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Using a simple eikonal approach to the treatment of Coulomb-nuclear interference and form-factors
effects and taking into account the curvature effects in high-energy pp and p̄p scattering, we determine the
basic parameters B, ρ, and σtot from fits to experiment atW ¼ ffiffiffi

s
p ¼ 53 GeV, 62.3 GeV, 8 TeV, and 13 TeV.

We then investigate the differential cross sections in the dip region for pp and p̄p elastic scattering at
W ¼ 53 GeV and 1.96 TeV. We find that the results of the basic parameters calculated using the simple
eikonal approach agree well with the values determined in other analyses. We also find that Coulomb
effects are significant in the dip region at 53 GeVand 1.96 TeV, and must be taken into account in searches
for odderon effects through cross section differences in that energy region.

DOI: 10.1103/PhysRevD.107.094016

I. INTRODUCTION

In a recent paper [1], we presented an analysis of the
Coulomb and form-factor effects in pp scattering based on
an eikonal model for the spin-averaged pp scattering
amplitude. We note that the study of the Coulomb-nuclear
interference and its use to extract ρ has a long history [ [2–8]
and many others] and that the general nucleon-nucleon
scattering theory is reviewed in [9,10] and the status leading
up to the LHC is reviewed in [11].
Our eikonal approach [12] was based on a realistic

model, which fitted the pp and p̄p data from 4.5 GeV to
cosmic ray energies, and was consistent with the phase
constraints imposed by analyticity [9]. The model allowed
us to calculate the Coulomb and form-factor effects in the
scattering without significant approximation at any value of
q2 for which it held, extending beyond the first diffraction
minimum in the differential cross section.
In that approach, the spin-averaged pp scattering ampli-

tude was given at small q2 by

fðs; q2Þ ¼ −
2η

q2
F2ðq2Þ þ eiΦtotðs;q2ÞfNðs; q2Þ: ð1Þ

The advantage of this form of the amplitude was that the
Coulomb term was real, making it clear that the Coulomb-
nuclear interference depended only on the real part of the

second term, that was, on the real part of fNðs; q2Þ with a
(small) admixture of the imaginary part dependent on the
phase Φtotðs; q2Þ. The latter was essentially model inde-
pendent for any eikonal model consistent with the mea-
sured pp and p̄p total cross sections, the forward slope
parameters B ¼ −d log ðdσ=dq2Þ=dq2, and the diffractive
structure at larger q2. We found that Φtotðs; q2Þ was small
and easily parametrized in the small-q2 region and allowed
the simple extraction of ρ from the data.
Here, we modify the approach discussed in [1] to isolate

the purely nuclear scattering amplitude, with the mixed
Coulomb-nuclear effects contained in a small correction
term. We use the result to analyze a model used in recent fits
to Coulomb-nuclear interference at high energies [13–15]
and very high energies [16,17]. Since the Coulomb and
form-factor corrections are effectively model independent,
we can proceed to a simpler construction used in various
experimental analyses in which the purely nuclear part of
the differential cross section is approximated as

dσ
dq2

ðs; q2Þ ≈ Ae−Bq
2þCq4−Dq6þ���; 0 ≤ q2 ≪ 1: ð2Þ

Here, B is the usual slope parameter and the parameters
C;D � � � which introduce curvature in dσ=dq2 are calcu-
lated by using our eikonal model fitted to the high energy
pp and p̄p data [18,19]. This reduces the number of free
parameters by two relative to those used in other analyses
of this type [16,17,20].
Using this approach, we evaluate the basic parameters B,

ρ, and σtot at
ffiffiffi
s

p ¼ 53 GeV, 62.3 GeV, 8 TeV, and 13 TeV
and find that the results of the basic parameters calculated
using our simple eikonal approach agree well with the
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values determined in other analyses. We also study the
differential cross sections in the dip region for pp and p̄p
elastic scattering at W ¼ 53 GeV and 1.96 TeV. We find
that Coulomb effects are significant there and must be taken
into account in attempts to detect odderon effects from
differences in the pp and p̄p cross sections as studied by
the D0 and TOTEM Collaborations [21].

II. SIMPLE EIKONAL APPROACH FOR
COULOMB-NUCLEAR INTERFERENCE EFFECTS

In the absence of significant spin effects, the spin-
averaged differential cross section for pp and p̄p scattering
can be written in terms of a single spin-independent
amplitude,

fðs; q2Þ ¼ i
Z

∞

0

dbbð1 − e2iðδtotc ðb;sÞþδNðb;sÞÞÞJ0ðqbÞ; ð3Þ

Here, q2 ¼ −t is the square of the invariant momentum
transfer, b is the impact parameter, δtotc ðb; sÞ is the full
Coulomb phase shift including the effects of the finite
charge structure of the proton, δNðb; sÞ is the nuclear phase
shift, and

δtotc ðb; sÞ ¼ δcðb; sÞ þ δFFc ðb; sÞ; ð4Þ

where δc gives the phase shift for a pure Coulomb
interaction, and δFFc accounts for the effects of the form
factors at large momentum transfers or short distances.
Equation (3) can be rearranged in the form,

fðs; q2Þ ¼ fcðs; q2Þ þ fFFc ðs; q2Þ þ fN;cðs; q2Þ; ð5Þ

where

fcðs; q2Þ ¼ i
Z

∞

0

dbbð1 − e2iδcðs;bÞÞJ0ðqbÞ ð6Þ

fFFc ðs;q2Þ¼ i
Z

∞

0

dbbe2iδcðb;sÞð1−e2iδ
FF
c ðb;sÞÞJ0ðqbÞ ð7Þ

fN;cðs;q2Þ

¼ i
Z

∞

0

dbbe2iδcðb;sÞþ2iδFFc ðb;sÞð1−e2iδNðb;sÞÞJ0ðqbÞ: ð8Þ

Here, fcðs; q2Þ is the Coulomb amplitude without form
factors, fFFc accounts for the effects of the form factors on
the Coulomb scattering, and fN;c includes the effects of the
nuclear scattering as modified by the Coulomb and form
factor effects.
The pure nuclear amplitude fNðs; q2Þ is just

fNðs; q2Þ ¼ i
Z

∞

0

dbbð1 − e2iδNðb;sÞÞJoðqbÞ: ð9Þ

We have studied this in detail in an eikonal model fitted to
data on σtot, B, and ρ for pp and p̄p scattering from
4.5 GeV to cosmic ray energies [12].
Before going further with Eq. (5), for pp scattering, we

can divide out the common Coulomb phase ð4p2=q2Þiη [or
phase ð4p2=q2Þ−iη for p̄p scattering] from all terms; fc is
then real.
Using the standard proton charge form factor [22],

FQðq2Þ ¼
μ4

ðq2 þ μ2Þ2 ; ð10Þ

with μ2 ¼ 0.71 GeV2, for pp scattering, we find that for
the form-factor corrections to the Coulomb amplitude,

fcðs; q2Þ þ fFFc ðs; q2Þ

¼ −
2η

q2

�
1 −

�
q2

q2 þ μ2

�
iη

þ
�

q2

q2 þ μ2

�
iη μ8

ðq2 þ μ2Þ4
�
;

ð11Þ

up to negligible real contributions of order η2. For
η=F2

Qðq2Þ ≪ 1,

fcðs; q2Þ þ fFFc ðs; q2Þ ¼ −
2η

q2
F2
Qðq2ÞeiΦc;FF ; ð12Þ

Φc;FFðs; q2Þ ≈ −η
�ðq2 þ μ2Þ4

μ8
− 1

�
ln

q2

q2 þ μ2
: ð13Þ

We can separate fN;cðs; q2Þ, which includes the effects of
the nuclear scattering as modified by the Coulomb and
form factor effects into two terms,

fN;cðs; q2Þ ¼ fCorrN;c ðs; q2Þ þ fNðs; q2Þ; ð14Þ

where fNðs; q2Þ is the pure nuclear amplitude and fCorrN;c

isolates the pieces of the full amplitude which involve both
Coulomb-plus-form-factor and nuclear terms in a single
small term. This is given for pp scattering by

fCorrN;c ðs; q2Þ ¼ i
Z

∞

0

dbb

�
exp

�
2iηγ þ iη ln

�
q2b2

4

�

þ 2iη
X3
m¼0

ðμbÞm
2mΓðmþ 1ÞKmðμbÞ

�
− 1

�

× ð1 − e2iδNðb;sÞÞJ0ðqbÞ: ð15Þ

For p̄p scattering, we just change η to −η and use a relevant
δN for the p̄p scattering.
For very small q2 (q2 ≤ 0.2 GeV2), the real and imagi-

nary parts of fCorrN;c can be fitted using the following
parametrization. For example, the real part of fCorrN;c is
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ℜfCorrN;c ðs; tÞ ¼ −ða0 þ b0 lnpÞ ln tþ ða1 þ b1 lnpÞ
þ ða2 þ b2 lnpÞtþ ða3 þ b3 lnpÞt2; ð16Þ

where ai and bi, (i ¼ 0, 1, 2, 3), are the parameters
whose units are

ffiffiffiffiffiffiffi
mb

p
=GeV,

ffiffiffiffiffiffiffi
mb

p
=GeV,

ffiffiffiffiffiffiffi
mb

p
=GeV3,

and
ffiffiffiffiffiffiffi
mb

p
=GeV5, for i ¼ 0, 1, 2, and 3, respectively. The

imaginary part will be fitted using the same form with a
different set of the parameters. The parameters in the fit are
given in Table I.
We note that the results for the corrections are essentially

model independent: any model that fits the data at small q2,
respects unitarity, and has the correct analytic phase
structure will give the same correction to the accuracy
needed.
We can now write the full amplitude in a form,

fðs; q2Þ ¼ f1ðs; q2Þ þ fNðs; q2Þ; ð17Þ

where the purely nuclear amplitude appears explicitly, with
the Coulomb amplitude and the mixed Coulomb-nuclear
corrections in f1,

f1ðs; q2Þ ¼ fcðs; q2Þ þ fFFc ðs; q2Þ þ fCorrN;c ðs; q2Þ: ð18Þ

With our normalization, the differential elastic scattering
amplitude is

dσ
dq2

ðs; q2Þ ¼ πjfðs; q2Þj2 ð19Þ

¼ π

�
jf1j2þ

2jf1jjfN j
ð1þρ2Þ1=2 ðsinΦ1þρcosΦ1Þþ jfN j2

�
;

ð20Þ

where Φ1 is the phase of f1ðs; q2Þ and ρðs; q2Þ ¼
ℜfNðs; q2Þ=ℑfNðs; q2Þ. As mentioned in [1], at high
energies, ℜfN has a zero at small q2, ℜfNðs; q2RÞ ¼ 0,
and, similarly, ℑfNðs; q2I Þ ¼ 0 at the first diffraction dip in
dσ=dq2 at q2I > q2R. The zero inℜfN is the expected Martin
zero [23]. The possible effects of this zero were discussed
in Kohara et al. [24] and included in the analysis of Pacetti
et al. [25], and were included in our recent work [1] as well.
We showed in fact that a reasonable approximate expres-
sion for the eikonal ρðs; q2) from q2 ¼ 0 through the region

of the Martin zero was ρðs; q2Þ ≈ ρðsÞ 1−q2=q2R
1−q2=q2I

where qR and

qI are the locations of the zeros in ℜfN and ℑfN ,
respectively.

III. APPLICATIONS

A. Fits to the differential cross sections

As an application of the above-mentioned results, we
consider the model in Eq. (2), which has been used
frequently in the analysis of experimental data, e.g., the
TOTEM data at 8 and 13 TeV and the ATLAS data at
13 TeV; see Refs. [16,17,20] and earlier references therein.
In this model, the phase of the nuclear amplitude is taken as
a constant independent of q2. It is determined simply by the
ratio ρ of the real to the imaginary parts of the nuclear
amplitude in the forward direction, corresponding to a
phase ΦNðs; q2Þ and fNðs; q2Þ ¼ eiΦN jfNðs; q2Þj.
From Eq. (2), taking the square root and introducing the

phase of the nuclear amplitude ΦN ¼ π
2
− arctan ρðs; q2Þ,

we have [26]

ffiffiffi
π

p
fNðs; q2Þ ≈

ffiffiffiffi
A

p
eiΦNe−

1
2
ðBq2−Cq4þDq6−���Þ: ð21Þ

Here, we use the form of the hadronic cross section in
Eq. (2), with C and D taken from our eikonal results [27]
and A, B, and ρ used as the fitting parameters, to reanalyze
the experimental data at 53 GeV, 62.3 GeV, 8 TeV, and
13 TeV. We have included the Coulomb scattering correc-
tions and the Coulomb-hadronic interference terms in
these fits. Our eikonal results give C ¼ 9.770 GeV−4,
D ¼ 18.83 GeV−6 at 53 GeV, C ¼ 10.29 GeV−4,
D ¼ 19.98 GeV−6 at 62.3 GeV, C ¼ 9.176 GeV−4, D ¼
26.53 GeV−6 at 8 TeV, and C ¼ 7.896 GeV−4, D ¼
28.50 GeV−6 at 13 TeV, respectively. In Fig. 1, we show
our calculated values of B, C, and D as functions of the
center-of-mass energy W ¼ ffiffiffi

s
p

for the local momentum
transfer q20 ¼ 10−6 GeV2 for pp (solid blue curves) and p̄p
(dashed red curves). The curves are cut off at 50 GeVat the
lower end. The behavior at the lower energies is largely
the result of the importance of the Regge-like terms in the
eikonal function at lower energies. For each parameter
B, C, and D, respectively, the curves for pp and p̄p are
identical at high energies as expected.

TABLE I. The parameters in the fit in Eq. (16) to the real and imaginary parts of fCorrN;c .

Parameters a0 b0 a1 b1 a2 b2 a3 b3

pp Real part 0.00553 0.01856 0.01998 −0.07130 −0.56648 0.33070 1.5591 −0.54019
pp Imaginary part 0.00497 −0.00353 −0.021147 0.01442 0.12403 −0.07913 1.5591 0.15702

p̄p Real part −0.00743 −0.01842 −0.01278 0.07083 0.53333 −0.32971 −1.5049 0.54266
p̄p Imaginary part −0.00471 0.00268 0.02029 −0.01061 −0.12343 0.05257 0.24633 −0.08269
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We have analyzed the fits using data up to a maximum
value q2max. We emphasize that our analyses are based on
straightforward least squares fits to the rather precise data at
those energies using only the quoted statistical errors.

In Table II, we summarize the results of our fits to the
ISR data at 53 GeVand 62.3 GeV for q2max ¼ 0.1 GeV2 and
fits to TOTEM data at 8 TeV and 13 TeV for
q2max ¼ 0.07 GeV2, 0.10 GeV2, and 0.15 GeV2. For each
of the fits presented there, the total cross-section was
derived via the optical theorem,

σ2tot ¼
16πA
1þ ρ2

: ð22Þ

For the TOTEM data at 8 TeV and 13 TeV, the fits for
case 1) (q2max ¼ 0.07) and case 2) (q2max ¼ 0.10) are all
excellent with χ2=d:o:f: less than 1. The results from the
fits are consistent with those found by the TOTEM
Collaboration. As an illustration, we show the fits to
dσ=dq2 for the TOTEM data at 8 TeVand 13 TeV in Fig. 2
over the interval q2 ≤ 0.10 GeV2 in conventional loga-
rithmic plots.
We also use Eq. (2) to study the case of C ¼ D ¼ 0 (i.e.,

no curvature corrections) for the TOTEM data at 8 TeVand
13 TeV. We find that omitting D and C does not change ρ
much because the only sensitivity to ρ is at very small q2

where C and D terms are very small. However, the cross
section fits over the region shown in Fig. 2 would be much
worse if they are omitted.
Doing some fits with our variable ρðs; q2Þ in the earlier

paper [1] for q2 < 0.1 GeV2, we have found that the fit
results and the fitting parameters do not change noticeably
relative to the present results. The possible influence on ρ of
the Martin zero in ℜfN is one of the main points in Kohara
et al. [24] and Pacetti et al. [25]. In particular, Pacetti et al.
get a significant effect not by using their q2—dependent
expression and fitting with that, but simply note that using
an average of the variable result over the fitting range leads
to a smaller fitted ρ. Like us, others have found no
significant change when ρðs; q2Þ is allowed to vary. This
is because the sensitivity to the Coulomb-nuclear interfer-
ence in the fitting is only at very small q2.

B. The differential cross section dσ=dq2

in the dip region

In order to see what differences one would expect in the
eikonal model with Coulomb corrections, we look at the
region near the observed dip in the differential cross section
dσ=dq2 for pp and p̄p elastic scattering. It is known that
the cross sections in the dip region are very sensitive to
small effects, and the data, especially the pp and p̄p
differences which are affected by different normalization
uncertainties on the two cross sections, are uncertain there.
Thus, one cannot really specify an experimental difference
at a point.
In Fig. 3, we plot the differential cross sections in the dip

region for pp and p̄p at W ¼ 53 GeV (top panel) and

FIG. 1. Plot of the values of B, C, and D, calculated using our
eikonal approach, versus W ¼ ffiffiffi

s
p

for the local momentum
transfer q20 ¼ 10−6 GeV2 for pp (solid blue curves) and p̄p
(dashed red curves). The behavior at the lower energies is largely
the result of the importance of the Regge-like terms in the eikonal
function at lower energies. For each parameter B, C, and D,
respectively, the curves for pp and p̄p are identical at high
energies as expected.
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TABLE II. The results of our fits to the ISR data at 53 GeV and 62.3 GeV [13–15] and to the TOTEM data at 8 TeV and 13 TeV
[16,17]. The Coulomb and Coulomb-hadronic interference contributions to the scattering were included in the fit. A, B, and ρ are the
corresponding parameters in fits, which included the curvature parameters C andD, with ðdσ=dq2ÞN ≈ A expð−Bq2 þ Cq4 −Dq6Þ. The
parameters C and D were calculated using the comprehensive eikonal fit to the high energy pp and p̄p data in [18].

(GeV2) W (GeV) d.o.f χ2=d:o:f: A (mb=GeV2) B (GeV−2) ρ σtot (mb)

1) q2max ¼ 0.07 13000 76 0.869 647.2� 0.7 21.23� 0.03 0.095� 0.004 112.0� 0.1
8000 15 0.775 552.3� 2.9 20.68� 0.12 0.105� 0.020 103.4� 0.3

2) q2max ¼ 0.10 13000 93 0.956 645.8� 0.6 21.16� 0.02 0.091� 0.004 112.0� 0.1
8000 18 0.710 551.5� 2.5 20.63� 0.08 0.102� 0.019 103.4� 0.3
62.3 19 1.448 97.56� 0.72 13.40� 0.18 0.071� 0.018 43.59� 0.17
53 18 2.048 92.98� 0.21 13.40� 0.07 0.082� 0.002 42.52� 0.05

3) q2max ¼ 0.15 13000 116 1.290 644.1� 0.5 21.09� 0.01 0.085� 0.004 111.9� 0.1
8000 23 1.330 547.3� 2.1 20.43� 0.06 0.086� 0.018 103.1� 0.3

FIG. 2. Fits to the differential pp elastic scattering cross
sections dσ=dq2 for the TOTEM data at 8 TeV (bottom panel)
and 13 TeV (top panel) over the interval q2 ≤ 0.10 GeV2. The
values of the curvature terms C and D in the series expansion of
the hadronic contribution to lnðdσ=dq2Þ were taken from the
overall eikonal fit to the high-energy pp and p̄p data in [18].
dσ=dq2 from the fit and the purely nuclear result of the fit are
given by the black and blue curves, respectively. Data with their
statistical errors are red.

FIG. 3. Differential cross sections dσ=dq2 in the dip region for
pp and p̄p at W ¼ 53 GeV (top panel) and 1.96 TeV (bottom
panel). The red, solid curve and the blue, dashed curve are the
differential cross sections dσ=dq2 for pp and p̄p from our
eikonal model with Coulomb corrections. Note that data for pp
(red) and p̄p (blue) with their statistical errors at W ¼ 53 GeV
[13,14] are shown in the top panel and that only data for p̄p
(blue) with their statistical errors at W ¼ 1.96 TeV [29] are
available in the bottom panel.
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1.96 TeV (bottom panel). In the figure, the theoretical
differential cross sections dσ=dq2 from our eikonal model
with Coulomb corrections for pp and p̄p are the red, solid
curve and the blue, dashed curve, respectively. Note that
data for pp (red) and p̄p (blue) with their statistical errors
atW ¼ 53 GeV [13,14] are shown in the top panel and that
only data for p̄p (blue) with their statistical errors at
W ¼ 1.96 TeV [29] are available in the bottom panel.
We see that, at W ¼ 53 GeV, our theoretical curves for

p̄p and pp show a dip from the first diffraction zero in the
dominant imaginary part of the nuclear scattering ampli-
tude. This is predicted to be at jtj ¼ 1.295 GeV2, which is
close to the observed minimum [13]. However, the ratio
dσp̄p=dσpp ¼ 2.76 evaluated at the dip location jtj ¼
1.295 GeV2 is smaller than the experimental value 4.5�
1.7 at jtj ¼ 1.333 GeV2 quoted in [14]. While some very
small adjustment of the nuclear amplitude would be needed
to obtain a more precise fit to the data, that is unlikely to
change the conclusion that Coulomb-nuclear interference
effects are significant in this region where the amplitude
becomes predominantly real, and that those effects lead to a
very significant difference between the pp and p̄p cross
sections near the dip.
At W ¼ 1.96 TeV, both our theoretical curves for pp

and p̄p seem to agree with the D0 data for p̄p [29] but the
curves do not show clearly a dip location. The predicted
location of the zero in the imaginary part of the pp
amplitude is jtj ¼ 0.638 GeV2. There are currently no
pp data at 1.96 TeV, and the only information on cross
section differences comes from the D0/TOTEMwork using
extrapolated pp cross sections [21]. We find that the
Coulomb effects in the dip region at 1.96 TeV are still
significant on the scale of the projected differences given in

[21], Fig. 4, and should be included in analyzing those
differences.
We conclude that Coulomb effects are significant in the

dip region at 53 GeVand 1.96 TeV, and must be taken into
account in searches for odderon effects through cross
section differences in that region and energy range. The
interference effects in the dip region are smaller at higher
energies but are still significant. For example, the difference
at 7 TeV is about 20% of the mean cross section at the dip at
jtj ¼ 0.478 GeV2, about the same as the statistical uncer-
tainty in the measured p̄p cross section.

IV. CONCLUSIONS

Using the simple eikonal approach for Coulomb-nuclear
interference and form-factor effects and taking into account
the curvature corrections in proton-proton scattering, we
have fitted the parameters B, ρ, and σtot at

ffiffiffi
s

p ¼ 53 GeV,
62.3 GeV, 8 TeV, and 13 TeV. We find that the results of the
basic parameters calculated using our simple eikonal
approach agree well with the results obtained using other
methods.
We have also investigated the differential cross sections

in the dip region for pp and p̄p elastic scattering at W ¼
53 GeV and 1.96 TeV and find that Coulomb effects are
significant in the dip region at 53 GeV and 1.96 TeV, and
must be taken into account in searches for odderon effects
through cross section differences in that energy region.
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