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The doubly charged scalar resonance Ta
cs0ð2900Þþþ is studied in the context of the hadronic molecule

model. We consider Ta
cs0ð2900Þþþ as a molecule M ¼ D�þK�þ composed of vector mesons and calculate

its mass, current coupling, and full width. The spectroscopic parameters of M, i.e., its mass and current
coupling, are found by means of the QCD two-point sum rule method by taking into account vacuum
expectation values of quark, gluon, and mixed operators up to dimension 10. The width of the moleculeM
is evaluated through the calculations of the partial widths of the decay channelsM → Dþ

s π
þ,M → D�þ

s ρþ,
and M → D�þK�þ. Partial widths of these processes are determined by strong couplings g1, g2, and g3 of
particles at vertices MDþ

s π
þ, MD�þ

s ρþ, and MD�þK�þ, respectively. We calculate the couplings gi by
employing the QCD light-cone sum rule approach and technical tools of the soft-meson approximation.
Predictions obtained for the mass m ¼ ð2924� 107Þ MeV and width Γ ¼ ð123� 25Þ MeV of the
hadronic molecule M allow us to consider it as a possible candidate of the resonance Ta

cs0ð2900Þþþ.

DOI: 10.1103/PhysRevD.107.094019

I. INTRODUCTION

Recently, the LHCb Collaboration discovered new res-
onances Ta

cs0ð2900Þ0=þþ (in what follows, Ta0=þþ
cs0 ) in the

processes B0 → D̄0Dþ
s π

− and Bþ → D−Dþ
s π

þ [1,2],
respectively. They were fixed in the Dþ

s π
− and Dþ

s π
þ

mass distributions and are structures with spin-parity
JP ¼ 0þ. From the analysis of the decay channels of
Ta0=þþ
cs0 it becomes clear that they are fully open flavor

four-quark systems of cds̄ ū =cus̄ d̄. Their resonant param-
eters are consistent with each other, which means that they
are members of an isospin triplet: This is the first
observation of an isospin triplet of exotic mesons with
four different quark flavors. The resonance Taþþ

cs0 has an
additional attractive feature as the first doubly charged
exotic meson discovered experimentally.
It should be emphasized that Ta0=þþ

cs0 are not the first fully
open flavor resonances seen by the LHCb experiment.
Indeed, previously LHCb informed about scalar X0ð2900Þ

and vector X1ð2900Þ structures (hereafter X0 and X1,
respectively), which were found in theD−Kþ invariant mass
distribution of the decay Bþ → DþD−Kþ [3,4]. In a four-
quark picture, bothX0 and X1 have the same contents uds̄ c̄.
New resonances Ta0=þþ

cs0 fill up the list of such particles.
The exotic mesons built of four different quarks have

already attracted the interest of researches.Relevant activities
started from an announcement by the D0 Collaboration
about the resonanceXð5568Þ [5,6] presumably composed of
quarks sub̄ d̄. Despite the fact that LHCb, CMS, andATLAS
experiments did not confirm existence of this state, technical
tools elaborated during this activity led to some interesting
results and are still in use in numerous research works. One
such result is the prediction of a charmed partner Xc ¼
½su�½c̄ d̄� of Xð5568Þ in the diquark-antidiquark model [7,8].
In our paper [7], it was investigated in a rather detailed
form. Thus, we calculated the mass and full width of this
tetraquark in the context of the QCD sum rule method using
different interpolating currents. In the case of a scalar-scalar
current, we obtained mS ¼ ð2634� 62Þ and ΓS ¼ ð57.7�
11.6Þ MeV,whereas the axial-axial current led to predictions
mA ¼ ð2590� 60Þ and ΓA ¼ ð63.4� 14.2Þ MeV. It is
worth noting that an estimation ð2.55� 0.09Þ GeV for the
mass of Xc was made in Ref. [8] as well.
The doubly charged exotic mesons were also objects of

interesting analyses. The −2jej charged scalar, pseudosca-
lar, and axial-vector diquark-antidiquarks Zc̄s ¼ ½sd�½ū c̄�
were explored in Ref. [9]. Another class of tetraquarks
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Zþþ ¼ ½cu�½s̄ d̄� with the electric charge 2jej are antipar-
ticles of the states Zc̄s and have the same masses and decay
widths. Parameters of the vector tetraquark Zþþ

V from this
group of particles were found in Ref. [10].
The discovery of the resonances X0 and X1 highly

intensified investigations of fully open flavor structures
[11–33]. In these articles, different models were suggested
to explain the observed parameters of these states and
understand their inner organizations. Traditionally, they
were explored in the diquark-antidiquark and hadronic
molecule pictures, which are dominant models to account
for similar experimental data. Thus, X0 was treated as a
scalar diquark-antidiquark state ½sc�½ū d̄� in Refs. [11,12].
The X0 was assigned to be the S-wave hadronic molecule
D�−K�þ, whereas X1 was examined as the P-wave diquark-
antidiquark state ½ud�½c̄ s̄� in Ref. [13]. There were attempts
to consider these structures as rescattering effects. In fact, in
Ref. [15] it was asserted that two resonancelike peaks in the
process Bþ → DþD−Kþ may be generated by rescattering
effects and occur in the LHCb experiment as the states X0

and X1.
The structures X0 and X1 were studied in our publications

aswell [34,35]. Themass andwidth of the resonanceX0were
calculated in Ref. [34] in the framework of a hadronic
molecule model D̄�0K�0. Results found in this work for
the parameters of X0 allowed us to confirm its molecule
nature. We explored also the resonance X1 by considering
it as a vector diquark-antidiquark state XV ¼ ½ud�½c̄ s̄� [35]:
It turned out that the diquark-antidiquark structure is an
appropriate model to explain themeasured parameters ofX1.
The LHCb observed only the vector tetraquark XV ¼

½ud�½c̄ s̄�, which was interpreted as X1. It is quite possible
that, in the near future, the diquark-antidiquark structures
½ud�½c̄ s̄�with other quantum numbers will be seen in various
exclusive processes. Therefore, parameters of these yet
hypothetical exotic mesons are necessary to form a theo-
retical basis for upcoming experimental activities. Motivated
by this reason,we computed themasses and full widths of the

ground state and radially excited scalar particles Xð0Þ
0 ¼

½ud�½c̄ s̄� [36]. The axial-vector and pseudoscalar tetraquarks
XAV and XPS were investigated in Ref. [37], in which we
evaluated their spectroscopic parameters, i.e., their masses,
current couplings, and widths.
The resonances Ta0=þþ

cs0 are the last experimentally
confirmed members of the fully open flavor tetraquark
family. In this article, we are going to study the doubly
charged state Taþþ

cs0 ; therefore, we write down its parameters
measured by LHCb as follows [2]:

Mexp ¼ ð2921� 17� 20Þ MeV;

Γexp ¼ ð137� 32� 17Þ MeV: ð1Þ

Observation of new tetraquarks Ta0=þþ
cs0 generated theo-

retical investigations aimed to bring them under one of the

existing models of four-quark mesons. In our article [38],
we argued that diquark-antidiquark structures are not
suitable for these resonances, because parameters of such
states were already evaluated and predictions obtained for
their masses are well below the LHCb data. One of the
possible ways to explain Ta0=þþ

cs0 is to treat them as hadronic
molecules. Then Taþþ

cs0 may be interpreted as a hadronic
molecule D�þ

s ρþ or D�þK�þ. In Ref. [38], we realized the
first of these scenarios and estimated the mass of molecule
D�þ

s ρþ by employing the QCD two-point sum rule
approach. Our result m ¼ ð2917� 135Þ MeV for the mass
of the molecule D�þ

s ρþ is consistent with Eq. (1).
The resonancesTa0=þþ

cs0 were investigated inRefs. [39–45]
as well, in which authors used different models and calcula-
tional schemes. The one-boson exchange model was
employed in Ref. [39] to study interactions in systems of
Dð�ÞKð�Þ mesons. Analysis allowed the authors to assign
Taþþ
cs0 to be an isovector D�þK�þ molecule state with the

spin-parity JP ¼ 0þ and mass 2891MeV. Interpretation of a
new tetraquark candidate Ta

cs0 as the resonancelike structure
generated by threshold effects was proposed in Ref. [40]. It
was argued that the triangle singularity induced by the
χc1K�D� loop peaks around the threshold D�K� and may
simulate Ta

cs0. A multiquark color flux-tube model was used

to investigate the resonances Ta0=þþ
cs0 in the context of the

diquark-antidiquark model [41]. The authors found that a
system ½cu�½s̄ d̄� built of the color antitriplet diquark and
triplet antidiquark with the mass 2923 MeV is a very nice
candidate of the resonance Taþþ

cs0 . Features of the charmed-
strange tetraquarks were explored also in Ref. [43] in a
nonrelativistic potential quark model. Decays of the neutral
state Ta0

cs0 in the molecular picture were considered in
Ref. [44], whereas production mechanisms of the hidden
and open charm tetraquarks in B decays were addressed
in Ref. [45].
In the present work, we explore the resonance Taþþ

cs0 in
the context of the hadronic molecule model. We implement
the second scenario and model Taþþ

cs0 as the hadronic
molecule M ¼ D�þK�þ. Our analyses of M include cal-
culations of its mass m, current coupling f, and full width
Γ. The spectroscopic parameters of M are extracted from
the QCD two-point sum rule computations [46,47] by
taking into account vacuum expectation values of different
quark, gluon, and mixed operators up to dimension 10.
To estimate the full width of the molecule M, we

consider its decays to pairs of conventional mesons
Dþ

s π
þ, D�þ

s ρþ, and D�þK�þ. Partial widths of these
processes depend on parameters of initial- and final-state
particles, as well as on couplings gi, which determine
strong interactions of the molecule M and mesons at the
vertices MDþ

s π
þ, MD�þ

s ρþ, and MD�þK�þ, respectively.
Because masses and decay constants of ordinary mesons
are known, and spectroscopic parameters of M are the
object of present studies, the only missed quantities are
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strong couplings gi. The couplings gi are evaluated in the
framework of the QCD light-cone sum rule (LCSR) method
[48]. Additionally, to treat technical peculiarities of four-
quark molecule-two conventional meson vertices, we
invoke the technical methods of soft-meson approximation

]49,50 ].
This article is organized in the following way: In Sec. II,

we find the sum rules for the massm and current coupling f
of the molecule M ¼ D�þK�þ in the framework of the
QCD sum rule method. Numerical analysis of the quan-
tities m and f is carried out in this section as well, where
their values are evaluated. In Sec. III, we investigate the
vertices MDþ

s π
þ, MD�þ

s ρþ, and MD�þK�þ and calculate
the corresponding strong couplings gi; i ¼ 1, 2, 3. Obtained
information on gi is used to find partial widths of these
decay channels and estimate the full width of the molecule
M. Section IV is reserved for our conclusions.

II. MASS m AND CURRENT COUPLING f
OF THE HADRONIC MOLECULE M =D�+K� +

The key quantity necessary to investigate the spectro-
scopic parameters of the molecule M using the QCD
two-point sum rule method is the interpolating current
JðxÞ for this state. An analytic form of JðxÞ depends on the
structure and constituents of a four-quark exotic meson
q̄1q̄2q3q4. In the molecule picture, the color-singlet struc-
tures come from ½1c]q̄1q3⊗ ½1c�q̄2q4 and ½8c�q̄1q3⊗ ½8c�q̄2q4
and (q3 ↔ q4) terms of the color group SUcð3Þ. In the case
under discussion, we assume that the hadronic moleculeM
is composed of two ordinary vector mesons D�þ and K�þ
and restrict our analysis by singlet-singlet-type current.
Then, in the ½1c�d̄c⊗ ½1c�s̄u representation, JðxÞ takes the
following form:

JðxÞ ¼ ½d̄aðxÞγμcaðxÞ�½s̄bðxÞγμubðxÞ�; ð2Þ

where a and b are color indices.
This current has the meson-meson structure and is a

local product of two vector currents corresponding to
the mesons D�þ and K�þ. It couples well to the molecule
state D�þK�þ. But, at the same time, JðxÞ couples also to
diquark-antidiquark states, because using Fierz transfor-
mation a molecule current can be presented as a weighted
sum of different diquark-antidiquark currents [51]. In its
turn, a diquark-antidiquark current is expressible via
molecule structures (for instance, see Refs. [52,53]). For
example, the current JðxÞ rewritten in the form

JðxÞ ¼ δamδbn½d̄aγμcm�½s̄bγμun�; ð3Þ

after Fierz transformation, contains the vector-vector
component

JVV ¼ −
1

2
δamδbn½d̄aγμun�½s̄bγμcm�: ð4Þ

Using the rearrangement of the color indices δamδbn ¼
δanδbm þ ϵabkϵmnk, with ϵijk being the Levi-Civita epsilon,
it is not difficult to see that

JVV ¼ −
1

2
½d̄aγμua�½s̄bγμcb� þ � � � : ð5Þ

The term in Eq. (5) is the −D�þ
s ρþ=2meson-meson current,

whereas dots indicate the second component, which should
be further manipulated to become diquark-type current(s).
In other words, JðxÞ couples also to a molecule D�þ

s ρþ and
can couple to other meson pairs such as Dþ

s π
þ with the

same contents and quantum numbers. Nevertheless, the
current JðxÞ corresponds mainly to the molecule D�þK�þ,
which will be demonstrated quantitatively in the next
section by comparing its strong couplings gi to different
two-meson states.
The sum rules for the mass m and current coupling f of

the hadronic molecule M can be obtained from analysis of
the correlation function [46,47],

ΠðpÞ ¼ i
Z

d4xeipxh0jT fJðxÞJ†ð0Þgj0i; ð6Þ

with T being the time-ordering operator.
To derive the required sum rules, the correlator ΠðpÞ

should be expressed using the physical parameters of the
molecule M, as well as calculated in terms of the funda-
mental parameters of QCD in quark-gluon language. The
first expression establishes the physical (phenomenologi-
cal) side of the sum rules, for which we get

ΠPhysðpÞ ¼ h0jJjMihMjJ†j0i
m2 − p2

þ � � � : ð7Þ

To obtain ΠPhysðpÞ, we insert a complete set of the
intermediate states with the content and quantum numbers
of the state M into Eq. (6) and carry out integration over x.
In Eq. (7), the contribution of the ground-state particleM is
isolated and shown explicitly, whereas dots denote effects
due to higher resonances and continuum states in the M
channel.
For further simplification of ΠPhysðpÞ, it is convenient to

introduce the physical parameters of M by means of the
matrix element

h0jJjMi ¼ fm: ð8Þ

Then, we get the final formula for the function ΠPhysðpÞ,

ΠPhysðpÞ ¼ f2m2

m2 − p2
þ � � � : ð9Þ

The rhs of Eq. (9) contains only a trivial Lorentz structure,
which is the unit matrix I. The function f2m2=ðm2 − p2Þ is
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the invariant amplitude ΠPhysðp2Þ that corresponds to this
structure: It will be used in our following analysis.
The QCD side of the sum rules, ΠOPEðpÞ, has to be

calculated in the operator product expansion (OPE) with
some fixed accuracy. To derive ΠOPEðpÞ, we insert the
interpolating current JðxÞ into Eq. (6), contract the corre-
sponding heavy and light quark fields, and write the
obtained expression in terms of the corresponding quark
propagators. Having carried out these manipulations, we
get for ΠOPEðpÞ,

ΠOPEðpÞ ¼ i
Z

d4xeipxTr½γμSaa0c ðxÞγνSa0ad ð−xÞ�

× Tr½γμSbb0u ðxÞγνSb0bs ð−xÞ�; ð10Þ

where ScðxÞ and Suðs;dÞðxÞ are the quark propagators. The
explicit expressions of the heavy and light quark propa-
gators can be found in Ref. [54].
The correlator ΠOPEðpÞ has also a simple structure ∼I

and is characterized by an amplitude ΠOPEðp2Þ. To find a
preliminary sum rule, we equate the amplitudes ΠPhysðp2Þ
and ΠOPEðp2Þ. This equality contains contributions coming
from both the ground-state particle and higher resonances.
The latter can be suppressed by applying the Borel trans-
formation to both sides of the sum rule equality. Afterward,
using the quark-hadron duality assumption, we subtract the
suppressed terms from the obtained expression. These
manipulations lead to dependence of the sum rule equality
on the Borel and continuum subtraction (threshold) param-
eters M2 and s0. Obtained by this way, the expression and
its derivative over d=dð−1=M2Þ allow us to find the sum
rules for the mass m and coupling f of the molecule M,
which read

m2 ¼ Π0ðM2; s0Þ
ΠðM2; s0Þ

; ð11Þ

and

f2 ¼ em
2=M2

m2
ΠðM2; s0Þ: ð12Þ

The function ΠðM2; s0Þ in Eqs. (11) and (12) is the
invariant amplitude ΠOPEðp2Þ after the Borel transformation
and continuum subtraction, and Π0ðM2; s0Þ ¼ dΠðM2; s0Þ=
dð−1=M2Þ.
The Borel transform of the amplitude ΠPhysðp2Þ is given

by the formula

BΠPhysðp2Þ ¼ fme−m
2=M2

: ð13Þ

For the correlator ΠðM2; s0Þ, we find a more complicated
expression,

ΠðM2; s0Þ ¼
Z

s0

M2

dsρOPEðsÞe−s=M2 þ ΠðM2Þ; ð14Þ

where M ¼ mc þms is the mass of constituent quarks
in the moleculeM. It is worth noting that we neglect masses
of u and d quarks, but take into account terms ∼ms. At
the same time, we do not include into analysis contribu-
tions ∼m2

s and set m2
s ¼ 0. The spectral density ρOPEðsÞ is

computed as an imaginary part of the amplitude ΠOPEðp2Þ.
The Borel transforms of the terms obtained directly from
ΠOPEðpÞ are denoted in Eq. (14) by ΠðM2Þ. In this paper,
calculations are carried out by taking into account vacuum
condensates up to dimension 10. Analytical expressions of
ρOPEðsÞ and ΠðM2Þ are lengthy; therefore, we do not write
down them here explicitly.
For numerical computations of m and f, one should

specify different vacuum condensates, which enter into the
sum rules in Eqs. (11) and (12). These condensates are
universal parameters, which were extracted from analysis
of numerous processes. Their numerical values are listed as
follows:

hq̄qi¼−ð0.24�0.01Þ3GeV3; hs̄si¼ð0.8�0.1Þhq̄qi;
hq̄gsσGqi¼m2

0hq̄qi; hs̄gsσGsi¼m2
0hs̄si;

m2
0¼ð0.8�0.2ÞGeV2;�

αsG2

π

�
¼ð0.012�0.004ÞGeV4;

hg3sG3i¼ð0.57�0.29ÞGeV6;

ms¼93þ11
−5 MeV; mc¼1.27�0.02GeV: ð15Þ

We have also included in Eq. (15) the masses of c and s
quarks.
The sum rules in Eqs. (11) and (12) depend also on the

Borel and continuum threshold parameters M2 and s0. The
choice of working windows for M2 and s0 has to satisfy
standard constraints imposed on the pole contribution (PC)
and convergence of the operator product expansion. To
quantify these constraints, it is appropriate to use the
expressions

PC ¼ ΠðM2; s0Þ
ΠðM2;∞Þ ; ð16Þ

and

RðM2Þ ¼ ΠDimNðM2; s0Þ
ΠðM2; s0Þ

; ð17Þ

where ΠDimNðM2; s0Þ ¼ ΠDimð8þ9þ10ÞðM2; s0Þ.
The PC is used to fix the maximum of the Borel

parameterM2
max, whereas its minimal valueM2

min is limited
by the convergence of OPE. In sum rule analyses of
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ordinary hadrons, PC ≥ 0.5 is a standard requirement.
When studying multiquark particles, this constraint reduces
the region of the allowed M2. To be convinced in
convergence of the operator product expansion, we demand
fulfillment of RðM2

minÞ ≤ 0.05.
Our calculations prove that the regions for the parameters

M2 and s0,

M2 ∈ ½2; 2.7�GeV2; s0 ∈ ½10.7; 11.7� GeV2; ð18Þ

meet all required restrictions. Thus, at M2 ¼ 2.7 GeV2

the pole contribution on average in s0 is 0.53, whereas
at M2 ¼ 2 GeV2 it equals to 0.72. In Fig. 1 the pole
contribution is plotted as a function of M2 at various
fixed s0. It is seen that by excluding the small region
M2 ≥ 2.65 GeV2 at s0 ¼ 10.7 GeV2 the pole contribution
exceeds 0.5. On average in s0, the constraint PC ≥ 0.5 is
satisfied for all values of the Borel parameter from
the working window Eq. (18). At the minimum point

M2 ¼ 2 GeV2, we find Rð2 GeV2Þ ≈ 0.015 and the sum of
dimension-8, -9, and -10 contributions is less than 1.5% of
the full result.
Dominance of the perturbative contribution to ΠðM2; s0Þ

and convergence of the operator product expansion are
other important problems in the sum rule studies. In
Fig. 2, we compare the perturbative and nonperturbative
components of the correlation function. One sees that
the perturbative contribution to ΠðM2; s0Þ prevails over
the nonperturbative one and forms more than 53% of
ΠðM2; s0Þ, already at M2 ¼ 2 GeV2 growing gradually in
the considered range ofM2. From this figure, it is also clear
that convergence of OPE is satisfied: Contributions of the
nonperturbative terms reduce by increasing the dimensions
of the corresponding operators. There is some disordering
in these contributions connected with smallness of gluon
condensates. The dimension -3, -6, -9, and -10 terms are
positive. The Dim3 and Dim6 contributions numerically
exceed contributions of other operators, whereas Dim9 and
Dim10 terms are very small and not shown in the plot.
Predictions for m and f are obtained by taking the mean

values of these parameters calculated at different choices of
M2 and s0,

m ¼ ð2924� 107Þ MeV;

f ¼ ð4.3� 0.7Þ × 10−3 GeV4: ð19Þ
The m and f from Eq. (19) effectively correspond to the
sum rules’ results at M2 ¼ 2.3GeV2 and s0 ¼ 11.2 GeV2

noted in Fig. 1 by the red diamond. This point is
approximately at the middle of the intervals shown in
Eq. (18), where the pole contribution is PC ≈ 0.62. The
circumstances discussed above ensure the ground-state
nature of M and reliability of the obtained results.
The dependence of the massm on the parametersM2 and

s0 is drawn in Fig. 3. In general, a physical quantity should
not depend on the auxiliary parameter of computationsM2.
Nevertheless, such residual dependence of m on the Borel
parameter, as well as on s0, exists and generates theoretical

FIG. 1. Dependence of the pole contribution on the Borel
parameter M2 at fixed s0. The limit PC ¼ 0.5 is shown by the
horizontal black line. The red diamond notes the point where the
mass m of the molecule M ¼ D�þK�þ has effectively been
calculated.

FIG. 2. Left: different contributions to ΠðM2; s0Þ normalized to 1 as functions of the Borel parameter M2. Right: normalized
contributions of various operators to ΠðM2; s0Þ as functions of M2. All curves in this figure have been calculated at s0 ¼ 11.2 GeV2.

MODELING THE RESONANCE Ta
cs0ð2900Þþþ … PHYS. REV. D 107, 094019 (2023)

094019-5



ambiguities of the extracted predictions in Eq. (19). It is
worth noting that these ambiguities are smaller form than for
f. Indeed, for the mass, they are equal only to �4% of the
central value,whereas in the case off, they amount to�16%.
Such difference is connected by the analytical forms of the
sum rules for these quantities: The mass m is given by the
ratio of the correlation functions which smooths relevant
effect, whereas f depends on ΠðM2; s0Þ itself.
Our result for the mass of the molecule D�þK�þ agrees

very well with the LHCb datum. This is necessary, but not
enough to make credible conclusions about the nature of
the resonance Taþþ

cs0 : For more reliable statements, one
needs to estimate also the full width of the hadronic
molecule D�þK�þ suggested in this paper to model Taþþ

cs0 .

III. WIDTH OF THE MOLECULE M

The quark content, spin-parity, and mass of the molecule
M ¼ D�þK�þ allow us to classify its decay channels.
Because Taþþ

cs0 was seen in the Dþ
s π

þ invariant mass
distribution, the process M → Dþ

s π
þ should be the dom-

inant decay channel of the molecule M. The processes
M → D�þ

s ρþ and M → D�þK�þ are also among the kin-
ematically allowed decay modes of the M. We are going to
evaluate the full width of the moleculeM using these decay
channels. It is worth noting that ρþ and K�þ mesons decay
almost exclusively to πþπ0 and ðKπÞþ pairs (see Ref. [55]),
therefore widths of the last two processes can be con-
sidered also as widths of the modes M → D�þ

s πþπ0 and
M → D�þðKπÞþ, respectively.
Partial widths of the aforementioned processes are

determined by the strong couplings gi at vertices
MDþ

s π
þ, etc. One of the effective ways to evaluate them

is the QCD light-cone sum rule method [48]. In this
approach, the QCD side of the sum rule, instead of the
local vacuum condensates, is expressed in terms of one of
the final meson distribution amplitudes (DAs). In general,
the DAs of a hadron are nonlocal matrix elements of
various operators with different twists sandwiched between
the hadron and vacuum states. They are specific for each
particle and modeled by taking into account the available

experimental data. The LCSR method is suitable for
analysis of not only the conventional hadrons, but also
the multiquark systems such as tetraquarks, pentaquarks,
etc. In the case of tetraquark-meson-meson vertices, how-
ever, these DAs reduce to the local matrix elements of the
meson. For treatment of such vertices, one needs to apply
some additional mathematical tools. The LCSR method
was adapted for investigation of the tetraquark-meson-
meson vertices in Ref. [56] and applied to study numerous
decays of four-quark exotic mesons [54].

A. Decay M → D +
s π +

Here, we consider, in a detailed manner, the decay of the
moleculeM to a pair of pseudoscalar mesonsDþ

s π
þ. Partial

width of this process depends on the spectroscopic param-
eters of the initial- and final-state particles. The spectro-
scopic parameters ofM have been evaluated in the previous
section. The masses and decay constants of the mesons Dþ

s
and πþ are available from other sources. The only unknown
quantity required to calculate the M → Dþ

s π
þ decays’s

partial width is the strong coupling g1 of the particles at the
vertex MDþ

s π
þ.

The coupling g1 is defined in terms of the on-mass-shell
matrix element,

hπðqÞDsðpÞjMðp0Þi ¼ g1p · p0; ð20Þ

where the mesons πþ and Dþ
s are denoted as π and Ds,

respectively. In Eq. (20), p0, p, and q are four-momenta of
M and mesons Ds and π.
In the framework of theLCSRmethod, the sum rule for the

coupling g1 can be obtained from the correlation function,

Πðp; qÞ ¼ i
Z

d4xeipxhπðqÞjT fJDsðxÞJ†ð0Þgj0i; ð21Þ

where JðxÞ is the current for themoleculeM given byEq. (2).
The interpolating current JDsðxÞ for themesonDþ

s is defined
by the formula

FIG. 3. Mass m of the molecule M as functions of the Borel M2 (left) and continuum threshold s0 parameters (right).
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JDsðxÞ ¼ s̄jðxÞiγ5cjðxÞ; ð22Þ

with j being the color index.
At this stage of our analysis, we express the correlation

function Πðp; qÞ using the physical parameters of the
particles involved in the decay process. To this end, we
write ΠPhysðp; qÞ in the factorized form [50,57],

ΠPhysðp; qÞ ¼ hπðqÞDsðpÞjMðp0ÞihMðp0ÞjJ†j0i
ðp02 −m2Þ

×
h0jJDs jDsðpÞi
ðp2 −m2

Ds
Þ ; ð23Þ

where mDs
is the mass of the meson Dþ

s . As is seen, the
function ΠPhysðp; qÞ contains the matrix elements of
the vertex MDþ

s π
þ, the molecule M, and meson Dþ

s .
The matrix element of M is known from Eq. (8), whereas
for the meson Dþ

s we use

h0jJDs jDsðpÞi ¼
fDs

m2
Ds

mc þms
; ð24Þ

with fDs
being the decay constant of Dþ

s .
After simple manipulations, we get

ΠPhysðp; qÞ ¼ g1
fmfDs

m2
Ds

ðmc þmsÞðp2 −m2
Ds
Þ

×
1

ðp02 −m2Þp · p0 þ � � � : ð25Þ

The term in Eq. (25) corresponds to the contribution of
ground-state particles in M and Dþ

s channels. Effects of
higher resonances and continuum states in these channels
are denoted by ellipses. The function ΠPhysðp; qÞ forms the
physical side of the sum rule for the coupling g1. It has the
Lorentz structure proportional to the unit matrix I; there-
fore, the expression on the rhs of Eq. (25) is the invariant
amplitude ΠPhysðp2; p02Þ, which depends on two variables,
p2 and p02.
The correlation function Πðp; qÞ calculated in terms of

quark propagators and matrix elements of the pion con-
stitutes the QCD side of the sum rules and is equal to

ΠOPEðp; qÞ ¼ −
Z

d4xeipx½γμSbjs ð−xÞγ5Sjac ðxÞγμ�αβ
× hπðqÞjūbαð0Þdaβð0Þj0i; ð26Þ

where α and β are the spinor indices.
The correlator ΠOPEðp; qÞ, apart from propagators of the

c and s quarks, contains also the local matrix elements
hπjūbαdaβj0i of the pion. In the standard LCSR method,
while studying vertices of conventional mesons, the corre-
lator depends on the nonlocal matrix elements of the meson

(for instance, π meson), which after some transformations
can be expressed in terms of its different DAs. In the case
under discussion, the ΠOPEðp; qÞ contains the pion’s local
matrix elements, the appearance of which has a simple
explanation. Indeed, because the hadronic molecule M is
built of four valence quarks located at space-time position
x ¼ 0, contractions of two quark operators from the
currents JDsðxÞ and JðxÞ leave free the two quark fields
from M at the same position x ¼ 0. This feature of the
correlation function ΠOPEðp; qÞ connected with differences
in the quark contents of tetraquarks and ordinary mesons is
an unavoidable effect for all tetraquark-meson-meson
vertices.
It turns out that the ΠOPEðp; qÞ-type correlators emerge

in the limit q → 0 in LCSR calculations [50], which is
known as the soft-meson approximation. In this approxi-
mation, p ¼ p0 and invariant amplitudes ΠPhysðp2Þ and
ΠOPEðp2Þ depend only on one variable, p2. It is worth
emphasizing that the limit q → 0 is applied to hard parts of
the invariant amplitudes, whereas in their soft parts (i.e., in
matrix elements), terms ∼q2 ¼ m2 are taken into account.
In other words, soft-meson approximation should not be
considered as a massless limit of the correlation functions.
Technical difficulties generated by this limit in the

physical side of sum rules can be cured by means of
technical tools elaborated in Refs. [49,50]. It is important
that the sum rules for the strong couplings obtained using
the full LCSR method and soft-meson approximation lead
to numerically close results [50]. To clarify this last point,
we note that in the full version of the LCSR method a sum
rule for the strong coupling at a vertex of three conventional
mesons depends on numerous two- and three-particle
quark-gluon DAs of a final meson. In the limit q → 0
only a few leading terms survive in this sum rule. Because
their contributions are numerically decisive, for the strong
coupling, the full version and soft-meson limit of the light-
cone sum rules give close predictions. Thus, in Ref. [50] the
couplings gD�Dπ and gB�Bπ at the vertices D�Dπ and B�Bπ
were calculated using both of these methods. In the full
LCSR approach, these couplings are equal to

gfullD�Dπ ¼ 12.5� 1.0; gfullB�Bπ ¼ 29� 3; ð27Þ

whereas in the soft-meson approximation, the authors
found

gsoftD�Dπ ¼ 11� 2; gsoftB�Bπ ¼ 28� 6: ð28Þ

As is seen, values of the couplings are very close to each
other, though uncertainties in the soft limit are larger than in
the full version [50].
These arguments do not imply a necessity of the soft-

meson approximation to study all of the vertices contain-
ing four-quark states. Two tetraquark-meson vertices, for
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example, can be readily investigated in the context of the
conventional LCSR method [58].
The local matrix elements hπjūbαdaβj0i carry color and

spinor indices, therefore their further processing is difficult
task. We can rewrite them in convenient forms by expand-
ing ūd over the full set of Dirac matrices ΓJ,

ΓJ ¼ 1; γ5; γμ; iγ5γμ; σμν=
ffiffiffi
2

p
; ð29Þ

and projecting onto the colorless states

ūbαð0Þdaβð0Þ →
1

12
δbaΓJ

βα½ūð0ÞΓJdð0Þ�: ð30Þ

The operators ūΓJd, sandwiched between the π meson and
vacuum, generate local matrix elements of the π meson,
which can be implemented into ΠOPEðp; qÞ.
The expression obtained for the ΠOPEðp2Þ in the soft

limit is considerably more simple than the invariant
amplitude in the full version of the LCSR method. But,
at the same time, soft-meson approximation produces
problems on the physical side of the sum rule. Below,
we will come back to finish the calculation of ΠOPEðp2Þ,
but now it is time to fix sources of complications in
ΠPhysðp2; p02Þ. To this end, we rewrite this amplitude in the
soft limit,

ΠPhysðp2Þ ¼ g1
fmfDs

m2
Ds

2ðmc þmsÞðp2 − m̃2Þ2
× ð2m̃2 −m2

πÞ þ � � � ; ð31Þ

where m̃2 ¼ ðm2 þm2
Ds
Þ=2 and mπ is the mass of the pion.

It is seen that the amplitude ΠPhysðp2Þ, in the soft
approximation, instead of two poles at different points,
has one double pole at p2 ¼ m̃2.
The Borel transformation of ΠPhysðp2Þ is given by the

expression,

ΠPhysðM2Þ ¼
�
g1

fmfDs
m2

Ds

2ðmc þmsÞ
ð2m̃2 −m2

πÞ

þ AM2

�
e−m̃

2=M2

M2
þ � � � : ð32Þ

Apart from the ground-state contribution, in the soft limit,
the amplitude ΠPhysðM2Þ contains additional unsuppressed
terms ∼A [50]. These terms correspond to the transitions
from the excited states in the M ¼ D�þK�þ channel with
m� > m and are not suppressed relative to the ground-state
contribution, even after the Borel transformation. These
circumstances make problematic the extraction of the g1
from Eq. (32). The contributions ∼A can be removed from

the physical side of the sum rule by means of the operator
PðM2; m̃2Þ [49,50],

PðM2; m̃2Þ ¼
�
1 −M2

d
dM2

�
M2em̃

2=M2

; ð33Þ

which should be applied to both sides of the sum rule
equality.
After this operation, the remaining suppressed terms in

ΠPhysðM2Þ, denoted in Eq. (32) by ellipses, can be
subtracted in a standard way. As a result, we find the
sum rule for the strong coupling g1, which reads

g1 ¼
2ðmc þmsÞ

fmfDs
m2

Ds
ð2m̃2 −m2

πÞ
PðM2; m̃2ÞΠOPEðM2; s0Þ;

ð34Þ

where ΠOPEðM2; s0Þ is the invariant amplitude ΠOPEðp2Þ
after the Borel transformation and continuum subtraction
operations.
Recipes to compute the correlation function ΠOPEðp; qÞ

in the soft approximation were explained in Ref. [56],
therefore we give only the principal points of these
calculations. Thus, having substituted the expansion (30)
into Eq. (26), we perform summations over color indices
and fix the local matrix elements of the pion that contribute
to the ΠOPEðp; qÞ in the soft-meson limit. It turns out that
the contributions to ΠOPEðp; q ¼ 0Þ come from the pion’s
two-particle twist-3 matrix element,

h0jd̄iγ5ujπi ¼ fπμπ; ð35Þ

where

μπ ¼
m2

π

mu þmd
¼ −

2hq̄qi
f2π

: ð36Þ

The second equality in Eq. (36) arises from the partial
conservation of the axial-vector current.
The amplitude ΠOPEðM2; s0Þ is given by the formula

ΠOPEðM2; s0Þ ¼
fπμπ
8π2

Z
s0

M2

dsðm2
c − sÞ
s

× ðm2
c − 2mcms − sÞe−s=M2

þ fπμπΠNPðM2Þ: ð37Þ

The first term in Eq. (37) is the perturbative component of
the ΠOPEðM2; s0Þ. The nonperturbative term ΠNPðM2Þ is
computed with dimension-9 accuracy and has the follow-
ing form:
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ΠNPðM2Þ ¼ hs̄si
6M2

½M2ð2mc −msÞ −m2
cms�e−m2

c=M2 þ
�
αsG2

π

�
mc

72M4

Z
1

0

dx
ð1 − xÞ3 ½msð1 − xÞð2M2 þm2

cÞ

−m3
cx�e−m2

c=½M2ð1−xÞ� −
hs̄gσGsim3

c

6M6
ðM2 −mcmsÞe−m2

c=M2 þ
�
αsG2

π

�
hs̄si π

2mc

9M8
½M2mcðmc þmsÞ

− 2m3
cms −M4�e−m2

c=M2 þ
�
αsG2

π

�
hs̄gσGsi π2mc

18M12
½3M6 − 20m5

cms þ 10m3
cM2ðmc þ 2msÞ

− 4M4mcð3mc þmsÞ�e−m2
c=M2

: ð38Þ

In addition to the vacuum condensates, the sum rule in
Eq. (34) contains also the masses and decay constants of the
final-state mesons Dþ

s and πþ. Numerical values of these
parameters, as well as parameters of other mesons, which
will be necessary later, are presented in Table I. For the
decay constants of the mesons D�þ

s and D�þ, we employ
predictions of the QCD lattice method [59]. For all other
parameters, we use information from the Particle Data
Group, mainly from its last edition [55]. All these input
parameters were either measured experimentally or
extracted by means of alternative theoretical approaches.
Numerical analysis demonstrates that the working

regions shown in Eq. (18) used in calculations of the M
molecule’s mass meet the required restrictions on the Borel
and continuum subtraction parameters M2 and s0 imposed
in the case of the decay process. Therefore, in computations
of ΠOPEðM2; s0Þ, the parameters M2 and s0 have been
varied within the limits (18).
For g1, the numerical calculations yield

g1 ¼ ð7.1� 1.1Þ × 10−1 GeV−1: ð39Þ

The partial width of the decay M → Dþ
s π

þ is determined
by the expression

Γ1½M → Dþ
s π

þ� ¼ g21m
2
Ds

8π
λ

�
1þ λ2

m2
Ds

�
; ð40Þ

where λ ¼ λðm;mDs
; mπÞ and

λða; b; cÞ ¼ ½a4 þ b4 þ c4 − 2ða2b2 þ a2c2 þ b2c2Þ�1=2
2a

:

ð41Þ

Then, it is not difficult to find that

Γ1½M → Dþ
s π

þ� ¼ ð71� 23Þ MeV; ð42Þ

which is large enough to confirm the dominant nature of
this channel.

B. Processes M → D� +
s ρ+ and M → D�+K�+

These two processes differ from previous decay by a
vector nature of produced mesons. This fact modifies
matrix elements of the vertices and formulas for decay
widths of the processes. We concentrate on analysis of the
decay M → D�þ

s ρþ and write down only the final pre-
dictions for M → D�þK�þ.
The correlation function, which should be studied in the

case of the decay M → D�þ
s ρþ, has the following form:

Πμðp; qÞ ¼ i
Z

d4xeipxhρðqÞjT fJD�
s

μ ðxÞJ†ð0Þgj0i; ð43Þ

where JD
�
s

μ ðxÞ is the interpolating current for the meson
D�þ

s ,

JD
�
s

μ ðxÞ ¼ s̄iðxÞγμciðxÞ: ð44Þ

The correlation function Πμðp; qÞ written down in terms of
the matrix elements of the particles and the vertexMD�þ

s ρþ
are given by the expression

TABLE I. Masses and decay constants of the mesons Dð�Þ
s , D�,

K�, π, and ρ, which have been used in numerical computations.

Parameters Values (MeV)

mDs
1969.0� 1.4

mπ 139.57039� 0.00017
mD�

s
2112.2� 0.4

mρ 775.11� 0.34
mD� 2010.26� 0.05
mK� 891.67� 0.26
fDs

249.9� 0.5
fπ 130.2� 0.8
fD�

s
268.8� 6.5

fρ 216� 3

fD� 223.5� 0.5
fK� 204� 0.3
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ΠPhys
μ ðp; qÞ ¼ hρðq; ϵÞD�þ

s ðp; εÞjMðp0ÞihMðp0ÞjJ†j0i
ðp02 −m2Þ

×
h0jJD�

s
μ jD�þ

s ðp; εÞi
ðp2 −m2

D�
s
Þ þ � � � ; ð45Þ

where mD�
s
and εμ are the mass and polarization vector of

the meson D�þ
s , and ϵν is the polarization vector of the ρ

meson. The expression in Eq. (45) is the contribution of the
ground-state particles to the physical side of the sum rule,
whereas ellipses stand for the contributions of higher
resonances and continuum states.
We introduce the matrix element of the meson D�þ

s by
the formula

h0jJD�
s

μ jD�þ
s ðp; εÞi ¼ mD�

s
fD�

s
εμ: ð46Þ

We also model the mass-shell matrix element of the vertex
MD�þ

s ρþ in the following way:

hρðq; ϵÞD�þ
s ðp; εÞjMðp0Þi

¼ g2½ðq · pÞðϵ · ε�Þ−ðp · ϵÞðq · ε�Þ�: ð47Þ

Then, it is not difficult to calculate the functionΠPhys
μ ðp; qÞ,

ΠPhys
μ ðp; qÞ ¼ fmmD�

s
fD�

s

ðp02 −m2Þðp2 −m2
D�

s
Þ

×

�
m2

ρ þm2
D�

s
−m2

2
ϵμ þ p · ϵqμ

�
þ � � � :

ð48Þ

As is seen, ΠPhys
μ ðp; qÞ contains two structures proportional

to ϵμ and qμ. We are going to employ the structure ∼ϵμ and
the corresponding invariant amplitude, which in the soft
limit has the form

Π̂Physðp2Þ ¼ fmmD�
s
fD�

s

ðp2 − m̂2Þ2
m2

ρ þm2
D�

s
−m2

2
; ð49Þ

with m̂2 being equal to ðm2 þm2
D�

s
Þ=2.

The QCD side of the sum rule is determined by the
correlator

ΠOPE
μ ðp; qÞ ¼ i

Z
d4xeipx½γνSbis ð−xÞγμSiac ðxÞγν�αβ

× hρðqÞjūbαð0Þdaβð0Þj0i: ð50Þ

This function has the same Lorentz structures as
ΠPhys

μ ðp; qÞ. In the soft-meson approximation, it receives
contribution from the matrix element

h0jd̄γνujρi ¼ fρmρϵν; ð51Þ

where fρ is the decay constant of the ρ meson.
Having fixed an amplitude that is proportional to ϵμ and

labeled it by Π̂OPEðp2Þ, it is not difficult to write the sum
rule for the strong coupling g2,

g2 ¼
2PðM2; m̂2ÞΠ̂OPEðM2; s0Þ

fmmD�
s
fD�

s
ðm2

ρ þm2
D�

s
−m2Þ : ð52Þ

Here, Π̂OPEðM2; s0Þ is the amplitude Π̂OPEðp2Þ after the
Borel transformation and continuum subtraction procedures.
It does not differ considerably from theΠOPEðM2; s0Þ and has
the following form:

Π̂OPEðM2; s0Þ ¼
fρmρ

48π2

Z
s0

M2

dsðm2
c − sÞ
s2

× ðm4
c þm2

cms − 6mcmss − 2s2Þe−s=M2

þ fρmρΠ̂NPðM2Þ: ð53Þ

The nonperturbative term Π̂NPðM2Þ is given by the
expression

Π̂NPðM2Þ ¼ hs̄simc

12M2
ð2M2 −mcmsÞe−m2

c=M2 þ
�
αsG2

π

�
mc

144M4

Z
1

0

dx
ð1 − xÞ3 ½m

3
cxþ ð1 − xÞ

× ðm2
cms − 2msM2 −mcM2Þ�e−m2

c=½M2ð1−xÞ� þ hs̄gσGsi
72M6

ð6m4
cm3 − 6m3

cM2 − 2m2
cmsM2 −msM4Þe−m2

c=M2

þ
�
αsG2

π

�
hs̄si π

2mc

36M8
½4m3

cms − 2M2mcðmc þ 3msÞ þ 2M4�e−m2
c=M2 þ

�
αsG2

π

�
hs̄gσGsi π2mc

108M12

× ½9M6 − 60m5
cms þ 10m3

cM2ð3mc þ 7msÞ − 4M4mcð9mc þ 4msÞ�e−m2
c=M2

: ð54Þ
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Numerical computations lead to the result

jg2j ¼ ð9.8� 1.2Þ × 10−1 GeV−1: ð55Þ

The partial width of the decay M → D�þ
s ρþ is determined

by the formula

Γ2½M → D�þ
s ρþ� ¼ jg2j2m2

ρ

8π
λ̂

�
3þ 2λ̂2

m2
ρ

�
; ð56Þ

where λ̂ ¼ λðm;mD�
s
; mρÞ. Then, we get

Γ2½M → D�þ
s ρþ� ¼ ð15� 4Þ MeV: ð57Þ

The decay M → D�þK�þ can be considered in a similar
way. Omitting details, we write down predictions for
the strong coupling g3 and partial width of the process
M → D�þK�þ,

g3 ¼ ð1.5� 0.3Þ GeV−1; ð58Þ

and

Γ3½M → D�þK�þ� ¼ ð37� 10Þ MeV: ð59Þ

Information gained in this section allows us to com-
pare couplings of the current JðxÞ to different two-
meson states. It is seen that gi corresponding to vertices
MD�þK�þ, MD�þ

s ρþ, and MDþ
s π

þ obeys the inequalities
g3 > jg2j > g1. Hence, JðxÞ describes mainly the hadronic
molecule D�þK�þ, as was asserted in Sec. II. Differences
in the widths of relevant decays are connected not only
with gi, but generated also by λ factors and parameters of
produced mesons.
Using results obtained for the partial widths of the

decays considered in this section, we can estimate the full
width of the molecule M,

Γ ¼ ð123� 25Þ MeV; ð60Þ

which should be confronted with the experimental data (1).
It is seen that, although Γ and Γexp do not coincide, they are
comparable with each other provided one takes into account
errors of the measurements and theoretical analyses.

IV. CONCLUSIONS

In the present article, we have investigated features of the
hadronic molecule M ¼ D�þK�þ and calculated its mass
and width. The mass of M has been computed using the
QCD two-point sum rule method. Prediction obtained for
the mass m ¼ ð2924� 107Þ MeV is in nice agreement
with the LHCb datum for the mass of the resonance Taþþ

cs0 .
It also does not differ considerably from the mass ð2917�
135Þ MeV of the molecule D�þ

s ρþ suggested to model
Taþþ
cs0 in our paper [38].

We have evaluated the width of the molecule M by
calculating partial widths of the decay channels M →
Dþ

s π
þ, M → D�þ

s ρþ, and M → D�þK�þ. To this end, we
have found strong couplings of the particles at vertices
MDþ

s π
þ, MD�þ

s ρþ, and MD�þK�þ by means of the QCD
light-cone sum rule approach and soft-meson approximation.
The strong coupling of the hadronic moleculeM with final-
state mesons is large in the case of mesons D�þ and K�þ,
which is understandable because M is composed of these
particles. Nevertheless, the partial width of the decay M →
D�þK�þ is less than that of the decay M → Dþ

s π
þ. The

reason is that the kinematical factor λ in the expression of the
decaywidths in Eqs. (40) and (56) gets its largest value in the
processM → Dþ

s π
þ. As a result, the dominant channel ofM

is the decay to a pair of the mesons Dþ
s and πþ, which was

actually observed by the LHCb Collaboration.
The final result Γ ¼ ð123� 25Þ MeV for the full width

of the molecule M is compatible with the Γexp within the
existing experimental and theoretical errors. The estimate
for Γ may be further improved by taking into account
another decay channels of the hadronic molecule M. It
will be interesting also to compare the Γ and Γexp with
predictions for the full width of the resonance Taþþ

cs0 obtained
in the context of alternative methods. Nevertheless, based on
our present results, we may consider the hadronic molecule
M ¼ D�þK�þ as a possible candidate to the doubly charged
resonance Taþþ

cs0 .
The isoscalar partner of Taþþ

cs0 , namely, the second
resonance Ta0

cs0 with quark content cds̄ ū, may be modeled
as a linear superposition of hadronic moleculesD�0K�0 and
D�þ

s ρ−. The dominant decay channel of this state is the
process Ta0

cs0 → Dþ
s π

−. The modes Ta0
cs0 → D0K0, D�þ

s ρ−,
and D�0K�0 are other possible decay channels of Ta0

cs0.
Experimentally measured mass and width differences
between Taþþ

cs0 and Ta0
cs0 are equal to Δm ≈ 28 and

ΔΓ ≈ 15 MeV, respectively. To be accepted as a reliable
model for Ta0

cs0, the molecule picture should be successfully
confronted with the available data.
Another problem to be addressed here is similarities and

differences of the resonances Ta0=þþ
cs0 and X0ð1Þ. It has been

noted in Sec. I that X0ð1Þ are exotic mesons composed of
quarks udsc. The scalar structures Ta0

cs0 and X0 differ from
each other by quark exchanges ū ↔ u and c ↔ c̄. They are
neutral particles with masses 2892 and 2866 MeV, respec-
tively. It is seen that a mass gap between these two
structures is small. In Ref. [34], we modeled X0 as a
hadronic molecule D̄�0K�0 and found its mass equal to
2868 MeV, which is in very nice agreement with the LHCb
datum. The D̄�0K�0 and a component D�0K�0 of the
molecule model for Ta0

cs0 have almost identical structures,
therefore one expects the mass of the isoscalar state Ta0

cs0
will be consistent with experiments.
The mass difference ∼55 MeV between Taþþ

cs0 and X0 is
larger than the gap in the previous case, which is connected
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presumably with the doubly charged nature of Taþþ
cs0 . We

explored the vector resonance X1 in Ref. [35] as a diquark-
antidiquark state ½ud�½cs� and achieved reasonable agree-
ments with the LHCb data. In general, hadronic molecules
composed of two mesons may be used to model vector
particles as well. Because Taþþ

cs0 has the spin-parity
JP ¼ 0þ, in this article, we have studied only the scalar

particle D�þK�þ. Molecules with the same quark content
but different spin-parities are yet hypothetical structures.
These are interesting objects for theoretical research as well
because they may be discovered soon in various exclusive
processes. Properties of the isoscalar resonance Ta0

cs0 and
counterparts of Ta0=þþ

cs0 with different spin-parities are
issues for future investigations.
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