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Two near-threshold peaking structures with spin-parities JPC ¼ 0þþ were recently discovered by the
LHCb Collaboration in the Dþ

s D−
s invariant mass distribution of the decay Bþ → Dþ

s D−
s Kþ. The first of

them is the resonance Xð3960Þ, whereas the second one, X0ð4140Þ, is a structure with the mass around
4140 MeV. To explore their natures and model them, we study the hadronic molecule M ¼ Dþ

s D−
s and

calculate its mass, current coupling, and width. The mass and current coupling of the molecule are extracted
from the QCD two-point sum rule analyses by taking into account vacuum condensates up to dimension 10.
To evaluate its full width, we consider the processes M → Dþ

s D−
s , M → ηcη

ð0Þ, and M → J=ψϕ. Partial
widths of these decays are determined by the strong couplings gi; i ¼ 1, 2, 3, 4 at vertices MDþ

s D−
s ,

Mηcη
ð0Þ, and MJ=ψϕ. They are computed by means of the three-point sum rule method. Predictions for

the mass m ¼ ð4117� 85Þ MeV and width ΓM ¼ ð62� 12Þ MeV of the moleculeM are compared with
the corresponding LHCb data, and also with our results for the diquark-antidiquark state X ¼ ½cs�½c̄ s̄�. We
argue that the structure X0ð4140Þ may be interpreted as the hadronic molecule Dþ

s D−
s , whereas the

resonance Xð3960Þ can be identified with the tetraquark X.

DOI: 10.1103/PhysRevD.107.094018

I. INTRODUCTION

Different X resonances discovered and studied during
past years by LHCb Collaboration became important part
of exotic meson spectroscopy. Thus, the resonances
Xð4140Þ, Xð4274Þ, Xð4500Þ, and Xð4700Þ were seen in
the process Bþ → J=ψϕKþ as peaks in the J=ψϕ invariant
mass distribution [1]. The structures Xð4140Þ and Xð4274Þ
bear the quantum numbers JPC ¼ 1þþ, and in the tetra-
quark model are composed of the quarks cc̄ss̄. The
resonances Xð4500Þ and Xð4700Þ are scalar particles with
spin-parities JPC ¼ 0þþ and the same quark content. It is
worth noting that Xð4140Þ and Xð4274Þ were observed
previously in the decays B� → J=ψϕK� by different
collaborations [2–4], whereas the scalar resonances
Xð4500Þ and Xð4700Þ were discovered for the first time
by LHCb. The resonance Xð4630Þ fixed in the J=ψϕ

invariant mass distribution of the decay Bþ → J=ψϕKþ is
a vector member of the X tetraquarks’ family [5].
Recently, LHCb reported new hidden charm-strange

structures in the Dþ
s D−

s invariant mass distribution of the
decay Bþ → Dþ

s D−
s Kþ [6]. One of them, Xð3960Þ, is

presumably a tetraquark cc̄ss̄ with quantum numbers
JPC ¼ 0þþ, and the following parameters:

m1 exp ¼ ð3956� 5� 10Þ MeV;

Γ1 exp ¼ ð43� 13� 8Þ MeV: ð1Þ

This structure is approximately 20 MeV above the Dþ
s D−

s
threshold. The LHCb also found evidence for a second
structure X0ð4140Þ with the mass around 4140 MeV and
higher ∼17 MeV than the J=ψϕ threshold. The mass and
full width of this state are

m2 exp ¼ ð4133� 6� 6Þ MeV;

Γ2 exp ¼ ð67� 17� 7Þ MeV: ð2Þ

The X0ð4140Þ may be interpreted as a new resonance with
either a JPC ¼ 0þþ assignment or a J=ψϕ ↔ Dþ

s D−
s

coupled-channel effect [6]. In the present work, we assume
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that the structure X0ð4140Þ is a second resonance seen by
LHCb in the Dþ

s D−
s mass distribution.

The X resonances are interesting objects for theoretical
investigations: Features of exotic mesons cc̄ss̄were studied
in numerous articles by employing different models
and technical methods [7–14]. Some of these states have
undergone rather detailed exploration, which is also pro-
vided in our publications. Thus, the axial-vector resonances
Xð4140Þ and Xð4274Þ were analyzed in Ref. [12], in which
they were modeled as states composed of scalar and axial-
vector (anti)diquarks. In the case of Xð4140Þ the constituent
diquark (antidiquark) is the antitriplet (triplet) state of the
color group SUcð3Þ, whereas to model Xð4274Þ we used
(anti)diquarks from the sextet representation of SUcð3Þ.
Predictions for masses and full widths of these tetraquarks
were compared with the LHCb data. It turned out for masses
of the resonances Xð4140Þ and Xð4274Þ that these models
led to nice agreementswith the LHCbdata. Themodel based
on color triplet (anti)diquarks also reproduced the full width
of Xð4140Þ; therefore, it could be considered as a serious
candidate to resonance Xð4140Þ. The width of the con-
struction with color sextet constituents is wider than that of
Xð4274Þ, which excludes it from a list of possible
pretenders.
The vector resonances Yð4660Þ and Xð4630Þ were

explored in our articles (see Refs. [13,14]) as tetraquarks
½cs�½c̄ s̄� with spin-parities JPC ¼ 1−− and JPC ¼ 1−þ,
respectively. Predictions for the masses and full widths
of these states allowed us to interpret Yð4660Þ and Xð4630Þ
as exotic mesons with diquark-antidiquark composition.
The discovery of structures Xð3960Þ and X0ð4140Þ

activated investigations of hidden charm-strange resonan-
ces to account for features of these new states [15–20]. The
Xð3960Þ was considered as a coupled-channel effect [15],
or as near the Dþ

s D−
s threshold enhancement by the

conventional P-wave charmonium χc0ð2PÞ [20]. The had-
ronic Dþ

s D−
s molecule model was suggested in Ref. [17] to

explain observed properties of the resonance Xð3960Þ.
In our paper [21], we examined the tetraquark

X ¼ ½cs�½c̄ s̄� with quantum numbers JPC ¼ 0þþ and
calculated its mass and full width. The spectroscopic
parameters of X, i.e., its mass and current coupling, were
found bymeans of theQCD two-point sum rulemethod. The
full width of this state was evaluated using decay channels
X → Dþ

s D−
s and X → ηcη

ð0Þ. Predictions for the mass m ¼
ð3976� 85Þ MeV and width ΓX ¼ ð42.2� 8.3Þ MeV
obtained in Ref. [21] allowed us to consider the diquark-
antidiquark state X as an acceptable model for Xð3960Þ.
In the present article, we continue our studies of the

resonance Xð3960Þ and include in the analysis the structure
X0ð4140Þ. We investigate the hadronic molecule M ¼
Dþ

s D−
s by computing its mass, current coupling, and full

width. The mass and current coupling of this state are
calculated in the context of the QCD two-point sum rule
approach. The full width of M is estimated by considering

the decay channels M → Dþ
s D−

s , M → ηcη, M → ηcη
0,

and M → J=ψϕ. Partial widths of these processes, apart
from parameters of the initial and final particles, depend
also on strong couplings gi; i ¼ 1, 2, 3, 4 at vertices
MDþ

s D−
s , Mηcη

0, Mηcη, and MJ=ψϕ, respectively. To
extract numerical values of gi, we use the QCD three-point
sum rule method. Predictions for the mass and width
of the molecule M are compared with the LHCb data
for the resonances Xð3960Þ and X0ð4140Þ. They are also
confronted with parameters of the diquark-antidiquark
state X ¼ ½cs�½c̄ s̄�.
This paper is organized in the followingway: In Sec. II, we

compute the mass and current coupling of the molecule M
by employing the QCD two-point sum rule method. The
dominant process M → Dþ

s D−
s is considered in Sec. III,

where we determine the coupling g1 and partial width of this
decay. The decays M → ηcη

ð0Þ and M → J=ψϕ are ana-
lyzed in Sec. IV. The full width ofM is evaluated also in this
section. SectionVis reserved for discussion and summingup.

II. SPECTROSCOPIC PARAMETERS
OF THE MOLECULE M = D+

s D −
s

The mass and current coupling of the molecule
M ¼ Dþ

s D−
s can be evaluated using the QCD two-point

sum rule method [22,23]. This approach works quite well
not only for analysis of conventional particles but also leads
to reliable predictions in the case of multiquark hadrons.
The principal quantity in this method is an interpolating

current for a hadron under analysis. In the case of the
molecule Dþ

s D−
s , this current JðxÞ has a rather simple form

JðxÞ ¼ ½s̄aðxÞiγ5caðxÞ�½c̄bðxÞiγ5sbðxÞ�; ð3Þ

where a and b are color indices. This current belongs to the
½1c]s̄c⊗ ½1c]c̄s representation of the color group SUcð3Þ. It
corresponds to a molecule structure with spin-parities
JPC ¼ 0þþ, but may also couple to different diquark-
antidiquark structures and other four-quark hadronic mole-
cules [24,25].
To find sum rules for the mass m and coupling f of the

molecule M, one has to start from the calculation of the
following correlation function:

ΠðpÞ ¼ i
Z

d4xeipxh0jT fJðxÞJ†ð0Þgj0i: ð4Þ

At the first stage, we express ΠðpÞ in terms of the spectral
parameters of M. To this end, it is necessary to insert a
complete set of states with JPC ¼ 0þþ into the correlation
function ΠðpÞ and carry out integration over x. These
operations lead to the simple formula

ΠPhysðpÞ ¼ h0jJjMðpihMðpÞjJ†j0i
m2 − p2

þ � � � : ð5Þ
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The expression derived by this method is a hadronic
representation of the correlator ΠðpÞ, which forms the
phenomenological side of sum rules. The term written
down explicitly in Eq. (5) is a contribution of the ground-
state particle M, whereas contributions coming from
higher resonances and continuum states are denoted
by dots.
The function ΠPhysðpÞ can be rewritten in a more

convenient form using the matrix element

h0jJjMðpÞi ¼ fm: ð6Þ

Then, it is not difficult to find ΠPhysðpÞ in terms of the
parameters m and f,

ΠPhysðpÞ ¼ m2f2

m2 − p2
þ � � � : ð7Þ

The Lorentz structure of ΠPhysðpÞ has a simple form and
consists of a term proportional to I. Then, the invariant
amplitude ΠPhysðp2Þ corresponding to this structure
is given by the expression in the right-hand side
of Eq. (7).
The QCD side of the sum rules ΠOPEðpÞ is determined

by Eq. (4) calculated using the c and s-quarks propagators.
To this end, we insert the explicit form of JðxÞ into Eq. (4),
contract heavy and light quark fields, and write the obtained
expression using quark propagators. After these operations,
we get

ΠOPEðpÞ ¼ i
Z

d4xeipxTr½γ5Saa0c ðxÞγ5Sa0as ð−xÞ�

× Tr½γ5Sb0bc ð−xÞγ5Sbb0s ðxÞ�: ð8Þ

Here ScðxÞ and SsðxÞ are the c and s-quark propagators,
explicit expressions of which can be found in Ref. [26].
The correlation function ΠOPEðpÞ is calculated by

employing the quark propagators with some fixed accuracy
of the operator product expansion (OPE). The ΠOPEðpÞ
has a trivial Lorentz structure ∼I as well. Having denoted
the corresponding invariant amplitude by ΠOPEðp2Þ and
equated it to ΠPhysðp2Þ, we get a sum rule equality, which
can undergo further processing. The ground-state term and
ones due to higher resonances and continuum states
contribute to this sum rule equality on equal footing.

There is a necessity to suppress unwanted contributions
of higher resonances and subtract them from this
expression. For these purposes, we apply the Borel trans-
formation to both its sides. This operation suppresses
effects of higher resonances and continuum states, but at
the same time generates dependence of the obtained
equality on the Borel parameter M2. Afterwards, using
the assumption about quark-hadron duality, we perform
continuum subtraction, which leads to additional parameter
s0 in formulas.
The Borel transformation of the main term in ΠPhysðp2Þ

has a simple form,

ΠPhysðM2Þ ¼ m2f2e−m
2=M2

: ð9Þ

For the Borel transformed and subtracted amplitude
ΠOPEðp2Þ, we find

ΠðM2; s0Þ ¼
Z

s0

4ðmcþmsÞ2
dsρOPEðsÞe−s=M2 þ ΠðM2Þ: ð10Þ

The first term in Eq. (10) contains an essential part of
contributions and is expressed using the two-point
spectral density ρOPEðsÞ, derived as an imaginary part
of the correlation function. The second term ΠðM2Þ
collects nonperturbative contributions extracted directly
from ΠOPEðpÞ.
The sum rules for m and f read

m2 ¼ Π0ðM2; s0Þ
ΠðM2; s0Þ

ð11Þ

and

f2 ¼ em
2=M2

m2
ΠðM2; s0Þ; ð12Þ

where Π0ðM2; s0Þ ¼ dΠðM2; s0Þ=dð−1=M2Þ.
Numerical calculations of m and f should be performed

in accordance with Eqs. (11) and (12), but only after
fixing different vacuum condensates and working
windows for the parameters M2 and s0. The quark, gluon,
and mixed condensates are universal and well-known
quantities [22,23,27–29]. Their numerical values, extracted
from numerous processes are listed below:

hq̄qi ¼ −ð0.24� 0.01Þ3 GeV3; hs̄si ¼ ð0.8� 0.1Þhq̄qi;
hs̄gsσGsi ¼ m2

0hs̄si; m2
0 ¼ ð0.8� 0.1Þ GeV2;�

αsG2

π

�
¼ ð0.012� 0.004Þ GeV4;

hg3sG3i ¼ ð0.57� 0.29Þ GeV6;

mc ¼ ð1.27� 0.02Þ GeV; ms ¼ 93þ11
−5 MeV: ð13Þ
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We have included the masses of the c and s-quarks into
Eq. (13) as well. The correlation function ΠðM2; s0Þ is
calculated by taking into account vacuum condensates up
to dimension ten. The expression of ΠðM2; s0Þ is rather
lengthy; therefore, we do not provide it here explicitly. In
numerical analysis we set m2

s ¼ 0, but take into account
contributions proportional to ms.
To carry out numerical analysis one also needs to choose

working regions for the Borel and continuum subtraction
parameters M2 and s0. They should satisfy standard
constraints of sum rule calculations. Thus, the parameters
M2 and s0 employed in calculations have to guarantee the
dominance of the pole contribution (PC) and convergence
of OPE. The former can be defined by the expression

PC ¼ ΠðM2; s0Þ
ΠðM2;∞Þ ; ð14Þ

whereas to make sure the operator product expansion
converges, we utilize the ratio

RðM2Þ ¼ ΠDimNðM2; s0Þ
ΠðM2; s0Þ

; ð15Þ

where ΠDimNðM2; s0Þ is a sum of a few last terms in OPE.
The RðM2Þ and PC are used to restrict the lower and

upper bounds for the Borel parameter, respectively. In fact,
at M2

min the function RðM2
minÞ should be less than some

fixed value, whereas at M2
max the pole contribution PC has

to overshoot the minimally acceptable limit for this
parameter. In our present analysis, we impose on PC
and RðM2Þ the following constraints:

PC ≥ 0.5; RðM2
minÞ ≤ 0.05: ð16Þ

The first criterion in Eq. (16) is usual for investigations of
conventional hadrons and ensures the dominance of the
pole contribution. It may be used in the analysis of
multiquark hadrons as well. But in the case of multiquark
particles this constraint reduces a window for M2. The
second condition is required to enforce the convergence
of OPE.
Dominance of a perturbative contribution to ΠðM2; s0Þ

over a nonperturbative term, as well as maximum stability
of extracted physical quantities when varyingM2, is among
constraints to determine working regions for the parameters
M2 and s0. Numerical tests carried out by taking into
account these aspects of the sum rule analysis demonstrate
that the windows for M2 and s0,

M2 ∈ ½3; 4� GeV2; s0 ∈ ½21; 22� GeV2; ð17Þ

comply with aforementioned restrictions. Indeed, at M2 ¼
4 GeV2 the pole contribution on average in s0 equals

0.52 and amounts to 0.88 at M2 ¼ 3 GeV2. To visualize
dynamics of the pole contribution, in Fig. 1 we depict PC as
a function of M2 at different s0. One can see that the pole
contribution overshoots 0.5 for all values of the parameters
M2 and s0 from Eq. (17).
To be convinced in convergence of OPE, we calculate

RðM2
minÞ at the minimum point M2

min ¼ 3 GeV2 using in
Eq. (15) dimension-eight, -nine, and -ten contributions. At
the minimal value of M2, we find Rð3 GeV2Þ ≈ 0.01 in
accordance with the constraint from Eq. (17). Results of a
more detailed analysis are shown in Fig. 2, where one sees
contributions to the correlation function ΠðM2; s0Þ arising
from the perturbative and nonperturbative terms up to
dimension eight. The perturbative contribution forms the
0.65 part of ΠðM2; s0Þ at M2 ¼ 3 GeV2 and exceeds the
sum of nonperturbative terms in the whole region of M2.
The Dim3 term overshoots effects of other nonperturbative
operators, which enter to ΠðM2; s0Þ with different signs.
The Dim9 and Dim10 terms are numerically very small and
not demonstrated in the figure.
Our predictions for the mass m and coupling f read

m ¼ ð4117� 85Þ MeV;

f ¼ ð5.9� 0.7Þ × 10−3 GeV4: ð18Þ

The results for m and f are calculated as their values
averaged over the working regions Eq. (17). Effectively
they correspond to the sum rule predictions at M2 ¼
3.5 GeV2 and s0 ¼ 21.5 GeV2, which is a middle point
of the regions of Eq. (17): the red triangle in Fig. 1 marks
exactly this point. The pole contribution there is equal to
PC ≈ 0.68, which in conjunction with other constraints
ensures the ground-state nature of the molecule Dþ

s D−
s and

credibility of obtained predictions.
In Fig. 3, we depict the massm of the moleculeDþ

s D−
s as

a function of the Borel and continuum subtraction para-
meters. Physical quantities obtained from the sum rule
analysis should be stable against variations of the Borel
parameter. But the mass m depends on working windows
chosen for their calculations. In fact, although the region for
the Borel parameter M2 leads to an approximately stable
prediction for m, there is still residual dependence on it.
This effect generates theoretical uncertainties of the sum
rule calculations. It is worth noting that the uncertainties of
m are smaller than ones for the coupling f. The reason is
that the mass m is given by the ratio of the correlation
functions which compensates changes of m againstM2 and
s0. The coupling f, at the same time, depends on ΠðM2; s0Þ
and is open for an impact of the parameters M2 and s0.
As a result, uncertainties of calculations are equal to �2%
in the case of the mass, and to �12% for the current
coupling.
The region for s0 together with M2 has to provide the

dominance of PC and convergence of the operator product
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expansion. The parameter
ffiffiffiffiffi
s0

p
also carries useful informa-

tion on a mass m� of the first radial excitation of the
molecule Dþ

s D−
s . Thus, in the “ground-state +continuum”

scheme adopted in the present work,
ffiffiffiffiffi
s0

p
should be less

than the mass m� of the first excited state. This fact allows
us to estimate the low limit for m� ≥ mþ 480 MeV.
Our result for the mass of the molecule M overshoots

the LHCb datum m1 exp, but nicely agrees with m2 exp.

III. PARTIAL WIDTH OF THE PROCESS
M → D +

s D−
s

The mass and current coupling of the molecule M
calculated in the previous section provide information to
select its possible decay modes. Besides, one should take
into account its quantum numbers JPC ¼ 0þþ. Because the
structures Xð3960Þ and X0ð4140Þ were discovered in the
invariant mass distribution of the Dþ

s D−
s mesons, we

consider M → Dþ
s D−

s as a dominant decay mode of M.
The two-meson threshold for this decay is equal approx-
imately to 3937 MeV, which makes M → Dþ

s D−
s the

kinematically allowed channel for M.
The partial width of the decayM → Dþ

s D−
s is governed

by a coupling g1 that describes strong interaction at the
vertex MDþ

s D−
s . This partial width depends also on

masses and decay constants of the molecule M and
mesons Dþ

s and D−
s . The mass and current coupling of

M have been calculated in the present article, whereas
physical parameters of the mesons Dþ

s and D−
s are known

from independent sources. Therefore, the only physical
quantity to be found is the strong coupling g1.
To determine g1, we employ the QCD three-point sum

rule method and begin our exploration from the correlation
function

Πðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞh0jT fJDþ
s ðyÞ

× JD
−
s ð0ÞJ†ðxÞgj0i: ð19Þ

FIG. 3. Mass m of the molecule M as a function of the Borel M2 (left panel), and continuum threshold s0 parameters
(right panel).

FIG. 2. Normalized contributions to ΠðM2; s0Þ as functions
of the Borel parameter M2. All curves have been calculated at
s0 ¼ 21.5 GeV2.

FIG. 1. Dependence of the pole contribution PC on the Borel
parameter M2 at different s0. The limit PC ¼ 0.5 is shown by the
horizontal black line. The red triangle shows the point where the
mass m of the molecule M ¼ Dþ

s D−
s has effectively been

calculated.
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Here, JðxÞ, JD
þ
s ðyÞ, and JD

−
s ð0Þ are the interpolating

currents for M and pseudoscalar mesons Dþ
s and D−

s ,
respectively. The currents JD

þ
s and JD

−
s are given by the

expressions

JD
þ
s ðxÞ ¼ s̄jðxÞiγ5cjðxÞ;

JD
−
s ðxÞ ¼ c̄iðxÞiγ5siðxÞ; ð20Þ

where i and j are color indices. The four-momenta of M
and Dþ

s are labeled by p and p0: Then, the momentum of
the meson D−

s is equal to q ¼ p − p0.
To find g1, we apply standard recipes of the sum rule

method and calculate the correlation function Πðp; p0Þ.
For these purposes, we use the physical parameters of
the molecule M and mesons involved in this decay. The
correlator Πðp; p0Þ obtained by this manner forms the
physical side ΠPhysðp; p0Þ of the sum rule. It is easy to see
that

ΠPhysðp;p0Þ ¼ h0jJDþ
s jDþ

s ðp0Þih0jJD−
s jD−

s ðqÞi
ðp02 −m2

Ds
Þðq2 −m2

Ds
Þ

×
hD−

s ðqÞDþ
s ðp0ÞjMðpÞihMðpÞjJ†j0i

ðp2 −m2Þ
þ � � � ; ð21Þ

withmDs
being the mass of the mesonsD�

s . To get Eq. (21),
we isolate contributions of the ground-state and higher
resonances and continuum state particles from each other.
In Eq. (21) the ground-state term is written down explicitly,
whereas other contributions are denoted by ellipses.
The functionΠPhysðp; p0Þ can be rewritten in terms of the

D�
s mesons matrix elements

h0jJD�
s jD�

s i ¼
m2

Ds
fDs

mc þms
; ð22Þ

where fDs
is their decay constant. We model the vertex

MDþ
s D−

s by the matrix element

hD−
s ðqÞDþ

s ðp0ÞjMðpÞi ¼ g1ðq2Þp · p0: ð23Þ

Using these expressions, it is not difficult to calculate the
new expression of the correlation function ΠPhysðp; p0Þ,

ΠPhysðp; p0Þ ¼ g1ðq2Þ
m4

Ds
f2Ds

fm

ðmc þmsÞ2ðp2 −m2Þ
×

1

ðp02 −m2
Ds
Þðq2 −m2

Ds
Þ

×
m2 þm2

Ds
− q2

2
þ � � � : ð24Þ

The double Borel transformation of the function
ΠPhysðp; p0Þ over variables p2 and p02 is given by the
formula

BΠPhysðp; p0Þ ¼ g1ðq2Þ
m4

Ds
f2Ds

fm

ðmc þmsÞ2ðq2 −m2
Ds
Þ e

−m2=M2
1

× e−m
2
Ds
=M2

2

m2 þm2
Ds

− q2

2
þ � � � : ð25Þ

The correlator ΠPhysðp; p0Þ and its Borel transformation
has simple Lorentz structure ∼I. Then the whole expres-
sion in Eq. (24) determines the invariant amplitude
ΠPhysðp2; p02; q2Þ.
To find the QCD side of the three-point sum rule, we

express Πðp; p0Þ in terms of quark propagators and get

ΠOPEðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞ

× Tr½γ5Siac ðy − xÞγ5Sais ðx − yÞ�
× Tr½γ5Sjbs ð−xÞγ5Sbjc ðxÞ�: ð26Þ

The correlator ΠOPEðp; p0Þ is computed by taking into
account nonperturbative contributions up to dimension 6,
and as ΠPhysðp; p0Þ, contains the Lorentz structure propor-
tional to I. Denoting relevant invariant amplitude by
ΠOPEðp2; p02; q2Þ, equating its double Borel transformation
BΠOPEðp2; p02; q2Þ to BΠPhysðp2; p02; q2Þ, and performing
continuum subtraction, we get the sum rule for the
coupling g1ðq2Þ.
After thesemanipulations, the amplitudeΠOPEðp2; p02; q2Þ

can be rewritten using the spectral density ρðs; s0; q2Þ,
which is extracted as an imaginary part of ΠOPEðp; p0Þ,

ΠðM2; s0; q2Þ ¼
Z

s0

4ðmcþmsÞ2
ds

Z
s0
0

ðmcþmsÞ2
ds0ρðs; s0; q2Þ

× e−s=M
2
1e−s

0=M2
2 ; ð27Þ

TABLE I. Masses and decay constants of the mesonsD�
s , ηc, η0,

η, J=ψ , and ϕ which are employed in numerical calculations.

Quantity Value [in MeV units]

mDs
1969.0� 1.4

mηc 2983.9� 0.4
mη0 957.78� 0.06
mη 547.862� 0.017
mJ=ψ 3096.900� 0.006
mϕ 1019.461� 0.019
fDs

249.9� 0.5
fηc 320� 40

fJ=ψ 409� 15

fϕ 228.5� 3.6
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where M2 ¼ ðM2
1;M

2
2Þ and s0 ¼ ðs0; s00Þ are the Borel and

continuum threshold parameters. The couples ðM2
1; s0Þ and

s0 ¼ ðM2
2; s

0
0Þ correspond to the moleculeM and Dþ

s meson
channels, respectively.
The sum rule for g1ðq2Þ is determined by the formula

g1ðq2Þ ¼
2ðmc þmsÞ2
m4

Ds
f2Ds

fm

q2 −m2
Ds

m2 þm2
Ds

− q2

× em
2=M2

1em
2
Ds
=M2

2ΠðM2; s0; q2Þ: ð28Þ

The expression of g1ðq2Þ depends on the spectroscopic
parameters of the molecule M, as well as the masses
and decay constants of the mesons D�

s : they are input
parameters of numerical computations. Values of these
parameters as well as masses and decay constants fDs

, fηc ,
fϕ, and fJ=ψ that are necessary to study other decays are
collected in Table I. The masses all of mesons are borrowed
from Ref. [30]. For the decay constant of the mesons D�

s ,
we employ information from the same source, whereas for
fηc we use a prediction made in Ref. [31] on the basis of the
sum rule method. As the decay constants fϕ and fJ=ψ of the
vector mesons ϕ and J=ψ , we utilize the experimental
values reported in Refs. [32,33], respectively.
The partial width of the decay M → Dþ

s D−
s besides

various input parameters also is determined by the strong
coupling g1ðm2

Ds
Þ at the mass shell q2 ¼ m2

Ds
of the meson

D−
s . At the same time, the sum rule computations of g1 can

be carried out in the deep-Euclidean region q2 < 0. For
simplicity, we introduce a variable Q2 ¼ −q2 and in what
follows label the obtained function by g1ðQ2Þ. An explored
range of Q2 covers the region Q2 ¼ 1–5 GeV2.
Numerical calculations also require choosing the work-

ing regions for the Borel and continuum subtraction
parameters M2 and s0. Limits imposed on M2 and s0
are standard for sum rule calculations and were considered
in the previous section. The regions for M2

1 and s0
associated with the M channel are fixed in accordance
with Eq. (17). The parameters ðM2

2; s
0
0Þ for the Dþ

s meson
channel are varied within limits

M2
2 ∈ ½2.5; 3.5� GeV2; s00 ∈ ½5; 6� GeV2: ð29Þ

Regions for M2 and s0 are chosen in such a way to
minimize their effects of the coupling g1ðQ2Þ.
Results of computations are pictured in Fig. 4. It is seen

that results for g1ðQ2Þ are extracted at the region Q2 > 0,
where the sum rule gives reliable predictions. It has just
been explained above that we need g1ðQ2Þ at Q2 ¼ −m2

Ds
.

To this end, one has to introduce some fit function G1ðQ2Þ,
which at the momenta Q2 > 0 gives the same values as the
sum rule computations, but can easily be extrapolated to the
region Q2 < 0. There are different choices for such
functions. In this article, we use GiðQ2Þ, i ¼ 1, 2, 3,

GiðQ2Þ ¼ G0
i exp

�
c1i

Q2

m2
þ c2i

�
Q2

m2

�
2
�
; ð30Þ

where G0
i , c

1
i , and c2i are parameters, which should be

extracted from fitting procedures. Calculations demonstrate
that G0

1 ¼ 1.29 GeV−1, c11 ¼ 2.38, and c21 ¼ −1.84
lead to a reasonable agreement with the sum rule’s data
(see Fig. 4).
At the mass shell q2 ¼ m2

Ds
this function gives

g1 ≡ G1ð−m2
Ds
Þ ¼ ð6.8� 1.6Þ × 10−1 GeV−1: ð31Þ

The width of the decay M → Dþ
s D−

s is calculated by
means of the formula

Γ½M → Dþ
s D−

s � ¼ g21
m2

Ds
λ

8π

�
1þ λ2

m2
Ds

�
; ð32Þ

where λ ¼ λðm;mDs
; mDs

Þ and

λða; b; cÞ ¼ 1

2a
½a4 þ b4 þ c4 − 2ða2b2 þ a2c2 þ b2c2Þ�1=2:

ð33Þ

Using the coupling Eq. (31), it is not difficult to compute
the width of the decay M → Dþ

s D−
s ,

Γ½M → Dþ
s D−

s � ¼ ð46.5� 11.6Þ MeV: ð34Þ

IV. DECAYS M → ηcη0, M → ηcη, AND M → J=ψϕ

Other processes that we study here are decays
M → ηcη

0, M → ηcη, and M → J=ψϕ. The two-meson
threshold 3941 MeV for the first two decays is below the

FIG. 4. The sum rule results and fit function for the
strong coupling g1ðQ2Þ. The red diamond denotes the point
Q2 ¼ −m2

Ds
.
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mass m of the molecule M. The threshold for the decay
M → J=ψϕ is less than m as well. It is easy to prove that
these processes conserve the P and C parities of the initial
particle M.

A. M → ηcη0 and M → ηcη

The decays M → ηcη
0 and M → ηcη are studied by a

method described above. But, here we take into account
peculiarities of the η − η0 mesons connected with mixing
in this system due to the Uð1Þ anomaly [34]. This
effect modifies a choice of interpolating currents and
matrix elements for these particles. Although η − η0 mixing
can be considered in different approaches, we use the
quark-flavor basis jηqi ¼ ðūuþ d̄dÞ= ffiffiffi

2
p

and jηsi ¼ s̄s,
where the physical particles η and η0 have simple decom-
positions [34–36]

η ¼ jηqi cosφ − jηsi sinφ;
η0 ¼ jηqi sinφþ jηsi cosφ; ð35Þ

where φ is the mixing angle in the fjηqi; jηsig basis. Such
state mixing implies that the same assumption is applicable
to their currents, decay constants, and matrix elements.
Because in the decaysM → ηcη

0, ηcη participate only s̄s
components of the mesons η and η0, relevant interpolating
currents are given by the expressions

JηðxÞ ¼ − sinφs̄jðxÞiγ5sjðxÞ;
Jη

0 ðxÞ ¼ cosφs̄jðxÞiγ5sjðxÞ; ð36Þ

where j is the color index.
We start our analysis from the processM → ηcη

0. Then,
we should consider the correlation function

Π̃ðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞh0jT fJηcðyÞ

× Jη
0 ð0ÞJ†ðxÞgj0i; ð37Þ

where JηcðyÞ is the interpolating current of the meson ηc

JηcðxÞ ¼ c̄iðxÞiγ5ciðxÞ: ð38Þ

The main contribution to the correlation function Π̃ðp; p0Þ
has the following form:

Π̃Physðp; p0Þ ¼ h0jJηc jηcðp0Þih0jJη0 jη0ðqÞi
ðp02 −m2

ηcÞðq2 −m2
η0 Þ

×
hη0ðqÞηcðp0ÞjMðpÞihMðpÞjJ†j0i

ðp2 −m2Þ þ � � � ;

ð39Þ

where the ellipses stand for contributions of higher reso-
nances and continuum states. The function Π̃Physðp; p0Þ
can be rewritten using the matrix elements

h0jJηc jηci ¼
m2

ηcfηc
2mc

;

2mshη0js̄iγ5sj0i ¼ hsη0 ; ð40Þ

wheremηc and fηc are the mass and decay constant of the ηc
meson. The matrix element of local operator s̄iγ5s sand-
wiched between the meson η0 and vacuum states is denoted
by hsη0 [35]. The parameter hsη0 follows the η − η0 state-
mixing pattern, and we get

hsη0 ¼ hs cosφ: ð41Þ

The parameter hs can be defined theoretically [35], but for
our purposes it is enough to use values of hs and φ extracted
from phenomenological analyses

hs ¼ ð0.087� 0.006Þ GeV3;

φ ¼ 39.3°� 1.0°: ð42Þ

The vertex Mηcη
0 has the following form:

hη0ðqÞηcðp0ÞjMðpÞi ¼ g2ðq2Þp · p0; ð43Þ

where g2 is the strong coupling at the vertex Mηcη
0. By

employing these matrix elements, we obtain a new expres-
sion for Π̃Physðp; p0Þ:

Π̃Physðp; p0Þ ¼ g2ðq2Þ
fmm2

ηc fηc hs cos
2φ

4mcmsðp2 −m2Þ

×
1

ðp02 −m2
ηcÞðq2 −m2

η0 Þ
m2 þm2

ηc − q2

2

þ � � � : ð44Þ

The QCD side of the sum rule for g2ðq2Þ is given by the
formula

Π̃OPEðp; p0Þ ¼ − cosφ
Z

d4xd4yeiðp0y−pxÞ

× Tr½γ5Siac ðy − xÞγ5Sais ðx − yÞ�
× Tr½γ5Sjbs ð−xÞγ5Sbjc ðx − yÞ�: ð45Þ

The sum rule for the coupling g2ðq2Þ is obtained
using the Borel transformations of invariant amplitudes
Π̃Physðp2; p02; q2Þ and Π̃OPEðp2; p02; q2Þ and is equal to
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g2ðq2Þ ¼ −
8mcms

fmm2
ηc fηc hs cosφ

q2 −m2
ηc

m2 þm2
ηc − q2

× em
2=M2

1em
2
ηc =M

2
2Π̃ðM2; s0; q2Þ: ð46Þ

Here, Π̃ðM2; s0; q2Þ is the Borel transformed and sub-
tracted amplitude Π̃OPEðp2; p02; q2Þ.
The coupling g1ðq2Þ is calculated using the following

Borel and continuum threshold parameters in the ηc channel

M2
2 ∈ ½3; 4� GeV2; s00 ∈ ½9.5; 10.5� GeV2; ð47Þ

whereas for the M channel, we employ M2
1 and s0 from

Eq. (17). The strong coupling g2 is defined at the mass shell
of the η0 meson. The fit function G2ðQ2Þ given by Eq. (30)
has the parameters G0

2 ¼ 0.21 GeV−1, c12 ¼ 5.08, and
c22 ¼ −4.04. Computations yield

g2 ≡ G2ð−m2
η0 Þ ¼ ð1.6� 0.3Þ × 10−1 GeV−1: ð48Þ

The partial width of this decay can be evaluated
using the formula Eq. (32), in which one should make
substitutions g1 → g2, m2

Ds
→ m2

ηc , and λðm;mDs
; mDs

Þ →
λ̃ðm;mηc ; mη0 Þ. Then, for the width of the decayM → ηcη

0,
we find

Γ½M → ηcη
0� ¼ ð4.9� 1.1Þ MeV: ð49Þ

Analysis of the decay M → ηcη can be performed in a
similar manner. Avoiding further details, let us write down
the predictions obtained for key quantities. Thus, the strong
coupling g3 at the vertex Mηcη is given by the formula

g3 ≡ jG3ð−m2
ηÞj ¼ ð1.5� 0.3Þ × 10−1 GeV−1; ð50Þ

where parameters of the fit function are G0
3 ¼

−0.17 GeV−1, c13 ¼ 7.29, and c23 ¼ −7.33. The width of
the decay M → ηcη is

Γ½M → ηcη� ¼ ð7.7� 1.8Þ MeV: ð51Þ

B. M → J=ψϕ

The process M → J=ψϕ is the kinematically allowed
decay channel of the molecule M. The hadronic molecule
M can decay also to J=ψω mesons, because through a
mixing phenomenon ω acquires a strange-quark compo-
nent. As in the case of η and η0 mesons, the ω − ϕ mixing
can be defined in the following form:

ω ¼ jq̄qi cos ψV − js̄si sin ψV;

ϕ ¼ jq̄qi sin ψV þ js̄si cos ψV; ð52Þ

where jq̄qi and js̄si are vector counterparts of the basic
states jηqi and jηsi, and ψV is the ω − ϕ mixing angle. But
in contrast to φ, the mixing angle ψV is numerically very
small [37],

ψV ¼ ð3.32� 0.09Þ°: ð53Þ

As a result, a js̄si component of the meson ω is small as
well. In other words, the ϕ and ω mesons are almost purely
strange and nonstrange vector particles, respectively.
Therefore, we consider only the decay M → J=ψϕ and
neglect the contribution to the full width of M coming
from the process M → J=ψω.
The correlation function to be examined in the case of

decay M → J=ψϕ is

Π̂μνðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞh0jT fJJ=ψμ ðyÞ

× Jϕν ð0ÞJ†ðxÞgj0i; ð54Þ

where JJ=ψμ and Jϕν are interpolating currents for the vector
mesons J=ψ and ϕ, respectively. As is seen, the momenta
of the molecule M and meson J=ψ are equal to p and p0,
respectively. Consequently, the momentum of the ϕ meson
is q ¼ p − p0.
The interpolating currents JJ=ψμ and Jϕν are defined by the

following expressions:

JJ=ψμ ðxÞ ¼ c̄iðxÞγμciðxÞ;
Jϕν ðxÞ ¼ s̄jðxÞγνsjðxÞ: ð55Þ

To find the physical side of the sum rule, we express
Π̂μνðp; p0Þ using parameters of the involved particles
through their matrix elements

h0jJJ=ψμ jJ=ψðp0Þi ¼ fJ=ψmJ=ψεμðp0Þ;
h0jJϕν jϕðqÞi ¼ fϕmϕενðqÞ: ð56Þ

For the vertex hϕ0ðqÞJ=ψðp0ÞjMðpÞi, we employ the
matrix element

hϕ0ðqÞJ=ψðp0ÞjMðpÞi ¼ g4ðq2Þ½p0 · ε�ðqÞ
× q · ε�ðp0Þ− p0 · qε�ðqÞ · ε�ðp0Þ�:

ð57Þ

In the formulas above, mJ=ψ , mϕ, fJ=ψ , fϕ, and εμðp0Þ,
ενðqÞ are the masses, decay constants, and polarization
vectors of the mesons JJ=ψμ and Jϕν , respectively. The strong
coupling g4 in Eq. (57) corresponds to the vertexMJ=ψϕ.
Then the physical side Π̂Phys

μν ðp; p0Þ of the sum rule takes
the form
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Π̂Phys
μν ðp; p0Þ ¼ −g4ðq2Þ

mmJ=ψmϕffJ=ψfϕ
ðp2 −m2Þðp02 −m2

J=ψÞ

×
1

ðq2 −m2
ϕÞ

�
m2 −m2

J=ψ − q2

2
gμν − p0

νqμ

�

þ � � � : ð58Þ

The same correlation function in terms of quark propa-
gators is given by the formula

Π̂OPE
μν ðp; p0Þ ¼ i2

Z
d4xd4yeiðp0y−pxÞ

× Tr½γμSiac ðy − xÞγ5Sajs ðxÞγν
× Sjbs ð−xÞγ5Sbic ðx − yÞ�: ð59Þ

Remaining operations with functions Π̂Phys
μν ðp; p0Þ and

Π̂OPE
μν ðp; p0Þ are standard manipulations of the sum rule

analysis. Let us note only that the sum rule for g4 is derived
using invariant amplitudes which correspond to structures
∼gμν in these correlators. In numerical analysis the second
pair of the parameters ðM2

2; s
0
0Þ related to the J=ψ channel is

chosen as

M2
2 ∈ ½3; 4� GeV2; s00 ∈ ½11; 12� GeV2: ð60Þ

The strong coupling g4 is determined at the mass shell of
the ϕ meson, i.e., at q2 ¼ m2

ϕ.
Our computations yield

g4 ≡ G4ð−m2
ϕÞ ¼ ð6.7� 1.2Þ × 10−1 GeV−1: ð61Þ

The parameters of the fit function are G0
4 ¼ 0.66 GeV−1,

c14 ¼ −0.09, and c24 ¼ −0.02.
The width of the decay M → J=ψϕ is equal to

Γ½M → J=ψϕ� ¼ ð2.6� 0.6Þ MeV: ð62Þ

Then, it is not difficult to find the full width of M,

ΓM ¼ ð62� 12Þ MeV: ð63Þ

The width of the hadronic molecule M, within errors of
calculations and measurements, agrees with the LHCb
datum from Eq. (2).

V. DISCUSSION AND SUMMING UP

In this work, we have calculated the mass and width of
the scalar molecule M ¼ Dþ

s D−
s in the framework of the

QCD sum rule methods. The mass of M has been
evaluated using the two-point sum rule approach. The full
width of M has been computed by taking into account
decay modesM → Dþ

s D−
s ,M → ηcη

ð0Þ, andM → J=ψϕ.

Strong couplings gi that determine the width of these
decays have been found in the framework of the three-point
sum rule method.
Our result for the mass m ¼ ð4117� 85Þ MeV of the

molecule M exceeds considerably the corresponding
LHCb datum m1 exp, but is consistent with m2 exp. It is
evident that M is significantly heavier than the resonance
Xð3960Þ, which makes problematic its interpretation as
Xð3960Þ. The full width ΓM ¼ ð62� 12Þ MeV of M is
consistent with the LHCb measurement Γ2 exp as well.
The resonance Xð3960Þwas examined in our article [21]

as the tetraquark X ¼ ½cs�½c̄ s̄� with quantum numbers
JPC ¼ 0þþ. We obtained the following predictions for
the parameters of X: the mass m ¼ ð3976� 85Þ MeV
and the width ΓX ¼ ð42.2� 8.3Þ MeV. The parameters
of the diquark-antidiquark state X are in nice agreement
with the LHCb data given by Eq. (1); therefore, in
Ref. [21], it was identified with the resonance Xð3960Þ.
In both the molecule and diquark-antidiquark pictures

dominant decay modes of the scalar four-quark meson c̄cs̄s
are channels M → Dþ

s D−
s and X → Dþ

s D−
s , respectively.

Decays of molecular-type resonances to constituent mesons
by falling apart are, naturally, preferable channels for such
states. The interpolating current forM given by Eq. (3) has
an explicitly Dþ

s D−
s type structure. Therefore, it couples

mainly to the physical mesons Dþ
s and D−

s . But the current
JðxÞ couples also to other two-meson states. Formally, this
can be demonstrated using Fierz transformations of JðxÞ.
To this end, it is convenient to rewrite it in the following
form:

J ¼ δamδbn½s̄aiγ5cm�½c̄biγ5sn�: ð64Þ

After Fierz transformation it contains the following com-
ponents:

JðxÞ ¼ δamδbn
4

f½s̄aγμsn�½c̄bγμcm� − ½s̄asn�½c̄bcm�
þ ½s̄aiγ5sn�½c̄biγ5cm� þ � � �g; ð65Þ

where the ellipses stand for axial-vector and tensor struc-
tures. Then, rearranging the color indices by means of the
equality

δamδbn ¼ δanδbm þ ϵabkϵmnk; ð66Þ

with ϵijk being the Levi-Civita epsilon, we find

JðxÞ ¼ 1

4
f½s̄aγμsa�½c̄bγμcb� − ½s̄asa�½c̄bcb�

þ ½s̄aiγ5sa�½c̄biγ5cb� þ � � �g: ð67Þ

The terms above are S-S, V-V, and PS-PS type interpolating
currents that couple to relevant meson pairs. For example,
V-V and PS-PS currents couple to J=ψϕ, J=ψω, ψ 0ϕ, and
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ηcη
ð0Þ meson pairs (this list can be extended), respectively.

Relative significance of the JðxÞ current’s components can
be seen by comparing strong couplings at vertices
MDþ

s D−
s , Mηcη

ð0Þ, MJ=ψϕ, etc., because only relevant
components of JðxÞ contribute to three-point correlators.
From a chain of inequalities g1 > g4 > g2 > g3, it is clear
that JðxÞ couples dominantly to Dþ

s D−
s and J=ψϕ mesons.

Smallness of the partial width Γ½M → J=ψϕ� is connected
with parameters (masses, decay constants) and quantum
numbers JPC ¼ 1−− of the final-state mesons.
In its turn, a diquark-antidiquark current can be

expressed in terms of molecule currents [24,25]. Now,
comparing strong couplings of the diquark-antidiquark
state X ¼ ½cs�½c̄ s̄� with mesons Dþ

s D−
s and ηcη

ð0Þ, we see
that G > g1 > g2 [21]. In general, one might explore the
vertex XJ=ψω and evaluate corresponding coupling, but
the contribution of the decay X → J=ψω [X → J=ψϕ is
forbidden kinematically] to ΓX would be negligible.

Summing up, we can state that decays to Dþ
s D−

s are
dominant channels for both the diquark-antidiquark struc-
ture X and the hadronic molecule M: The resonances
Xð3960Þ and X0ð4140Þ were discovered in theDþ

s D−
s mass

distribution.
In the context of the sum rule approach the mole-

cule Dþ
s D−

s was also studied in Ref. [17]. In accordance
with this paper, the mass of such a hadronic molecule is
equal to ð3980� 100Þ MeV and agrees with the
LHCb data. It is worth noting that the authors did not
analyze quantitatively the width of this state. Our results
for parameters of M, even within existing errors of
calculations, does not support molecule assignment
for Xð3960Þ.
By taking into account predictions for the mass m and

full width ΓM of the moleculeM ¼ Dþ
s D−

s obtained in the
present work, we argue that the molecule M may be a
candidate to the structure X0ð4140Þ.
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