-by-
event basis. Then, the polarization vector in the y direction
is chosen such that the x, y, z directions form a right-handed
basis. Thus,

&(q) =LL 4.65

(9) 7, (4.65)

&(q)=- S|p|€pnh# (4.66)
t

The LPA corresponding to this choice of polarization
vectors is denoted by LPA,,.,, since the directions of the
polarization vectors are such that the LPA is maximized.
The LPA in the lab frame, LPA;,, can then be related
to LPA,,,« via a simple modulation of cos26, where 6
corresponds to the angle between p, and the x direction
defined by the lab frame. Thus,

LPA;,, = LPA,, cos20. (4.67)

"The circular double spin asymmetry does not vanish and may
be an interesting observable for a polarized target experiment.
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The proof of this result, including the derivation of relevant
expressions for the LPA, can be found in Appendix F in
Ref. [1]. When showing the results in Sec. V, we therefore
choose to show plots for LPA,,,,, as the modification due to
cos 20 is trivial.

We now turn to the calculation of LPA,,. Amplitudes
corresponding to specific linear polarization states in
Eqgs. (4.65) and (4.66) can be defined as

Mx = &(Q)Mﬂ, My = ‘C";;(‘I)Mﬂ (468)
For convenience, let us decompose the amplitude as
[cf. Egs. (4.13) to (4.16)]

M - CATA + CBTB + CAS TA5 + CBSTBS’ (469)
ie. in terms of the tensor structures T, Tp,Ty,, T,
defined in Egs. (4.13) and (4.14). We note that the
coefficients of the tensor structures include the spinors
of the nucleons, as well as Dirac matrices associated
with the definition of the GPDs. More explicitly, using
Egs. (4.15) and (4.16),

1

Cy= ﬂﬁ(Pz,iz)yiu(pl,/ll)HpA(f, 1), (4.70)
1

Cp = 42 )i, 2 JHpp (8. 1), (4.71)
1 ~

Cas = nﬁ(m,iz)ﬂysu(pl,/ll)Hl,As (&1), (4.72)
1 ~

CB5 Enﬁ(pz,/12)%7/514(1)1,11)7'(/)35(57 t). (4'73)

By squaring the amplitude, and summing over the polari-
zation A, of the outgoing photon, we obtain

2
- N
> IMP = Cal? + BB +Z|pt|4|cBS|2
Ak

= 2|p.[*Re(C;Cp). (4.74)

2

PN
> M2 = [Cal? + 7 [BICA (4.75)
Ak

From the above polarized amplitude squared, one can
compute the LPA,,,, at various levels (from fully differ-
ential to integrated).

2. Chiral-odd case

For the case of the transversely polarized p meson, we
find, through a direct computation, that both the circular and
linear polarization asymmetries always vanish in the limit of

A, =0. This is the consequence of the fact that, after
squaring the amplitude and summing/averaging over all
polarizations except &,, one obtains, after setting A, =0,

512
> MMy = - £(1 = &)ICPla*INrpa & 1)
2.
My

+ IN7,5(8. 1)) (€5 - £)- (4.76)
First, we note that upon summing over the transverse
polarizations of the incoming photon, one recovers the
averaged amplitude squared in Eq. (4.62). Second, the term
(e - &,) is trivially —1, and thus can never give rise to any
polarization asymmetry.

Comparing with the chiral-even case in Sec. IVD 1,
we find that repeating the same steps leads to two types
of terms, namely the same one that appears in Eq. (4.76)
(¢5-€,), and also (& - p,)(e,- p1). It is terms of the
latter type that lead to linear polarization asymmetries.
For instance, in Eqs. (4.74) and (4.75), we note
that |C4|> comes from terms of the first type [from
the square of the tensor 7, after summing over the
polarization of the outgoing photon; see Eq. (4.14)],
and it is easy to see that |C,|*> indeed cancels in the
computation of the LPA.

Before ending this section, we stress that the result in
Eq. (4.76) is obtained by working in the limit of A| = 0. In
general, for nonzero A |, the analogue of Eq. (4.76) contains

all possible contractions involving &,, namely (e -&,),

(52 : PL)(fq “P1)s (82 : AL)(‘gq P (fi} : PL)(Sq “A)
and (e;-A )(e,-A,), which gives rise to polarization
asymmetries. On the other hand, the result depends on
transversity GPDs other than H7, whose contributions are
beyond the scope of this work. We therefore postpone the
analysis of polarization asymmetries for nonzero A, for a
future publication.

V. RESULTS

A. Conventions for plots

For consistency, we use the same conventions for the
plots as in our previous study [1]. We typically include four
cases, considering two models for the DA (asymptotic or
holographic), and two GPD models (valence or standard
scenario). The conventions used throughout this section are
as follows:

(1) Solid line: asymptotic DA, valence scenario

(2) Dashed line: holographic DA, valence scenario

(3) Dotted line: asymptotic DA, standard scenario

(4) Dot-dashed line: holographic DA, standard scenario
Dashed lines imply the use of the holographic DA, while
dotted lines imply the use of the standard scenario for
the GPD.
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We present results for JLab kinematics in Sec. V C,
COMPASS kinematics in Sec. V D and EIC as well as LHC
UPC kinematics in Sec. V E. In each subsection, we present
results for fully differential cross sections first, then single-
differential cross sections [i.e. integrated over (—tf) and
(—u')], followed by integrated cross sections as a function
of S,y, and finally the linear polarization asymmetries
with respect to the incoming photon. Each figure has four
plots, with:

(1) top left corresponding to yp° photoproduction on

proton target (denoted by pg),

(2) top right to yp° photoproduction on neutron target

(denoted by p2),

(3) bottom left to yp* photoproduction on a proton

target (denoted by p;), and

(4) bottom right to yp~ photoproduction on a neutron

target (denoted by py,).

Finally, the figures are presented in such an order that the
chiral-even case (longitudinally polarized p meson) always
appears before the chiral-odd case (transversely polarized p
meson). We note that since the polarization asymmetry is
always vanishing for the chiral-odd case, only plots for the
linear polarization asymmetry corresponding to the chiral-
even case are shown. Furthermore, these correspond to
LPA,.x; see Sec. IVD 1.

B. Description of the numerics

The GPDs are computed as tables in x, for different &.
For the amplitudes, we compute tables at different (—u’)
and M }%p, at a particular value of S, . To compute the fully
differential cross section (and hence amplitudes), (—?) is
fixed to its minimum value (—7),,,; see Eq. (4.38). The ¢
dependence of the cross section is then modeled by a
simplistic ansatz, namely a factorized dipole form

(lmin - C)2

o (5.1)

Fy(t) =

with C = 0.71 GeV>.

We compute the cross section covering the full phase
space in the region 20 GeV? < S,y < 20000 GeV?, since
this covers the full kinematical range of JLab, COMPASS,
EIC, and most of the relevant kinematical range for UPCs
at the LHC; see Sec. VF4. We compute seven sets of
amplitude tables in total:

(1) S,y =20 GeV?, 2.1 < M2, <10 GeV? with a uni-

form step of 0.1 GeV?

(2) S,y =200 GeV?, 2.1 <M2, <514 GeV? with a

uniform step of 0.2 GeV?

(3) S,y =200 GeV?, 2.1 < M2, < 110.5 GeV? with a

uniform step of 1.1 GeV?

4) S,y =2000 GeV?, 2.1 <M}, <51.4 GeV? with a

uniform step of 0.2 GeV?

(5) S,y =2000 GeV?, 2.1 < M2, < 1041.1 GeV? with
a uniform step of 10.5 GeV?

(6) S,ny =20000 GeV?,2.1 <M;, <51.4 GeV? witha

uniform step of 0.2 GeV?

(7) S,y =20000 GeV?, 2.1 <M;, <10396.6 GeV?>

with a uniform step of 105 GeV?
The first, third, fifth and seventh sets cover the full range of
the phase space, while the second, fourth and sixth sets are
needed to resolve the peak in Mgp (importance sampling),
like for the charged pion case [1]. This is particularly
important for the chiral-even case, i.e. for the longitudinally
polarized p meson.

For each amplitude table, the whole range of (—u') is
covered. More details regarding the boundaries of the
kinematic variables can be found in Appendix E of
Ref. [1], and in Appendix E of Ref. [14]. At each value
of S,y = 200,2000, 20000 GeV?, two separate data sets
were needed: one to cover the whole range of the phase
space, and the other to ensure that peaks in the distribution
of M%,, were well resolved in the chiral-even case. This is
not needed for the S,y =20 GeV? case, as the peak is
moderate in that case. We refer to Sec. V. 2. 1 in Ref. [1] for
details regarding the importance sampling procedure.

In practice, we compute amplitude tables in (—u’) for
each of value of M?,,. The steps we take are as follows:

(1) We calculate, for each of the above types of GPDs

(in the present paper H, H and Hy), sets of u and d
quarks GPDs indexed by M2, i.e. ultimately by &

1
given by

2
MJ’P

f: .
2(S,y —M?*) - M2,

(5.2)

The GPDs are computed as tables of 1000 values for
x ranging from —1 to 1, unless importance sampling
is needed, in which case 1000 more values around
the peak are added; see Sec. V.2.1 in Ref. [1].

(2) We compute the building block integrals which do
not depend on —u'. In the asymptotic DA case, this
corresponds to 7, (see Appendix D in Ref. [14] for
the notation), while in the holographic DA case, this
corresponds to both I, and y.; see Appendix C
of Ref. [1].

(3) We choose 100 values of (—u’), linearly varying
from (—u');, = 1 GeV? up to its maximum pos-
sible value (—u'),,.«vax (S€€ Appendix E in Ref. [14]
for how this is computed). Again, if importance
sampling is needed (when the cross section varies
rapidly at the boundaries), an extra set of 100 values
of (—u’) is added at each boundary.

(4) At each value of (—u’), we compute, for each GPD
and each flavor u and d, the remaining building
block integrals, which are I, I., I;, I, I; in the
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FIG. 2. The fully differential cross section for longitudinally polarized P(z)w 0, P+ Py is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively for different values of M}%p. The black, red and blue curves correspond to
M%p =3, 4, 5 GeV? respectively. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted
(nondotted) lines correspond to the standard (valence) scenario. S,y is fixed at 20 GeV2.

asymptotic DA case, and y, and y, in the holo-
graphic DA case."”
(5) This gives, for each of these couples of values of
(Mf,,, —u') and each flavor, a set of 12 coefficients
listed in Eq. (4.31) for the CE case, and Eq. (4.57)
for the CO case.
(6) One can then get the desired cross sections using
Egs. (4.38) (CE case) and (4.63) (CO case).

To optimize the computation, we use a mapping pro-
cedure, described in Sec. 5.2 of Ref. [1], which allows us to
obtain amplitude tables corresponding to lower values of
S,y from a single table (which can correspond to any one
of the seven sets of amplitude tables mentioned above).
This allows for a significant decrease in computing time,
from the order of months to only a few days.

*We note that the chiral-odd case requires the computation of
the extra building blocks 7, and y,, which are not needed in the
chiral-even case.

C. JLab kinematics

The electron beam at JLab hits a fixed target consisting
of protons and neutrons, at an energy of 12 GeV.
The electron-nucleon center-of-mass energy, S,y, is thus
roughly 23 GeV?. Therefore, for most of the plots in this
section, we use S,y = 20 GeV? as a representative value
for JLab kinematics. This allows us to probe GPDs for the
range of skewnesses of 0.04 < ¢ < 0.33.

At this point, we would like to point out that a
programming mistake, related to the sign of the interference
term in the squared amplitude, cf. Eq. (4.37), was made in
the previous publication [13]. Thus, the plots correspond-
ing to the p’-meson case are slightly different.

1. Fully differential cross section

The effect of different values of M gl, on the cross section
is shown in Fig. 2 for the longitudinally polarized p-meson
case. The values chosen for M7, are 3, 4 and 5 GeV~.
As M2, grows, the range of allowed (—u) values increases.
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FIG. 3. The fully differential cross section for transversely polarized pg, 0, p;, P is shown as a function of (—u') in the top left,
top right, bottom left and bottom right plots respectively for different values of M}%p. The black, red and blue curves correspond to
M%p =3, 4, 5 GeV? respectively. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted
(nondotted) lines correspond to the standard (valence) scenario. S,y is fixed at 20 GeV?2.

On the other hand, the value of the cross section itself
decreases. When integrating over (—u’), these two com-
peting effects will become clearer later when we show the
single differential plots in Sec. V C 2 as a function of M%,,,
leading to a peak in the distribution at low values of MJ%p.
In general, the GPD model corresponding to the standard
scenario leads to a larger value for the cross section.
The maximum value of (—u’) allowed by the kinematics,
attained when —7 = (7)., is given by (see Appendix E
of Ref. [14])

max?

(_t)max - m/27 —+ M}%p - <_t/)min'
In the case of the p meson, this has the effect of cutting the
upper end of the (—u') range at a smaller value, compared
to the pion case; see Fig. 3 of Ref. [14]. In general, using a
holographic DA gives a higher cross section than using an
asymptotic DA. We observe that the model used for the

(5.3)

(_u/>maxMax =

GPD (valence vs standard) has a small effect for the
photoproduction of yp; and yp?,, compared to yp, and
ypY. Finally, we note that the case of yp° photoproduction
on a proton target has the largest cross section, followed by
the two charged p-meson cases, and lastly the yp° photo-
production on a neutron target.

The corresponding figure for the differential cross
section as a function of (—u’) for the chiral-odd case is
shown in Fig. 3. In this case, the cross section increases
with (—u’), as opposed to the chiral-even case. Although
the chiral-odd cross section seems smaller than the chiral-
even one at first sight, the maximum value over the range of
(—u') plays a key role when one performs the phase space
integration over (—u') and (—¢) (as can be understood from
the phase space figures in Appendix D of Ref. [13]). This
explains why the single differential cross sections as a
function of M2, are not heavily suppressed for the chiral-
odd case when compared with the chiral-even one; see
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FIG. 4. The fully differential cross section for longitudinally polarized p(]),, 2, P+ py is shown as a function of (—u') in the top left,
top right, bottom left and bottom right plots respectively. The blue and green curves correspond to contributions from the vector and
axial GPDs respectively. The black curves correspond to the total contribution, i.e. vector and axial GPD contributions combined. As
before, the dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted (nondotted) lines correspond to
the standard (valence) scenario. We fix S,y = 20 GeV? and M%,, = 4 GeV?. Note that the vector contributions consist of only two
curves in each case, since they are insensitive to either valence or standard scenarios.

Figs. 7 and 8. We observe that the case of photoproduction
of yp) has the strongest dependence on the GPD
model used. This can be traced back to the larger sensitivity
of the d-quark transversity GPD vs the u-quark one, as
can be seen from Fig. 4 in Ref. [13]. As with the chiral-even
case, using a holographic DA gives the larger cross
section.

An interesting observation is that the plots for yp;; and
yp, are very similar. In fact, a closer look indicates that
the difference between them becomes negligible when
(—u’) becomes larger. This effect can be traced back
to Egs. (4.51), (4.52), (4.55) and (4.56). One then finds
that the only difference between the amplitudes of p; and
pn comes from the terms (Q%7 — Q3)N?T,[(AB),3]* and
(0% — Q3)N%4[(AB),55]%, since they are antisymmetric
with respect to the exchange of Q; and Q,. Furthermore,

from Eq. (A23), one finds that N%,[(AB),;]* = 0.
In the cross section (4.62), one also observes that
the coefficient |[N7,4|* has a factor of a* in front
compared to the |N7,|*, which includes the contribution
N73[(AB),53] that causes the difference between yp,
and ypj,. Since a « (—u') [see Eq. (2.17)], this explains
why the difference between p,; and p, becomes negli-
gible as (—u’) increases.

The relative contributions of the vector and axial GPDs
to the cross section for the longitudinally polarized p meson
are shown in Fig. 4. The kinematical variables chosen for
the plots are S,y = 20 GeV? and M}, = 4 GeV?. The first
point to note is that the vector contribution does not depend
on the valence or standard scenarios, since they only enter
the modeling of the axial GPDs. Hence, only two blue
curves appear in each plot in the figure, corresponding to
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FIG. 5. The fully differential cross section for longitudinally polarized p%, p%, p;7. py is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively. The blue and green curves correspond to contributions from the u-quark
(H, and H,) and d-quark (H; and H ;) GPDs respectively. The black curves correspond to the total contribution. Otherwise, conventions
are the same as in previous plots. We fix S,y = 20 GeV? and M3, = 4 GeV?.

the DA model. Moreover, we note that the total contribu-
tion (black curve) corresponds simply to the sum of the
vector (blue) and axial (green) contributions, since there is
no interference between them; see Eq. (4.32). We thus find
that the largest contribution to the cross section for the
neutral meson case comes from the vector GPDs H,
while the contribution from the axial GPDs become more
important for the charged p-meson cases. This effect was
also observed in the case of charged pions (see Fig. 4 in
Ref. [1] and Fig. 4 in Ref. [14]).

To conclude this subsection, the relative contributions of
the u- and d-quark GPDs to the cross section are shown in
Fig. 5 for the longitudinally polarized p-meson case and
Fig. 6 for the transversely polarized p-meson case. To
generate the plots, S,y =20 GeV? and M3, =4 GeV?
were used. Here, unlike in Fig. 4, there are important
interference terms between the u-quark and d-quark con-
tributions, and therefore, the total contribution (black) is

not simply a sum of the individual quark GPD contribu-
tions. An interesting point to note is that the interference
terms (which are not shown in the plots) are very sensitive
to the axial GPDs H.

2. Single differential cross section

We now integrate over the kinematical variables (—u’)
and (—¢) and obtain the single differential cross section as a
function of M. fp. The details of this integration are given in
Appendix D of Ref. [13], and in Appendix E of Ref. [14].
The ansatz used for the ¢ dependence of the cross section
has been modified in this work [see Eq. (5.1)] compared to
the previous paper [13], leading to slightly different values
for the cross sections. The effect of different values of S,y
on the single differential cross section is shown in Fig. 7 for
the chiral-even case and in Fig. 8 for the chiral-odd case.
The different colors, brown, green and blue, correspond to
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FIG. 6. The fully differential cross section for transversely polarized pg, 2, p;, Py, is shown as a function of (—u') in the top left,
top right, bottom left and bottom right plots respectively. The blue and green curves correspond to contributions from the u-quark

(H, and H,,) and d-quark (H ; and H ;) GPDs respectively. The black curves correspond to the total contribution. Otherwise, conventions

are the same as in previous plots. We fix S,y = 20 GeV? and pr =4 GeV>.
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FIG.7. The single differential cross section for longitudinally polarized p9, p%. p; ., p; is shown as a function of M2, in the top left, top
right, bottom left and bottom right plots respectively for different values of S,y. The brown, green and blue curves correspond to

S,y = 8,14,20 GeV?. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted (nondotted) lines
correspond to the standard (valence) scenario.
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S,n = 8,14,20 GeV?. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted (nondotted) lines

correspond to the standard (valence) scenario.
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FIG. 9. The integrated cross section for longitudinally polarized pg, . P+ Py is shown as a function of S,y in the top left, top right,
bottom left and bottom right plots respectively. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the
dotted (nondotted) lines correspond to the standard (valence) scenario.

S,y values of 8, 14 and 20 GeV? respectively. As SN
increases, the maximum value of M ﬁp increases (simply due
to the increase in the phase space), while the value of the
cross section decreases.'

As previously mentioned, the peaks in the plots in Figs. 7
and 8 are the consequence of the competition between the
decrease in the cross section and the increase in the volume
of the phase space as M2, increases. An interesting point to
note is that the peak of the distribution is always found at
low M2, around 3 GeV2. The reason for this is that the
cross section grows rapidly as M%,, decreases, but at the
same time, the kinematical cuts that we impose to use
collinear QCD factorization causes the volume of the phase
space to vanish at a minimum value of M%l, of about
2.1 GeV?2. Furthermore, the height of the peak in the chiral-
odd case decreases faster as S,y increases. This can be

A similar effect was observed in Fig. 2 with increasing M3,
instead of S, .

traced back to the & prefactor in Eq. (4.62), since &
decreases as M%p decreases.

Like for the fully differential cross section plots,
we observe that the case of the photoproduction of yp
has the strongest dependence on the GPD model used
for the chiral-odd case, while both yp% and yp; channels
(i.e. on a neutron target) are very sensitive to the GPD
model used for the chiral-even case. Finally, in both chiral-
even and chiral-odd cases, using a holographic DA instead
of an asymptotic DA gives a larger cross section, by a factor
of roughly 2.

3. Integrated cross section

In this subsection, we discuss the variation of the cross
section as a function of §,y, after integration over (=),
(—1) and M%l,. The details of the integration are found in
Appendix D of Ref. [13] and Appendix E of Ref. [14]. The
variation of the cross section as a function of S,y is shown
in Fig. 9 for the chiral-even case and Fig. 10 for the chiral-
odd case. In both cases, the cross section has a peak, which
occurs at around 20 GeV? for the chiral-even case, and
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dotted (nondotted) lines correspond to the standard (valence) scenario.
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FIG. 11. The LPA at the fully differential level for longitudinally polarized p%, p%. p;, p, is shown as a function of (—u') in the top left,
top right, bottom left and bottom right plots respectively for different values of M}%,,. The black, red and blue curves correspond to
M}z,p =3,4,5 GeV? respectively, and S,y = 20 GeV2. The same conventions as in Fig. 2 are used here.

around 12 GeV? for the chiral-odd case (in the chiral-even
case, the presence of the peak becomes evident in Fig. 23
which corresponds to the same plot but extends to higher
energies typical of COMPASS kinematics). In accordance
with Figs. 7 and 8, where we observed that the peak of the
single-differential cross section decreases more rapidly
with increasing S,y for the chiral-odd case, we observe
here that the peak in the integrated cross section occurs at
lower values of S,y with chiral-odd GPDs. Similar com-
ments as in the previous subsection apply, i.e. the case of
the photoproduction of yp? has the strongest dependence on
the GPD model used for the chiral-odd case, while both
and yp;, channels (i.e. on a neutron target) are very sensitive
to the GPD model used for the chiral-even case.
Furthermore, in both chiral-even and chiral-odd cases,
using a holographic DA instead of an asymptotic DA gives
a larger cross section, by a factor of roughly 2.

4. Polarization asymmetries

We now discuss the plots for the LPA. First, we show
the effect of different M2, on the LPAs at the fully
differential level [i.e. differential in (—u’), M2, and (—1)
as in Sec. V C 1] in Fig. 11. As in Fig. 2, the values of M2,
used are 3, 4 and 5 Ge V2. One thus finds that the process is

dominated by incoming linearly polarized photons along
the y direction, since the LPA is in general negative.

For the neutral p-meson case, we observe that the
LPA has a weak dependence on both the GPD and DA
models used, especially at low (—u’). Furthermore, the
LPA remains quite flat and very sizable except close to
the maximum value of (—u’). Finally, we also find that
the LPA does not change significantly for different
values of Mﬁp. Both of the previous two observations
make the LPA very promising for being measured
at JLab.

For the charged p-meson case, the LPA is very sizable
at low (—u') and its magnitude gradually decreases as
(—u') increases. The shape is thus very different from the
neutral p-meson one. On the other hand, the shape of the
LPA is very similar to the one for the charged z* case
(see Fig. 8 in Ref. [1]), except that the effect of the
GPD model goes in the opposite direction (i.e. the more
sizable LPA comes from the standard scenario for the
p-meson case, but for the z*, this corresponds to the
valence scenario). The LPA also becomes more sizable
when M7, increases.

Next, we show how the relative contributions from
the vector and axial GPDs affect the LPA at the fully
differential level in Fig. 12. To obtain the green (blue)
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FIG. 12. The LPA at the fully differential level for longitudinally polarized p%, p9, p;;. p5; is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively, using M?,, =4 GeV? and S,n =20 GeV?2. The same conventions as in Fig. 4

are used here. Note that the vector contributions consist of only two curves in each case, since they are insensitive to either valence or
standard scenarios.
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FIG. 13. The LPA at the fully differential level for longitudinally polarized p?, 0, PPy is shown as a function of (—u') in the top left,
top right, bottom left and bottom right plots respectively, using Mﬁp =4 GeV? and S,n =20 GeV?. The blue and green curves
correspond to contributions from the u-quark (H, and H,,) and d-quark (H, and H ;) GPDs respectively. The black curves correspond to
the total contribution. The same conventions as in Fig. 5 are used here.

curves, we set all vector (axial) contributions to the
polarized cross sections to zero, in both the numerator
and denominator of Eq. (4.64). In the case of p°, the
relative contribution of the axial GPD to the LPA is small
at low (—u’), but becomes important as (—u') increases,
which can be implied from Fig. 4. Interestingly, for p~,
the contribution to the LPA from the vector GPD changes
from —1 at low (—u') to +1 at high (—u’). The LPA
calculated from the axial GPD contribution has very little
sensitivity to the GPD model used, in contrast with the z=
case, cf. Fig. 9 in Ref. [1].

At first sight, it may seem strange that the GPD model
nevertheless has a sizable effect on the total LPA for
the p meson in Fig. 12. This can be understood from the
way the LPA is normalized. Taking the p; as a specific
example, one observes that the cross section correspond-
ing to the axial contribution, though small, changes by a
factor of roughly 2 between the two GPD models; see
Fig. 4. For the LPA, one finds that the axial GPD
contribution has a negative value of —0.5 (independent
of the GPD model), and has a larger absolute size than

the vector GPD part which is roughly 0.1. Therefore, the
only difference between the two GPD models when
computing the LPA for the total contribution occurs due
to the factor of 2 coming from the cross section, which
when coupled with the large negative value of —0.5,
leads to a sizable difference.

The relative contributions from the wu-quark GPDs
(H, and H,) and d-quark GPDs (H, and H,) to the
LPA are shown in Fig. 13.

Next, we show the LPA, at the single differential level,
for different values of S,y in Fig. 14. As for the cross
section plots in Sec. V C 2, the values of S,y used are 8, 14
and 20 GeV2. We note that neither the GPD nor the DA
models have a significant effect on the LPA. This is contrast
to the 7+ case, where the GPD model had an important
effect; see Fig. 11 in Ref. [1]. Moreover, the magnitude of
the LPA remains quite large throughout the range of M}%p.
This makes the LPA at the single differential level very
promising to be measured experimentally.

Finally, we show the LPA, integrated over all differential
variables, as a function of S,y in Fig. 15. The LPA in all
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FIG. 14. The LPA at the single differential level for longitudinally polarized pg 0, P Py is shown as a function of M ﬁp in the top left,
top right, bottom left and bottom right plots respectively. The brown, green and blue curves correspond to S,y = 8, 14,20 GeV?. The
same color and line style conventions as in Fig. 7 are used here.
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2

correspond to M,

=3, 4, 5 GeV? respectively. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA,

while the dotted (nondotted) lines correspond to the standard (valence) scenario. As mentioned in the main text, S,y is fixed at

200 GeV? here.

four plots is rather flat, and is quite sizable, with the p;r
having the smallest magnitude of roughly 40%, while it
goes up to about 80% for the others. As at the single
differential level, the LPA here has little sensitivity to the
DA and GPD models used. Thus, the LPA is sizable, and
taking into account the fact that the expected counting rates
found in Sec. V F 1 are large, the measurement of such an
observable is very promising.

D. COMPASS kinematics

Typically, COMPASS consists of colliding muons at
an energy of 160 GeV onto a fixed target. This translates
to a muon-nucleon center-of-mass energy of roughly
301 GeV?. Since the skewness & decreases with increasing
S,n [see Eq. (2.16)], COMPASS can in principle give us
access to a kinematical region of small ¢ for GPDs
(0.0027 < £ <£0.35), not accessible at JLab. The typical

center-of-mass energy S, used for the plots that we show
in this section is 200 GeV?.

1. Fully differential cross section

Figure 16 shows the effect of different values of M%,
on the fully differential cross section for the chiral-even
case. We choose three different values for M}%p, namely
M2, =3,4,5 GeV?. Compared to the corresponding plots
at S,y =20 GeV? in Fig. 2, the cross sections here are
smaller by a factor of roughly 8. We note that the
uncertainty due to the model used is significant for
the charged p-meson case, and is particularly driven by
the GPD model. This allows in principle to discriminate
between the two GPD models that are investigated.

The variation of the differential cross section with (—u")
for the chiral-odd case is shown in Fig. 17. Here, we note
that the cross section is much smaller than in the chiral-even
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P9, Py Py is shown as a function of (—u’) in the top left, top

right, bottom left and bottom right plots respectively for different values of M?,. The black, red and blue curves correspond to M2, = 3,
4,5 GeV? respectively. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted (nondotted)
lines correspond to the standard (valence) scenario. As mentioned in the main text, S,y is fixed at 200 GeV? here.
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FIG. 18. The fully differential cross section for longitudinally polarized p([),, 0, p;, py is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively. The blue and green curves correspond to contributions from the vector and
axial GPDs respectively. The black curves correspond to the total contribution, i.e. vector and axial GPD contributions combined. As
before, the dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted (nondotted) lines correspond to
the standard (valence) scenario. We fix S,y = 200 GeV? and M;%/, = 4 GeV?. Note that the vector contributions consist of only two
curves in each case, since they are insensitive to either valence or standard scenarios.
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FIG. 19. The fully differential cross section for longitudinally polarized pg, . p;, Py is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively. The blue and green curves correspond to contributions from the u-quark

(H, and A ) and d-quark (H ; and H ;) GPDs respectively. The black curves correspond to the total contribution. Otherwise, conventions

are the same as in previous plots. We fix S,y = 200 GeV? and M%,, =4 GeV2.
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FIG. 20. The fully differential cross section for transversely polarized /’(z)w 2, PPy is shown as a function of (—u') in the top left,
top right, bottom left and bottom right plots respectively. The blue and green curves correspond to contributions from the u-quark
(H, and A, and d-quark (H ; and H ;) GPDs respectively. The black curves correspond to the total contribution. Otherwise, conventions
are the same as in previous plots. We fix S,y = 200 GeV? and Mﬁp =4 GeV2.

case, a feature which is more pronounced than in the JLab
kinematics case. This can be attributed to the fact that the
amplitude squared is proportional to & [see Eq. (4.62)], and
¢ becomes smaller at higher center-of-mass energies S, .
On the other hand, this &> factor is absent for the chiral-even
case; see Eq. (4.33).

The relative contributions of the vector and axial GPDs
to the cross section for the longitudinally polarized
p-meson case are shown in Fig. 18. Similar comments
as in Sec. VC 1 apply.

Finally, to conclude this subsection, the relative con-
tributions of the u-quark and d-quark GPDs to the cross
section are shown in Fig. 19 for the chiral-even case, and in
Fig. 20 for the chiral-odd case.

2. Single differential cross section

Figure 21 shows the variation of the single differential
cross section with M%l, for different values of S,y for the
chiral-even case. We choose three different values for

S,n, namely 80, 140 and 200 GeV?. Due to large
variations in the cross section over the full range of
Mgp, a log scale is used for the vertical axis. We observe
that the cross section is dominated by the region of very
small M?,.

For the chiral-odd case, shown in Fig. 22, we first note
that the cross section is smaller with respect to the chiral-
even case, by a factor of roughly 100. In particular, the
height of the peak for the chiral-odd case is much lower
than that in the chiral-even case. Again, this is related to the
& suppression factor that comes from the square of the
chiral-odd amplitude.

3. Integrated cross section

In Fig. 23, we show the variation of the integrated cross
section as a function of S,y for the chiral-even case. We
cover the entire kinematical range of COMPASS by going
to S,y = 300 GeV?. The peak of the cross section occurs at
around 20 GeV?.
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FIG. 21. The single differential cross section for longitudinally polarized pop, pg,p;,p; is shown as a function of M %p in the top left, top
right, bottom left and bottom right plots respectively for different values of S,y. The brown, green and blue curves correspond to
S,n = 80, 140,200 GeV?. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted (nondotted) lines
correspond to the standard (valence) scenario. The holographic DA with the standard scenario has the largest contribution for every S, y.
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FIG. 22. The single differential cross section for transversely polarized pg, pg,p;, p;, is shown as a function of M %p in the top left, top
right, bottom left and bottom right plots respectively for different values of §,y. The brown, green and blue curves correspond to
S,y = 80,140,200 GeV?. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted (nondotted)
lines correspond to the standard (valence) scenario.
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FIG. 23. The integrated cross section for longitudinally polarized p?,, 2, P+ Py is shown as a function of S,y in the top left, top right,
bottom left and bottom right plots respectively. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while
the dotted (nondotted) lines correspond to the standard (valence) scenario. We thus find that the maximum cross section appears at

around 20 GeV?, a feature which was not clear in Fig. 9.

For the chiral-odd case, the variation of the integrated
cross section as a function of S,y is shown in Fig. 24.
The cross section here also has a peak at around 20 GeV?,
but falls more rapidly with increasing S,y thereafter.
Consequently, only the region of S,y close to the peak
is relevant for the chiral-odd case.

4. Polarization asymmetries

In this section, we show the results for the LPAs for
COMPASS kinematics. As for the cross section plots
in the previous section, we choose the reference value of
200 GeV? for S,y for the fully differential and single
differential plots. As discussed in Sec. V C 4, the plots that
we show here correspond to LPA,,,,. Furthermore, we note
that only plots of the LPAs for the chiral-even case are
shown here, since the LPAs for the chiral-odd case vanish.

In Fig. 25, the LPAs at the fully differential level are
shown as a function of (—u’), for different values of M2,.

The three values of M3, that we use are M2, =
3,4,5 GeVZ, which correspond to the black, red and blue
curves respectively. As in the JLab kinematics case, we
observe that for the charged p-meson case, the LPAs can be
used to discriminate between the GPD models used.
Furthermore, for the p;, case, the sign of the LPA changes
from negative to positive as (—u’) increases for the valence
scenario only.

In Fig. 26, we show the relative contributions of the
vector and axial GPDs to the LPA at the fully differential
level. The values S,y = 200 GeV? and M;, = 4 GeV? are
used to generate the plots. For the pg case, the LPA remains
very negative and relatively flat, except for the axial
contribution in the standard GPD scenario. For p¥, we
observe that the LPA remains rather flat at very negative
values throughout the range of (—u’). Finally, for the
charged p-meson case, the LPA covers a wider range,
starting at a sizable value at low (—u’).
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FIG. 24. The integrated cross section for transversely polarized p?,, 2, p;, py is shown as a function of S, in the top left, top right,

bottom left and bottom right plots respectively. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the
dotted (nondotted) lines correspond to the standard (valence) scenario.
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FIG.25. The LPA at the fully differential level for longitudinally polarized pg 0, p;, Py is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively for different values of Mf,,. The black, red and blue curves correspond to
M:, =3, 4,5 GeV? respectively, and S,y = 200 GeV?. The same conventions as in Fig. 16 are used here.
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FIG.26. The LPA at the fully differential level for longitudinally polarized p?, Y, p;, Py, is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively, using M%p =4 GeV? and S,n =200 GeV?. The same conventions as in

Fig. 18 are used here. Note that the vector contributions consist of only two curves in each case, since they are insensitive to either
valence or standard scenarios.
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FIG.27. The LPA at the fully differential level for longitudinally polarized p9. p9, p;;. p5; is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively, using Mgﬂ =4 GeV? and S,n =200 GeV?2. The blue and green curves

correspond to contributions from the u-quark (4, and ) and d-quark (H; and H ;) GPDs respectively. The black curves correspond to
the total contribution. The same conventions as in Fig. 19 are used here.
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FIG. 28. The LPA at the single differential level for longitudinally polarized p?, 0, PPy is shown as a function of M fp in the top left,
top right, bottom left and bottom right plots respectively. The brown, green and blue curves correspond to S,y = 80, 140,200 GeV2.
The same color and line style conventions as in Fig. 21 are used here.

The relative contributions of the u-quark and d-quark
GPDs to the LPA at the fully differential level are shown in
Fig. 27. We choose S,y = 200 GeV? and M2, = 4 GeV?
to generate the plots.

In Fig. 28, we show the variation of the LPA at the
single-differential level as a function of M?l, for different
values of S,y. We observe that the LPA is rather flat at a
value of about —0.8, with the exception of the charged
p-meson case at low pr. Furthermore, we note that
the GPD or DA model used has little effect on the LPA,
with the exception of the p; case, where the GPD model
nevertheless has a non-negligible effect. This is in contrast
to the charged 7=, where we found that the LPA is very
sensitive to the GPD model; see Fig. 21 in Ref. [1].

To conclude this section on COMPASS kinematics,
the variation of the LPA, integrated over all differential
variables, is shown as a function of S, in Fig. 29. Here,
the LPA is again rather flat at roughly —0.8 with the
exception of the p; case, for which the magnitude of the
LPA is smaller. We also observe that the LPA is rather
insensitive to the GPD or DA model used, except for the
charged p-meson cases, for which the GPD model has
an effect.

E. EIC and UPCs at LHC kinematics

We consider photon-nucleon center-of-mass energies
S,n of up to 20000 GeV?2. Such a choice covers the whole
range of the expected EIC kinematics (with a maximum
center-of-mass energy of the electron-proton system of
roughly 19600 GeV? [21]), and the most relevant part of
LHC UPC kinematics (which in principle involves center-
of-mass energies of the order of the TeV scale).

Increasing the center-of-mass energy causes the skew-
ness & to decrease; see Eq. (5.2). At S,y = 20000 GeV?, &

can reach as low as ~107*. One might therefore ask the
question of whether small-x resummation effects (and
ultimately saturation effects), in which gluons play an
essential role, could become important in that kinematical
domain. First, we note that for charged p mesons in the final
state, quarks have to be exchanged in the ¢ channel, simply
by virtue of charge conservation. For the neutral p°-meson
case, which is C-odd, gluon exchanges start at next-to-
leading order, resulting in the C-odd odderon exchange.
This odderon exchange is poorly known and is presumably
not too large [22-24], and a detailed discussion of this
exchange is beyond the scope of our work.
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FIG. 29. The LPA integrated over all differential variables for longitudinally polarized p?,, . PPy is shown in the top left, top
right, bottom left and bottom right plots respectively as a function of S, . The same color and line style conventions as in Fig. 23 are
used here.
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FIG. 30. The fully differential cross section for longitudinally polarized pg,p(n),p;,p; is shown as a function of (—u’) in the top
left, top right, bottom left and bottom right plots respectively for different values of Mgp. The black, red and blue curves
correspond to M}%p =3, 4, 5 GeV? respectively. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA,
while the dotted (nondotted) lines correspond to the standard (valence) scenario. As mentioned in the main text, S,y is fixed at

20000 GeV? here.

For UPCs at LHC kinematics, we note that both the
cross section and the photon flux drop very rapidly as S,y
increases. Therefore, only a tiny contribution is lost by
neglecting contributions which are beyond the kinematics
of EIC, i.e. above S,y = 20000 GeV=.

1. Fully differential cross section

At large S,y, typical of EIC and UPCs at LHC
kinematics, the cross section for the chiral-odd case is
heavily suppressed compared to the chiral-even case. As
mentioned before, this is due to the & factor that appears in
front of the squared amplitude for the chiral-odd case.
Consequently, in this section, we only show the plots for
the chiral-even case.

In Fig. 30, the fully differential cross section as a
function of (—u’) is shown for different values of M3,.

We choose S,y =20000 GeV2. For M2, we take

M3, =3,4,5 GeV?, since the cross section becomes much

smaller at higher values of M %p. We observe a decrease of
the cross section by a factor of roughly 100 compared to the
COMPASS kinematics case in Sec. VD 1.

The relative contributions of the vector and axial GPDs
to the fully differential cross section are shown in Fig. 31
as a function of (—u’). The plots are generated using
M}, =4 GeV? and S,y = 20000 GeV=.

To conclude this subsection, we show the relative
contributions of the u-quark and d-quark GPDs to the
fully differential cross section in Fig. 32, as a function
of (—u’). The value of S, is fixed at 20000 GeV? and M2,
at 4 GeV2.

2. Single differential cross section

We proceed as in Sec. V E 1, and show only plots for the
dominant chiral-even case.

Here, we show the variation of the cross section at the
single-differential level as a function of M}%p for different
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FIG. 31. The fully differential cross section for longitudinally polarized p?,, 2, p;, Py is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively. The blue and green curves correspond to contributions from the vector and
axial GPDs respectively. The black curves correspond to the total contribution, i.e. vector and axial GPD contributions combined. As
before, the dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted (nondotted) lines correspond to
the standard (valence) scenario. We fix S,y = 20000 GeV? and M;%p = 4 GeV?. Note that the vector contributions consist of only two
curves in each case, since they are insensitive to either valence or standard scenarios.
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FIG. 32. The fully differential cross section for longitudinally polarized pY. p9. p;. py, is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively. The blue and green curves correspond to contributions from the u-quark

(H, and H,) and d-quark (H ; and H ;) GPDs respectively. The black curves correspond to the total contribution. Otherwise, conventions
are the same as in previous plots. We fix S,y = 20000 GeV?* and M2, = 4 GeV?.
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FIG. 33. The single differential cross section for longitudinally polarized p?,, 2, PPy is shown as a function of M}%p in the top left,
top right, bottom left and bottom right plots respectively for different values of S,. The brown, green and blue curves correspond to
S,n = 800, 4000, 20 000 GeV?. The dashed (nondashed) lines correspond to the holographic (asymptotic) DA, while the dotted
(nondotted) lines correspond to the standard (valence) scenario. Note that both axes are log scales.

values of S,y in Fig. 33. We choose three different values
for §,y, namely 800, 4000 and 20 000 GeV? for the brown,
green and blue curves respectively. We observe that the
peak of the cross section lies at low values of M}%p
(roughly 3—4 GeV?).

3. Integrated cross section

In Fig. 34, the variation of the integrated cross section
as a function of §,y is shown for the chiral-even case.
We observe that the largest cross section is obtained by
using a holographic DA model and the GPD model
corresponding to the standard scenario (dash-dotted line).
We note that the cross section falls to very low values at
S,n = 20000 GeV?, roughly 200 times less than its value
at the peak, which occurs at around 20 GeV?. This, coupled
with the fact that the photon flux in UPCs also decreases
with Sy, justifies the truncation at S,y = 20000 GeV?

when considering UPCs at LHC kinematics, which
involves TeV energies.

The corresponding plots for the chiral-odd case are
shown in Fig. 35. Here, we observe that the cross section,
after the peak, drops at a much faster rate compared to
the chiral-even case. In fact, the cross section at S,y =
20000 GeV? drops by a factor of roughly 10° compared to
its value at the peak.

4. Polarization asymmetries

We recall that the LPA for the chiral-odd case vanishes,
and therefore, we only show plots for the chiral-even case
in this section.

In Fig. 36, the LPA at the fully differential level is shown
as a function of (—u’), for different values of M3,. The
kinematical values chosen are S,, = 20000 GeV?, and
M2, =3,4,5 GeV2. The behavior of the LPA is similar to
the ones described in previous sections.
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FIG. 34. The integrated cross section for longitudinally polarized pg,pg,p;, Py is shown as a function of S,y in the top left, top right,
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FIG. 36. The LPA at the fully differential level for longitudinally polarized pg 0, p;, Py is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively for different values of Mf,,. The black, red and blue curves correspond to
M2, =3, 4,5 GeV? respectively, and S,y = 20000 GeV?2. The same conventions as in Fig. 30 are used here.
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FIG. 37. The LPA at the fully differential level for longitudinally polarized p(p) 0, p;, Py, is shown as a function of (—u’) in the top left,
top right, bottom left and bottom right plots respectively, using Mgp =4 GeV? and S,n = 20000 GeV?. The same conventions as in
Fig. 31 are used here. Note that the vector contributions consist of only two curves in each case, since they are insensitive to either

valence or standard scenarios.

We show the relative contributions from the vector
and axial GPDs to the LPA at the fully differential level
in Fig. 37, as a function of (—u'). We choose S,y =
20000 GeV? and M2, = 4 GeV? to generate the plots.

P

Next, the relative contributions from the vector and axial
GPDs to the LPA are shown in Fig. 37. S,y = 20000 GeV?
and M}, =4 GeV? are used to generate the plots. As
before, the axial GPD contributions using the standard and
valence scenarios are significantly different, while the DA
model has little effect on the LPA. Similar comments as
before apply.

Finally, the relative contributions to the LPA from
the u-quark and d-quark GPDs are shown in Fig. 38 as a
function of (—u’). The kinematical values used to generate
the plots are S,y = 20000 GeV?* and M2, = 4 GeV?.

The LPA at the single differential level is shown in
Fig. 39 as a function of M2, for different values of S,y.
The three values of S,y chosen are 800, 4000 and
20000 GeV? corresponding to the brown, green and blue
curves respectively. We observe that the behavior of the
LPA is very similar to the one for COMPASS kinematics
in Fig. 28.

To conclude this section, the LPA, computed after
integration over the differential variables, is shown as a
function of S,y in Fig. 40. Again, we note that the behavior
of the LPA is very similar to the one corresponding to
COMPASS kinematics; see Fig. 29.

F. Counting rates

1. JLab

At JLab, to calculate the photon flux, we use the
Weizsicker-Williams distribution. The details of the for-
mulas used are found in Appendix D. 1 of Ref. [1].

The lepton beam at JLab forces one to also consider
Bethe-Heitler-type processes. However, such contributions
are suppressed with respect to the photoproduction mecha-
nism studied here; see Ref. [13].

The angular coverage of the final-state particles is in
principle a potential experimental issue. It can be shown
that the angular distribution of the outgoing photon at JLab
Hall B, which might evade detection, does not affect our
predictions. The discussion on this subject is presented in
Appendix B.
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FIG. 38. The LPA at the fully differential level for longitudinally polariz

1.0

ed p%. p%. p, . py is shown as a function of (—u’) in the top left,

top right, bottom left and bottom right plots respectively, using Mfl, =4 GeV? and S,n = 20000 GeV?. The blue and green curves

correspond to contributions from the u-quark (4, and ) and d-quark (H; and H ;) GPDs respectively. The black curves correspond to
the total contribution. The same conventions as in Fig. 32 are used here.
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FIG. 39. The LPA at the single differential level for longitudinally polarized p%,. p. p;. p; is shown as a function of M7, in the top
left, top right, bottom left and bottom right plots respectively. The brown, green and blue curves correspond to S,y = 800, 4000 and

20000 GeV?. The same color and line style conventions as in Fig. 33 are used here. Note that a log scale is used for the
horizontal axis.
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FIG. 40. The LPA integrated over all differential variables for longitudinally polarized p?,, pg,p;,p; is shown in the top left, top right,
bottom left and bottom right plots respectively as a function of S, . The same color and line style conventions as in Fig. 34 are used here.

The counting rates expected at JLab for our process are
shown in Table I, assuming a luminosity of 100 nb~!s~!,
and 100 days of data-taking. The minimum and maxi-
mum values of the counting rates correspond to the
boundaries obtained by considering all four different
possibilities, i.e. the two models for the GPDs (standard
and valence scenarios) and the two models for the DAs
(asymptotic and holographic DA). The smallest value is
in general obtained for an asymptotic DA with a valence
scenario GPD model, while the largest value is obtained
for a holographic DA with a standard scenario GPD
model. The values obtained for the JLab experiment are
very promising.

TABLE 1. Estimated counting rates at JLab for yp photo-
production.

GPD Meson Counting rates

Chiral-even o 1.3-2.4 x 10°

" 1.7-4.0 x 10*

Py 0.9-1.4 x 10°

Pr 0.3-1.8 x 10°

Chiral-odd " 2.1-4.2 x 10*

P 1.0-2.6 x 10*

Py 3.5-6.7 x 10*

Pn 3.5-6.8 x 10*

2. COMPASS

At COMPASS, one again uses the Weizsdcker-Williams
distribution to obtain the photon flux from the muon beam.
Here, we also fix Q2,, = 0.1 GeV2.

The counting rates expected at COMPASS for our
process are shown in Table II. Like before, the minimum
and maximum values of the counting rates correspond to
the boundaries obtained by considering all the different
possibilities, i.e. the two models for the GPDs (standard
and valence scenarios) and the two models for the DAs
(asymptotic and holographic DA). In general, the lowest
value is obtained for an asymptotic DA with the valence

TABLE 1II. Estimated counting rates at COMPASS for yp
photoproduction.
GPD Meson Counting rates
Chiral-even o 0.7-12 x 10°
P 0.8-2.1 x 10?
Py 3.6-7.4 x 107
Pn 3.0-8.1 x 10?
Chiral-odd 2 75-152
P 36-98
23 135-257
Pn 133-257
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TABLE III. Estimated counting rates at EIC kinematics for yp TABLE IV. Estimated counting rates at p-Pb UPCs at LHC for
photoproduction. yp photoproduction.
Total counting Counting rates Total counting Counting rates
GPD Meson rates with S,y > 300 GeV>  GPD Meson rates with S,y > 300 GeV?
Chiral-even 9 1.3-2.4 x 10* 0.6-1.2 x 10° Chiral-even 9 0.9-1.6 x 10* 4.1-8.1 x 10?
P 1.7-4.3 x 10° 1.3-2.4 x 10? Py 0.5-1.1 x 10* 2.1-6.4 x 10?
Py 0.7-1.5x10* 3.1-9.3 x 10? Chiral-odd 0 3
pr 0.6-16x 10* 2.0-9.1 x 107 e pp 0BT 10
Py 1.5-2.9 x 10°

Chiral-odd p‘l), 1.2-2.4 x 103
P 0.6-1.5 x 103
Py 2.1-4.2 x 10°
Pn 2.1-4.1 x 10°

scenario, while the largest value is obtained for a holo-
graphic DA with the standard scenario. We assume a
luminosity of 0.1 nb~!s™!, and 300 days of data-taking.

3. EIC

The counting rates for EIC, assuming a total integrated
luminosity of 107 nb~!, are shown in Table III. In particu-
lar, we use the highest expected electron-nucleon center-of-
mass energy, corresponding to S,y = 19600 GeV? [21].
Since the center-of-mass energies available at EIC are high
enough, one can study the kinematic region where the
skewness £ is small. Therefore, we also show the counting
rates with the constraint that S,y > 300 GeV?, which
corresponds roughly to £ <5 x 1073."° In fact, values of
the skewness & as small as 7.5 x 107 can be probed. By
imposing the cut in §,y, the counting rates decrease by a
factor of roughly 20 in the chiral-even case. This significant
decrease is due to the fact that the peak of the cross section
is located at low S, y, roughly 20 GeV?, as can be seen in
Figs. 23 and 34. In the chiral-odd case, the region of small &
is heavily suppressed, since the cross section is multiplied
by a factor of &2, compared to the chiral-even case; see
Egs. (4.37) and (4.62). As a result, we do not show the
counting rates for the chiral-odd case when imposing the
S,y > 300 GeV? cut. The minimum and maximum values
for the counting rates in Table III are obtained as described
in previous sections.

4. Ultraperipheral collisions at LHC

In UPCs, the beam and target are far enough apart such
that there are no hadronic interactions between them, such
that the nucleus/proton interacts by the exchange of
photons. In particular, heavy nuclei, such as lead, can

Note that the relation between S,y and & involves M fp, which

is why a cut in S,y does not directly correspond to a cut in &.
However, as can be seen in Sec. V E?2, the cross section is
dominated by small M}%,,, so the region of small £ is actually the
one where most of the contribution comes from.

act as a good source of photons, since the photon flux scales
as Z2, where Z is the charge of the nucleus. The details
on how the photon flux is obtained can be found in
Appendix D. 2 of Ref. [1].

The counting rates corresponding to p-Pb UPCs at the
LHC, assuming an integrated luminosity of 1200 nb~!,
are shown in Table IV. This corresponds to the expected
data taking for runs 3 and 4 [25]. As in Sec. V F 3, there is
an order-of-magnitude drop in the counting rates for
the chiral-even case when a cut of S,y > 300 GeV? is
imposed. The chiral-odd counting rates are also very small
when the S,y > 300 GeV? cut is applied, and they are thus
omitted from Table I'V.

VI. CONCLUSION

In this work, we extended the analysis of the yN —
yp°N' process introduced in Ref. [13] by including the
linear polarization asymmetries, extending the kinematics
to selected future experiments (COMPASS, EIC and UPCs
at the LHC), computing predictions for an alternative
“holographic” DA [Eq. (3.9)] and considering charged p
mesons. Since we considered the large-angle scattering
kinematics, which amounts to large (—u’) and M2,, and
small (—t), we were able to employ the collinear factori-
zation. In fact, QCD factorization has been recently proven
to hold for a family of 2 — 3 exclusive processes [11,12],
which includes our process, for large |p,|. We found that
imposing kinematical cuts on (—u’), (=) and (—¢) in
Eq. (2.14) is sufficient to push the pN’ invariant mass
above the resonance region.

Our results show that the exclusive photoproduction of a
yp pair provides another interesting channel to study GPDs,
besides the extensively studied channels such as DVCS,
Deeply Virtual Meson Production (DVMP) and Timelike
Compton Scattering (TCS). We have estimated the count-
ing rates at various experiments in Sec. V F, and the values
obtained are promising, especially at JLab where they were
found to be of the order of 10°, assuming a luminosity
of 100 nb~'s™!, and 100 days of data-taking. In fact, the
GPD model corresponding to the standard scenario,
which is favored by lattice results [26], as well as its
recent update in Ref. [27], gives larger cross sections in
general. Furthermore, we found that the linear polarization
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asymmetries with respect to the incoming photon are
sizable. Moreover, by exploiting the high energies available
at EIC and UPCs at the LHC, one is able to probe GPDs in
the region of small skewness &, a region where very little is
known about GPDs. We found that by restricting the
kinematics to the region of & <5 x 1073, the counting
rates drop by a factor of roughly 10, which still leaves
sufficient statistics.

We intend to extend the present computation by includ-
ing next-to-leading-order corrections in a;. While QCD
collinear factorization was proved for our process, the
knowledge of such corrections, which are often significant
for phenomenology, will increase the precision of our
predictions and will give us the opportunity to estimate
the uncertainties related to our process based on the
collinear factorization approach.
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APPENDIX A: CHIRAL-ODD AMPLITUDES

For the chiral-odd case, diagrams A3 and A4 contribute to
the structure 7%, | while diagrams B; and Bs contribute to
the structure 7%, . Thus,

N7al(AB)123] = N7, [As]. (A1)
N7Al(AB)ys] = N7z [Aq). (A2)
N75[(AB) 53] = N7[B1]. (A3)
N75[(AB)ss] = N7y[Bs]. (A4)

For convenience, we define the coefficients T+ [As],
T+[A4], T#[B;] and T[Bs], given by

T B4 = -

Nl = [ [ ez x (a9
framework “Investissements _—
Maad= [ [ Tt g (a0
Niglai = [ [ Thiee@dzt ok (a7)
Mgl = [ [ ThiBde@azt oax (a8)
|
1. Asymptotic DA case
3
Aaé(E —x —ie)(E+ x —ie)’ (A9)
3(1-2)
a?E(E—x —ie)(a(=¢E+ x +ie) + (1 —2) (26 + (1 — a) (=& + x + i€)))’ (A10)
3

(1 —a)é(&—x —ie) (& +x +ie)’ (A1)
32 (A12)

Tg(Bs|¢™(z) =

EE+x+ie)(a(=E+x+ie)+ (1—-2)264+ (1 —a)(=E+x+ie)))’

The integral with respect to z is trivially performed in this case. Thus, one gets

'®We note that some typos have been corrected here with respect to results in Appendix B 2 of our previous publication [13].
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3

1
/0 TilAslg™ (2)de = - Paé(E— x —ie)(é+ x —ie)’

sin(izte)

A ' TH A () dz =

Al T5[By|¢p™(2)dz = — .

/) T B (o) dz = -

Let us note that the last term in the previous expressions
(A13) and (A14) might seem to have a double pole when
—%f— ie. However, the logarithm cancels under
such conditions, so this pole is actually a simple pole.

Using Eqgs. (AS) to (A8), we can write the integrals with

X =

3 (—&+x+ie)
E(E—x—ie) (26 + (1 — ) (=& + x + i€)) +a§(2§+ (1—a)(=¢+x+ie))*’ (A13)
(1 —q)é(é—x—ie)(E+x+ie)’
3 N 3ln<a(ii4iﬁ'e)) (Al4)
EE+x+ie)28+ (1 —a) (=& +x+ie)  EQE+ (1 —a)(—E+x+ie))?
|
Ni.B ]a:i(l -1,) (A25)
TBLP1 2&52 e e)s
3/1 - & 3
N7p[Bs]* = oy (T'lfl 2a£j ) +§1d (A26)

respect to x in terms of building block integrals, given in
Appendix D of Ref. [14]. Thus, we have

3
N74[A3] :W(Ie_lg)’ (A15)
NI, (A, = 3 1 3 1 Al6
Tal 4]——0(75“-1—(1—5 ds (A16)
q 3
NTB[BI] :ﬁ(le_lf)’ (A17)
q 3 3
Nig[Bs) = —EIM—EI[,. (A18)
For symmetric GPDs, we have
NL AL = 3 21 Al19
Pl = 50 (210) (A19)
3 1 a 3
NL AL = ——— =1, —=—1, —1,, A20
TA[ 4] azé: (25 e 25 l> +(Z§ d ( )
NI IB,|* = 3 I,+1 A21
TB[ 1] _Héz(e"f' e)’ ( )
3 1 - a 3
9 Be]S = =2 ——7 ——_71. —1,. A22
NTB[ 5] 5( 20!5 e 2(15 z) +§ d ( )
For antisymmetric GPDs, we have
N%A[Aﬂ“ =0, (A23)
3 1 a 3
NL (A = —-— =1, ——1, —1,, A24
TA{ 4} azé: (25 e 25 z> +a§ d ( )

So, only the building block integrals /,, I; and I, are
needed in the asymptotical DA case.

2. Holographic DA case

Here, we essentially repeat the above steps, but with
a holographic DA whose form is given in Eq. (3.9),
instead of an asymptotic DA. For the contributions to
diagrams A5 and By, the same results as in the asymptotic
DA case can be used, with a change of the overall
prefactor from 6 to 8; see Eqs. C.3 and C.4 in Ref. [1].
Therefore, we only focus on the results for the A, and Bjs
diagrams here. The results, in terms of the building
block integrals given in Appendix D of Ref. [14] and
Appendix C of Ref. [1], read

Ni,[Ay] = 5 / / LA ) daH (x. £)dx

4
25 |:2(§ \/a a:| ’ (A27)
1 [1
Nialbs =s* [ [ im0 @ dzty .2 ds
_4 1 1 1 A28
e 429
For symmetric GPDs, we have
TA (A = / / TL ¢h°1 (z)dzHr(x, &)dx
= 2: |:2€ \/(; a:| ’ (A29)
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NTB BS / / Tl ¢h°1 )dzHT(x f)
1
R
and for antisymmetric GPDs, we have
Nis[A* = s / / Tx[A4) ¢ (2)dzH 7 (x, §)dx
L

NqTB [Bs]® = 53

1 1
/ / T4[Bs)d™ (c)deHy (x. £)dx
-1.J0

4 17 1
5[‘7«5”%’“}

So, only the extra building block integral y, is needed.

(A32)

APPENDIX B: EFFECT OF ANGULAR CUTS ON
THE OUTGOING PHOTON AT JLab

In this appendix, we show the influence of angular cuts
on the outgoing photon at JLab on the cross section.

1. Angular distribution

The derivation of the angular distribution was performed
in Appendix E in Ref. [13], and we do not repeat the details
here. However, for the sake of completeness, we reproduce
here the relevant results.

We require the outgoing photon scattering angle in the
rest frame of the nucleon target. This angle 6 is defined with
respect to the direction of the incoming photon (i.e. € is the
angle that the outgoing photon makes with the —z axis in
the nucleon rest frame). The angle @ satisfies

2Ms(1 + &)alp, —
—a*(1+ &) + (P, -

tand = —

21

§ . (BI)
7)21‘42

From the relation a = M2,/(—u’) [see Eq. (2.17)], one

can express tan @ as a function of —u'. To solve for 6 in
Eq. (B1), one should take
0 = arctan(tan 6), for tan6 > 0, (B2)

0 = r + arctan(tan @), for tan6 < 0, (B3)

since @ is positive. Setting 5, =0, Eq. (B1) simplifies to

ZMS( + f)alﬁtl

tan@ = )
(1 +&)*s* + prM?

(B4)

and using the definition of the kinematical variables in
Sec. II, one can obtain « in terms of @,

(1+Zj+%)%tan29+a<1+\/l+tan26’)

‘= (1+ét+ 7 an’+ 2a ’
for tan 6 > 0, (B3)
(1+§+%)%tan29+a<1—\/1+tan20)
‘= (14 &+7)*tan’ 0 + 2a '
for tan 6 < 0, (B6)
where
4M? 28 M? M?
a=—"1", g2 My My (B7)
s 14+¢ s s

This thus allows us to obtain (—

_ 2
u = aMyp,

u') as a function of 6 using
see Eq. (2.17). Writing

tan0 = f(—u’'), (B8)

the angular distribution can be obtained from the fully
differential cross section through

ldo 1 do 1+ f*(—u'[0]) B9
cdf od(-u) f(-u'[0]) (B9)

The obtained angular distribution in the chiral-even case
is shown in Figs. 41, 42, 43 and 44 for p%, p%, p; and p;
respectively. Similarly, the obtained angular distribution in
the chiral-odd case is shown in Figs. 45, 46, 47 and 48 for
pg, . p,, and p; respectively. Each figure has three plots,
corresponding to three different values of §,y, namely
10, 15,20 GeV?Z. Finally, in each plot, two or three different
curves are shown, which correspond to different M}%p. The
asymptotic DAs with the standard GPD scenario are used to
generate the plots.

In the chiral-even case, the obtained angular distribution
increases with 6 for p% and p9, while in the chiral-odd case,
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FIG. 41. Angular distribution in the chiral-even case for yp?, photoproduction. Upper left: S},N=10Ge\/2, for Miﬂo =3GeV?
(solid blue) and M?po =4 GeV? (dotted red). Upper right: S,y = 15 GeV?, for Mip" = 3.5 GeV? (solid blue), M;%p“ Z 5 GeV?
P P »

(dotted red) and M 5/70 = 6.5 GeV? (dashed green). Bottom: S,y =20 GeV2, for M iﬂ" = 4 GeV? (solid blue), M?ﬂo = 6 GeV? (dotted
P P P
red) and Mipo = 8 GeV? (dashed green).
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FIG. 42. Angular distribution in the chiral-even case for yp) photoproduction. Upper left: S N—IOGeV2 for MZ/JO—SGeV2
(solid blue) and M2 o =4 GeV? (dotted red). Upper right: S,y = 15 GeV?, for M2 o =35 GeV2 (solid blue), M2 o =3 GeV?

(dotted red) and M2 = = 6.5 GeV? (dashed green). Bottom: S,y =20 GeV2, for M2 = 4 GeV? (solid blue), M2 =6 GeV2 (dotted
red) and M2 0 =38 GeV2 (dashed green).
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FIG. 43. Angular distribution in the chiral-even case for yp), photoproduction. Upper left: Sy,\,floGeV2 for M? . =3GeV?

(solid blue) and M2 = 4 GeV? (dotted red). Upper right: S,n=15 GeV?, for M2 ot = = 3.5 GeV? (solid blue), M2 ﬂ— 5 GeV?
(dotted red) and M;%,r = 6.5 GeV? (dashed green). Bottom: S w~ =20 GeV?, for M?N = 4 GeV? (solid blue), Mi/)* =6 Ge\/2 (dotted

red) and Mip+ = 8 GeV? (dashed green).
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FIG. 44. Angular distribution in the chiral-even case for yp; photoproduction. Upper left: SyN:IOGeVz, for M}3/,5:3GeV2
(solid blue) and M?l,; =4 GeV? (dotted red). Upper right: Sv =15 GeV?, for M%l,; = 3.5 GeV? (solid blue), Mf,,; =5 GeV?
(dotted red) and M%,,; = 6.5 GeV? (dashed green). Bottom: S,n =20 GeV?, for M2,- = 4 GeV? (solid blue), M2,- = 6 GeV? (dotted

1Px i
red) and M;%/,; = 8 GeV? (dashed green).
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FIG. 45. Angular distribution in the chiral-odd case for ypp photoproduction. Upper left: S},NflOGeV2 for MZ/)(,73G6:V2
(solid blue) and M2 0= =4 GeV? (dotted red). Upper right: S,y = 15 GeV?2, for M2 0 = = 3.5 GeV? (solid blue), M2 N = =5 GeV?

(dotted red) and M?po = 6.5 GeV? (dashed green). Bottom: S,y = 20 GeV?, for pr“ = 4 GeV? (solid blue), pr(, =6 GeV2 (dotted
red) and Mi,,o = 8 GeV? (dashed green).
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FIG. 46. Angular distribution in the chiral-odd case for yp9 photoproduction. Upper left: S N:lOGeV2 for sz =3GeV?
(solid blue) and M2 =4 GeV? (dotted red). Upper right: S,y = 15 GeV?, for M2 0= 3. 5 GeV2 (solid blue), M2 o =5 GeV?

(dotted red) and Miﬂo = 6.5 GeV? (dashed green). Bottom: S,n =20 GeV?, for Miﬂo = 4 GeV? (solid blue), M}%ﬂo =6 GeV2 (dotted
red) and M?po = 8 GeV? (dashed green).
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FIG. 47. Angular distribution in the chiral-odd case for yp;; photoproduction. Upper left: SyNleGeVZ, for pr‘ =3GeV?
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FIG. 48. Angular distribution in the chiral-odd case for yp;, photoproduction. Upper left: S,N:IOGeVz, for M?,,;:3G6V2
(solid blue) and M2, =4 GeV? (dotted red). Upper right: S,y = 15 GeV?, for M2,. = 3.5 GeV? (solid blue), M2, =5 GeV?

7Pn

(dotted red) and M2, = 6.5 GeV? (dashed green). Bottom: S,y = 20 GeV?, for M2,. = 4 GeV? (solid blue), M2, = 6 GeV? (dotted
red) and M}%p; = 8 GeV? (dashed green).
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FIG. 49. The chiral-even single-differential cross section as a function of M%l, for yp?, photoproduction. Solid red: no angular cut.
Other curves show the effect of an upper angular cut 6 for the outgoing y: 35° (dashed blue), 30° (dotted green), 25° (dashed-dotted
brown), 20° (long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Upper left: S,y = 10 GeV?2. Upper right:

S,n =15 GeV?2. Bottom: S,n =20 GeV2.

it decreases with 6 for all of p%, p%. p7, p;. In all cases, the
distributions are dominated by moderate values of 6. In
practice, at JLab Hall B, the outgoing photon could be
detected with an angle between 5° and 35° from the
incoming beam. Therefore, we find that relatively few
events will be lost at JLab due to the angular cut on the
outgoing photon.

2. Single-differential cross section

In this subsection, we show the effect of choosing
different angular cuts on the single-differential cross
section, as a function of Mﬁp. For the chiral-even case,
this is shown in Figs. 49, 50, 51 and 52 for p9, p9, p; and
p, respectively, while for the chiral-odd case, this is shown
in Figs. 53, 54, 55 and 56 for p%, p9). p; and pj, respectively.

Each figure consists of three plots, which correspond to
three different values of S, namely 10,15 and 20 GeV>.
Each plot consists of seven curves, which correspond to six
different angular cuts of 10°, 15°, 20°, 25°,30°, 35°, and one
with no angular cuts. The asymptotic DAs with the standard
GPD scenario are used to generate the plots.

From the figures, we find that the angular cuts mainly
affect the low S,y domain. For the specific case of the JLab
35° upper cut (dashed-blue), the effect is negligible for both
the chiral-even and chiral-odd cases.

Moreover, we note that by using cuts on @, it is possible
to significantly reduce the contribution of the chiral-even
contribution, in particular in the high-S,y region, while
moderately reducing the chiral-odd contribution. Putting
additional cuts on M2, like M2, > 6 GeV?, would allow
for an increase in the ratio of odd cross section to even
cross section.

094023-63



GORAN DUPLANCIC et al. PHYS. REV. D 107, 094023 (2023)

do ev%n do.ev%n
P -2 7P -2
2 b - GeV " (pb- GeV
d]\I?rp(TJL ( ¢ ) dM3p2 (p ¢ )

0.8}
0.6}
0.4f
0.2f
0.0} A ool 3
25 3.0 3.5 4.0 3 4 5 6
M2, (GeV?) M2, (GeV?)

even

Py -2
" b - GeV
szo?l (P ‘ )

2
M2, (GeV?)

FIG. 50. The chiral-even single-differential cross section as a function of M %/, for yp photoproduction. Solid red: no angular cut. Other
curves show the effect of an upper angular cut @ for the outgoing y: 35° (dashed blue), 30° (dotted green), 25° (dashed-dotted brown), 20°
(long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Upper left: S,y = 10 GeV?. Upper right: S,n =15 GeV2.
Bottom: S,y = 20 GeV?.
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FIG. 51. The chiral-even single-differential cross section as a function of Mﬁp for yp} photoproduction. Solid red: no angular cut.
Other curves show the effect of an upper angular cut 6 for the outgoing y: 35° (dashed blue), 30° (dotted green), 25° (dashed-dotted
brown), 20° (long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Upper left: S,y = 10 GeV?2. Upper right:
S,n =15 GeV?2. Bottom: S,y =20 GeV2.
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FIG. 52. The chiral-even single-differential cross section as a function of M}%p for yp;; photoproduction. Solid red: no angular cut.
Other curves show the effect of an upper angular cut 6 for the outgoing y: 35° (dashed blue), 30° (dotted green), 25° (dashed-dotted
brown), 20° (long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Upper left: S,y = 10 GeV?2. Upper right:

S,n =15 GeV?2. Bottom: S,y =20 GeV2.
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FIG. 53. The chiral-odd single-differential cross section as a function of Mf/, for ypg photoproduction. Solid red: no angular cut. Other
curves show the effect of an upper angular cut @ for the outgoing y: 35° (dashed blue), 30° (dotted green), 25° (dashed-dotted brown), 20°
(long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Upper left: S,y = 10 GeV?. Upper right: S,n =15 GeV2.
Bottom: S,y = 20 GeV?.
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FIG. 54. The chiral-odd single-differential cross section as a function of M
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;p for 7pY photoproduction. Solid red: no angular cut. Other

curves show the effect of an upper angular cut 6 for the outgoing y: 35° (dashed blue), 30° (dotted green), 25° (dashed-dotted brown), 20°
(long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Upper left: S,y = 10 GeV?. Upper right: S,n =15 GeV2.

Bottom: S,y = 20 GeV?.
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FIG.55. The chiral-odd single-differential cross section as a function of M ﬁp for yp}} photoproduction. Solid red: no angular cut. Other
curves show the effect of an upper angular cut @ for the outgoing y: 35° (dashed blue), 30° (dotted green), 25° (dashed-dotted brown), 20°
(long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Upper left: S,y = 10 GeV2. Upper right: S,n=15 GeV2.
Bottom: S,y = 20 GeV?2.
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FIG. 56. The chiral-odd single-differential cross section as a function of M. fp for yp;, photoproduction. Solid red: no angular cut. Other
curves show the effect of an upper angular cut 8 for the outgoing y: 35° (dashed blue), 30° (dotted green), 25° (dashed-dotted brown), 20°
(long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Upper left: S,y = 10 GeV2. Upper right: S,n=15 GeV2.
Bottom: S,y = 20 GeV?2.

APPENDIX C: VANISHING OF THE CIRCULAR ASYMMETRY IN THE CHIRAL-EVEN CASE
In this appendix, we discuss the vanishing of the circular asymmetry for the chiral-even case. For the circularly polarized
amplitudes, the analogues of Eqs. (4.74) and (4.75) are given by
21 2 s e Sy 2 s 2 _ 552 «
S OIMLP =3 [21CaR + BICP + 5 BCa 2 + 5 1Bl Cu P — 215 PRe(C3 C)
Ak

+ 5| PIm(Ca(Ch, + i) + B2Ca Ci)|. (c1)

1 - s s? .
Z:|-M—|2 =5 |:2|CA|2 + Bl ICsI> + 1 |5} Cal” + 1 |P:|*|C, | = 2|P:|*Re(C}Cp)
A

= SIBPIM(CA(Cy, + i) +1BPCa,Ch)|. (c2)
So,
STIMLP = S IMP = slp PIm(Ca(Ch, + Ch,) + [BPCa,Ci). (c3)
e e
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An interesting feature of the circular asymmetry is that it only contains terms that mix vector GPD and axial GPD
contributions (A and B, with A5 and Bs). Thus, when averaging over the target helicity, it can be shown that all terms on the
rhs of Eq. (C3) vanish. Indeed, using Eqgs. (4.70) to (4.73), we obtain, after averaging and summing over the target helicities,

| 2

_Z <Z|M+|2 Z|M |2> |pl ) [H/)A( ~;A5 + 7:[;35) + |13,|27:{,,A5H;B]U[ﬂ2ﬂ]/5%1ﬂ] =

1/12 Ak

This shows that for an unpolarized target, the circular
asymmetry is identically zero. From a more physical point
of view, the vanishing of the circular asymmetry is a
consequence of parity invariance of QED and QCD. In
particular, from Ref. [28], one deduces that the amplitude
for our process, M, ; .1, Ay has to obey the relation

(C5)

_ A=Ay —(A=4
Moian, = n(—1)h=h=% ")M—zz—zk;—zl—aq,

(C4)

where 7 represents a phase factor related to intrinsic spin.
From this, we can deduce that

Z |M12/1k;/11+|2 = Z |M,121k;/1,—

Jinitq Jiitq

2, (Co)

which implies that the circular asymmetry vanishes iden-
tically for an unpolarized target.
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