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In the absence of interactions the conductivity of the chiral separation effect (CSE) in the system of
massless fermions is given by a topological expression; interactions might change the pattern drastically.
However, we prove that the CSE conductivity is still given by the topological invariant composed of the
Green functions at zero temperature as long as the chiral symmetry is present, and if the renormalized axial
current is considered. This allows us to predict its appearance with the standard value of conductivity
per the Dirac fermion σCSE ¼ 1

2π2
in quark-gluon matter at T ¼ 0 and sufficiently large baryon chemical

potential, in the hypothetical phase with restored chiral symmetry and without color superconductivity.
This phase may be realized inside the neutron stars. We also argue that the same topological expression for
the CSE may be observed in Weyl semimetals, which realize the system of interacting relativistic fermions
in solid state systems. In order to estimate the nonperturbative corrections to σCSE within QCD at finite
temperatures we apply the method of field correlators developed by Yu. A. Simonov. As expected, above
the deconfinement crossover, the topological expression is approached within the quark-gluon plasma
phase, when the quark chemical potential is sufficiently large. However, we observe that this occurs only
when quark chemical potential is much larger than the thermal (Debye) mass. This range of parameters
appears to be far out of the region accessible at the modern colliders.

DOI: 10.1103/PhysRevD.107.094021

I. INTRODUCTION

The nondissipative transport effects appear in both
condensed-matter and high-energy physics [1–14]. These
effects represent an important probe of the corresponding
systems because of their topological nature. The corre-
sponding conductivities, as expected, in many cases are
represented by the topological invariants robust to any
smooth modifications of the systems including switching
on interactions. As a result, the strong interactions which
cannot be taken into account using direct calculations, do
not have any effect on these quantities. An example is given
by QCD at finite baryon-chemical potential. Here the lattice
numerical simulation cannot be applied, while the non-
perturbative effects still remain essential. In particular, the
appearance of color superconductivity predicted with the

aid of perturbative QCD is questionable because of the
nonperturbative nature of QCD even at large μB.
The sketch of the phase diagram of QCD is represented

in Fig. 1 in the plane temperature-quark chemical potential
[6,15–24]. The vacuum of the theory (T ¼ μ ¼ 0) is
situated in the lower-left corner of the diagram. The dashed
line represents well-investigated deconfinement crossover.
Above this crossover, the quark-gluon matter is in the
quark-gluon plasma phase, which is still a strongly corre-
lated medium, with deconfinement and restoration of chiral
symmetry. The dashed line is assumed to transform into the
true phase-transition line. This line meets the axis T ¼ 0
somewhere above μ ¼ 300 MeV. However, as was men-
tioned above, the region of finite μ is not accessible for
lattice numerical simulations. The perturbative analytical
calculations cannot describe the quark-gluon matter
exhaustively. At the small values of μ, certain methods
of calculations can be used based on lattice numerical
simulations such as those based on the expansion of
considered physical quantities in powers of μ. The only
clear result at the right-hand side of the diagram is the line
separating the phase of hadronic gas from nuclear matter.
Qualitatively, transition to nuclear matter occurs when the
quark chemical potential becomes larger than the constitu-
ent quark mass. In this situation quark matter becomes as
dense as it is inside the atomic nuclei. Further increases
of the chemical potential might lead to several phase
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transitions [25]. There are a number of hypotheses about
these transitions; the corresponding part of the solid line
may represent the transition to one of the phases of color
superconductivity, and in addition, right to this line the so-
called quarkyonic phase may be situated, where the quarks
coexist with baryons. In this phase there is a confinement of
quarks and the chiral symmetry is broken, as well as left to
the transition line, but the sea of the particles inside the
Fermi sphere consists of separate quarks. Another suppo-
sition is that the vertical transition line is to be separated
into two; the confinement-deconfinement transition and the
chiral-symmetry restoration line. As was mentioned above,
the phenomenological methods based on perturbative QCD
predict the appearance of several color superconductor
phases right to the vertical transition line. The lower-right
corner of the phase diagram is typically associated with the
color-flavor locking color-superconductor phase.
The complementary arena for the experimental

observation of nondissipative transport effects is repre-
sented by electronic quasiparticles in Dirac and Weyl

semimetals [8,27–33]. These materials are used to simulate
relativistic elementaryparticles in the laboratory. Interactions
between them break emergent relativistic invariance, but
even so these materials are an important way to probe
elementary particle physics with strong interactions.
The chiral-separation effect (CSE) was proposed by

Metlitski and Zhitnitsky [1], and it is representative of
the family of nondissipative transport phenomena. This
effect results in the axial current being directed along an
external magnetic field in the presence of nonzero chemical
potential. Originally this effect was considered in the
system of continuum Dirac fermions, which would be
homogeneous without an external magnetic field. In the
chiral limit, i.e., for massless fermions, the axial current in
these systems is proportional to the external magnetic-field
strength Fij and to the ordinary chemical potential μ,

Jk5 ¼
1

4π2
ϵijk0μFij: ð1Þ

It has been proposed that this effect may be observed in the
quark-gluon plasma (QGP) phase. In particular, the pos-
sibility to observe this effect experimentally during heavy-
ion collisions has been discussed [2–5]. The fireballs that
appeared in the noncentral collisions of heavy ions are
supposed to realize the QGP phase, and are subject to
strong magnetic field [6,15–24]. In the QGP phase there is
no confinement of quarks, and the chiral symmetry is
restored. The two colliding ions produce a strong magnetic
field. After the decay of the fireball, in principle, the
signature of the CSE may be found in the asymmetry of
created particles. The CSE may also be relevant for the
description of the quark-gluon matter at the other side of the
QCD phase diagram i.e., inside the neutron stars [34]. An
extension of the consideration of the CSE to the essentially
nonhomogeneous systems has been performed in [35],
where it has been shown that the nonhomogeneity does not
affect the CSE conductivity, which remains topologically
invariant and proportional to the number of the species of
Dirac fermions.
Relation of the CSE to the chiral anomaly has been

considered in many works [31]. The cousin of the CSE—
the chiral magnetic effect (CME) [2,36–39]—has also been
conjectured to be related to chiral anomaly. It has been
shown, however, that in thermal equilibrium the CME is
absent [11–14,40–44]. The CME is back out of equilibrium
even very close to equilibrium [45]. It is also widely
believed that the CME manifests itself in the steady state
existing in the presence of parallel electric and magnetic
fields [46]. It then may be detected through its contribution
to negative magnetoresistence of Dirac semimetals [47].
At the same time the CSE exists as a true equilibrium
phenomenon [9].
Using lattice regularization the CSE has been considered

via analytical methods in [35,48]. This regularization
also allows us to use the nonperturbative numerical

FIG. 1. We represent here the sketch of the QCD phase
diagram in the plane temperature-quark chemical potential.
The deconfinement crossover is represented by the dashed line.
Here we have the data obtained using lattice simulations. Above
the dashed line there is the quark-gluon plasma phase with
restored chiral symmetry and deconfinement. At larger values of
chemical potential the crossover, presumably, is changed by the
true first-order phase transition. Its nature for small temperature
is not yet well-established. We may actually have separate lines
of the deconfinement phase transition and the chiral-symmetry
restoration transition. Left to this transition (these transitions)
there may be the quarkyonic phase with coexisting baryons and
quarks, and the deconfining phase with restored chiral sym-
metry. At extremely large values of quark chemical potential
several color-superconductor phases might appear. The region
in the lower-left corner of the phase diagram is separated by the
first order transition line to the phase of hadronic gas and
nuclear matter. Modern colliders (LHC, RHIC, SPS, NICA,
FAIR) will be able to probe the regions of parameters of the
phase diagram along the line of the phase transition. The interior
of neutron stars represent the laboratory for probe of the domain
with small temperatures and large chemical potentials. Accord-
ing to the common lore this region is not accessible at the
present moment for the existing nonperturbative QCD calcu-
lations (see, however, [26]).
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methods [14]. In [49] the results of lattice simulations for
the QCD with Nf ¼ 2þ 1 at finite temperature have been
presented. It appears that the CSE conductivity is sup-
pressed above the crossover temperature. Its value increases
with temperature; it increases very slowly, and as we will
show, it approaches the conventional expression 1=ð2π2Þ
per Dirac fermion at the electroweak scale.
It is well-known that the theory with massless charged

fermions is subject to dangerous infrared divergences
[50–52]. Interaction corrections to CSE have not been
considered extensively so far. In [53] it was argued that in
QED high orders of perturbation theory give corrections to
the CSE conductivity for the system of massive fermions.
However, the calculated corrections suffer from infrared
divergencies, and depend on finite photon mass, which was
introduced to avoid divergences. To the best of our knowl-
edge corrections to the CSE due to exchange by color-
gauge bosons have not been considered analytically.
The present paper is devoted to the consideration of

interaction corrections to the chiral separation effect. We
assume, first of all, the corrections are due to strong
interactions in quark matter. However, the obtained result
on the topological expression for the CSE conductivity
remains valid in any fermionic system with interactions,
provided that the dangerous infrared divergences in the
corrections to the CSE conductivity are absent. (The
absence of such divergences in QCD is provided by
color-magnetic confinement.) Our consideration is based
on the lattice regularization of the QFT model. It remains
valid, therefore, also for the consideration of the tight-
binding models of solid-state systems.
As a useful tool we use Wigner-Weyl calculus in its form

adopted for the lattice models. It allows us to represent the
conductivities of some nondissipative transport phenomena
in the form of the topological invariants. This formalism
[54,55] was proposed originally as an alternative to the
conventional mathematical tools of nonrelativistic quantum
mechanics [56,57]. It has also been extended to be used in
quantum field theory. The basic notions of this formalism
are the Weyl operator symbol and the Wigner distribution
function. In Wigner-Weyl calculus the quantum state is
described by Wigner distribution instead of a wave func-
tion. The product of operators is replaced by the so-called
star (or Moyal) product of functions in phase space.
Wigner-Weyl calculus was proposed first for the con-

tinuous systems. The attempts to construct the analogous
formalism for the systems defined on a discrete lattice faced
certain difficulties [58–65]. A version of lattice Wigner-
Weyl calculus was proposed recently in [66]. In this version
the basic properties of the Weyl operator symbols and
Moyal product repeat precisely those of the continuous
Wigner-Weyl calculus. In the present paper we rely on the
simplified form of this calculus [67–71]. In this form the
main properties of the Weyl symbols and Moyal product
are not precise, and are approximate. This calculus may be

used if the inhomogeneity is sufficiently weak. In solid
state physics the approximate Wigner-Weyl calculus
may be used when magnetic field is much smaller than
105 Tesla, i.e., in all realistic situations (the maximal value
of magnetic field accessed in present experiments does not
exceed 100 Tesla). In lattice regularized quantum field
theory the approximate Wigner-Weyl calculus may be
applied when the model approaches continuum limit.
We consider lattice models of a rather general type with

fermions placed in the four-component Dirac spinors. For
quark matter these spinors carry extra internal indices; color
and flavor. In condensed matter systems the extra indices
have the meaning of valley, spin, etc. The action for the
fermions contains the 4 × 4 matrices to be expressed
through Dirac matrices γk (k ¼ 1, 2, 3, 4, 5), and their
derivatives σkj ¼ i

4
½γk; γj�. It will always be required that at

low energies the models under consideration obey chiral
symmetry. This means that matrix γ5 commutes or anti-
commutes with the one-particle Hamiltonian in a small
vicinity of the Fermi surfaces (Fermi points). Fermi surface
may be understood as the position of the singularities
in momentum space for the two-point Green’s function
Ĝ ¼ Q̂−1; we will call Q̂ the lattice Dirac operator. In the
presence of weak inhomogeneity the notion of Fermi
surface is to be replaced by the coordinate-dependent
Fermi surface [72]. From the mathematical point of view,
inhomogeneity might be considered as weak if the Wigner-
transformed Green’s function GWðp; xÞ has singularities
for any value of x very close to the positions of the zeros
of the Weyl symbol QWðp; xÞ of operator Q̂. This will give
the definition of the Fermi surface in the case of weak
inhomogeneity.
In [35] it has been shown that if low-energy effective

theory obeys chiral symmetry, the axial current of CSE in
the nonhomogeneous system of the general type is still
proportional to an external magnetic field. Averaged over
the whole volume of the system its response to the chemical
potential may be expressed as

d
dμ

J̄k5 ¼
N
4π2

ϵijk0Fij; ð2Þ

where N is a topological invariant expressed through GW
and QW ,

N ¼ 1

48π2V

Z
Σ3

Z
d3x tr½γ5GW⋆dQW⋆GW

∧ ⋆dQW⋆GW⋆ ∧ dQW �; ð3Þ

where QW and GW are defined for the system without an
external magnetic field. The above expression has been
derived for the noninteracting system. The surface Σ3 in
momentum space in the general case depends on x. It
surrounds the singularities of an expression standing inside
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the integral. N is robust to smooth modification of the
system if this modification does not break chiral symmetry
around Σ3. For sufficiently weak homogeneity the value of
N may be calculated easily, and is given by the number of
the species of chiral Dirac fermions in the low-energy
effective theory. As a result the CSE conductivity is given
by NcNf=ð2π2Þ for the system of Nf noninteracting quarks
(Nc ¼ 3 is the number of colors).
In the present paper we prove that Eqs. (2) and (3) remain

valid in the interacting system, when the Green’s function
G is replaced by the complete-interacting renormalized
Green’s function. Correspondingly, Q̂ is defined as its
inverse. In QCD this may be applied directly to the region
of the phase diagram with small temperatures and large
values of μ if at those values of μ the chiral symmetry is
restored, while gap is not opened, i.e., there is no color
superconductivity. Besides, the same result may be applied
to the electronic quasiparticles in Weyl semimetals, which
simulate high-energy physics in the laboratory. Here we
need μ ≫ T.
In QCD at finite temperature Eqs. (2) and (3) may be

applied to the quark-gluon plasma phase provided that
the temperature may be neglected compared to the quark
chemical potential. In advance, it is not clear to which
degree μ has to be larger than T in order to apply the
topological expression. In order to clarify this we calculate
the nonperturbative contributions to the CSE conductivity
using the method of field correlators developed by Yu. A.
Simonov and collaborators [25,26,73–80]. At the values
of μ and T around Tc the SUð3Þ coupling constant is
αsðTcÞ ≈ 0.3, and the perturbative corrections are expected
to contribute by amount of about 30%. We disregard these
contributions completely. Therefore, we assume that the
qualitative estimate is only in the region T ∼ μ ∼ Tc.
However, at larger values of T and/or μ, αs decreases; at
the energy scale of order of 1 GeV it becomes of order 0.2,
then the perturbative corrections become smaller. The
obtained results demonstrate that in the phase diagram
(see Fig. 1) the topological result remains far from the
region accessible by modern colliders. For example, in the
region of the phase diagram, where RHIC operates,
the CSE conductivity is suppressed by a factor ∼2
compared to the conventional value.

II. WIGNER-WEYL FORMALISM IN LATTICE
THEORY IN THE PRESENCE OF INTERACTIONS

A. Partition function of noninteracting system

First we consider the noninteracting fermion system in
lattice regularization. We refer here to the system of quarks.
However, the obtained results do not depend on the nature
of the fermions, and they remain valid for any fermionic
system with chiral fermions.
In Euclidian spacetime the partition function is expressed

through the inverse bare Green function. It will be called

further the Dirac operator and denoted by Q̂. The partition
function is given by

Z ¼
Z

Dψ̄Dψ eS½ψ ;ψ̄ �: ð4Þ

Here ψ ; ψ̄ are the Grassmann-valued quark fields, while S
is the action

S½ψ ; ψ̄ � ¼
Z
M

dDp
jMj ψ̄ðpÞQ̂ði∂p; pÞψðpÞ

¼
Z
M

dDp
jMj ψ̄

aðpÞQ̂abði∂p; pÞψbðpÞ

¼
X
rn

Z
M

dDp
jMjQ

ab
W ðrn; pÞWbaðrn; pÞ

¼
X
rn

Z
M

dDp
jMj tr½QWðrn; pÞWðrn; pÞ�; ð5Þ

where we used Weyl symbols of operators

QWðx; pÞ≡
Z
M

dqeixqhpþ q=2jQ̂jp − q=2i; ð6Þ

and

Wðrn; pÞ ¼ ðjψihψ jÞW: ð7Þ
Here by jψihψ j we denote operator with Grassmann—
valued matrix elements ψðxÞψ̄ðyÞ. For simplicity of nota-
tions we discretize both space coordinates and imaginary
time. In the case of the condensed-matter system we are
able to take off the discretization of imaginary time in order
to arrive at the conventional expression Q̂ ¼ iω − Ĥ,
where Ĥ is the one-particle Hamiltonian.
Using Peierls substitution in the presence of a slowly-

varying gauge field Eq. (6) takes the form

QWðr; pÞ → QWðr; p − AðrÞÞ: ð8Þ

Here direct dependence on r is caused by the other slow-
varying external fields. The partition function receives
the form

Z¼
Z

Dψ̄Dψ exp

�
−
X
rn

Z
Mj

dDp
jMj tr½QWðrn;pÞWðrn;pÞ�

�
:

ð9Þ
The propagator of fermions is defined as

Ĝ ¼ −
1

Z

Z
Dψ̄Dψ jψihψ̄ j

× exp

�Z
dDp
jMj ψ̄ðpÞQ̂ði∂p; pÞψðpÞ

�
; ð10Þ
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and its expression in momentum space is

Gðp1; p2Þ ¼ hp1jGjp2i

¼ 1

Z

Z
Dψ̄Dψψ̄ðp2Þψðp1Þ exp

�Z
dDp
jMj ψ̄ðpÞQ̂ði∂p; pÞψðpÞ

�
: ð11Þ

B. Partition function for the system with interactions

Let us consider the case of interactions between the fermions. As above we speak first of all of the systems, in which the
fermions are quarks, while the gauge group is the color SUð3Þ of strong interactions. However, the expressions to be derived
further are valid also for the other interactions, and the other fermions with chiral symmetry. This brings the partition
function to the form

Z ¼
Z

Dψ̄DψDAe−SA½A� exp
�
−
X
rn

Z
Mj

dDp
jMj tr½QWðrn; p − AÞWðrn; pÞ�

�
: ð12Þ

Here A is SUð3Þ gauge field, while SA½A� is the pure gauge field action, which contains the gauge fixing term [we are
speaking here of the gauge group SUð3Þ only].
A variation of the partition function may be expressed as follows:

δ logZ¼−
1

Z

Z
Dψ̄DψDAe−SA½A�

�X
rn

Z
dDq
jMjδQ

ab
W ðrn;q−AÞWbaðrn;qÞ

�
exp

�
−
X
rn

Z
dDp
jMjQ

ab
W ðrn;p−AÞWbaðrn;pÞ

�

¼−
X
rn

Z
DAe−SA½A�

dDq
jMjδQ

ab
W ðrn;q−AÞ

�
1

Z

Z
Dψ̄DψWbaðrn;q−AÞexp

�
−
X
rn

Z
dDp
jMjQ

ab
W ðrn;p−AÞWbaðrn;pÞ

��

¼
X
rn

Z
DAe−SA½A�

dDq
jMjδQ

ab
W ðrn;q−AÞGba

W ðrn;q−AÞ

¼
X
rn

Z
DAe−SA½A�

dDq
jMj tr½δQWðrn;q−AÞGWðrn;q−AÞ�:

In the case when dependence of δQWðrn; q − AÞ on A may
be neglected, we obtain

δ logZ ¼
X
rn

Z
dDp
jMj tr½δQWðrn; pÞGWðrn; pÞ�

¼
Z

dDx
Z

dDp
vjMj tr½δQWðx; pÞGWðx; pÞ�

¼
Z

dDx
Z

dDp
ð2πÞD tr½δQWðx; pÞGWðx; pÞ�: ð13Þ

Here v is the elementary lattice-cell volume. In the
second line assume that the expression standing under
the sum depends slowly on rn. In the last line we use that
vjMj ¼ ð2πÞD. We rewrite this expression as

δ logZ ¼ tr½ĜδQ̂� ¼ Tr½GW⋆δQW � ¼ Tr½GWδQW � ð14Þ

with

⋆ ¼ e
i
2
ð∂⃖x∂p
!

−∂p
 ⃗

∂xÞ:

Here by G we denote the complete interacting two-point
quark Green’s function while G is the Green’s function in
the presence of an external SUð3Þ field A. Notice that G
is the quark Green’s function calculated in certain gauge of
the SUð3Þ group. Our further results do not depend on the
particular choice of the gauge. The star may be removed
here if δQWðp; xÞ as a function of x is localized in a finite
region of space. In the following we will always denote the
complete Green function and its inverse by bold letters,
while ordinary letters will denote bare quantities with no
interactions taken into account.
From now on we use continuum limit for the coordinates

rn → x. This is possible if variations of fields on the
distances of the order of lattice spacings are neglected.
In the presence of an extra external gauge field we

substitute p → p −A

QWðx; p − AÞ → QWðx; p − A −AÞ: ð15Þ
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Variation with respect to the external gauge field
A → Aþ δA gives

QWðx;p−A− ðAþ δAÞÞ
¼QWðx;p−A−AÞþ ∂Ai

QWðx;p−A−AÞδAi ð16Þ

and

δQW ¼ ∂Ai
QWδAi ¼ −∂pi

QWδAi: ð17Þ

The expression for ∂pi
QWðx; p − AÞ obviously becomes

independent of A, when we approach the continuum limit.
Since we are interested in continuum limit of lattice theory,
the electric current may be taken in the form

jiðxÞ ¼
δ logZ
δAkðxÞ

¼ −
Z
ð2πÞD

dDp
jMj tr½GWðx; pÞ∂pi

QWðx; pÞ�:

ð18Þ

Based on analogy with electric current the naive expression
for local axial current density may be defined as

j5kðxÞ ¼ −
Z
M

dDp
ð2πÞD tr½γ5GWðx; pÞ∂pk

QWðx; pÞ�: ð19Þ

C. Gauge transformation of Weyl symbol

The Uð1Þ gauge transformation acts as jxi→ eiαðxÞjxi.
As a result the Weyl symbol of an operator B̂ is
transformed as

BWðx; pÞ ¼
Z

dye−iyphxþ y=2jB̂jx − y=2i

→
Z

dye−iypþiαðxþy=2Þ−iαðx−y=2Þ

× hxþ y=2jB̂jx − y=2i: ð20Þ

Here we replace the sum over lattice points by an integral
because we assume that all fields vary slowly, so that
their variation at the distance of lattice spacing may be
neglected. Let us consider those gauge transformations
for which the function α almost does not vary at the
distances of the order of the correlation-length λ char-
acterizing operator B̂, i.e., jλ∂αj ≪ 1. We call these
transformations “slow” (with respect to B̂). For them
we obtain:

BWðx; pÞ →
Z

dye−iypþiαðxþy=2Þ−iαðx−y=2Þ

× hxþ y=2jB̂jx − y=2i

≈
Z

dye−iyðp−∂αðxÞÞhxþ y=2jB̂jx − y=2i

¼ BWðx; p − ∂αðxÞÞ: ð21Þ

If operator B̂ depends on the Uð1Þ gauge field A then we
may require that the gauge transformation of B̂ should
be compensated by the gauge transformation of field A.
This occurs, for example, for Dirac operator Q̂ due to
gauge invariance of the whole model. Consideration of
“slow” gauge transformation results in the requirement
that Weyl symbol BWðx; pÞ depends on AðxÞ through the
functional dependence on p − AðxÞ, and gauge-invariant
quantities; field strength Fij and its derivatives, provided
that variation of AðxÞ may be neglected at the distances
of the order of λ, i.e., jλ2Fijj ≪ 1. As a result for such
AðxÞ we may represent BW as a series

BWðx; pÞ ¼ Bð0ÞW ðx; p − AðxÞÞ þ Bð1ÞðijÞWðx; p − AðxÞÞFijðxÞ
þ Bð2ÞðijkÞWðx; p − AðxÞÞ∂kFijðxÞ þ � � � : ð22Þ

Here dots denote the higher-order terms in derivatives.
This expansion is reasonable, i.e., the higher-order terms
are smaller than the lower-order terms under the same
condition jλ2Fijj≪ 1.
In particular, for bare Q̂ the correlation length λ is given

by the lattice spacing, and we arrive at Eq. (8) for the fields
A that vary slowly at the distance of the order of lattice
spacing.

D. Renormalized quark velocity and
renormalized axial current

The meaning of −∂pi
QWðx; p − AÞ is matrix of bare

quark velocity. It is natural that the electric current is (up to
electric charge of quark) given by averaging of quark
velocity. A natural supposition is that in quantum theory the
renormalized quark velocity has to be substituted to this
expression. Namely, let us denote by Q an operator inverse
to G, which is the complete quark Green’s function with
interactions taken into account. Notice again that both G
and Q are to be calculated after the gauge-fixing procedure
for SUð3Þ gauge group. Then the renormalized velocity
operator is

vR ¼ −∂pi
QWðx; p − AÞ: ð23Þ

It can be shown using the methodology developed in [81]
that to all orders in perturbation theory the electric current
averaged over the system volume V is given by

M. A. ZUBKOV and RUSLAN A. ABRAMCHUK PHYS. REV. D 107, 094021 (2023)

094021-6



1

βV

Z
dDxjkðxÞ ¼ −

1

βV

Z
M

dDx
dDp
ð2πÞD

× tr½GWðx; pÞ∂pi
QWðx; pÞ�:

The latter expression does not have much sense because
according to the Bloch theorem the persistent current
vanishes in nonmarginal systems. The proof of the theorem
follows from the fact that the above expression is a
topological invariant. At the same time the above expres-
sion does not mean that the local current density may be
expressed through the renormalized velocity operator

jkðxÞ ≠ −
Z
M

dDp
ð2πÞD tr½GWðx; pÞ∂pi

QWðx; pÞ�:

The nontrivial expression appears, however, when we
consider response of the above expression to external
fields. In this way considering the electric field that has
equal values but opposite directions in the two pieces of
space, in [81] it has been shown that the (integer) Hall
conductivity (averaged over the system area) does not have
perturbative corrections, and may be expressed through the
complete interacting Green functions. As a result, we can
take the “renormalized” expression for the electric current
density

jkðxÞ ¼ −
Z
M

dDp
ð2πÞD tr½GWðx; pÞ∂pi

QWðx; pÞ�

and calculate its response to electric field. This way
the correct expression for the Hall conductance is repro-
duced, while the longitudinal contribution vanishes. We
conclude that for the calculation of the physical observables
averaged over the whole system area in the Quantum Hall
Effect (QHE) systems the renormalized expression for the
current density may be used.
Based on an analogy to electric conductivity below we

accept as the definition of the renormalized axial current the
expression with the operator of renormalized velocity in
place of the bare velocity,

j5kðxÞ ¼ −
Z
M

dDp
ð2πÞD tr½γ5GWðx; pÞ∂pk

QWðx; pÞ�: ð24Þ

For the calculation of the electric current the QHE system
integral over the whole Brillouin zone is to be calculated.
We will see that contrary to this for the calculation of CSE
conductivity one should integrate in momentum space
along the infinitely small hypersurface surrounding the
position of Fermi surface/Fermi point. As a result in the
field theory with spatial isotropy at zero temperature and
zero chemical potential (for example, in QED) we need
expression for ∂pk

QWðx; pÞ in the small vicinity of p ¼ 0.
There, we have

∂pk
QWðx; pÞ ≈ γkZF:

Here ZF is the fermion field renormalization constant. One
can see, therefore, that at T ¼ μ ¼ 0 the only difference if
we substitute to the CSE current the renormalized velocity
(instead of the bare one) is appearance of the renormaliza-
tion constant ZF. However, this is precisely what is to be
done for the calculation of the renormalized axial current at
T ¼ μ ¼ 0 (if the latter is defined as hΨ̄Rγ

μγ5ΨRi, where
ΨR ¼ Z1=2

F Ψ is the renormalized field operator, while Ψ is
bare fermionic field). Notice, that unlike vector current the
axial current is not Noether current responsible for the
transport of a conserved charge. Therefore, its definition in
the interacting systems is flexible. In the present paper we
extend definition of Eq. (24) to the systems with nonzero T
and μ, and to the systems with spatial anisotropy. As it was
mentioned above, Eq. (24) will be considered below as the
definition of renormalized axial current.

E. Groenewold equation and its iterative solution

The (renormalized) Dirac operator and (renormalized)
Green’s function obey the following equation

Q̂ Ĝ ¼ 1: ð25Þ

A Weyl-Wigner transformation results in the Groenewold
equation

QWðp; xÞ⋆GWðp; xÞ ¼ 1: ð26Þ

We assume here that all external fields vary slowly,
i.e., these variations may be neglected at the distance
of the order of lattice spacing. Then Weyl symbol of
bare (noninteracting) Dirac operator has the functional
dependence QWðp − AðxÞ; xÞ in the presence of external
field AiðxÞ (corresponding to the field strength Fij).
Here the coordinate dependence caused by the other
external fields is given by direct dependence on x. The
function QWðp; xÞ with interaction corrections can be
represented as

QWðp; xÞ ¼ Qð0ÞW ðp − AðxÞ; xÞ
þQð1ÞðijÞWðp − AðxÞ; xÞFij þ � � � : ð27Þ

Dots represent the terms proportional to the higher
powers of F and the derivatives of F. As was explained
above in Sec. II C, this expansion is valid under the
condition jλ2Fijj≪ 1, where λ is the correlation length
associated with the given interacting system. This expan-
sion is reasonable, at least when we consider the DC CSE
conductivity, i.e., the response of the axial current to
sufficiently small external magnetic field. Recall that the
correlation length associatedwith the bareDirac operator is
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equal to the lattice spacing. In the presence of interactions
the correlation length may become much larger, of the
order of the existing dimensional parameters of the system.
For example, for the quark matter at zero temperature such
parameters are the quark chemical potential and ΛQCD.

Assuming μ > ΛQCD, for these systems Eq. (27) may be
applied for magnetic fields much smaller than Λ2

QCD.
In order to illustrate a representation of Eq. (27) let us

consider the approximation when only the one-gluon
exchange is taken into account,

Qð0ÞW ðp − AðxÞ; xÞ ≈QWðp − AðxÞ; xÞ − g2
Z

dDk
ð2πÞDDð0Þabμν ðkÞγμtaGð0ÞW ðp − k − AðxÞ; xÞγνtb;

Qð1ÞðijÞWðp − AðxÞ; xÞ ≈ −g2
Z

dDk
ð2πÞD Dð0Þabμν ðkÞγμtaGð1ÞðijÞWðp − k − AðxÞ; xÞγνtb: ð28Þ

Here Dð0Þ is the gluon propagator, while ta are the Gell-
Mann matrices, and a, b are the color indices. Above we

denote by Gð0ÞW ðp; xÞ solution of reduced Groenewold
equation [i.e., the one without AðxÞ],

Gð0ÞW ðp; xÞ⋆QWðp; xÞ ¼ 1:

At the same time the first-order term in derivative of A is

Gð1ÞðijÞW ¼
i
2
½Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW �:

It gives the first-order term (expansion over derivatives
of A) in solution of equation

ðGð0ÞW ðp; xÞ þ Gð1ÞðijÞWFijÞ⋆QWðp − AðxÞ; xÞ ¼ 1:

This result follows the derivation presented in [82] and is
based on the expansion

⋆ ¼ 1þ i
2
ð∂⃖x∂⃗p − ∂⃖p∂⃗xÞ þ � � � :

Among the second-order diagrams let us consider
the representative one, in which the gluon propagator
receives correction from the quark loop. This gives the
following contribution to quark self-energy up to the linear
terms in Fij:

ΔΣ¼ g2
Z

dDk
ð2πÞDDð1ÞabμνW ðk; xÞγμtaGð0ÞW ðp− k−AðxÞ; xÞγνtbþ g2

Z
dDk
ð2πÞDFijD

ð0Þab
μνW ðk; xÞγμtaGð1ÞðijÞWðp− k−AðxÞ; xÞγνtb;

where −ΔΣ is one of the many terms entering perturbative expansion ofQWðp; xÞ. The corresponding contribution to gluon
propagator is

Dð1ÞabμνW ðk; xÞ ¼ g2Dð0ÞacμρW ðkÞ⋆
Z

dDq
ð2πÞD trðGWð−q; xÞγρtbGWðk − q; xÞγσtdÞ⋆Dð0ÞdbσνW ðkÞ

¼ g2Dð0ÞacμρW ðkÞ⋆
Z

dDq
ð2πÞD trðGð0ÞW ð−qþ AðxÞ; xÞγρtbGð0ÞW ðk − q − AðxÞ; xÞγσtdÞ⋆Dð0ÞdbσνW ðkÞ

þ g2Dð0ÞacμρW ðkÞ⋆
Z

dDq
ð2πÞD trðGð0ÞW ð−qþ AðxÞ; xÞγρtbGð1ÞðijÞWðk − q − AðxÞ; xÞγσtdÞ⋆Dð0ÞdbσνW ðkÞFij

− g2Dð0ÞacμρW ðkÞ⋆
Z

dDq
ð2πÞD trðGð1ÞðijÞWð−qþ AðxÞ; xÞγρtbGð0ÞW ðk − q − AðxÞ; xÞγσtdÞ⋆Dð0ÞdbσνW ðkÞFij

¼ g2Dð0ÞacμρW ðkÞ⋆
Z

dDq
ð2πÞD trðGð0ÞW ð−q; xÞγρtbGð0ÞW ðk − q; xÞγσtdÞ⋆Dð0ÞdbσνW ðkÞ

þ g2Dð0ÞacμρW ðkÞ⋆
Z

dDq
ð2πÞD trðGð0ÞW ð−q; xÞγρtbGð1ÞðijÞWðk − q; xÞγσtdÞ⋆Dð0ÞdbσνW ðkÞFij

− g2Dð0ÞacμρW ðkÞ⋆
Z

dDq
ð2πÞD trðGð1ÞðijÞWð−q; xÞγρtbGð0ÞW ðk − q; xÞγσtdÞ⋆Dð0ÞdbσνW ðkÞFij: ð29Þ

In the last three rows we performed the shift of variable q − AðxÞ → q. One can see that still there are the two types of the
contributions to QWðp; xÞ described by Eq. (27). Obviously the same consideration may be extended to all orders of
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perturbation theory. The same refers also to the non-
perturbative contributions to QWðp; xÞ according to the
arguments presented in Sec. II C.
In the similar way the solution of Groenewold equa-

tion (26) for the interacting Green function (up to the linear
terms in F) is given by

GWðp; xÞ ≈Gð0ÞW ðp; xÞ þGð1ÞðijÞWFij;

where Gð0ÞW ðp; xÞ is solution of reduced Groenewold
equation [i.e., the one without AðxÞ],

Gð0ÞW ðp; xÞ⋆Qð0ÞW ðp; xÞ ¼ 1:

The first-order term in derivative of A is more complicated
than in the case of the noninteracting Green function,

Gð1ÞðijÞW ¼
i
2

h
Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW

i
Fij

−Gð0ÞW ⋆Qð1ÞðijÞW⋆Gð0ÞW Fij: ð30Þ

III. TOPOLOGICAL EXPRESSION FOR CHIRAL
SEPARATION EFFECT IN THE PRESENCE OF

INTERACTIONS AT T = 0

A. Response of axial current to magnetic field

As has been explained above, the local (renormalized)
axial current density is given by

j5kðxÞ ¼ −
Z
M

dDp
ð2πÞD tr½γ5GWðx; pÞ∂pk

QWðx; pÞ�: ð31Þ

We obtain the following term with the linear response to
external field strength,

j5kðxÞ ¼ −
i
2

Z
M

dDp
ð2πÞD tr

h
γ5
h
Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ

⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW

i
∂pk

Qð0ÞW

i
Fij

þ
Z
M

dDp
ð2πÞD tr

h
γ5
h
Gð0ÞW ⋆Qð1ÞðijÞW⋆Gð0ÞW

i
∂pk

Qð0ÞW

i
Fij

−
Z
M

dDp
ð2πÞD tr

h
γ5Gð0ÞW ∂pk

h
Qð1ÞðijÞW

ii
Fij: ð32Þ

Averaging the local current over the whole system volume
we get

J̄5i ≡ 1

βV

X
x

j5i ðxÞ

¼ −
1

βV

Z
dDx

Z
M

dDp
vjMj tr½γ

5GWðx; pÞ∂pi
QWðx; pÞ�

¼ −
1

βV
Tr½γ5GWðx; pÞ∂pi

QWðx; pÞ�: ð33Þ

Here v is volume of the lattice cell. We have a useful
formula vjMj ¼ ð2πÞD and we obtain

J̄5k¼−
i
2

1

βV

Z
dDx

Z
M

dDp
ð2πÞD tr

h
γ5
h
Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ

⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW ∂pk

Qð0ÞW

þ2iGð0ÞW ⋆Qð1ÞðijÞW⋆Gð0ÞW ∂pk
Qð0ÞW −2iGð0ÞW ∂pk

h
Qð1ÞðijÞW

iii
Fij:

ð34Þ

B. Axial current for massless fermions
at finite temperature

For the sake of regularization and also because we are
going to consider QCD at finite temperature, we introduce
finite temperature. Matsubara frequencies are p4 ¼ ωn ¼
2πðnþ1

2
Þ

β . Here the inverse temperature β ¼ 1=T is taken in

lattice units; Nt ≡ 1
T, the values of p4 are p4 ¼ 2πðn4þ1

2
Þ

Nt
, and

n4 ¼ − Nt
2
;…; Nt

2
− 1. The boundary values are ωn¼−Nt

2
¼

2πð−Nt
2
þ1

2
Þ

Nt
¼ −π þ π

Nt
and ωn¼Nt

2
−1 ¼ 2πðNt

2
−1
2
Þ

Nt
¼ π − π

Nt
. The

Matsubara frequencies closest to zero are ωn¼0 ¼ π
Nt

and
ωn¼−1 ¼ − π

Nt
. One can see that ωn never equals to zero.

Therefore, the propagator does not have poles in momen-
tum space. The axial current receives the form

J̄5k¼−
i
2

1

βV

XNt
2
−1

n¼−Nt
2

Z
d3x

Z
M3

d3p
ð2πÞ3

×tr
h
γ5
h
Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW ∂pk

Qð0ÞW

þ2iGð0ÞW ⋆Qð1ÞðijÞW⋆Gð0ÞW ∂pk
Qð0ÞW −2iGð0ÞW ∂pk

h
Qð1ÞðijÞW

iii
Fij:

ð35Þ
Chemical potential may be introduced as ωn → ωn − iμ.

Therefore, the response of axial current to variation of
chemical potential δμ and to external field strength Fμν

receives the form

J̄5k ¼ −
1

2Vβ

XNt
2
−1

n¼−Nt
2

Z
d3x

Z
M3

d3p
ð2πÞ3 ∂ωn

tr
h
γ5
h
Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW ∂pk

Qð0ÞW

þ 2iGð0ÞW ⋆Qð1ÞðijÞW⋆Gð0ÞW ∂pk
Qð0ÞW − 2iGð0ÞW ∂pk

h
Qð1ÞðijÞW

iii
Fijδμ: ð36Þ
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We represent the above expression as

J̄5kðxÞ ¼ σijkFijδμ; ð37Þ

where

σijk ¼ −
1

2Vβ

XNt
2
−1

n¼−Nt
2

Z
d3x

Z
M3

d3p
ð2πÞ3 ∂ωn

tr
h
γ5
h
Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW ∂pk

Qð0ÞW

þ 2iGð0ÞW ⋆Qð1ÞðijÞW⋆Gð0ÞW ∂pk
Qð0ÞW − 2iGð0ÞW ∂pk

h
Qð1ÞðijÞW

iii
ð38Þ

has the meaning of the CSE conductivity when the external field strength corresponds to a constant magnetic field H:
Fij ¼ −ϵijkHk. Then

J̄5kðxÞ ¼ −σijkϵijk0Hk0δμ:

We represent expression for the CSE conductivity as

σijk ¼
XNt
2
−1

n¼−Nt
2

∂ωn
σð3Þijk; ð39Þ

where

σð3Þijk ¼ −
1

2V

Z
d3x

Z
M3

d3p
ð2πÞ3 tr

h
γ5
h
Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW ∂pk

Qð0ÞW

þ 2iGð0ÞW ⋆Qð1ÞðijÞW⋆Gð0ÞW ∂pk
Qð0ÞW − 2iGð0ÞW ∂pk

h
Qð1ÞðijÞW

iii
: ð40Þ

C. The limit of small temperature

The limit of small temperature T → 0, Nt → ∞, π
Nt
¼ ϵ → 0 allows us to replace the sum by an integral. The value ω ¼ 0

is to be excluded from this integral,

XNt
2
−1

n¼−Nt
2

→
β

2π

Z
0−ϵ

−πþϵ
dωþ β

2π

Z
π−ϵ

0þϵ
dω: ð41Þ

Then (38) becomes

σijk ¼ lim
ϵ→0

Z
0−ϵ

−πþϵ
dω∂ωσ

ð3Þ
ijk þ

Z
π−ϵ

0þϵ
dω∂ωσ

ð3Þ
ijk ¼ lim

ϵ→0

h
σð3Þijkð−π þ ϵÞ − σð3Þijkð0 − ϵÞ þ σð3Þijkð0þ ϵÞ − σð3Þijkðπ − ϵÞ

i
: ð42Þ

Using σð3Þijkð−πÞ ¼ σð3ÞijkðπÞ, we obtain

σijk ¼ lim
ϵ→0

h
σð3Þijkð0þ ϵÞ þ ð−σð3Þijkð0 − ϵÞÞ

i
; ð43Þ

where

σð3Þijkðω ¼ 0� ϵÞ ¼ −
1

2V

Z
d3x

Z
M3

d3p
ð2πÞ4 tr

h
γ5
h
Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW ⋆∂pk

Qð0ÞW

þ 2iGð0ÞW ⋆Qð1ÞðijÞW⋆Gð0ÞW ⋆∂pk
Qð0ÞW − 2iGð0ÞW ⋆∂pk

h
Qð1ÞðijÞW

iii���
ω¼0�ϵ

: ð44Þ
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We are considering equilibrium theory, when bothG and
Q do not depend on time. As a result the singularities are
situated at ω ¼ 0. The integrals avoid these singularities
due to finite ϵ. In the absence of inhomogeneity (when the
stars may be omitted in the above expressions) at ω ¼ 0 the
singularities of expressions standing in the integrals mark
positions of Fermi surfaces.

D. CSE conductivity as a topological invariant

Inside the integrals of Eq. (43) the two surfaces ω ¼ �ϵ
cancel each other except for in the small vicinity of the
singularities. Therefore, we restrict integration in Eq. (44)
by the small regions (in the Brillouin zone) around the
singularities. The important assumption here is the pres-
ence of precise chiral symmetry in these regions. In the
other words, the continuum limit of the lattice theory under
consideration is chiral invariant.
Thus γ5 commutes/anticommutes withQ andG inside the

above expression for the CSE conductivity. As a result the last
two terms in Eq. (44) cancel each other, while the sum of the
integrals in Eq. (43) represents a topological invariant. It does
not depend on the form of the surface in the 4D momentum
space surrounding the singularities. We deform this surface in
such a way that it becomes small and surrounds the singu-
larities. Therefore, insteadof the two infinitely-closeplaneswe
may integrate over the sphere in the momentum space.
Thus we obtain

σijk ¼ −
1

2V

Z
Σ3

d3p
ð2πÞ4

Z
d3x tr

h
γ5
h
Gð0ÞW ⋆ð∂p½iQð0ÞW Þ

⋆Gð0ÞW ⋆ð∂pj�Q
ð0Þ
W Þ⋆Gð0ÞW

i
∂pk

Qð0ÞW

i
: ð45Þ

Here the integral is over Σ3, which is the 3D hypersurface
in 4D momentum space that consists of the two infinitely-
close pieces of the planes. γ5 commutes/anticommutes with
G and Q in this region, and we rewrite this expression as

σijk ¼ −ϵijkσCSE=2

with

σCSE ¼
N
2π2

ð46Þ

and

N ¼ ϵijk
48π2V

Z
Σ3

d3p
Z

d3x tr
h
γ5
h
Gð0ÞW ⋆ð∂pi

Qð0ÞW Þ

⋆Gð0ÞW ⋆ð∂pj
Qð0ÞW Þ⋆Gð0ÞW

i
∂pk

Qð0ÞW

i

¼ 1

48π2V

Z
Σ3

Z
d3x tr

h
γ5Gð0ÞW ⋆dQð0ÞW ⋆Gð0ÞW

∧ ⋆dQð0ÞW ⋆Gð0ÞW ⋆ ∧ dQð0ÞW

i
: ð47Þ

This expression is topological invariant provided that γ5

commutes or anticommutes withQW andGW in the vicinity
of Σ3. We may deform the surface Σ3 in such a way that it
does not cross the singularities. In particular, it will acquire
the form of a 3D sphere that surrounds the singularities.
In the particular case, when background is homo-

geneous, we obtain,

N ¼ 1

48π2

Z
Σ3

tr
h
γ5Gð0ÞW dQð0ÞW Gð0ÞW ∧ dQð0ÞW Gð0ÞW ∧ dQð0ÞW

i
;

ð48Þ

where Q ¼ G−1. The index ð0Þ means that magnetic
field and chemical potential are set to zero to calculate
the Green function. For the most simple case of the
Fermi point, when chemical potential is zero, the form
of Σ3 here is an infinitely small three-dimensional sphere
surrounding p ¼ 0.
At zero temperature and large baryonic chemical poten-

tial the quark-gluon system may enter the quarkyonic phase
with restored chiral symmetry. The increase of chemical
potential may also lead to formation of color supercon-
ductivity. In the hypothetical phase, where the chiral
symmetry is restored while the color superconductivity
is not yet formed, the above mentioned topological invari-
ant N counts the number of chiral Dirac fermions

σCSE ¼
NcNf

2π2
;

where Nc ¼ 3, while Nf is the number of quarks with
masses smaller than μ. We then come to the standard
expression for the CSE conductivity in this phase. This
result, presumably, may be valid for matter existing within
the neutron stars.
The above results also allow to predict the same

expression for one Dirac fermion σCSE ¼ 1
2π2

in the Weyl
semimetal at zero temperature. These materials are realized
within solid-state physics the systems of relativistic fer-
mions, where electronic quasiparticles are in place of
quarks, while Coulomb interactions substitute the exchange
by SUð3Þ gauge bosons. These Coulomb interactions may
be strong due to the electric permutivity, and additionally
in these materials there are the other interactions between
electrons. The result on the topological expression for the
CSE conductivity does not depend on the nature of
interfermions interactions. Therefore, the given topological
expression remains valid in these systems as well.

IV. NONPERTURBATIVE CORRECTIONS
TO CSE CONDUCTIVITY IN QCD

AT FINITE TEMPERATURE

In this section we confirm the predictions of the previous
sections by direct calculations using method of field
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correlators developed by Yu. A. Simonov and collaborators
(see also [83]).

A. Representation of axial current through the sum
over quark trajectories T > Tc

We start from the following expression for the bare
axial current at the temperature above the deconfinement
crossover

hj5μðxÞi ¼ htrc;Dγ5γμSðregÞðx;xÞi

¼ hDetð=DðB;AÞþmÞtrc;Dγ5γμð=DðB;AÞþmÞ−1xx iB
hDetð=DðB;AÞþmÞiB

:

ð49Þ

Since the renormalization of the axial current operator
occurs at small distances, it is the perturbative phenome-
non. We neglect it here completely as we are interested in
the nonperturbative contributions to the CSE conductivity
originated from large distances.
For brevity we restrict ourselves in this section to the

contribution of the one-quark flavor. The loop is also
regularized by finite temperature; trc stands for the trace
over color and Dirac spinor indices, respectively. h…iB
stands for averaging over thermodynamic ensemble with
temperature T > Tc; ðβ ¼ T−1Þ above the deconfinement
crossover temperature Tc ∼ 160 MeV, at nonzero baryon
density that is defined with the given quark-flavor chemical
potential μ, in the gluonic background field B (Bμ ¼ Ba

μta,
ta are the generators of SUð3Þ algebra in fundamental
representation), in an external constant magnetic field

∇ × A⃗ ¼ H⃗ directed along axis Z. Then H3 ¼ F 12 ¼
const is the only nonzero component of the field-strength
tensor. Chemical potential is introduced as an imaginary
part of the fourth component of the electromagnetic
potential (in Euclidean space) iqA4 ¼ μ, where q is the
electric charge of the given quark flavor.
In the following we apply quenched approximation, in

which the fermion determinant is dropped. For the calcu-
lation of the quark propagator we use worldline formalism,

hj5μðxÞi ≈
�
trc;Dγ5γμð−=DðB;AÞ þmÞx

×
Z þ∞

0

ds ξðsÞðD4zÞsxxe−m2s−K

× PFPB exp

�
ig
I

B · dzþ iq
I

A · dz

þ
Z

s

0

dτσρσðgFρσðz; z0Þ þ qF ρσÞ
��

B
; ð50Þ

where σρσ ¼ i
4
½γρ; γσ� is the generator of SOð3; 1Þ. The

covariant derivative is DðB;AÞ ¼ ∂ − igB − iqA, where g
is the SUð3Þ coupling constant. Function ξðsÞ regularizes

the loop integral. It is needed to remove the singularity at
s ¼ 0. We also denote here

K ¼
Z

s

0

dτ

�
_z2ðτÞ
4
þm2

�
:

The path integral ðD4zÞsxy describes the quark motion
from point x to y in worldline (proper) time s. The
antiperiodic boundary conditions are assumed for the
fermion when the trajectory wraps around the (imaginary)
time direction. Euclidean space is taken in the form
R3 × S1, where the direction of imaginary time is a circle
S1 of length β ¼ T−1). The path integral discretization is
implied here [76],

ðD4zÞsxy ¼ lim
N→þ∞

YN
m¼1

d4zm
ð4πεÞ2

Xþ∞
n¼−∞

ð−1Þn d4p
ð2πÞ4

× eðipμð
P

m
i¼1 dz

μ
i −ðx−yÞ−nβδμ4ÞÞ; ε¼ s=N: ð51Þ

The trace over the Dirac indices is simplified due to
the presence of γ5. We consider the leading order in the
external field and use that trDγ5γμγνγλγρ ¼ −4ϵμνλρ (in
Euclidean spacetime fγμ; γνg ¼ 2δμν). The leading order
in the magnetic field is given by

hj5μðxÞi ≈
�
trc;Dγ5γμγλ

i
4
½γρ; γσ�ð−DλðB;AÞÞx

×
Z þ∞

0

dsξðsÞðD4zÞsxxe−m2s−K

× PB exp

�
ig
I

B · dzþ iq
I

A · dz

�

×
Z

s

0

dτðgFρσðz; z0Þ þ qF ρσÞ
�

B
: ð52Þ

We disregard here influence of external magnetic
field on configurations of gluonic fields B [75]. As a
result the gluonic field correlators h…iB are isotropic.
Besides, we disregard the spin-gluon interactions (these
interactions do not contribute much, for example, to the
string tension). Due to the definite direction of external
magnetic field the Dirac indices are ðμλ½ρσ� ¼ 34½12�Þ.
The proper time integral

R
s
0 dτF 12 ¼ sH represents inser-

tion of electromagnetic vertex at the points along quark
trajectory

hj5μðxÞi

≈ 4iδμ3qH
Z þ∞

0

ξðsÞsds
�
trcðD4ðB;AÞÞxðD4zÞsxxe−m2s−K

×PB exp

�
ig
I

B ·dzþ iq
I

A ·dz

��
B
: ð53Þ
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The covariant derivative acts on path integral. The
definition of parallel transporter results in

ðDλðB;AÞÞxPB exp

�
ig
Z

x

y
B · dzþ iq

Z
x

y
A · dz

�
¼ 0;

zð0Þ ¼ x: ð54Þ

As a result the covariant derivative is reduced to the

ordinary one that acts on ðD4zÞsxx. The major temper-
ature-dependent contributions to the integral over the
trajectories come from the loops that wrap n times around
S1, and we replace ∂4 →

∂

∂ðnβÞ. The contribution to the axial

current not dependent on temperature may be neglected.

At zero temperature the chiral symmetry breaking sup-
presses the chiral separation effect.
The electromagnetic part standing in exponent of the

Wilson loop (for the quark trajectory zðnÞ that wraps n times
around the temporal direction) is

q
I

A · dzðnÞ ¼ qΦH − iμnβ; ð55Þ

where ΦH is the magnetic flux through the spatial projec-
tion of the loop. We are considering the linear response to
the magnetic field; Eq. (53) is proportional to H, and we
disregard the external magnetic field in the remaining
expression. We come to the following expression

hj5μðxÞi ≈ 4iδμ3qH
Z þ∞

0

ξðsÞsds
YN
m¼1

d4zm
ð4πεÞ2

Xþ∞
n¼−∞

ð−1Þn d4p
ð2πÞ4

∂

∂ðnβÞ ðe
ðipμð

P
m
i¼1 dz

μ
i −ðx−yÞ−nβδμ4ÞÞe−m2s−KÞ

×

�
trcPB exp

�
ig
I

B · dzþ μnβ

��
B

¼ 4iδμ3qH
Z þ∞

0

ξðsÞsds
YN
m¼1

d4zm
ð4πεÞ2

Xþ∞
n¼−∞

ð−1Þn d4p
ð2πÞ4

∂

∂ðnβÞ
	
eðipμð

P
m
i¼1 dz

μ
i −ðx−yÞ−nβδμ4ÞÞe−m2s−K




×

�
trcPB exp

�
ig
I

B · dzþ μnβ

��
B
: ð56Þ

The last expression allows us to represent the CSE conductivity ∂

∂μ
∂

∂Hk
hj5kðxÞi as

σCSE ≈ 4i
Z þ∞

0

ξðsÞsds
YN
m¼1

d4dzm
ð4πεÞ2

Xþ∞
n¼−∞

ð−1Þn d4p
ð2πÞ4

�
trcPB exp

�
ig
I

B · dz

��
B
eμnβ

×
∂

∂ðlog βÞ e
−m2s−Kþðipμð

P
m
i¼1 dz

μ
i −ðx−yÞ−nβδμ4ÞÞ: ð57Þ

B. Evaluation of integral over quark trajectories

Below we adopt the version of the Simonov technique proposed in [84]. It is based on the Abelian-Diakonov-Petrov
representation of the Wilson loop. In this representation we obtain the following expression for quark condensate (which is
a function of the bare mass m, temperature, and chemical potential)

σCSE ≈ −4iNc
∂

∂m2

Z þ∞

0

ξðsÞds
YN
m¼1

d4dzm
ð4πεÞ2

Xþ∞
n¼−∞

ð−1Þn d4p
ð2πÞ4 e

μnβ

×
∂

∂ðlog βÞ
	
e−m

2s−Kþðipμð
P

m
i¼1 dz

μ
i −ðx−yÞ−nβδμ4ÞÞ



×

�
exp

�
ig
I

B · dz

��
B
: ð58Þ

Here the kernel K is redefined as

K ¼
Z

s

0

dτ

�
_z2ðτÞ
4
þm2

�
− κ

Z
s

0

ffiffiffiffiffiffiffiffiffiffi
_z2ðτÞ

q
dτ:

Constant κ entering this expression contains ultraviolet divergency, and is to be absorbed by the renormalization of the
quark mass. The Abelian field B is defined as the component of the SUð3Þ gauge field (taken in the fundamental
representation),

Bμ ¼ B11
μ :
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In this Abelian representation, the Wilson loop C factorizes
in the simply-connected loop Cl (the one, which does not
wrap along the S1), and the straight Polyakov line LðnÞ that
is wrapped n-times along the S1

hW½C�iB ¼ hW½Cl�W½LðnÞ�iB; ð59Þ
where

W½C� ¼ exp

�
ig
I
C
B · dz

�
:

Following [77] we neglect the correlation between the
Polyakov line and the remaining part of the Wilson loop.
This results in

hW½C�iB ≈ hW½Cl�iBLðnÞ; LðnÞ ≈ Ljnj ð60Þ
and

LðnÞ ¼ exp

�
ig
I
LðnÞ

B · dz

�
:

The Polyakov line determines potential V1

L ¼ exp

�
−
V1ðr → þ∞; TÞ

2T

�
;

V1ðr → þ∞; TÞ ¼ V1ðTÞ ¼ V1; ð61Þ
where V1 is energy required to overcome the remnant
interaction that bounds the quark as a part of a color-singlet
state. This potential was not yet calculated within the method
of field correlators, and we use here the lattice data [25]

V1ðT > TcÞ ¼
175 MeV

1.35T=Tc − 1
;

V1ðTcÞ ¼ 0.5 GeV; Tc ¼ 160 MeV: ð62Þ
For the sake of rough evaluation we substitute W½Cl� by

its spatial projection with the dominant contribution given
by color-magnetic confinement W½Cl� ∼ expð−σHS3½z⃗�Þ,
where S3 is the minimal area spanned on the spatial
projection of Wilson loop. Effectively, the color-magnetic
confinement results in the appearance of the thermal-quark
mass

m →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þm2

D=4
q

; m2
D ¼ c2DσHðTÞ;

σHðTÞ ≈ c2σg4ðT; μÞT2; ð63Þ
where cD ≈ 2 and cσ ≈ 0.56 are numerical constants that
are taken from the analysis of the experimental conse-
quences of the thermal mass appearance. Those values are
extracted from lattice data in Ref. [79]. For
T ≈ μ ≈ Tc we have mD=2 ≈ 320 MeV.
However, nonperturbative “perimeter-law” contribution

to quark self-energy shifts down the effective quark mass.

Let us adapt the result of [85] for the quark propagator to
the deconfined phase

Δm2 ¼ −Λ ¼ −
Z

d4ðy − xÞ

× hσμνFμνðxÞΦxyσμ0ν0Fμ0ν0 ðyÞΦyxiBGðx; yÞ: ð64Þ

In the deconfined phase the color-electric confining corre-
lator is absent while the color-magnetic is present (in fact,
we neglect all the correlatorsDE;H;EH

1 butDH) hσμνFμνðxÞ×
Φxyσμ0ν0Fμ0ν0 ðyÞΦyxi≈ hσijFijðxÞΦxyσi0j0Fi0j0 ðyÞΦyxi.
Since the QCD vacuum-correlation length λ ∼

1 GeV−1 ≪ β (in the old paper [85] the length is denoted
as Tg) in temperature range which we find interesting, the
integral for the nonperturbative self-energy converges
within one winding. Also, the current quark masses for
the light flavors are small in comparison to the inverse
correlation length. Thus, we approximate the exact squared
propagator in the external magnetic field G in (64) with the
free-scalar propagator.
The consideration of [85] is applicable up to the

overall spin-averaging factor; the factor σμνσμν¼DðD−1Þ=
4 in the confined phase is to be replaced with σijσ

ij ¼
ðD − 1ÞðD − 2Þ=4. Thus, the quark mass shift Δm2

q in the
QGP phase is twice smaller then in the hadronic phase.
Finally, the resulting effective quark mass M is

Δm2 ≈ −
2

π
σHðTÞ; ð65Þ

M2 ¼ m2 þ ðc2D=4 − 2=πÞσHðTÞ: ð66Þ

The correction reduces the screened quark mass (63)

by a factor
ffiffiffiffiffiffiffiffiffiffi
1 − 2

π

q
∼ 2

3
. In particular, we then have mD=2 ≈

200 MeV for T ≈ μ ≈ Tc.
The effect of the appearance of thermal mass may be

taken into account (roughly) if the integration over the
spatial coordinates of the quark trajectories is performed as
for the free particle, but with the current massm substituted

by M (see Refs. [77–79]). We set K3 ¼
R
s
0 dτ

_z⃗2=4, and
obtain,

Z
ðD3z⃗Þsx⃗;x⃗e−K3−m2s

�
exp

�
ig
I

B⃗ · dz⃗

��
B
∼

e−M
2s

ð4πsÞ3=2 :

ð67Þ

The running coupling may be evaluated in one loop as

g2ðT;μÞ¼ 1

2b0 log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þ3μ2=π2
p

TcLσ

; ð4πÞ2b0¼
11

3
Nc−

2

3
Nf;

ð68Þ
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with Lσ ≈ 0.1. The numerical estimate for temperature and
chemical potential around Tc is

αsðTc; TcÞ ≈ 0.29:

This demonstrates that the perturbative corrections may, in
principle, change the result by about 30%.
The calculation of the integral over the temporal part of

the quark trajectories takes into account the nonzero value
of the Polyakov line. Here we denote K4 ¼

R
s
0 dτ_z

2
4=4,Z

ðDz4Þs0;nβe−K4

�
exp

�
ig
Z

B4dz4 þ iq
Z

A4dz4

��
B

≈
e−

n2β2

4sffiffiffiffiffiffiffiffi
4πs
p Ljnj expðμnβÞ: ð69Þ

In the Appendix we represent, for comparison, the calcu-
lation of path integral for the free fermions.
Following [77] we conclude that here the result for the

free fermions is to be used, where we substitute (instead of
the current mass of quark) its thermal (Debye) mass and the
Polyakov line. We combine Eqs. (67) and (69) to calculate
the CSE conductivity,

σCSE≈−
∂

∂M2

Nc

2π2

Z þ∞

0

ds
s2

Xþ∞
n¼1
ð−1Þn coshðμnβÞLn ∂

∂ðlogβÞ

×exp

�
−M2s−

n2β2

4s

�
: ð70Þ

In this expression only the nonperturbative contributions
are taken into account. The subdominant perturbative
contributions are neglected here. The nonwinding trajecto-
ries, n ¼ 0, are not taken into account since this divergent

contribution is T- and μ-independent “vacuum density”
[36]. Its derivative does not give contributions to σCSE. Now
the regularization ξðsÞ is no longer needed.

C. Evaluation of σCSE
We use integral representations for the modified Bessel

functions,

KνðzÞ ¼
1

2

�
z
2

�
ν
Z þ∞

0

exp

�
−t −

z2

4t

�
dt
tνþ1

; ð71Þ

K00ðzÞ ¼ −K1ðzÞ; ð72Þ

KνðzÞ ¼
ffiffiffi
π
p ðz=2Þν
Γðνþ 1

2
Þ
Z þ∞

0

e−z cosh tðsinh tÞ2νdt: ð73Þ

To use the first expression we substitute s ¼ M2t,

σCSE ≈ −
∂

∂M2

2M2Nc

π2
Xþ∞
n¼1
ð−1ÞncoshðμnβÞLn

×
∂

∂ log β
K1ðnβMÞ
nβM

: ð74Þ

Then we use the second representation

σCSE ≈ −
∂

∂M2

2M2Nc

π2
Xþ∞
n¼1
ð−1ÞncoshðμnβÞLn

×
∂

∂ log β

Z
∞

0

e−nβM cosh tsinh2tdt ð75Þ

and substitute p ¼ M sinh t. As a result we get

σCSE ≈
∂

∂M2

Nc

π2
Xþ∞
n¼1
ð−1Þn

Z þ∞

0

p2dp
	
eβnðμ−V1=2−

ffiffiffiffiffiffiffiffiffiffiffi
p2þM2
p

Þβnþ ðμ → −μÞ



¼ −
Nc

2π2
Xþ∞
n¼1
ð−1Þn

Z þ∞

0

p2dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p 	
eβnðμ−V1=2−

ffiffiffiffiffiffiffiffiffiffiffi
p2þM2
p

ÞðβnÞ2 þ ðμ → −μÞ



¼ −
∂
2

∂μ2
Nc

2π2
Xþ∞
n¼1
ð−1Þn

Z þ∞

0

p2dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p 	
eβnðμ−V1=2−

ffiffiffiffiffiffiffiffiffiffiffi
p2þM2
p

Þ þ ðμ → −μÞ


: ð76Þ

The sum is calculated as geometrical progression, which yields Fermi-Dirac distribution fβðεÞ ¼ ðeβε þ 1Þ−1,

σCSE ≈
∂

∂M2

∂

∂μ

Nc

π2
Xþ∞
n¼1
ð−1Þn

Z þ∞

0

p2dp
	
eβnðμ−V1=2−

ffiffiffiffiffiffiffiffiffiffiffi
p2þM2
p

Þ − ðμ → −μÞ


;

¼ −
∂

∂M2

∂

∂μ

Nc

π2

Z þ∞

0

p2dpðfβðEMðpÞ þ V1=2 − μÞ − fβðμ → −μÞÞ;

¼ ∂
2

∂μ2
Nc

2π2

Z þ∞

0

p2dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p ðfβðEMðpÞ þ V1=2 − μÞ þ fβðμ → −μÞÞ; ð77Þ
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where EMðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. One can easily see that in the limiting case μ ≫ T,

σCSE ¼
∂

∂M2

Nc

π2

Z þ∞

0

p2dpδðEMðpÞ þ V1=2 − μÞ ¼ Nc

2π2
ð78Þ

as expected. Our numerical results are represented in
Figs. 2–4. The dependence of Eq. (79) on μ is represented
in Fig. 4. It is worth mentioning that strictly speaking
at μ ≫ Tc the above expressions for V1 and M cannot

be applied. As expected both these quantities decrease
essentially with an increase of μ. As a result, the value
of σCSE, approaches the conventional value faster than
represented in Fig. 4.
In Fig. 2 we compare our results with those obtained

using lattice numerical simulations. One can see that
qualitatively the two methods give similar results.
Quantitative difference may be caused by several factors.
First of all, the finite volume effects may be strong for the
lattice simulations with given lattice sizes. Next, pertur-
bative corrections disregarded in our calculations may
change the results. Also, our result heavily depends on an
‘unstable’ numerical input V1ðTÞ (62). One can see that at
small temperatures the FCM gives results that match
lattice data if thermal mass is neglected, while at large
temperatures the FCM matches lattice results if thermal
mass is taken into account while Polyakov-line contri-
bution is neglected. The complete FCM interpolates
between the two.
Looking at the results presented in Fig. 4 we

conclude that at the values of quark chemical potential
accessed at LHC, RHIC, NICA, and FAIR the topo-
logical regime is not yet achieved, and the CSE
conductivity is suppressed essentially compared to
the standard topological value.
In addition in Fig. 3 we represent the dependence of σCSE

in units of NcNf

2π2
at μ ¼ Tc as a function of temperature. One

can see that this value approaches the conventional one
only at the electroweak scale T ∼ 100 GeV.

FIG. 2. We represent here the comparison of our nonperturba-
tive calculation (79) using method of field correlators with the
lattice numerical simulations taken from [49] calculated on the
lattices 243 × 6 and 243 × 8. The plot represents the data on
2πσCSE (per Dirac fermion, i.e., divided by the number of quark
flavors Nf and colors Nc) at μ ¼ 0. The dashed line represents
lattice data. Solid line represents the results obtained via the field-
correlator method (FCM). Besides, we represent here the results
obtained using two modifications of the FCM; the dotted line
represents results with the thermal quark mass disregarded, i.e.,
without color-magnetic confinement (CMC), while the dashed-
dotted line represents the results with the Polyakov-line con-
tribution V1 disregarded.

FIG. 3. We represent here the dependence of 2πσCSE (per Dirac
fermion, i.e divided by the number of quark flavors Nf and colors
Nc) (79) at μ ¼ Tc as a function of T.

FIG. 4. We represent here our data on 2πσCSE (per Dirac
fermion) (79) as a function of μ at various temperatures.
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V. CONCLUSIONS AND DISCUSSION

In the present paper we consider effect of interactions on
the chiral separation effect. First of all, we are interested in
the effect of strong interactions on the CSE in quark matter.
However, the obtained zero temperature results may be
applied directly to the CSE in Weyl semimetals as well.
We prove that in the fermion system with chiral

symmetry at zero temperature in the presence of an external
magnetic-field strength Fij and chemical potential μ, the
derivative of the renormalized axial current averaged over
the overall volume is given by

dJ̄k5
dμ
¼ N

4π2
ϵijk0Fij: ð79Þ

(By renormalized current we understand expression with
the bare-velocity operator substituted by the renormalized
one.) This expression is valid provided that λ2jFijj ≪ 1,
where λ is the correlation length of the given system.
In particular, for homogeneous cold quark matter with
μ > ΛQCD we need magnetic field strength much smaller
than Λ2

QCD.
Here N is the topological invariant given by

N ¼ 1

48π2V

Z
Σ3

Z
d3x tr½γ5Gð0ÞW ⋆dQð0ÞW ⋆Gð0ÞW

∧ ⋆dQð0ÞW ⋆Gð0ÞW ⋆ ∧ dQð0ÞW �: ð80Þ

In this expression Ĝð0Þ is the renormalized complete two-
point Green function with interaction corrections included.
It has to be calculated after a certain gauge is fixed (if we
are speaking of the quark matter). The result does not

depend on the chosen gauge; Gð0ÞW is its Wigner trans-
formation. Correspondingly, Q̂ð0Þ is operator inverse to

Ĝð0Þ, while Qð0ÞW is its Weyl symbol. Superscript ð0Þ means
that the expression for Ĝ does not contain the external
magnetic field. The surface Σ3 in momentum space
depends on x and surrounds the hypersurface of the
singularities of the expression standing inside the integral.
The latter hypersurface generalizes the notion of the Fermi
surface and reduces to it in the homogeneous case. It is
supposed that at Σ3ðxÞ for any x matrix γ5 commutes (or

anticommutes) with both Gð0ÞW and Qð0ÞW . (Correspondingly,
in the homogenous system this requirement means that γ5

commutes/anticommutes with Gð0Þ at the Fermi surface.)
This means, actually, that in the given system at low
energies there is chiral symmetry. In the system with N
chiral Dirac fermions N ¼ N, and the above result means
that the CSE conductivity is given by

σCSE ¼
N
2π2

:

Being applied to the quark-gluon matter this means that
if the dense cold quark matter exists in the phase with
restored chiral symmetry without color superconductivity
(we also neglect effect of instantons), then in this phase the
chiral separation effect is present with the conventional
expression for the CSE conductivity. The same refers to the
quark-gluon plasma phase provided that μ ≫ T. We cal-
culate directly the nonperturbative corrections to the CSE
conductivity at a finite temperature above the deconfine-
ment phase transition. Our results confirm that σCSE
approaches the conventional expression at large μ for
any given T > Tc. However, in the region of the phase
diagram accessible at the modern colliders the topological
expression for σCSE is not yet approached, and the
conductivity is essentially suppressed. It is worth mention-
ing that at μ; T ∼ Tc the perturbative corrections will give
contributions of the order of 30% since αsðTcÞ ≈ 0.3. At the
same time for large μ the perturbative corrections are
already not so relevant because αs decreases with the
increase of μ. Nevertheless, the calculation of the pertur-
bative corrections to σCSE is worth performing, but this is
out of the scope of the present paper.
The obtained results may also be applied to the CSE in

Weyl semimetals, where electronic quasiparticles are subject
to Coulomb interactions. Those interactions are typically
strong because the effective finite-structure constant is of the
order of unity. Left and right-handed fermions in momentum
space are separated here in momentum space. The boundary
of the samples contain Fermi arcs. In the presence of a
magnetic field and a chemical potential that exceeds the level
of Fermi points, the axial current appears. Then the left- and
the right-handed electrons move in opposite directions. As a
result, at the boundary of the sample there will be excess of
the electrons at the left-handed Weyl point and a deficiency
of the electrons at the right-handed Weyl point (or vice
versa). This results in the appearance of the Fermi pockets
instead of the Fermi arcs (electron Fermi pocket close to
one of the Weyl points, and hole pocket close to the other
Weyl point). This is how the CSE effect may be observed
experimentally in these materials.
It is worth mentioning that the perturbative calculation of

corrections to the CSE conductivity in pure QED performed
in [53] suggests the appearance of a correction proportional
to fine-structure constant α ≈ 1=137, and containing the
infrared divergencies. Our approach may be applied effec-
tively to pure QED as well. The essential difference between
the two approaches is that in the present paper from the very
beginning the renormalized axial current is calculated
according to Sec. II D. This approach takes into account
the renormalization procedure both for the propagators and
for the interaction vertices automatically. In [53] corrections
to the bare-axial current are calculated. Presumably, the
renormalization procedure applied to the expression given
in [53] will remove radiative corrections to the CSE
conductivity completely.
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The cousin of the CSE—the chiral vortical effect
(CVE)—is expected in quark matter under the same
conditions as the CSE, i.e., in the same region of the
QCD phase diagram. The rotating fireballs containing
quark-gluon plasma appear during the noncentral heavy-
ion collisions. The interior of neutron stars may contain
quark matter in the phase with restored chiral symmetry.
Above we mentioned that this phase might exist without
color superconductivity. Rotation results in the appearance
of axial current along the axis of rotation in quark systems,
and at zero temperature, rotation may effectively be
described by the effective Abelian gauge field μuk, where
uk is the four-vector of rotation velocity [86]. As a result the
CVE is reduced to CSE, and the axial current is given by

J5 ¼
N
2π2

μ2Ω:

Here Ω is angular velocity whileN is given by Eq. (80). In
cold quark matter N ¼ NcNf, where Nf is the number of
quarks with masses smaller than μ. The same expression
might also be applied to quark gluon plasma at μ ≫ T if the
rotation is considered as rigid. (Actually, the fireballs do not
rotate rigidly.) Therefore, this approach may be taken into

account only qualitatively. In the domain μ ∼ T the men-
tioned methodology, in which rotation is introduced
through the effective Abelian gauge field, cannot be applied
at all. Namely, rotation of thermal quasiparticles cannot be
described by the effective Abelian gauge field. Rotating
thermal quasiparticles contribute the axial current along the
axis of rotation; these contributions should be taken into
account separately. Notice that in [87,88] it has been
pointed out that the temperature depending term in the
CVE conductivity does receive interaction corrections
resulted from the exchange by gauge bosons. However,
in [87] it was argued that this term is not subject to
corrections resulted from Yukawa interactions.

APPENDIX

We present here the calculation of quark propagator
using method of the main text applied to the noninteracting
system at finite temperature. This way we check the
normalization factor entering the measure in the path
integral over trajectories (51),

−Sðx; yÞ ¼ ð=∂ −mÞGðx; yÞ; ðA1Þ

Gðx; yÞ ¼
Z þ∞

0

dsðD4zÞsxy exp
�
−m2s −

1

4

Z
s

0

_z2dτ

�
ðA2Þ

¼
Z þ∞

0

ds lim
N→þ∞
ε¼s=N

�YN
m¼1

d4dzm
ð4πεÞ2

� Xþ∞
n¼−∞

ð−1Þn d4p
ð2πÞ4 exp

�
ipμ

�XN
i¼1

dzμi − ðx − yÞμ − nβδμ4

�
−m2s −

XN
i¼1

dz2i
4ε

�

¼
Z þ∞

0

ds
Xþ∞
n¼−∞

ð−1Þn
Z

d4p
ð2πÞ4 exp ð−ðp

2 þm2Þs − ip · ðx − yÞ − ip4nβÞ

¼
Xþ∞
n¼−∞

ð−1Þn
Z

d4p
ð2πÞ4

exp ð−ip · ðx − yÞ − ip4nβÞ
p2 þm2

: ðA3Þ

The antiperiodic boundary conditions in imaginary time are assumed here [89]

ð=∂þmÞSðxÞ ¼ δðxÞ; Sðτ þ β; x⃗Þ ¼ −Sðτ; x⃗Þ: ðA4Þ
In coordinate representation the propagator reads

Gðx; yÞ ¼
Xþ∞
n¼−∞

ð−1Þn
Z þ∞

0

ds
ð4πsÞ2 exp

�
−m2s −

z2n
4s

�
: ðA5Þ

This gives

Gðx; yÞ ¼
Xþ∞
n¼−∞

ð−1Þn m
4π2zn

K1ðmznÞ; ðA6Þ

where z2n ¼ ðx⃗ − y⃗Þ2 þ ðx4 − y4 þ nβÞ2.
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