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Within the two-flavor Nambu–Jona-Lasinio model, we derive a self-consistent thermodynamic potential
Ω for a QCD matter in an external magnetic field B. To be consistent with Schwinger’s renormalization
spirit, counterterms with vacuum quark mass are introduced into Ω and then the explicit B-dependent parts
can be regularized in a cutoff-free way. Following that, explicit expressions of gap equation and
magnetization can be consistently obtained according to the standard thermodynamic relations. The
formalism is able to reproduce the paramagnetic feature of a QCD matter without ambiguity. For more
realistic study, a running coupling constant is also adopted to account for the inverse magnetic catalysis
effect. It turns out that the running coupling would greatly suppress magnetization at large B and is
important to reproduce the temperature enhancement effect to magnetization. The case with finite baryon
chemical potential is also explored: no sign of first-order transition is found by varying B for the running
coupling and the de Haas-van Alphen oscillation shows up in the small B region.
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I. INTRODUCTION

Extremely strong magnetic fields could be produced in
peripheral relativistic heavy ion collisions (HICs) [1,2] and
is also expected to exist in magnetars [3–5] and the early
Universe [6–8]. For that considerations, a lot of work has
been carried out to understand the systematic features of
quantum chromodynamics (QCD) matter under an external
magnetic field. One important aspect is to study QCD
phase transition in a strong magnetic field: as the magni-
tude of magnetic field is of the order of the QCD energy
scale ΛQCD ∼ 0.2 GeV, the effect is expected to be con-
siderable. In the end of the 20th century, experts took the
magnetic field into account in the chiral effective Nambu–
Jona-Lasinio model and established the basic notion of
“magnetic catalysis effect” to chiral condensate [9–14].
However, in 2012, the first-principle lattice QCD (LQCD)
simulations [15,16] showed that the chiral condensate
could decrease with larger magnetic field at the pseudoc-
ritical temperature T ∼ 0.155 GeV, known as “inverse
magnetic catalysis effect.” Such anomalous feature had
drawn most attentions of researchers interested in the
thermodynamic properties of QCD matter and the QCD

phase has been widely explored in the circumstances
where magnetic fields are involved, refer to the reviews
Refs. [17–19] and the literatures therein. Specially, it is of
great interest that charged pion superfluidity and rho
superconductivity were found to be possible in the QCD
system under parallel magnetic field and rotation [20–22].
Besides, magnetization is also an important thermody-

namic quantity to understandQCDmatter. As early as 2000,
the magnetization had already been briefly explored as one
aspect of magnetic oscillation phenomena in finite density
quarkmatter [23,24]. In 2013, both the hadron resonance gas
model [25] andLQCD [26,27] had been adopted to study the
magnetization and the results turned out that theQCDmatter
is consistently paramagnetic at zero temperature. The 2þ 1
LQCD simulations had been extended to finite temperature
the next year and the magnetization was found to be
enhanced by thermal motions [28]. In the following years,
only few works concerned the magnetization feature in
chiral models such as the two-flavor chiral perturbation
theory [29,30], three-flavor Polyakov-linear-sigma (PLS)
model [31], and two- and three-flavor (Polyakov-)NJL
model [32,33]. The studies in PLS and (P)NJL models
seem more realistic as chiral symmetry breaking and
restoration were self-consistently taken into account for
the evaluation of magnetization. However, compared to
previous thermodynamic potential [23], it is unsatisfied that
one had to introduce a cutoff for the explicitlymagnetic field
dependent terms to evaluate magnetization in the PNJL
model [32]. Furthermore, the definition of magnetization
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seemed ambiguous as one must additionally apply the
renormalization scheme of LQCD simulations [26] to get
the correct paramagnetic feature [32]. That is not self-
consistent as it seems that the expressions of gap equation
and magnetization are not derived from the same thermo-
dynamic potential.
This work is devoted to solving the regularization

problem of (P)NJL model in a self-consistent way. In
Sec. II, we will derive a self-consistent thermodynamic
potential for finite magnetic field, temperature and baryon
chemical potential. From that, expressions of gap equation
and magnetization can be given explicitly according to
thermodynamic relations. Then, numerical calculations will
be carried out in Sec. III, where we compare the results with
different regularization schemes or different forms of
coupling constants. Finally, we summarize in Sec. IV.

II. THE SELF-CONSISTENT FORMALISM

The Lagrangian density of the two-flavor NJL model
with baryon chemical potential μB can be given as [12,34]

L ¼ ψ̄

�
i=D− iγ4

μB
3
−m0

�
ψ þGðeBÞ½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�

ð1Þ

in Euclidean space, where ψ ¼ ðu; dÞT represents the two-
flavor quark field, m0 is its current mass, and τ are Pauli
matrices in flavor space. In minimal coupling scheme, the
covariant derivative is defined as Dμ ≡ ∂μ − iqAμ with the
electric charge matrix q≡ diagðqu; qdÞ ¼ diagð2

3
;− 1

3
Þe and

the magnetic effect introduced through the vector potential
Aμ. For more general consideration, we have introduced a
coupling constant GðeBÞ that could run with the magnetic
field B here.

To obtain the analytic form of the basic thermodynamic
potential, we take Hubbard-Stratonovich transformation
with the help of the auxiliary fields σ ¼ −2Gψ̄ψ and
π ¼ −2Gψ̄iγ5τψ [12] and the Lagrangian becomes

L¼ ψ̄

�
i=D− iγ4

μB
3
− iγ5τ ·π−σ−m0

�
ψ −

σ2þπ2

4GðeBÞ : ð2Þ

We assume hσi≡m −m0 ≠ 0 and hπi ¼ 0 in mean field
approximation, and then the quark degrees of freedom can
be integrated out to give the thermodynamic potential
formally as

Ω ¼ ðm −m0Þ2
4GðeBÞ −

T
V
Tr ln

�
i=D −m − iγ4

μB
3

�
ð3Þ

with the trace Tr over the coordinate, spinor, flavor, and
color spaces. Recalling that the quark propagator in a
magnetic field takes the form S ¼ −½i=D −m − iγ4 μB

3
�−1, Ω

can be alternatively presented as

Ω ¼ ðm −m0Þ2
4GðeBÞ −

T
V

Z
dmTrS: ð4Þ

Note that the integral limits of m are not important in the
second term, because the possible contributions from the
lower integral limit is only B dependent which would be
definitely fixed by applying Schwinger’s renormalization
spirit in the following.
At zero temperature and chemical potential, the full

fermion propagator in a magnetic field had been well
evaluated with the help of proper time by Schwinger in
1951. In coordinate space, it takes the from [35]:

Sfðx; x0Þ ¼
−iqfB
ð4πÞ2

Z
∞

0

ds
s
e−iqf

R
x

x0 A·dx exp

�
−im2sþ i

4

�
qfB

tanðqfBsÞ
ðy21 þ y22Þ þ

1

s
ðy23 þ y24Þ

��

×

�
m −

qfB
2

½ðcotðqfBsÞγ1 þ γ2Þy1 þ ðcotðqfBsÞγ2 − γ1Þy2� −
1

2s
½γ3y3 þ γ4y4�

�
½cotðqfBsÞ þ γ1γ2� ð5Þ

with yμ ¼ xμ − x0μ and s the proper time. For the calculation of Ω, the Schwinger phase term e−iqf
R

x

x0 A·dx is irrelevant since
we would take the limit x → x0. After dropping this term, the left effective propagator becomes translation invariant and can
be conveniently presented in energy-momentum space as

ŜfðpÞ ¼ i
Z

∞

0

ds exp

�
−iðm2 þ p2

4 þ p2
3Þs − i

tanðqfBsÞ
qfB

ðp2
1 þ p2

2Þ
�
½m − γ4p4 − γ3p3 − γ2ðp2 þ tanðqfBsÞp1Þ

−γ1ðp1 − tanðqfBsÞp2Þ�½1þ γ1γ2 tanðqfBsÞ�: ð6Þ

In vanishing B limit, the well-known fermion propagator SðpÞ ¼ 1
m−p can be reproduced by completing the integration over

s, hence the effective propagator is helpful for the discussion of regularization. Then, the bare thermodynamic potential
follows directly as
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Ω0 ¼
ðm −m0Þ2
4GðeBÞ þ Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3

e−m
2s qfBs
tanhðqfBsÞ

ð7Þ

after substituting the propagator Eq. (5) into Eq. (4).
The last term of Eq. (7) is divergent and must be

regularized for exploring physics. If we formally expand
it as a serial sum of B2kðk ∈ NÞ around B ∼ 0, we would
find that only the B0 and B2 terms are divergent. According
to Schwinger’s initial proposal [35], the B0 term is physics
irrelevant and the B2 terms can be absorbed by performing
renormalizations of electric charges and magnetic field.
Then, the finite form of Eq. (7) would be

Ω0 ¼
ðm−m0Þ2
4GðeBÞ

þ Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3
e−m

2s

�
qfBs

tanhðqfBsÞ
− 1−

1

3
ðqfBsÞ2

�
:

ð8Þ
This is correct when the magnetic field is much smaller
than the current mass square m2 in QED systems. But for
QCD systems, the dynamical mass m is itself determined
by the minimum of the thermodynamic potential, the B0

term cannot be dropped at all [23]. Moreover, the dynami-
cal mass m is also B-dependent due to magnetic catalysis
effect [14], the term e−m

2s 1
3
ðqfBsÞ2 actually contains oðB4Þ

terms which cannot be absorbed by the renormalizations of
electric charges and magnetic field.
The solutions could be the following. First, the B0 term

can be recovered with three momentum cutoff according to
the discussions in Ref. [23], then we have

Ω0 ¼
ðm −m0Þ2
4GðeBÞ þ Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3

e−m
2s

�
qfBs

tanhðqfBsÞ
− 1

�

− 4Nc

Z
Λ d3p
ð2πÞ3 EpðmÞ ð9Þ

with EpðmÞ ¼ ðp2 þm2Þ1=2. Next, to absorb the B2 diver-
gent term but not oðB4Þ terms, we could refer to the term
with vacuum quark mass mv for help. Then, a thermody-
namic potential consistent with Schwinger’s renormaliza-
tion spirit can be given as

Ω0 ¼
ðm−m0Þ2
4GðeBÞ −4Nc

Z
Λ d3p
ð2πÞ3EpðmÞ

þ Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3
ðe−m2s−e−m

2
vsÞ

�
qfBs

tanhðqfBsÞ
−1

�

þ Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3
e−m

2
vs

�
qfBs

tanhðqfBsÞ
−1−

1

3
ðqfBsÞ2

�
:

ð10Þ

Note that the subtracted term with integrand e−m
2
vs 1

3
ðqfBsÞ2

only contains B2 term as mv is a constant.
Eventually, to make sure the pressure to be consistent

with the one given in Ref. [35] whenm ¼ mv for any B,m-
independent terms can be subtracted to get the physical
thermodynamic potential as

Ω0 ¼
ðm−m0Þ2− ðmv−m0Þ2

4GðeBÞ

− 4Nc

Z
Λ d3p
ð2πÞ3 ½EpðmÞ−EpðmvÞ�

þ Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3
ðe−m2s− e−m

2
vsÞ

�
qfBs

tanhðqfBsÞ
− 1

�

þ Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3
e−m

2
vs

�
qfBs

tanhðqfBsÞ
− 1−

1

3
ðqfBsÞ2

�
:

ð11Þ

This form of Ω0 would be adopted for analytic derivations
in the following and numerical calculations in next section.
Finite temperature and chemical potential usually do not
induce extra divergence and the corresponding terms of
thermodynamic potential can be easily evaluated with the
help of Landau levels as

ΩTμ ¼ −2NcT
Xt¼�

f¼u;d

jqfBj
2π

X∞
n¼0

αn

Z
∞

−∞

dp3

2π

× ln
h
1þ e−

1
TðEn

f ðp3;mÞþtμB
3
Þ
i
; ð12Þ

whereαn¼1−δn0=2 andEn
f ðp3;mÞ¼ð2njqfBjþp2

3þm2Þ1=2.
So the total thermodynamic potential of a magnetized QCD
matter isΩ ¼ Ω0 þΩTμ, and the expressions of gap equation
and magnetization follow the thermodynamic relations
∂Ω=∂m ¼ 0 and M ¼ −∂Ω=∂eB as

0 ¼ m −m0

2GðeBÞ − 4Nc

Z
Λ d3p
ð2πÞ3

m
EpðmÞ

−
Ncm
4π2

X
f¼u;d

Z
∞

0

ds
s2

e−m
2s

�
qfBs

tanhðqfBsÞ
− 1

�

þ 2Nc

Xt¼�

f¼u;d

jqfBj
2π

X∞
n¼0

αn

Z
∞

−∞

dp3

2π

×
m

En
f ðp3; mÞ

1

1þ e
1
T½En

f ðp3;mÞþtμB
3
� ; ð13Þ
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M ¼ ðm −m0Þ2 − ðmv −m0Þ2
4

G0ðeBÞ
G2ðeBÞ −

Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3

ðe−m2s − e−m
2
vsÞ

�
q̃fs

tanhðqfBsÞ
−

q̃fqfBs2

sinh2ðqfBsÞ
�

−
Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3

e−m
2
vs

�
q̃fs

tanhðqfBsÞ
−

q̃fqfBs2

sinh2ðqfBsÞ
−
2

3
q̃fqfBs2

�
þ 2NcT

Xt¼�

f¼u;d

jq̃f j
2π

X∞
n¼0

αn

Z
∞

−∞

dp3

2π

× ln ½1þ e−
1
TðEn

f ðp3;mÞþtμB
3
Þ� − 2Nc

Xt¼�

f¼u;d

jqfBj
2π

X∞
n¼0

αn

Z
∞

−∞

dp3

2π

njq̃f j
En
f ðp3; mÞ

1

1þ e
1
T½En

f ðp3;mÞþtμB
3
� ð14Þ

with q̃f ¼ qf=e.
For comparison, the gap equation and magnetization in the so-called vacuum magnetic regularization (VMR) [32] are

0 ¼ m −m0

2Gð0Þ − 4Nc

Z
Λ d3p
ð2πÞ3

m
EpðmÞ −

Ncm
4π2

X
f¼u;d

Z
∞

0

ds
s2

e−m
2s

�
qfBs

tanhðqfBsÞ
− 1 −

1

3
ðqfBsÞ2

�

−
Ncm
12π2

X
f¼u;d

Z
∞

1

Λ2

ds
s2

e−m
2sðqfBsÞ2; ð15Þ

M0 ¼ −
Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3

e−m
2s

�
q̃fs

tanhðqfBsÞ
−

q̃fqfBs2

sinh2ðqfBsÞ
−
2

3
q̃fqfBs2

�
−

Nc

12π2
X
f¼u;d

Z
∞

1

Λ2

ds
s
ðe−m2s − e−m

2
vsÞq̃fqfB ð16Þ

at zero temperature for a constant coupling Gð0Þ. But
instead of proper-time regularization [32], we regularize the
explicitly B-independent term with three momentum cutoff
for better comparison here. Note that the mv-dependent
term in Eq. (16) is important to reproduce the paramagnetic
feature of QCD matter though they did not manage to give
the explicit form [32].

III. NUMERICAL RESULTS

To carry out numerical calculations, the model param-
eters are fixed as m0 ¼ 5 MeV, Λ ¼ 653 MeV, Gð0ÞΛ2 ¼
2.10 by fitting to the vacuum values: chiral condensate
hψ̄ψi ¼ −2 × ð250 MeVÞ3, pion mass mπ ¼ 135 MeV,
and pion decay constant fπ ¼ 93 MeV [36,37].
Accordingly, the vacuum quark mass is mv ¼
−2Gð0Þhψ̄ψi þm0 ¼ 0.313 GeV. And the explicit form
of GðeBÞ should be given to study the effect of finite
magnetic field. In Ref. [19], a form of GðeBÞ had been
determined by fitting to the data of π0 mass from
LQCD simulations, with which we were able to explain
inverse magnetic catalysis effect at larger B. However, there
was nonphysical increasing of G(eB) around eB ∼ 0; to
avoid that, we choose to fit to the region eB ≥ 0.6 GeV2

here and get a monotonic form GðeBÞ ¼ Gð0Þ
1þ0.524eB2. Hence,

G0ðeBÞ
G2ðeBÞ ¼ − 1.048eB

Gð0Þ .

For a constant coupling Gð0Þ, we compare the results
of our self-consistent regularization scheme with those of
VMR scheme in Fig. 1 at zero temperature. Both results are
consistent with the LQCD data [26,38] for the region

0 ≤ eB ≤ 0.6 GeV2, but they diverge quite much from
each other for larger B. In our opinion, the cutoff to the
explicitly B-dependent term in VMR, see the last term in

FIG. 1. The dynamical massm (upper panel) and magnetization
M (lower panel) with the self-consistent regularization (blue
dashed lines) and vacuum magnetic regularization (black dotted
lines) schemes at zero temperature.
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Eq. (15), would introduce artifact at larger B—the non-
monotonic feature of m is a reflection of that. Here and in
the following, one might suspect the legality of studying the
effect of magnet field as large as 3 GeV2 in the low-energy
effective theory such as the NJL model. We would like to
remind the readers that the coupling between quarks and
magnetic field represents the quantum electrodynamics
(QED) interaction, and the effective range of B is infinite
according to the renormalizability of the first term on the
right-hand side of Eq. (1) [35]. By adding the four-fermion
interaction terms, see the second term on the right-hand
side of Eq. (1), one actually tries to approximate the low-
energy QCD with the effective NJL model. If one neglects
the interplay between QED and QCD interactions, the
effective range of B would sustain to infinity. However, in
reality, there is interplay between the QED and QCD
interactions, such as asymptotic freedom with increasing
B. In our opinion, finding out the interplay composes an
important mission of the model study. Of course, to keep
the NJL model qualitatively valid for large B, one should
make sure that the renormalizability of the B-dependent
part is not affected by the cutoff from the QCD part. That is
why it is important to present the self-consistent regulari-
zation here. Moreover, the absolute value of chiral con-
densate was found to linearly increase with large eB at zero
temperature in NJL model [39], which is consistent with the

results of LQCD up to eB ∼ 2.5 GeV2ð≫Λ2Þ [38]. This
strongly indicates that the valid range of B could be very
large in NJL model once the B-dependent part is properly
renormalized.
In the following, we would explore how a running

coupling constant could affect the dynamical mass and
the corresponding magnetization in the self-consistent
regularization. At zero temperature, the results with Gð0Þ
and GðeBÞ are shown together in Fig. 2. Due to the
running of coupling constant, m shows a nonmonotonic
feature though the absolute value of chiral condensate,
ðm −m0Þ=2GðeBÞ, increases almost linearly with B [19].
Accordingly, the second term in Eq. (14) demonstrates a
nonmonotonic feature and becomes negative at larger B.
Such feature is responsible for the strong suppression of
magnetization at larger B in the case with GðeBÞ compared
to that with Gð0Þ.
At finite temperature, the results are illustrated in Fig. 3.

As we can see, the temperature tends to suppress mag-
netization in the case with Gð0Þ but enhance magnetization
in the case with GðeBÞ. In their book, Landau and Lifshitz
had calculated magnetic susceptibility χ ≡ eM

NB of a non-
relativistic dilute electronic gas at high temperature and
found it decreases as 1=T [40]. To be concrete, the
situations they considered are

ffiffiffiffi
B

p
≪ T ≪ me and the

FIG. 2. The dynamical massm (upper panel) and magnetization
M (lower panel) with the constant coupling Gð0Þ (blue dashed
lines) and the running coupling GðeBÞ (red lines) at zero
temperature. The dotted lines correspond to the corresponding
contributions of the second term in Eq. (14).

FIG. 3. The dynamical massm (upper panel) and magnetization
M (lower panel) as functions of the magnetic field B at
temperature T ¼ 0, 0.15, and 0.2 GeV. The dashed, dotted,
and dash-dotted lines correspond to the results with the constant
coupling Gð0Þ and the solid lines correspond to the results with
the running coupling GðeBÞ.
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electric chemical potential −μeð≳meÞ changes with T to
keep the total number N constant. If we keep −μeð≳meÞ a
constant, then the total electronic numberN could be easily
evaluated to increase with temperature as T3=2. Therefore,
the magnetization M ¼ χNB=e would increase with
temperature as

ffiffiffiffi
T

p
, and the result with GðeBÞ is qualita-

tively consistent with the nonrelativistic study. That is not
the end of story: when we keep m ¼ mv for Gð0Þ, M
would increase with T for a given B; so it is adequate chiral
symmetry restoration induced by T that reduces the
contribution of second term in Eq. (14) and thus reverses
the trend. One can refer to Fig. 2 for the dynamical mass
effect on magnetization. ForGðeBÞ,m changes mildly with
B for a given T, that is, the large mass gaps induced by T at
vanishing B sustain to strong magnetic field. According to
our analysis, it is the great enhancement of the forth
T-dependent term in Eq. (14) that helps to recover the
trend of naive expectation. In fact, the result with GðeBÞ is
qualitatively consistent with that found in LQCD simu-
lations at finite temperature [28], so we conclude that
the running coupling is able to consistently explain both
inverse magnetic catalysis effect and magnetization
enhancement with temperature.
At finite baryon chemical potential, the results are

illustrated in Fig. 4 and Fig. 5. ForGð0Þ,m always changes

discontinuously with B for μB > mv, which signals a first-
order transition. But for GðeBÞ, m only changes slightly at
μB ¼ 0 and no sign of first-order transition could be
identified for a given μB. The de Haas-van Alphen
oscillation [40] can be found both in the evolutions of m
andMwith B: the effect is significant tom only when μB is
a little larger than 3mv but is significant to M for any
μB > 3mv. According to the mechanism of de Haas-van
Alphen oscillation [40], the last nonanalytic points of M
can be roughly determined by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qdjBj

p
≈ μB=3, that is,

eB ≈ 0.167 GeV2 for μB ¼ 1 GeV and eB ≈ 0.375 GeV2

for μB ¼ 1.5 GeV. That is consistent with the numerical
results shown in the lower panel of Fig. 5. Moreover, at
larger B, M does not depend on μB for Gð0Þ due to the
“Silver braze” property but increases with μB for GðeBÞ
due to the strong suppression of m.

IV. SUMMARY

In this work, a self-consistent thermodynamic potential
has been obtained for a magnetized QCD matter in two-
flavor NJL model by following Schwinger’s renormaliza-
tion spirit. The thermodynamic potential is free of cutoff
for the explicitly magnetic field dependent terms, and
explicit expressions of gap equation and magnetization
could be derived from that by following the thermodynamic
relations. Compared to the VMR scheme, the numerical

FIG. 4. The dynamical massm (upper panel) and magnetization
M (lower panel) as functions of the magnetic field B at baryon
chemical potential μB ¼ 0, 1, and 1.5 GeV. The dashed, dotted,
and dash-dotted lines correspond to the results with the constant
coupling Gð0Þ.

FIG. 5. The dynamical massm (upper panel) and magnetization
M (lower panel) as functions of the magnetic field B at baryon
chemical potential μB ¼ 0, 1, and 1.5 GeV. The solid lines
correspond to the results with the running coupling GðeBÞ.
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calculations showed that magnetic catalysis effect persists
to very large magnetic field at zero temperature when
adopting the self-consistent scheme, and the magnetization
is strongly affected accordingly.
Within the self-consistent scheme, results with the

constant coupling Gð0Þ and running coupling GðeBÞ are
compared with each other. At zero temperature and
chemical potential, the running coupling greatly suppresses
the dynamical mass m at large magnetic field B and thus
reduces the magnetizationM a lot. At finite temperature T,
M decreases with T for Gð0Þ due to adequate suppression
of m but increases with T for GðeBÞ due to the persistence
of large mass gaps at large B. At finite baryon chemical
potential μB, no sign of first-order transition could be
identified for GðeBÞ by varying B and the de Haas-van
Alphen oscillation could be found both in the evolutions of
m and M with B.

Since we found that the regularization scheme could
affect the result greatly in the large magnetic field region,
we would try to perform similar study in three-flavor NJL
or PNJL model in the future. Then, we could compare the
evaluations of magnetization with the LQCD data in the
region 0 ≤ eB ≤ 1 GeV2 for finite temperature [28] and
give further predictions for much larger magnetic field. The
situation with finite baryon chemical potential could also be
explored for completeness, which might help us to under-
stand the properties of magnetars.
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