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Boost-invariant equations of spin hydrodynamics confined to the first-order terms in gradients are
numerically solved. The spin equation of state, relating the spin density tensor to the spin chemical
potential, is consistently included in the first order. Depending on its form and the structure of the spin
transport coefficients, we find solutions which are both stable and unstable within the considered evolution
times of 10 fm=c. These findings are complementary to the recent identification of stable and unstable
modes for perturbed uniform spin systems described by similar hydrodynamic frameworks.
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I. INTRODUCTION

Recent evidence of the spin polarization of weakly
decayingLambdahyperons has opened upa newpathway for
investigating nontrivial vortical structures of strongly inter-
acting matter generated in heavy-ion experiments [1–10].
Several approaches for describing relativistic hydrodynamics
for spin-polarized fluids have been developed as a result of
the successes of the relativistic dissipative hydrodynamic
framework in heavy-ion phenomenological research [11,12].
Different frameworks have been constructed using entropy
current analysis [13–19], relativistic kinetic theory [20–38],
effective Lagrangian approach [39–42], quantum statistical
density operators [43–47], equilibrium partition func-
tions [48], and holography [49,50]. To allow for future
dynamic simulations of spin polarization [51–53], a consis-
tent framework of relativistic hydrodynamics with spin
degrees of freedom (spin hydrodynamics) is currently being
built.
In this work, we present an analysis of boost-invariant

solutions of the spin hydrodynamic equations formulated
by Hattori et al. in Ref. [13] and investigated later in a
series of publications [14,18,19,54,55]. The approach of
Ref. [13] is based on the gradient expansion and require-
ment of positive entropy production. This leads to the
identification of first order in gradient corrections to
the energy-momentum tensor Tμν, in a way similar to

the construction of the Navier-Stokes relativistic hydro-
dynamics for ordinary (spinless) fluids. A novel feature of
spin hydrodynamics is that the gradient corrections include
not only symmetric but also antisymmetric contributions
to Tμν. The presence of such antisymmetric parts of the
energy-momentum tensor leads to a nontrivial equation for
the spin tensor of the fluid, which should be treated as one
of the hydrodynamic equations (in addition to the standard
conservation of Tμν).
A characteristic feature of the framework proposed in

Ref. [13] is also the form of the leading (zeroth order)
contribution to the spin tensor,

Sμαβph ¼ uμSαβ; ð1Þ

which can be traced back to the seminalwork ofWeyssenhoff
and Raabe [56] (hereuμ is the hydrodynamic flow vector and
the antisymmetric tensor Sαβ describes spin density). The
formulation of spin hydrodynamics with such a form of the
spin tensor is often called the phenomenological approach.
Recently, a connection between this form and the canonical
formalism of spin hydrodynamics, where the spin tensor is
totally antisymmetric, has been established [19]. It turns out
that these two approaches differ not only by a pseudogauge
transformation [57] but also by a gradient termwhich should
be included in the definition of the canonical energy-
momentum tensor. Nevertheless, the structure of those
differences makes the phenomenological and canonical
formulations of spin hydrodynamics completely equivalent.
The results of Ref. [19] shed new light also on the results
presented in Ref. [14] where the Belinfante form of the
energy-momentum tensor is used—as long as the derivation
of the dissipative spin hydrodynamics starts from the same
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definition of the entropy current, the resulting hydrodynamic
framework is the same as in Ref. [13]. Given these findings,
in this work, we continue to work with the form (1).
Another general problem one encounters while dealing

with the gradient expansion for spin hydrodynamics is the
counting scheme—the same physical quantities may be
considered to be of a different order (in the gradient
expansion) in differentworks.Herein,we follow the strategy
outlined in [13] and treat the spin density Sαβ as being of the
zeroth order in gradients ðOð1ÞÞ, and the spin chemical
potential ωαβ to be of the first order ðOð∂ÞÞ. This leads,
however, to a substantial difficulty if one assumes that Sαβ is
a function of temperature T and ωαβ, and uses the equation
SαβðT;ωαβÞ ¼ S0ðTÞωαβ, as the orders of magnitude of the
two sides of this equation do not match [S0ðTÞ here is a
certain function of temperature]. A possible solution to this
problem is to argue that one considers the case where S0ðTÞ
is so large that it compensates for the smallness of ωαβ [13].
This leads us, however, beyond the original gradient
expansion. In this work, to remain within the gradient
expansion we assume the following dependence:

SμνðT;ωμνÞ ¼ S0ðTÞ
ωμνffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμνωμν

p : ð2Þ

A more detailed discussion of the form (2) will be given
below; here we only stress that Eq. (2) is a new feature
explored in this work that makes it different from previous
studies performed within the first-order spin hydrodynam-
ics. In particular, this makes our analysis different and
complementary to earlier work on boost-invariant solutions
of spin hydrodynamics performed in Ref. [18]. The formal-
ism developed herein is also similar to that presented in
Refs. [24,58] where, however, a significantly different
formulation of spin hydrodynamics was used.
Our paper is organized as follows: In Sec. II we define

the framework of spin hydrodynamics based on the
gradient expansion, introduce the constitutive equations
for matter with spin polarization, and identify the form of
the dissipative currents. In Sec. III the symmetry of boost-
invariance is implemented into our hydrodynamic frame-
work. The forms of the spin equation of state and the spin
kinetic coefficients are presented in Sec. IV. The results of
our numerical calculations are given in Sec. V. Finally, we
conclude in Sec. VI.
In this work we use the notation where ϵμναβ is the totally

antisymmetric tensor, and we follow the convention
ϵ0123 ¼ −ϵ0123 ¼ 1.

II. SPIN HYDRODYNAMICS

A. Basic conservation laws

The hydrodynamic framework for a spin-polarized
fluid is based on the conservation laws for the energy-
momentum tensor Tμν and the total angular momentum
tensor Jλμν,

∂μTμν ¼ 0; ð3Þ

∂λJλμν ¼ 0: ð4Þ

The total angular momentum tensor is the sum of the orbital
part Lλμν ¼ 2x½μTλν�, and the spin part Sλμν.1 We use the
phenomenological energy-momentum and spin tensors
which have the following forms [13]:

Tμν
ph ¼ εuμuν − pΔμν þ hμuν þ hνuμ

þ τμν þ qμuν − qνuμ þ ϕμν; ð5Þ

Sμαβph ¼ uμSαβ þ Sμαβð1Þ : ð6Þ

Here ε is the energy density, and p is the equilibrium
pressure.Wedefineuμ as the fluid four-velocity satisfying the
normalization condition uμuμ ¼ 1, andΔμν is the symmetric
operator projecting onto the space orthogonal to uμ, i.e.,
Δμν ¼ gμν − uμuν, where gμν ¼ diagðþ1;−1;−1;−1Þ is the
metric tensor. In Eq. (5) the vector hμ represents the heat flux,
while τμν ¼ πμν þ ΠΔμν is the symmetric dissipative cor-
rection to the perfect-fluid form: πμν is the shear stress tensor
(the traceless and orthogonal part of τμν related to the shear
viscosity), and Π is the bulk pressure. In an analogous way,
the antisymmetric dissipative corrections are defined by the
vector qμ and the tensor ϕμν. The tensor Sμν in Eq. (6) can be
interpreted as the spin density, Sμν ¼ uλSλμν. In Eq. (6) we
have also displayed the gradient correction Sλμνð1Þ , which

satisfies the constraint uλS
λμν
ð1Þ ¼ 0. We will neglect it below,

as it does not contribute to the nonequilibrium entropy
current in the order considered in this work [13]. Finally,
we note that the tensors hμ, τμν, qμ and ϕμν satisfy the
following conditions: hμuμ ¼ 0, τμν ¼ τνμ, τμνuν ¼ 0,
qμuμ ¼ 0, ϕμν ¼ −ϕνμ, and ϕμνuν ¼ 0.
In general, in four dimensions, the energy-momentum

tensor Tμν can have 16 independent components. In dis-
sipative hydrodynamics, these 16 components must come
from the following quantities: ε; p; uμ; hμ; πμν;Π; qμ, and
ϕμν. Note that due to the equation of state, the variables ε and
p together give only one unknown,while both uμ andhμ have
three independent components due to the conditions uμuμ ¼
1 and hμuμ ¼ 0. The shear stress tensor πμν is symmetric,
traceless, and orthogonal to uμ. Hence, it has only five
independent components. The bulk pressureΠ is just a scalar
representing 1 degree of freedom. The four-vector qμ has
3 degrees of freedom, just like hμ. Moreover, the tensorϕμν is
antisymmetric and orthogonal to uμ. Therefore, it can be
argued that ϕμν also has three independent components.
This counting summarizes 19 independent components in the

1Symmetric and antisymmetric part of a tensorXμν is denoted as
Xμν
ðsÞ≡XðμνÞ ¼ðXμνþXνμÞ=2 and Xμν

ðaÞ ≡ X½μν� ¼ ðXμν − XνμÞ=2,
respectively.
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Tμν instead of 16; hence we have the freedom to eliminate
3 degrees of freedom. This can be done by the “so-called”
framechoice,whereonedefines the flowvelocity.Note that in
dissipative hydrodynamics, the fluid flow is not unique and
must be specified along with the normalization. Any par-
ticular definition of uμ reduces the number of independent
components to the correct value of 16. In the standard
hydrodynamics (spinless fluid) with a symmetric energy-
momentum tensor such reduction of degrees of freedom can
be done by choosing the Landau frame (particularly in the
absence of a conserved current). In standard hydrodynamics
with a symmetric energy-momentum tensor, the Landau
frame is defined by the equation Tμν

ðsÞuν ¼ εuμ. Here Tμν
ðsÞ

is the symmetric part of the energy-momentum tensor. This
implies that hμ ¼ 0. But in the presence of an antisymmetric
component, one has different alternatives.
We can of course apply the standard Landau frame

choice to the symmetric part of Tμν. This implies that
hμ ¼ 0. Below, we will consider the Landau frame by
setting hμ ¼ 0. But, once we have set hμ ¼ 0, we cannot
further set qμ ¼ 0 since this condition will overconstrain
the system. However, if on dynamical grounds (namely, by
solving hydrodynamic equations for specific initial con-
ditions and with special symmetries assumed) we can show
that qμ ¼ 0, then the hydrodynamic solutions are consistent
with this condition. Instead of applying the Landau frame
condition only to the symmetric part of the Tμν, we can also
include the antisymmetric part. In that case, we obtain
hμ þ qμ ¼ 0. This immediately implies that we can have hμ

and qμ nonvanishing but satisfying together the Landau
condition. Fortunately, our results do not depend on such
choices of the Landau frames, as we argue in a subsequent
subsection III B that within the framework considered here,
for a consistent description of a boost-invariant system, we
should use qμ ¼ 0 along with hμ ¼ 0. We note that the
same condition was used in Ref. [18].
The conservation laws for energy, linear momentum, and

angular momentum can be written as2

ðu · ∂Þεþ ðεþ pÞ∂ · u ¼ −∂ · q − qνðu · ∂Þuν
− uν∂μϕμν þ τμν∂μuν; ð7Þ

ðεþ pÞðu · ∂Þuα − Δαμ
∂μp ¼ − ðq · ∂Þuα þ qαð∂ · uÞ

þ Δα
νðu · ∂Þqν − Δα

ν∂μϕ
μν

− Δα
ν∂μτ

μν; ð8Þ

∂μðuμSαβÞ ¼ − 2ðqαuβ − qβuα þ ϕαβÞ: ð9Þ

B. Thermodynamic relations and spin EoS

Following earlier works [13,14,19], we assume that the
presence of spin degrees of freedom leads to generalized
thermodynamic identities:

εþ p ¼ Tsþ ωαβSαβ; ð10Þ

dε ¼ Tdsþ ωαβdSαβ; ð11Þ

dp ¼ sdT þ Sαβdωαβ; ð12Þ

where T is the temperature, s is the entropy density, and the
antisymmetric tensor ωμν can be interpreted as the spin
chemical potential conjugated to the spin density Sμν.
We consider the spin chemical potential to be of the first

order in the gradient expansion, i.e., ωμν ∼Oð∂Þ. This is
implied by the fact that in the presence of the antisymmetric
part of the energy-momentum tensor the quantity ωμν can
be expressed at global equilibrium in terms of the thermal
vorticity tensor [13]

ωμν →
T
2
ωth
μν ¼ −

T
4
ð∂μβν − ∂νβμÞ; ð13Þ

where βμ ¼ βuμ and β ¼ 1=T is the inverse temperature.3

Consequently, the last terms on the right-hand sides of
Eqs. (10)–(12) are not negligible only if the spin density
tensor Sαβ is of the zeroth order in gradients Oð1Þ. In the
previous works (see, e.g., Eq. (17) in [18]) one assumes the
form Sμν ∼ T2ωμν and argues that sufficiently large values
of T may compensate for the smallness of ωμν. We find
this argument as not completely convincing since in the
hydrodynamic gradient expansion we have Sμν ∼Oð1Þ,
ωμν ∼Oð∂Þ, and T ∼Oð1Þ.
Due to the difficulties outlined above, in this work we

propose a different scaling of the spin density tensor,
namely, we assume the form

SμνðT;ωμνÞ ¼ S0ðTÞ
ωμνffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμνωμν

p ≡ S0ðTÞ
ωμνffiffiffiffiffiffiffiffiffi
ω∶ω

p : ð14Þ

This form implies that Sμν ∼Oð1Þ with ωμν ∼Oð∂Þ. We
note that the quantity ω∶ω is not necessarily positive.4 In
the case where it is negative one should include the minus
sign within the square root.
Equation (12) implies that pressure can be treated

as a function of T and ωμν. Moreover, Eq. (10) implies
that pressure includes first-order corrections in ωμν.
Consequently, we propose a general form of the pressure

2Since we will show that qμ ¼ 0 later, here we write the
hydrodynamic equations in the Landau frame by using hμ ¼ 0
only.

3Note that in the natural units, the thermal vorticity is
dimensionless, while the spin chemical potential has mass
dimension 1.

4We expect that solutions of the presented model will split into
two categories, one with ω∶ω > 0 and the other with ω∶ω < 0.
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pðT;ωμνÞ ¼ p0ðTÞ þ p1ðTÞ
ffiffiffiffiffiffiffiffiffi
ω∶ω

p
: ð15Þ

Here p0ðTÞ is the thermodynamic pressure in the absence
of spin chemical potential. Using the thermodynamic
relation (12) one obtains

Sαβ ¼ ∂p
∂ωαβ

����
T
¼ p1ðTÞ

ωαβffiffiffiffiffiffiffiffiffi
ω∶ω

p : ð16Þ

Combining Eqs. (14) and (16) we find

p1ðTÞ ¼ S0ðTÞ: ð17Þ

This relation allows us to write the following expressions
for pressure, entropy density, and energy density:

pðT;ωμνÞ ¼ p0ðTÞ þ S0ðTÞ
ffiffiffiffiffiffiffiffiffi
ω∶ω

p
; ð18Þ

sðT;ωμνÞ ¼ s0ðTÞ þ S00ðTÞ
ffiffiffiffiffiffiffiffiffi
ω∶ω

p
; ð19Þ

εðT;ωμνÞ ¼ ε0ðTÞ þ TS00ðTÞ
ffiffiffiffiffiffiffiffiffi
ω∶ω

p
; ð20Þ

where S00ðTÞ ¼ dS0ðTÞ=dT. Similarly to p0ðTÞ, the
quantities ε0ðTÞ and s0ðTÞ refer to the case of an unpo-
larized system. They satisfy the thermodynamic relation
ε0 þ p0 ¼ Ts0, which is consistent with Eq. (10).

C. Dissipative currents and kinetic coefficients

In the last section, we defined various thermodynamic
quantities appearing in the hydrodynamic equations. For a
complete description, we also have to specify the dissipa-
tive currents appearing in Eqs. (7)–(9). Using the condition
of the positive entropy production and restricting our
consideration to the linear terms in gradients, one
obtains [13,14,19]

hμ ¼ −κðDuμ − β∇μTÞ; ð21Þ

qμ ¼ λðDuμ þ β∇μT − 4ωμνuνÞ; ð22Þ

πμν ¼ 2ηsσ
μν; ð23Þ

Π ¼ ζθ; ð24Þ

ϕμν ¼ γðΩμν þ 2βΔμαΔνβωαβÞ
¼ γ̃ð∇μuν −∇νuμ þ 4ΔμαΔνβωαβÞ: ð25Þ

Here θ≡ ∂αuα is the expansion scalar, D≡ uμ∂μ is the
convective derivative,∇μ ¼ Δμν

∂ν is the transverse gradient,
γ̃ ¼ βγ=2, σμν ¼ ∇ðμuνÞ − 1

3
θΔμν, and Ωμν ¼ β∇½μuν�. Note

that hμ, qμ, τμν and ϕμν are all Oð∂Þ in the hydrodynamic
gradient expansion. All transport coefficients are positive,
i.e., κ ≥ 0, λ ≥ 0, ηs ≥ 0, ζ ≥ 0, and γ ≥ 0, to ensure positive
entropyproduction in a dissipative system.With the specified

equation of state and dissipative currents, the system of
hydrodynamic equations becomes closed, and we can search
for its solutions.

III. BOOST-INVARIANT DESCRIPTION
OF SPIN HYDRODYNAMICS

A. Implementation of the boost invariance

For the boost-invariant systems which are uniform in the
transverse plane, the hydrodynamic flow has the form
uμ¼ðcoshη;0;0;sinhηÞ, where η¼ð1=2Þln½ðtþzÞ=ðt−zÞ�
is the spacetime rapidity [59]. Moreover, all thermo-
dynamic quantities depend only on the proper time
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
. In this case, the four-acceleration of the

fluid, aμ ¼ Duμ, as well as the transverse gradient of
temperature, ∇μT, vanish. Consequently, the tensors qμ

and ϕμν defined by Eqs. (22) and (25) can be directly
expressed by the spin chemical potential [18]

qμ ¼ −4λωμνuν; ð26Þ

ϕμν ¼ 2γβðωμν þ 2u½μων�βuβÞ: ð27Þ

While dealing with a boost-invariant system, it is also
convenient to introduce the following basis vectors:

uμ ≡ ðcosh η; 0; 0; sinh ηÞ; ð28Þ

Xμ ≡ ð0; 1; 0; 0Þ; ð29Þ

Yμ ≡ ð0; 0; 1; 0Þ; ð30Þ

Zμ ≡ ðsinh η; 0; 0; cosh ηÞ: ð31Þ

The fluid flow four-vector uμ is timelike, while the four-
vectors Xμ, Yμ, and Zμ are spacelike and orthogonal to uμ.
They satisfy the following properties:

uμXμ ¼ 0; uμYμ ¼ 0; uμZμ ¼ 0; ð32Þ

XμXμ ¼ −1; YμYμ ¼ −1; ZμZμ ¼ −1; ð33Þ

XμYμ ¼ 0; XμZμ ¼ 0; YμZμ ¼ 0: ð34Þ

The spin chemical potential ωμν is antisymmetric and can
be generally decomposed as [20]

ωμν ¼ κμuν − κνuμ þ ϵμναβuαωβ: ð35Þ

Here, the four-vectors κμ and ωμ are also spacelike and
orthogonal to uμ, i.e., κμuμ ¼ 0 and ωμuμ ¼ 0. Using the
decomposition (35) in Eqs. (26)–(27), we find

qμ ¼ −4λκμ; ð36Þ
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ϕμν ¼ 2βγϵμναβuαωβ: ð37Þ

Furthermore, using the spacelike basis vectors Xμ, Yμ, and
Zμ, one can introduce the following representation of the
vectors κμ and ωμ [24]:

κμ ≡ CκXXμ þ CκYYμ þ CκZZμ

¼ ðCκZ sinh η; CκX; CκY; CκZ cosh ηÞ; ð38Þ
ωμ ≡ CωXXμ þ CωYYμ þ CωZZμ

¼ ðCωZ sinh η; CωX; CωY; CωZ cosh ηÞ: ð39Þ

B. Boost-invariant fire cylinder: Spin
and orbital angular momentum

In order to get physical insight into the coefficients
Cκi, and Cωi, we calculate the spin and orbital angular
momentum of the fire cylinder (FC) occupying the
spacetime region defined by the conditions τ ¼ const,
−ηFC=2 ≤ η ≤ ηFC=2, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
≤ R (see also Fig. 1

in Ref. [24]). A spacetime volume element of the fire
cylinder can be defined as

dΣλ ¼ uλdxdyτdη: ð40Þ
Using the leading term of the spin tensor, one can calculate
the spin angular momentum contained in the fire cylinder

Sμν
FC ¼

Z
dΣλ S

λμν
ph ¼

Z
dxdyτ dη Sμνph

¼
Z

dxdyτ dη
S0ffiffiffiffiffiffiffiffiffi
ω∶ω

p

× ðκμuν − κνuμ þ ϵμναβuαωβÞ: ð41Þ
With the help of Eq. (41), the S0i

FC components can be
obtained, which read as

S01
FC ¼ −2π R2τ

S0ffiffiffiffiffiffiffiffiffi
ω∶ω

p CκX sinh

�
ηFC
2

�
; ð42Þ

S02
FC ¼ −2π R2τ

S0ffiffiffiffiffiffiffiffiffi
ω∶ω

p CκY sinh
�
ηFC
2

�
; ð43Þ

S03
FC ¼ −π R2τ

S0ffiffiffiffiffiffiffiffiffi
ω∶ω

p CκZηFC: ð44Þ

On the other hand, the orbital part of the total angular
momentum can be obtained from the formula

Lμν
FC ¼

Z
dΣλL

λμν
ph ¼

Z
dΣλðxμTλν

ph − xνTλμ
phÞ; ð45Þ

which leads to the expression

Lμν
FC ¼

Z
dxdyτdηðεxμuν − εxνuμ − xμqν þ xνqμÞ: ð46Þ

In the above equation, we have used the orthogonality
condition between the fluid four-velocity and various
dissipative currents. Using the representation of qμ in terms
of κμ as given in Eq. (36), we obtain the L0i

FC components

L01
FC ¼ 8λCκXπR2τ2 sinh

�
ηFC
2

�
; ð47Þ

L02
FC ¼ 8λCκYπR2τ2 sinh

�
ηFC
2

�
; ð48Þ

L03
FC ¼ 4λCκZπR2τ2ηFC: ð49Þ

Interestingly, the coefficients Cωi do not appear in the
equations above.
The J 0i

FC ≡ L0i
FC þ S0i

FC components of the fire cylinder
describe its center-of-mass motion and should vanish in the
center-of-mass system that we use here. The conditions
J 0i

FC ¼ 0 (for i ¼ 1, 2, 3) can be explicitly rewritten as

π R2τCκX

�
−

S0ffiffiffiffiffiffiffiffiffi
ω∶ω

p þ 4λτ

�
sinh

�
ηFC
2

�
¼ 0; ð50Þ

π R2τCκY

�
−

S0ffiffiffiffiffiffiffiffiffi
ω∶ω

p þ 4λτ

�
sinh

�
ηFC
2

�
¼ 0; ð51Þ

π R2τCκZ

�
−

S0ffiffiffiffiffiffiffiffiffi
ω∶ω

p þ 4λτ

�
ηFC ¼ 0: ð52Þ

Since λ and S0 are independent quantities, Eqs. (50)–(52)
can be fulfilled only if the coefficients Cκi vanish,

CκX ¼ CκY ¼ CκZ ¼ 0: ð53Þ

The solution (53) also implies that κμ ¼ 0, and conse-
quently, qμ ¼ 0.5 Moreover, in this case ωμν is determined
entirely by ωμ and

5We have argued that for the generalized Landau frame
condition with the total energy-momentum tensor, i.e.,
Tμνuν ¼ εuμ, we obtain hμ þ qμ ¼ 0. Interestingly, if we look
into the constitutive relation of hμ [Eq. (21)], then it can be shown
that for the one-dimensional boost-invariant flow hμ is identically
zero. This is due to the symmetry of the flow where all scalars
are functions of the proper time only and there is no four-
acceleration. This implies qμ ¼ 0 according to the generalized
Landau condition. This condition might be difficult to be satisfied
as can be seen from Eq. (22) which combines different hydro-
dynamic quantities. However, again for the one-dimensional
boost-invariant flow the four-acceleration and transverse gradient
of temperature present in Eq. (22) vanish, and the condition
qμ ¼ 0 implies that ωμνuν ¼ 0. The last constraint can be fulfilled
in a nontrivial way as is demonstrated in this calculation. The
arguments presented here, however, may not hold if one con-
siders a boost-invariant model with transverse expansion. Hence
boost invariance does not necessarily imply the condition qμ ¼ 0.
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ωμνωμν ¼ −2ωμωμ

¼ 2ðC2
ωX þ C2

ωY þ C2
ωZÞ

≡ 2C2 > 0: ð54Þ

In the absence of qμ, the orbital part of the fire cylinder
becomes

Lμν
FC ¼

Z
εðxμuν − xνuμÞ dxdyτdη: ð55Þ

Using the explicit form of the fluid four-velocity for the
Bjorken flow in the above equation and performing the
spacetime integration, it can be argued that the orbital angular
momentum of the fire cylinder vanishes, Lμν

FC ¼ 0 [24].

C. Hydrodynamic equations
for a boost-invariant system

Using the Landau frame as specified above, along with
the condition qμ ¼ 0 and the explicit expression for ϕμν as
given by Eq. (37), one obtains the energy conservation
equation for a boost-invariant system,

dε
dτ

þ εþ p
τ

−
1

τ

�
2

3

ηs
τ
þ ζ

τ

�
¼ 0: ð56Þ

Although ϕμν explicitly appears in Eq. (7), it can be shown
for the Bjorken flow that uν∂μϕμν ¼ 0. Therefore, the
antisymmetric parts of the energy-momentum tensor do
not explicitly appear in the evolution of energy density
[note, however, that they appear implicitly as they affect the
constitutive equations (18)–(20)].
Note that ηs=s0 and ζ=s0 are dimensionless quantities,

and in the hydrodynamic description they can play an
important role. In terms of these dimensionless variables
the above equation can be rewritten as

dε
dτ

þ εþ p
τ

−
s0
τ2

�
2

3

ηs
s0

þ ζ

s0

�
¼ 0: ð57Þ

Let us now consider the acceleration equation (8). For the
Bjorken flow we can use the properties

ðu · ∂Þuμ ¼ 0; ð58Þ

Δαμ
∂μp ¼ 0; ð59Þ

Δα
ν∂μϕ

μν ¼ 0; ð60Þ

Δα
ν∂μτ

μν ¼ 0: ð61Þ

Therefore, for the case qμ ¼ 0, the acceleration equation (8)
is trivially fulfilled.
The remaining equation that has to be considered in our

scheme is the spin evolution equation (9). Note that the

antisymmetric part of the energy-momentum tensor cannot
be neglected in this case. However, in the case qμ ¼ 0, only
ϕμν affects the spin evolution equation, namely,

∂Sμν

∂τ
þ Sμν

τ
¼ −2ϕμν: ð62Þ

Note that both the left-hand side as well as the right-hand
side of the above equation depend on ωμν. Since κμ ¼ 0, the
spin chemical potential ωμν is completely determined by
the four-vector ωμ which has three independent compo-
nents (due to the orthogonality condition ωμuμ ¼ 0).
Therefore, Eq. (62) can be rewritten as three differential
equations governing the evolution of three independent
components of the tensor ωμν. These equations can be
obtained by taking projections of the spin evolution
equation (62) with XμYν, XμZν, and YμZν. This gives us
the following set of equations for the coefficientsCωX,CωY ,
and CωZ:

d
dτ

�
S0ffiffiffi
2

p
C
CωX

�
þ
�

S0ffiffiffi
2

p
C
CωX

�
1

τ
¼ −4βγCωX; ð63Þ

d
dτ

�
S0ffiffiffi
2

p
C
CωY

�
þ
�

S0ffiffiffi
2

p
C
CωY

�
1

τ
¼ −4βγCωY; ð64Þ

d
dτ

�
S0ffiffiffi
2

p
C
CωZ

�
þ
�

S0ffiffiffi
2

p
C
CωZ

�
1

τ
¼ −4βγCωZ; ð65Þ

whereC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
ωX þ C2

ωY þ C2
ωZ

p
; see Eq. (54). After several

algebraic manipulations (see Appendix A), Eqs. (63)–(65)
yield

C ¼ −
1

4
ffiffiffi
2

p
γβ

�
dS0
dτ

þ S0
τ

�

¼ −
1

4
ffiffiffi
2

p
γβ

�
S00ðTÞ

dT
dτ

þ S0
τ

�
: ð66Þ

To obtain the above equation we have assumed that C ≠ 0.
In order to get some insight into Eqs. (63)–(65), we

express different components of the spin chemical potential
in terms of C and two spherical angles ðΘ;ΦÞ:

CωX ¼ C sinΘ cosΦ; ð67Þ

CωY ¼ C sinΘ sinΦ; ð68Þ

CωZ ¼ C cosΘ: ð69Þ

In this case, Eq. (65) can be written as

d
dτ

�
S0ffiffiffi
2

p cosΘ
�
þ
�
S0ffiffiffi
2

p cosΘ
�
1

τ
¼ −4βγC cosΘ ð70Þ
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which implies

−
S0ffiffiffi
2

p sinΘ
dΘ
dτ

þ 1ffiffiffi
2

p cosΘ
�
dS0
dτ

þ S0
τ

�

¼ −4βγC cosΘ ð71Þ

and, consequently, dΘ=dτ ¼ 0. To obtain the last condition
we used Eq. (66). Similarly, using Eq. (63) or (64), it can be
easily shown that dΦ=dτ ¼ 0. Therefore, the vector built
out of three components CωX, CωY , and CωZ does not
change its direction during the time evolution (its orienta-
tion is fixed by the initial condition), and the only nontrivial
dependence is that of the magnitude C.
In this way, our analysis has been reduced to a study of

the hydrodynamic equation (57), where

pðT; CÞ ¼ p0ðTÞ þ
ffiffiffi
2

p
S0C; ð72Þ

εðT; CÞ ¼ ε0ðTÞ þ
ffiffiffi
2

p
TS00ðTÞC; ð73Þ

and the spin evolution equation (66). We note that Eq. (57)
is a first-order differential equation for the energy density.
By the virtue of Eq. (20), the energy density depends on
both the temperature and the spin chemical potential, i.e., it
is a function of T and C. Therefore, one can combine
Eqs. (57) and (66) into a single second-order differential
equation for the proper time evolution of T. Once this
equation is solved with appropriate initial conditions, we
can obtain a proper time evolution of temperature.
Subsequently, we obtain the proper time dependence of
C using Eq. (66).
As in standard hydrodynamic models, the procedure

outlined above works in practice if the equation of state is
known. In our case, with spin degrees of freedom included,
this means that we have to know the temperature depend-
ence of the function S0.

IV. SPIN EQUATION OF STATE
AND TRANSPORT COEFFICIENT γ

In Eq. (14), we have introduced a relation between the
spin density tensor Sμν and the spin chemical potential ωμν.
To completely specify the spin equation of state, we need to
know the form of the temperature-dependent function
S0ðTÞ. Unfortunately, at the moment we lack any micro-
scopic models for this function. Consequently, in our
numerical calculations, we have used arguments that refer
to dimensional analysis and overall simplicity. Since S0ðTÞ
has mass-dimension three, we have explored the form

S0ðTÞ ¼
αffiffiffi
2

p TaMbKn

�
M
T

�
; ð74Þ

where a and b are numerical constants satisfying the
condition aþ b ¼ 3. Here M is the particle mass, and

Kn denotes the modified Bessel function of the second
kind. The parameter α is a numerical constant. The
appearance of the modified Bessel function in Eq. (74)
is connected with the fact that we are going to include, as
special cases, the scaling of the function S0ðTÞwith particle
density n0ðTÞ or entropy density s0ðTÞ. These two cases
can be obtained by the appropriate choice of α, a, and n
in Eq. (74).
Using Eq. (74), the thermodynamic variables defined by

Eqs. (18)–(20) can be expressed in the following manner:

pðT; CÞ ¼ p0ðTÞ þ αTaMbKn

�
M
T

�
C; ð75Þ

sðT; CÞ ¼ s0ðTÞ þ αaTa−1MbKn

�
M
T

�
C

þ αTaMbK0
n

�
M
T

�
C; ð76Þ

εðT; CÞ ¼ ε0ðTÞ þ aαTaMbKn

�
M
T

�
C

þ αTaþ1MbK0
n

�
M
T

�
C; ð77Þ

where the prime in K0
nðM=TÞ denotes a derivative with

respect to temperature. For a massive Boltzmann gas, the
explicit expressions for thermodynamic quantities without
the spin part are

p0 ¼
gs
2π2

T2M2K2

�
M
T

�
; ð78Þ

ε0 ¼
gs
2π2

T2M2

�
3K2

�
M
T

�
þM

T
K1

�
M
T

��
; ð79Þ

n0 ¼ p0=T; ð80Þ

s0 ¼
ðε0 þ p0Þ

T
¼ gs

2π2
M3K3

�
M
T

�
; ð81Þ

where gs is the spin and particle-antiparticle degeneracy
factor.
To obtain the proper time evolution of temperature and

spin chemical potential, we need to specify the transport
coefficient γ, since it is present in Eq. (66). To select a
specific form of γ we use again dimensional analysis. In
analogy to Eq. (74), we use

γ ¼ α̃Tcþ1MdKm

�
M
T

�
; ð82Þ

where α̃, c, d, and m are numerical constants, with
cþ d ¼ 3. To demonstrate the effect of different forms
of S0ðTÞ and γ on the proper time evolution of temperature
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and spin chemical potential, we consider two different
options:
Case I: In this case, we assume that the function S0ðTÞ is

given by the particle density n0ðTÞ, while γðTÞ is propor-
tional to the pressure p0ðTÞ,

S0ðTÞ≡ n0ðTÞ; γðTÞ≡Ap0ðTÞ: ð83Þ

These expressions for S0ðTÞ and γðTÞ can be obtained
from Eqs. (74) and (82) by choosing a ¼ 1, n ¼ 2,
α ¼ gs

ffiffiffi
2

p
=ð2π2Þ, c ¼ 1, m ¼ 2, and A ¼ 2π2α̃=gs. In

order to be able to treat the spin effects as a small correction
to the standard (spinless) dynamics, we assume a very small
value of the parameter α̃. In practice, we choose α̃ ¼ 0.001.
Case II: In this case, we assume that the functions S0ðTÞ

and γðTÞ are closely related to the entropy density s0ðTÞ,
namely

S0ðTÞ≡ s0ðTÞ; γðTÞ≡ Ts0ðTÞ: ð84Þ

These expressions for S0ðTÞ and γðTÞ can be obtained
from Eqs. (74) and (82) by choosing a ¼ 0, n ¼ 3,
α ¼ gs

ffiffiffi
2

p
=ð2π2Þ, c ¼ 0, m ¼ 3, and α̃ ¼ gs=ð2π2Þ.

Some comments about the choice of Case I or Case II
may be in order here. Only a consistently developed kinetic
theory for particles with spin (or some other microscopic
model or theory) can uniquely determine S0 and γ.
However, even if such a theory is known, the possible
diversity of physical systems that exhibit spin polarization
effects introduces arbitrariness in the definitions of S0 and
γ. In our case, we can use dimensional arguments to remove
this arbitrariness to some extent. Since we know that the
mass dimension of S0 is 3, then a natural choice would be to
consider a number density or entropy density scaling.
Similarly, the transport coefficient γ has the mass dimen-
sion 4. The scaling of transport coefficients with entropy
density is motivated by the fact that dimensionless ratios of
the form ηs=s0 or ζ=s0 enter the hydrodynamic description.
Following this observation, we consider γ ¼ Ts0, where an
additional factor of temperature has been introduced to
make the expression dimensionally consistent. Another
scaling of γ, i.e., γ ∼ p0 is also due to the dimensional
arguments. In principle, one can also explore other choices.
Moreover, γðTÞ is a transport coefficient governing the

spin relaxation, which is expected to depend on interaction.
One naively expects this coefficient to be related to the
relaxation rate or relaxation time (τR) of microscopic
constituents of the system. But here γðTÞ is expressed
only in terms of thermodynamic quantities, and the
relaxation time does not appear explicitly in Eqs. (83)
and (84). To understand why γ is related to pressure, or
entropy density we will use our knowledge of kinetic
theory. Using the Boltzmann kinetic theory in the absence
of any vortical medium the shear viscosity (ηs) of massless
Boltzmann gas can be expressed in terms of the entropy

density (s0), ηs ¼ τRTs0. To obtain this relation one
assumes a momentum-independent relaxation time.
Moreover, if we consider that τR ∼ T−1 [25] then we find
that ηs scales as entropy density, consistently with dimen-
sional arguments. This shows that although transport
coefficients are proportional to the relaxation time of the
microscopic constituents, they can be expressed also in
terms of thermodynamic quantities. In a similar way, we
assume that γðTÞ is related to p0 or Ts0.

V. NUMERICAL RESULTS

If the functions S0ðTÞ and γðTÞ are defined by Eqs. (74)
and (82), respectively, the hydrodynamic evolution equa-
tions for the proper-time dependence of temperature and
the magnitude of spin chemical potential, Eqs. (57) and
(66), can be written in a compact form as

AðτÞ d
2T
dτ2

þ BðτÞ
�
dT
dτ

�
2

þDðτÞ dT
dτ

þ EðτÞ ¼ 0; ð85Þ

CðτÞ ¼ C11ðτÞ
dT
dτ

þ C12ðτÞ: ð86Þ

The explicit expressions for various coefficient functions
appearing above are given in Appendix B. Equation (85) is
a second-order ordinary differential equation governing the
proper-time evolution of temperature. A unique solution of
Eq. (85) can be found if the initial conditions are specified
at τ ¼ τ0 for the functions TðτÞ and dTðτÞ=dτ. We note that
the initial value of the temperature gradient can be obtained
from Eq. (86) if the initial values for TðτÞ and CðτÞ are
known. Hence, as expected, the full dynamics of our
system is determined by the initial values of the temper-
ature and magnitude of the spin chemical potential. We also
note that Eq. (85) has the form of the Riccati equation that
may have analytic solutions for some specific choices of
the coefficients; however, in general, one has to solve it
numerically.
In this work, we present our numerical solutions

obtained for the two cases defined in the previous section.
We assume the initial temperature T0 ¼ Tðτ0Þ ¼ 200 MeV
at τ0 ¼ 0.5 fm and the initial magnitude of the spin
chemical potential C0 ¼ Cðτ0Þ ¼ 50 MeV. The internal
degeneracy factor equals gs ¼ 4.0 (particles and antipar-
ticles with spin 1=2), and M ¼ 500 MeV represents an
effective particle mass. Moreover, we use the result
ηs=s0 ¼ 1=ð4πÞ, and ignore the effect of the bulk viscosity.
In Fig. 1 we present the proper-time evolution of

temperature. The solid (black) line and the dashed-dotted
(brown line) represent the solutions of Eq. (85) for cases I
and II, respectively, while the dashed (red) line represents
the standard Bjorken flow solution (spinless fluid). Note
that for the standard Bjorken flow the temperature evolu-
tion equation is a first-order differential equation. We
emphasize that one cannot set C ¼ 0 in Eq. (85) to obtain
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the standard Bjorken flow without spin, since to obtain
Eq. (85) we used Eq. (66) which assumes C ≠ 0.
As the temperature profile for the evolution with spin is

very close to the standard Bjorken solution in case I, we
observe a rapid drop of temperature for case II. For larger
evolution times, temperature becomes negative for case II,
which suggests that this solution cannot be accepted as
physically meaningful.
In Fig. 2 we present the proper-time evolution of the

magnitude of the spin chemical potential CðτÞ. We clearly
observe that C decreases with proper time for case I. This
behavior could be interpreted as an approach of spin
chemical potential to its global-equilibrium value given
by thermal vorticity that vanishes for Bjorken flow.
However, the Killing condition ∂μβν þ ∂νβμ ¼ 0 is not
satisfied by the boost-invariant flow; hence, strictly speak-
ing, the global equilibrium can never be reached in the
considered case.
Again, for case II we observe a singular behavior; in this

case the spin chemical potential rapidly grows with time.
Clearly, the assumed equation of state and form of the γ
coefficient for case II lead to unphysical behavior of the
system.
Finally, in Fig. 3 we demonstrate the spin contribution to

the thermodynamic pressure. The solid (black) line repre-
sents the pressure without the spin contribution, i.e., the
function p0ðTÞ. Note that the temperature TðτÞ is the
solution of the coupled equations (85) and (86). The dashed
(red) line represents the total pressure pðT; CÞ including the
effect of the spin chemical potential. With our choice of
parameters, the difference between p and p0 remains small

during the whole time evolution of the system. At the end of
the evolution, when the value of C is small, the difference
between p0 and p is almost negligible. This indicates that
our expansion scheme is consistently realized by the
solution in case I. Throughout the manuscript for Case I
we have considered the value of α̃ ¼ 0.001. However, even
if we change the value of α̃ to 0.0001 for Case I we do not
observe any significant changes in the results (not shown
here explicitly).
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FIG. 1. Proper-time evolution of temperature. Black (solid) line
represents the temperature evolution for case I. Brown (dashed-
dotted) line represents the temperature evolution for case II. Red
(dashed) line represents the variation of temperature with the
proper time for the standard Bjorken flow without spin. We
consider T0 ¼ 200 MeV and τ0 ¼ 0.5 fm.
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FIG. 2. Proper-time evolution of the magnitude of the spin
chemical potential C. We consider C0 ¼ 50 MeV and
τ0 ¼ 0.5 fm. For case I the C decreases with proper time. But
for the case II the spin chemical potential grows rapidly with
proper time.
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FIG. 3. Proper-time evolution of p0ðTÞ, and pðT;CÞ for case I.
We observe that the spin contribution to pressure remains a small
correction to the total pressure during the whole evolution of the
system.
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VI. CONCLUSIONS

In this work we have analyzed the boost-invariant
version of the spin hydrodynamic equations formulated
by Hattori et al. in Ref. [13]. A novel feature of our
treatment was a form of the spin density tensor that was
manifestly of leading order Oð1Þ in gradients. We have
numerically solved the resulting system of differential
equations and found that they exhibit both stable and
unstable behavior, depending on the assumed spin equation
of state and form of the spin kinetic coefficient γ. Our
finding of unstable behavior is similar to other results
obtained within the first-order spin hydrodynamics. It is
well known that the standard relativistic Navier-Stokes
theory also has problems with stability and causality—the
fact that triggered development of the second-order Israel-
Stewart framework. Our results indicate that a similar
extension for spin hydrodynamics is also necessary [60].
Some of the problems encountered in our approach may

be due to the assumed boost invariance. As we have
mentioned above, the Killing equation is never satisfied
for such a geometry; hence, the boost-invariant systems
cannot reach a state of global thermodynamic equilibrium.
Boost invariance imposes also many constraints on the
dynamic quantities, which make the spin evolution rather
trivial; in particular, no mixing between different compo-
nents of the spin density is possible.
Clearly, other forms of the spin equation of state and the

spin kinetic coefficient γ could be analyzed in the context of
stability of the hydrodynamic solutions. However, the two
cases analyzed herein correspond most likely to two
extreme situations one can encounter.
The main conclusion of the present work and other

recent studies of stability of spin hydrodynamics [54,55] is
the need to construct a second-order theory that may be free
of the problems discussed above.
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APPENDIX A: DERIVATION OF EQ. (66)

To obtain Eq. (66) we introduce the notation S0ðTÞ≡
1ffiffi
2

p S̃0ðTÞ and write

_̃S0
CωX

C
þ S̃0

_CωX

C
− S̃0CωX

_C
C2

þ S̃0
CωX

C
1

τ
¼−8βγCωX; ðA1Þ

_̃S0
CωY

C
þ S̃0

_CωY

C
− S̃0CωY

_C
C2

þ S̃0
CωY

C
1

τ
¼−8βγCωY; ðA2Þ

_̃S0
CωZ

C
þ S̃0

_CωZ

C
− S̃0CωZ

_C
C2

þ S̃0
CωZ

C
1

τ
¼−8βγCωZ; ðA3Þ

where the dot denotes the derivative with respect to the
proper time τ. The above set of equations can be simplified
in the following manner: We first multiply Eq. (A1) byCωX,
Eq. (A2) by CωY, and Eq. (A3) by CωZ. Then, we add these
three equations to obtain

C ¼ −
1

8βγ

�
_̃S0 þ

S̃0
τ

�
; ðA4Þ

which reproduces Eq. (66).

APPENDIX B: DERIVATION OF EQS. (85) AND
(86)

Using Eqs. (74) and (82) back into Eq. (66) and
considering that for the Bjorken flow, T is only a function
of the proper time (τ), we find

C ¼ C11

dT
dτ

þ C12; ðB1Þ

C11 ¼ −
α

8α̃
Ta−cMc−a

�
a

Kn

TKm
þ K0

n

Km

�
; ðB2Þ

C12 ¼ −
α

8α̃
Ta−cMc−a 1

τ

Kn

Km
: ðB3Þ

In the above equation, the argument of the Bessel functions
is M=T. But for a neat representation, we have removed
the arguments of the Bessel functions. Moreover one
can write

dC
dτ

¼ C22

d2T
dτ2

þ C21

�
dT
dτ

�
2

þ C23

�
dT
dτ

�
þ C24: ðB4Þ

Various temperature-dependent coefficients appearing in
the above equation are given as

C22 ¼ −
α

8α̃
Ta−cMc−a

�
a

Kn

TKm
þ K0

n

Km

�
; ðB5Þ
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C21 ¼ −
α

8α̃
Mc−a

�
aða − c − 1ÞTa−c−2 Kn

Km
þ aTa−c−1 K

0
n

Km

− aTa−c−1KnK0
m

K2
m

þ ða − cÞTa−c−1 K
0
n

Km
þ Ta−c K

00
n

Km

− Ta−c K
0
mK0

n

K2
m

�
; ðB6Þ

C23¼−
α

8α̃
Ta−cMc−a1

τ

�
ða−cÞ Kn

TKm
þK0

n

Km
−
KnK0

m

K2
m

�
; ðB7Þ

C24 ¼
α

8α̃
Ta−cMc−a 1

τ2
Kn

Km
: ðB8Þ

Using the expression of energy density (ε), and dC=dτ as
given in Eqs. (77) and (B4), respectively, we obtain

dε
dτ

¼ ε2C22

d2T
dτ2

þ ðε2C21 þ ε1C11Þ
�
dT
dτ

�
2

þ
�
dε0
dT

þ C12ε1 þ C23ε2

��
dT
dτ

�
þ ε2C24: ðB9Þ

The functions ε1 and ε2 are given as

ε1 ¼ aαTaMb½aT−1Kn þ K0
n� þ αðaþ 1ÞTaMbK0

n

þ αTaþ1MbK00
n; ðB10Þ

ε2 ¼ αTaMbðaKn þ TK0
nÞ: ðB11Þ

Therefore the hydrodynamic equation governing the proper
time evolution of temperature can be recast as

dε
dτ

þ εþp
τ

−
s0
τ2

�
2

3

ηs
s0
þ ζ

s0

�
¼ 0

⇒AðτÞd
2T
dτ2

þBðτÞ
�
dT
dτ

�
2

þDðτÞdT
dτ

þEðτÞ¼ 0: ðB12Þ

In the above equation,

AðτÞ¼ ε2C22;

BðτÞ¼ðε2C21þε1C11Þ;

DðτÞ¼
�
dε0
dT

þC12ε1þC23ε2

�
þε2

τ
C11þ

α

τ
TaM3−aKnC11;

EðτÞ¼ ε2C24þ
ε0þp0

τ
þε2C12

τ
þα

τ
TaM3−aKnC12

−
s0
τ2

�
2

3

ηs
s0
þ ζ

s0

�
: ðB13Þ
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