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We study relativistic corrections to exclusive S-wave charmonium decays into ρπ and γπ final states. The
contribution of relative order v2 and the set of associated higher-order corrections are calculated using
nonrelativistic QCD and collinear factorization framework. Numerical estimates show that the dominant
effect is provided by the corrections of relative order v2. The numerical values of these contributions are of
the same order as the leading-order ones. These results suggest a scenario where the sum of relativistic and
radiative QCD corrections could explain the ρπ-puzzle.
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I. INTRODUCTION

A description of S-wave charmonium decays into ρπ
final state is already a long-standing problem in QCD
phenomenology. The branching ratios for J=ψ and excited
state ψð3686Þ≡ ψ 0 are measured sufficiently accurately
and their ratio is found to be very small [1]

Qρπ ¼
Br½ψ 0 → ρπ�
Br½J=ψ → ρπ� ≈ 0.20 × 10−2: ð1Þ

This corresponds to a strong violation of the 13% rule,
which suggests that Qρπ ≈Qeþe− ≃ 0.13. The latter is valid
only if the decay amplitudes of S-wave charmonium are
dominated by the leading-order (LO) contribution in the
QCD factorization framework (pQCD). Therefore, the
disagreement between the data and qualitative theoretical
expectation indicates large dynamical effects, which are not
accounted by the leading-order approximation of pQCD.
The problem has attracted a lot of attention and many

different qualitative ideas and phenomenological models
have been proposed in order to understand the small value
of Qρπ. Almost all of the proposed explanations use
different ideas about long distance QCD dynamics; a
comprehensive overview of the topic can be found in
Refs. [2,3].
The dominant role of some nonperturbative dynamics is

related to the fact that the QCD helicity selection rule
suppresses the valence contribution to the decay amplitude.

Therefore, it is necessary to take into account for the one of
outgoing mesons a nonvalence component of the wave
functions, which is suppressed by additional power Λ=mc.
However, already long ago in Refs. [4,5] it was found that
pQCD framework yields a reliable leading-order estimate
for the J=ψ branching ratio. In Ref. [4] the nonvalence
contributions are described by the three-particles twist-3
light cone distribution amplitudes (LCDAs). These non-
perturbative functions are process independent and the first
few moments of these functions can be estimated using
QCD sum rules. Corresponding matrix elements have been
studied and revised for various mesons, see updates in
Refs. [6–8]. Therefore, it is reasonable to believe that the
pQCD description is a good starting point in order to
develop a systematic description of the process within the
effective field theory framework.
Following this method one faces a problem with the

description of ψ 0 → ρπ, which must be strongly sup-
pressed relative J=ψ → ρπ in order to get the small ratio
(1). There are various assumptions about the possible
dynamical origins for this suppression. Often they are
related to the fact that the mass of excited state ψ 0 is close
to the open charm threshold and this can lead to dynamical
effects, which provide the crucial difference between J=ψ
and ψ 0 decays. The possible scenarios include: destructive
interference of the large nonvalence and valence contri-
butions [4,9]; suppression of the color-singlet cc̄-wave
function at the origin for ψ 0 and the dominance of the
color-octet state [10]; cancellation between cc̄ and DD̄
components of ψ 0 [11]; cancellation between S- and
D-wave components of ψ 0 [12], and others [2].
On the other hand, the potential of the effective field

theory framework to study the problem has not been fully
exploited yet. It is especially interesting to study the higher-
order corrections, which are different for J=ψ and ψ 0.
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In this way the natural violation of the 13% rule can be
related to relativistic corrections in nonrelativistic QCD
(NRQCD) [13].
In fact, an order of v2 NRQCD matrix elements h0jχ†σ ·

ϵð−i=2D
↔
Þ2ψ jψðn; ϵÞi which have very different values for

J=ψ and ψ 0, was already found. [14]. Recently, the
relativistic corrections to exclusive ψðnSÞ → pp̄ decays
have been studied in Ref. [15]. It was found that corrections
of relative order v2 are large and comparable with the
leading-order contribution. This effect is closely related to
the structure of the integrand in the collinear convolution
integral describing the decay amplitude. This observation
holds for both states J=ψ and ψ 0 but for excited state the
absolute effect is larger because the corresponding matrix
element is larger. The similar mechanism may also be
relevant for other hadronic decay channels including
ψðnSÞ → ρπ decays.
Therefore, the main purpose of this paper is to calculate

the relativistic corrections to ψðnSÞ → ρπ and to ψðnSÞ →
γπ decays and to study their numerical effect. As a first step
in this direction we will calculate the correction of relative
order v2 combining NRQCD expansion with the leading-
order collinear expansion. We will use the NRQCD
projection technique developed in Refs. [16–19], which
is also effective for calculations of exclusive amplitudes.
This technique also allows one to resum a part of higher-
order corrections, which are related to the corrections to
quark-antiquark wave function in the potential model [19].
Such consideration is also useful providing an estimate of
possible effects from higher-order contributions.

II. RELATIVISTC CORRECTIONS TO ψðnSÞ → VP
DECAYS

A. ψðnSÞ → ρπ decay

To describe the ψðnS; PÞ → ρðpÞπðp0Þ decay amplitude
we use the charmonium rest frame and assume that out-
going momenta are directed along z-axis. The amplitude is
defined as

hρðpÞπðp0ÞjiTjψðn; ϵÞi

¼ ið2πÞ4δðpþ p0 − PÞiϵαβμνϵαe�β
p0μpν

ðpp0ÞAρπ; ð2Þ

where ϵ and e� denotes polarization vectors of ψ and ρ-
meson, respectively. The amplitude Aρπ can be described as
a superposition of a hard kernel with nonperturbative
matrix elements describing the long distance coupling with
hadronic states. In order to calculate the hard kernel, we
perform an NRQCD matching, which is combined with the
collinear light cone expansion for the light quarks. This
technique allows one to perform the matching at the
amplitude level and to find the hard kernels for corrections
associated with the specific set of higher-order NRQCD
matrix elements [19]

hv2ni ¼
h0jχ†σ · ϵ

�
− i

2
D
↔�2n

ψ jψðn; ϵÞi
m2n

c h0jχ†σ · ϵψ jψðn; ϵÞi ≃ hv2in; ð3Þ

where the spatial part of the covariant derivative is defined

as χ†D
↔
ψ ¼ χ†ðDψÞ − ðDχ†Þψ and the last equality is valid

up to corrections Oðv2Þ [20].
The diagrams, which describe the decay amplitude are

schematically shown in Fig. 1. The long distance hadro-
nization dynamics of outgoing mesons is described by the
twist-2 and twist-3 light cone distribution amplitudes
(LCDAs). Various properties and models for required
LCDAs can be found in Refs. [7,8]. The twist-2 light-cone
matrix elements read1

hπþðp0Þjūðz1þÞ=̄nγ5dðz2þÞj0i ¼ −ifπðp0n̄Þ
Z

1

0

du eiuðp0n̄Þðz1nÞ=2þið1−uÞðp0n̄Þðz2nÞ=2ϕ2πðuÞ; ð4Þ

hρ−ðpÞjd̄ðz1−Þγμ⊥=̄nuðz2−Þj0i ¼ if⊥ρ e�μ⊥ ðpnÞ
Z

1

0

dy eiyðpnÞðz1n̄Þ=2þið1−yÞðpnÞðz2n̄Þ=2ϕ⊥
2ρðyÞ; ð5Þ

where we use auxiliary light cone vectors

1For simplicity, we do not explicitly show the gauge links in the light cone operators assuming the appropriate light cone gauge.

(a) (b)

FIG. 1. (a) Typical diagrams describing the subprocess
QQ̄ → VP, where V ¼ ρ, γ. The blobs denote the light cone
matrix elements, see explanation in the text. (b) An example of
diagrams, describing the contribution with the perturbative
photon coupling.
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n ¼ ð1; 0; 0;−1Þ; n̄ ¼ ð1; 0; 0; 1Þ; gμν⊥ ¼ gμν −
1

2
ðnμn̄ν þ nνn̄μÞ; ð6Þ

p0 ¼ ðp0n̄Þ n
2
þ m2

π

ðp0n̄Þ
n̄
2
; p ¼ ðpnÞ n̄

2
þ m2

ρ

ðpnÞ
n
2
; ðp0n̄Þ ∼ ðpnÞ ∼mc; ð7Þ

and the short notation for the arguments of quark fields

qðziþÞ≡ qððzinÞn̄=2Þ; qðzi−Þ≡ qððzin̄Þn=2Þ: ð8Þ

The required twist-3 three-particles LCDAs are defined as

hπþðp0Þjūðz1þÞ=̄nγμ⊥γ5gGn̄μðz3þÞdðz2þÞj0i ¼ −2f3πðp0n̄Þ2FT½ϕ3πðuiÞ�; ð9Þ

hρ−ðp; eÞjd̄ðz1−Þ=̄ngGμnðz3−Þuðz2−Þj0i ¼ −fρmρðpnÞ2e�μ⊥ FT½ϕ3ρðyiÞ�; ð10Þ

hρ−ðp; eÞjd̄ðz1−Þ=̄nγ5gG̃μnðz3−Þuðz2−Þj0i ¼ −ifρmρζ3ðpnÞ2e�μ⊥ FT½ϕ̃3ρðyiÞ�; ð11Þ

where for the gluon-field strength tensor we use short notationGμn ¼ Gμνnν. The dual gluon-field strength tensor is defined

as G̃μν ¼ 1=2εμνρσGρσ (the Levi-Civita tensor is defined as ε0123 ¼ 1). The symbol “FT” denotes the Fourier transformation

FT½fðuiÞ� ¼
Z

Dui eiu1ðp
0n̄Þðz1nÞ=2þiu2ðp0n̄Þðz2nÞ=2þiu3ðp0n̄Þðz3nÞ=2fðu1; u2; u3Þ; ð12Þ

with

Dui ¼ du1du2du3δð1 − u1 − u2 − u3Þ: ð13Þ

The FT½ϕ3ρðyiÞ� is defined analogously but with
yiðpnÞðzin̄Þ in the Fourier transformation. The normaliza-
tion constants fπ;ρ, ζ3; f3π and models for various LCDAs
will be discussed below.
The expression for the amplitude can be written as

Aρπ¼h0jχ†σ ·ϵψ jψðn;ϵÞi
ffiffiffiffiffiffiffiffiffiffi
2Mψ

p
2E

1

4π

Z
dΩTr½Π1ÂQ�; ð14Þ

where ÂQ describes subprocess QQ̄ → ρπ with the quark-
antiquark pair in the initial state. The heavy quark projector
on the triplet spin-state Π1 reads [19]

Π1 ¼
−1

2
ffiffiffi
2

p
EðEþmÞ

�
1

2
=Pþmþ =q

�

×
=Pþ 2E
4E

=ϵ

�
1

2
=P −m − =q

�
⊗

1ffiffiffiffiffiffi
Nc

p ; ð15Þ

and is normalized as

Tr
h
Π1Π

†
1

i
¼ 4E2; ð16Þ

where E is the heavy-quark energy pQ ¼ ðE; qÞ, pQ̄ ¼
ðE;−qÞ and E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ q2
p

. The integration dΩ over the
angles of the relative momentum q in Eq. (14) is used to get

the state with L ¼ 0. Therefore, the relevant amplitude ÂQ

is the function of relative momentum square q2 only, which
is substituted q2 → m2

chv2i in the final expression (14),
various technical details concerning NRQCD matching can
be found in Refs. [17,19].
Calculation of the diagrams as in Fig. 1 gives

Aρ−πþ ¼ −h0jχ†σ · ϵψ jψðn; ϵÞi ffiffiffiffiffiffiffiffiffiffi
2Mψ

p ðπαsÞ2
10

27

×

�
1þmc

E

�
f⊥ρ f3π
½4E2�2

�
Jπ þ

fρmρζ3fπ
fρ⊥f3π

Jρ

�
; ð17Þ

where the dimensionless collinear convolution integrals Jπ
and Jρ describe contributions with twist-3π- and ρ-LCDAs,
respectively. These integrals also depend on the NRQCD
parameter hv2i. In the leading-order limit hv2i → 0, E →
m2

c Eq. (17) reproduces the result from Ref. [4]

Alo
ρ−πþ ¼ −h0jχ†σ · ϵψ jψðn; ϵÞi ffiffiffiffiffiffiffiffiffiffi

2Mψ

p ðπαsÞ2
20

27

f⊥ρ f3π
½4m2

c�2

×

�
Jloπ þ fρmρζ3fπ

fρ⊥f3π
Jloρ

�
; ð18Þ

where
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Jloπ ¼
Z

Dui
ϕ3πðuiÞ
u1u2u3

Z
1

0

dy
ϕ⊥
2ρðyÞ
1− y

2u1
ðyū2þ u2ȳÞðyu1þ ȳū1Þ

;

ð19Þ

Jloρ ¼
Z

1

0

du
ϕ2πðuÞ
1 − u

Z
Dyi

�
ϕ3ρ þ ϕ̃3ρ

�
ðyiÞ

y1y2y3

1

y2ūþ uȳ2
;

ð20Þ

with x̄ ¼ 1 − x. The analytical expressions for the integrals
Jπ;ρ in Eq. (17) are somewhat lengthy and presented in
Appendix.
In order to estimate these integrals we use the following

models of LCDAs

ϕ⊥
2ρðyÞ ¼ 6yð1 − yÞ

�
1þ a2ρC

3=2
2 ð2y − 1Þ

�
; ð21Þ

ϕ2πðuÞ ¼ 6uð1 − uÞ
�
1þ aπ2C

3=2
2 ð2u − 1Þ

�
; ð22Þ

ϕ3ρðyiÞ ¼ 360y1y2y23ðy1 − y2Þω3ρ; ð23Þ

ϕ̃3ρðyiÞ ¼ 360y1y2y23

�
1þ ω̃3ρ

ζ3

1

2
ð7y3 − 3Þ

�
; ð24Þ

ϕ3πðuiÞ ¼ 360u1u2u23

�
1þ ω3π

1

2
ð7α3 − 3Þ

�
: ð25Þ

The different nonperturbative moments, which enter in the
definitions (4)–(11) and (21)–(25), were estimated in
Refs. [4,7,8]. Their values are summarized in Table I. In
the numerical estimates we fix for the factorization scale the
value μ ¼ 2 GeV and use αs ≃ 0.30.
All the convolution integrals calculated with the

models (21)–(25) are well-defined, which confirms that
collinear factorization is also valid beyond the leading-
order approximation.
As a first step of the numerical analysis let us consider

the leading-order estimate for the branching ratio of J=ψ .
For that purpose we use the estimates for the NRQCD
matrix element obtained in Ref. [18]

jh0jχ†σ · ϵψ jJ=ψij2 ≃ 0.440 GeV3: ð26Þ

For the various masses in Eq. (18) we use Mψ ¼ 3.1 GeV,
mρ ¼ 775 MeV, for the pole c-quark mass mc ¼ 1.4 GeV

and for the total width ΓJ=ψ ¼ 93 KeV [1]. Then for the
sum of all final states ρ�π∓ and ρ0π0 we obtain

Br½J=ψ → ρπ�lo ≃ 1.0%; ð27Þ

which is somewhat smaller then the corresponding exper-
imental value 1.69(15)%. This updated result confirm the
conclusion of Ref. [4], that the LO NRQCD approximation
works sufficiently well for the J=ψ decay.2 On the other
hand this approximation can not describe branching
ratio ψ 0 → ρπ.
Consider now the effect provided by the relativistic

corrections in Eq. (17). The one part is provided by the
resummation of the relativistic corrections in the factor
E ¼ m2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hv2i

p
in Eq. (17). This effect can be under-

stood as transition from the scale 4m2
c to the scale

M2
ψ ≃ 4m2

cð1þ hv2iÞ. These corrections reduce the ratio
Qρπ due to the factor ð1þ hv2iJ=ψÞ2=ð1þ hv2iψ 0 Þ2∼
M4

ψ=M4
ψ 0 ∼ 0.50. However, this can not explain the very

small value Qρπ in Eq. (1).
The second effect of the relativistic corrections is

associated with the modification of the hard kernels in
the convolution integrals Jρ;π . Because these integrals
depend on meson LCDAs, the resulting effect of the
relativistic corrections is also sensitive to hadronic non-
perturbative structure.
For the numerical calculation we use the estimate from

Ref. [18] for J=ψ

hv2iJ=ψ ≈ 0.225; ð28Þ

and for the excite state ψ 0 we apply the following estimate

hv2iψ 0 ¼ Mψ 0 −MJ=ψ þ E1

mc
≈ 0.64; ð29Þ

where E1 ¼ hv2iJ=ψmc ≃ 315 MeV is the binding energy
for J=ψ. The resulting value of hv2iψ 0 is much larger than
hv2iJ=ψ , which can have a significant numerical effect and,
therefore, affect the value of Qρπ .
The given calculation of the relativistic corrections is

complete at the relative order v2 only. The resummation of

TABLE I. The values of the moments, which parametrize the hadronic LCDAs. All values are given at the scale
μ ¼ 2 GeV. For the pion moments, the values are taken from Ref. [7], for the ρ-meson from Ref. [8].

fπ , MeV fρ, MeV f⊥ρ , MeV a2π a2ρ f3π , GeV2 ζ3ρ ω3ρ ω̃3ρ ω3π

131 216 143 0.19 0.11 0.31 × 10−2 0.02 0.09 −0.04 −1.1

2We assume that the difference of about factor of two is not a
large discrepancy taking into account various uncertainties from
scale setting, pole mass mc, etc., which we do not consider now.
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higher orders hv2in with n > 2 describes the part of the
relativistic corrections associated with the quark-antiquark
wave function only [19]. We use this approximation in
order to study a possible effect from higher-order contri-
butions. Therefore, for comparison, we present the values
of the integrals in Eq. (17) obtained in the leading-order
approximation Jlo (hv2i → 0), in the next-to-leading-order
(NLO) approximation Jnlo, which takes into account the
next-to-leading-order correction

Jnlo ¼ Jlo þ hv2iJð1Þ; ð30Þ

and the integral J, which includes all powers hv2in

J ¼ Jlo þ
X

hv2inJðnÞ: ð31Þ

The total integral in Eq. (17) is described by the sum of
two contributions with the different LCDAs

Jρπ ¼ Jπ þ
fρmρζ3fπ
fρ⊥f3π

Jρ; ð32Þ

where, schematically, Jπ ¼ ϕ3π � Tπ � ϕ⊥
2ρ and Jρ ¼ ϕ3ρ �

Tρ � ϕ2π þ ϕ̃3ρ � T̃ρ � ϕ2π (the � denotes the convolution
integrals, Tπ;ρ are the hard kernels). Using the parameters
from Table I one finds

fρmρζ3fπ
fρ⊥f3π

≈ 0.99: ð33Þ

Therefore the normalization couplings in the definitions
(4)–(11) do not provide any numerical difference between
the two terms in Eq. (32). The results for convolution
integrals (32) are presented in Table II.
The effect of the relativistic corrections is negative and

the values of the LO integrals are substantially reduced.
Notice that neglecting the higher-order corrections in v2 in
the square of the integral, one gets in the case of J=ψ the
strong cancellation

jJnloρπ j2 ¼ðJloρπÞ2ð2Jnloρπ =Jloρπ −1ÞþOðv4Þ≃0.06ðJloρπÞ2: ð34Þ

Therefore we assume that it is better to take the large NLO
correction exactly, i.e., do not expanding the square of the
integral in powers of v2. At the same time the numerical
effect from other higher-order corrections is already much
smaller.

For ψ 0 → ρπ the numerical effect is bigger because
hv2iψ 0 is larger. One can also see that the dominant part
of the correction is also provided by the contribution of
relative order v2, which is obtained exactly in this calcu-
lation. The numerical dominance of this correction can be
explained by the numerical enhancement of the corre-
sponding convolution integrals in the same way as for the
baryon decays [15].
Let us assume that the relativistic correction of order v2

provides the dominant numerical effect for J=ψ and ψ 0
states. Then, this allows one to suggest a possible explan-
ation of the small ψ 0 → ρπ width, which could explain the
ρπ-puzzle.
The NRQCD description of decay amplitudes also

involves the OðαsÞ NLO QCD radiative correction, which
can also provide a substantial numerical effect. Usually this
contribution is considered to be of the same order as
relativistic corrections of relative order v2. In this case the
total convolution integral Jρπ to the next-to-leading-order
accuracy is given by [see Eq. (30)]3

Jnloρπ ¼ Jlo þ hv2iJð1Þ þ αsIð1Þ; ð35Þ

where the integrals Jð1Þ and Ið1Þρπ describes the NLO
relativistic and radiative corrections, respectively. The
integral Ið1Þ for J=ψ and ψ 0 states is the same [recall that
the different leading-order NRQCD matrix elements are
taken as the overall normalization in Eq. (17)]. Therefore, if
Ið1Þ > 0 and large enough in order to cancel the negative
contribution Jlo þ hv2iJð1Þ for ψ 0, then this naturally
explains the small width for ψ 0. It follows from the
Table II that the required value of the radiative correction
αsIð1Þ must be about 50% of Jloρπ , which is not that
unrealistic given the moderate value of the charm mass.
The positive contribution αsIð1Þ will simultaneously

improve the description of J=ψ → ρπ because it will
compensate for the negative effect from the relativistic
correction. Such cancellation is in agreement with the
observation that the leading-order description J=ψ → ρπ
provides a qualitatively good estimate.
Taking into account the values of the integrals in Table II

and other corrections in Eq. (17) one can conclude that
relativistic corrections strongly reduce the values of the
branching fractions. It is clear that resulting values do not
describe the data and therefore the possible effect from the
radiative corrections is very important for the further
progress in the understanding of this decay. Therefore,
we postpone a detailed phenomenological analysis until we
have a complete next-to-leading-order correction.

TABLE II. Numerical result for the convolution integrals Jρπ .

Jloρπ Jnloρπ =Jloρπ Jρπ=Jloρπ

J=ψ 630 0.53 0.45
ψ 0 630 −0.46 −0.65

3For simplicity, we show only the relative power of the QCD
coupling αs.
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B. ψðnSÞ → γπ0 decays

The considered analysis can also be applied for other
decays channels J=ψ → VP. The good feature of the
collinear factorization is that the hadronic nonperturbative
content is described in terms of universal process-
independent LCDAs. Many of these functions were
already studied in the literature; even if the hard kernels
are the same, the differences in the models for LCDAs can
affect the numerical balance and change the value Qhh0 .
Consider, for example, the decay of S-wave charmonia

into γπ0 final state. In this case the decay amplitude is
described by the same diagrams as in Fig. 1(a) but with the
photon LCDAs instead of ρ-mesons. These diagrams
describe the photon as a hadron, i.e., such contributions
are sensitive to the nonperturbative components of the
photon-wave function. Such contribution can provide a
sizeable impact, see e.g., the discussion in Ref. [21]. We
will refer to this contribution as hadronic one.
The contribution with the perturbative photon coupling

appear from the diagrams Fig. 1(b) only and therefore they
are suppressed by electromagnetic coupling α, which
approximately scales as α3s . We will call this contribution
electromagnetic. On the other hand the hadronic contribu-
tion is suppressed as Λ2=m2

c comparing to electromagnetic
one. As a result both contributions can give a comparable
numerical effect.
The data for the branching fractions ψðnSÞ → γπ are

known [1]

Br½J=ψ → γπ0� ¼ 3.56ð17Þ × 10−5;

Br½ψ 0 → γπ0� ¼ 0.104ð22Þ × 10−5; ð36Þ

which yields

Qγπ ≃ 0.03: ð37Þ

The width Γ½J=ψ → γπ0� can be well-estimated using data
for Γ½J=ψ → ρπ0� and the vector-dominance model [4].
This indirectly supports the picture with the large contri-
bution from the nonperturbative photon coupling.
However, the ratio Qγπ is about an order of magnitude
larger thanQρπ. Using the results of the previous section we
can calculate the hadronic contribution explicitly and
clarify the role of the relativistic corrections in this decay.
The decay amplitude Aγπ is defined similar to Aρπ in

Eq. (2) with the photon instead of ρ-meson. Now it is given
by the sum of two terms

Aγπ ¼ Aem þ Ah; ð38Þ

which describe electromagnetic and hadronic contributions,
respectively.
The leading-order electromagnetic contribution was

obtained in Ref. [4]. The relativistic corrections to this

amplitude is similar to one in J=ψ → eþe−, see e.g.,
Refs. [17,18]. The final result reads

Aem ¼ h0jχ†σ · ϵψ jψðn; ϵÞi ffiffiffiffiffiffiffiffiffiffi
2Mψ

p fπ
M2

ψ
eð4παÞ

×

ffiffiffi
2

p

9
ð1 − fðhv2iÞÞ

Z
1

0

du
ϕ2πðuÞ

u
; ð39Þ

where

fðxÞ ¼ 1

3

x

ð1þ xþ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p Þ ¼
x
6
þOðx2Þ: ð40Þ

The leading-order approximation is defined taking hv2i ¼ 0

in Eq. (39). In this limit fðhv2iÞ ¼ 0 but we leave
unexpanded the quarkonium mass Mψ , which appears in
Eq. (39) from the virtual photon propagator and relativistic
normalization.
In order to compute the hadronic amplitude Ah we use

the photon LCDAs from Ref. [21]. The twist-2 light-cone
matrix element is defined as

hγðq; eÞjq̄ðz1−Þ=̄nγμ⊥qðz2−Þj0i

¼ eqefγε
�μ
⊥ ðqnÞ

Z
1

0

dy eiyðpnÞðz1n̄Þ=2þið1−yÞðpnÞðz2n̄Þ=2ϕ⊥
2γðyÞ;

ð41Þ

where eu ¼ 2=3, ed ¼ −1=3, electric charge e ¼ ffiffiffiffiffiffiffiffi
4πα

p
.

The model for ϕ⊥
2γ reads [21]

ϕ⊥
2γðyÞ ≃ 6yð1 − yÞ; fγð2 GeVÞ ≃ −47 MeV: ð42Þ

Twist-3 DAs matrix elements are defined as

hγðpÞjq̄ðz1−Þ=ngGμnðz3−Þqðz2−Þj0i
¼ ieqef3γðqnÞ2ε�μ⊥ FT½ϕ3γðyiÞ�; ð43Þ

hγðpÞjqðz1−Þ=nγ5gG̃μnðz2−Þqðz3−Þj0i
¼ −eqef3γðqnÞ2ε�μ⊥ FT

h
ϕ̃3γðyiÞ

i
; ð44Þ

where the Fourier transformation is the same as in Eq. (12).
The corresponding models for ϕ3γ and ϕ̃3γ was considered
in Ref. [21]

ϕ3γðyiÞ ¼ 360y1y2y23ðy1 − y2Þω3γ; ð45Þ

ϕ̃3γðyiÞ ¼ 360y1y2y23

�
1þ ω̃3γ

1

2
ð7y3 − 3Þ

�
;

ω̃3γ ≈ ω̃3ρ=ζ3; ð46Þ

where
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f3γð2 GeVÞ ¼ −0.32 × 10−2 GeV2;

ω3γ ≈ ω3ρ; ω̃3γ ≈ ω̃3ρ=ζ3: ð47Þ

The γπ-decay amplitude can be obtained from Eq. (17)
substituting photon LCDAs instead of ρ-meson ones

Ah ¼ −h0jχ†σ · ϵψ jψðn; ϵÞi ffiffiffiffiffiffiffiffiffiffi
2Mψ

p ðπαsÞ2
10

27

×

�
1þm

E

�
f⊥γ f3π
½4E2�2

�
Jπ þ

f3γfπ
f3πfγ

Jγ

�
; ð48Þ

where, E ¼ mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hv2i

p
.

The ratio of the normalization couplings in Eq. (48)
yields (μ ¼ 2 GeV)

f3γfπ
f3πfγ

≈ 2.92; ð49Þ

which is different from the analogous ratio for the
ρ-meson (33).
To study the effect of the relativistic corrections we again

consider three different approximations; the leading-order
contribution, the next-to-leading-order contribution (LOþ
the first correction), and the sum of all powers relativistic
corrections as we did for the integrals in Table II. The
results for the total convolution hadronic integrals

Jγπ ¼ Jπ þ
f3γfπ
f3πfγ

Jγ; ð50Þ

are presented in Table III. Comparing with the analogous
results for the ρπ-channel one finds that the both descrip-
tions are qualitatively similar despite the different ratio (49)
and the differences between the LCDAs ϕ2γ and ϕ⊥

2ρ.
Comparing the different relativistic corrections, one again
concludes that the largest numerical effect is provided by
the contribution of relative order v2. However, in the
present case, the hadronic contribution gives only a part
of the overall result.
It is also useful to compare the contributions of the

different amplitudes in Eq. (38) for different charmonium
states. The result are given in the Table IV. In the following
numerical estimates we calculate the NRQCD matrix
element for excited state ψ 0 in Eq. (48) using jR20ð0Þj2 ¼
0.583 GeV3 obtained for the Buchmüller-Tye potential in
Ref. [22]. For the NLO approximation we perform expan-
sion of the integrals Jπ;γ and the factor ð1þm=EÞ in

Eq. (48) but we do not expand the factor ½4E2�2 ¼ ½4mcð1þ
hv2iÞ�2 in the denominator. This factor is closely associated
with the virtualities of the gluon propagators in the diagram
in Fig. 1(a) and we assume that the quarkonium massM2

ψ ≃
4m2

cð1þ hv2iÞ is a more natural scale in this case similar to
the photon virtuality in the amplitude Aem. These results
show that relativistic corrections to Aem are relatively small,
but to Ah they are large. For excited state they are so large
that change the sign of the hadronic amplitude. As a result,
the total amplitude for the ψ → γπ is much smaller com-
pared to J=ψ → γπ.
The presence of the relatively large and positive ampli-

tude Aem makes less critical the dependence on the
numerical effect from the radiative corrections therefore
it is interesting to study, at least qualitatively, the resulting
values of the branching fractions. The numerical results for
the different approximations are presented in the Table V. In
order to get these values we used the total widths ΓJ=ψ ¼
93 KeV and Γψ 0 ¼ 299 KeV from Ref. [1].
We observe that the LO approximation overestimates the

values of the width, but relativistic corrections reduces
these values by 2–3 times for J=ψ and by two orders of
magnitude for ψ 0. Therefore, resulting values for J=ψ are in
relatively good agreement with the data while the values for
ψ 0 are by factor 2–3 smaller. But one has to remember that
we have in the background uncalculated radiative correc-
tions and various uncertainties; unknown higher-order
relativistic corrections, the choice of normalization, charm
mass, meson LCDAs, etc. We postpone the detailed
analysis until the radiative corrections are available. But
let us notice that the strong cancellations in the amplitude
for the excited state ψ 0 require a very precise calculation
of each term to get a reliable accuracy for the difference.
At the same time the hadronic amplitude has many

TABLE III. Numerical result for the convolution integrals Jγπ .

Jloγπ Jnloγπ =Jloγπ Jγπ=Jloγπ

J=ψ 932 0.62 0.45
ψ 0 932 −0.49 −0.74

TABLE IV. Numerical result for the amplitudes Aem and Ah for
various approximations, see more explanations in the text. The
amplitudes have dimension of mass by definition [see Eq. (2)]
and their values are presented in MeV.

Aem

½J=ψ → γπ0�
Ah

½J=ψ → γπ0�
Aem

½ψ 0 → γπ0�
Ah

½ψ 0 → γπ0�
LO 0.351 0.514 0.205 þ0.425
NLO 0.338 0.201 0.183 −0.065
Sum 0.340 0.147 0.190 −0.105

TABLE V. Numerical results for the branching ratios for
various approximations. The values of the branchings fractions
are given in units 10−5.

Br½J=ψ → γπ0� Br½ψ 0 → γπ0� Qγπ

LO 10.83 1.50 0.138
NLO 4.21 0.05 0.012
Sum 3.43 0.03 0.008
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uncertainties associated with various sources; relatively
large higher-order relativistic corrections, the choice of
normalization, charm mass, meson LCDAs, etc. Therefore,
it seems that theoretical predictions for ψ 0 will have very
large errors because of these uncertainties.

III. CONCLUSIONS

In conclusion, we calculated and investigated relativ-
istic corrections to the decay amplitudes ψðnSÞ → ρπ and
ψðnSÞ → γπ within the pQCD (NRQCD and collinear
factorization) framework. This calculation includes the
exact correction of relative order v2 and subset of the
higher-order corrections associated with the quark-
antiquarks wave function. Numerical estimates show that
an order v2 correction is large and give the dominant
numerical effect, which can be related to the structure of
the collinear integrals. If this observation is not affected by
other higher-order relativistic corrections, then one has to
consider the relative v2 contribution as a special case. The
obtained relativistic corrections are negative and large. In
case ψ 0 → ρπ the relative v2 contribution is much larger
than the leading-order one. Different relativistic correction
effects for J=ψ → ρπ and ψ 0 → ρπ suggest a scenario that
may shed light on the ρπ-puzzle.
If the QCD radiative correction is positive and large

enough, then it will interfere destructively with the rela-
tivistic correction for ψ 0 → ρπ, giving a small branching
fraction. At the same time such radiative correction will
improve the description of J=ψ → ρπ reducing the negative
effect of the relativistic correction. Therefore, we believe
that further investigation of relative order v4 corrections
and QCD radiative corrections can help to verify such a
scenario.
The same approach can also be used for an analysis other

similar decay channels. As a simplest example, the decay
ψðnSÞ → γπ is considered. In this case a part of the
amplitude is given by similar diagrams but with non-
perturbative photon instead of ρ-meson. Despite the differ-
ence between the models for the twist-2 LCDAs, the
qualitative effect from the relativistic corrections is quite
similar, they are also large and negative. In this case the part
of the decay amplitude is described by the electromagnetic
subprocess ψ → γ� → γπ. The inclusion of the relativistic
corrections allows to improve the leading-order description.
Again, the large cancellation between the hadronic and
electromagnetic contributions for the ψ 0 → γπ leads to the
small branching fraction comparing to J=ψ → γπ. The
obtained results show a qualitative agreement with the data.
A calculation of the radiative corrections can also improve
the theoretical description in this case too.

APPENDIX

Here we provide the analytical expressions for the
integrals Jπ and Jρ introduced in Eq. (17). In order to
simplify notation we use

hv2i≡ v2; δ ¼ 1 − 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
: ðA1Þ

The first integral in Eq. (17) reads

Jπðv2Þ ¼
Z

Dui
ϕ3πðuiÞ
u1u2u3

Z
1

0

dy
ϕ⊥
2 ðyÞ
yȳ

�
2Aπ

D1D3

þ Bπ

D1D2

�
;

ȳ ¼ 1 − y; ðA2Þ

where

Di ¼ δi1ðy1ū2 þ ȳ1u2Þ þ δi2ðy2ū1 þ ȳ2u1Þ þ δi3u3; ðA3Þ

with

y1 ¼ y; y2 ¼ ȳ: ðA4Þ

The symbol δik denotes the Kronecker delta.
The numerators Aπ and Bπ are given by the sums

Aπ ¼
X4
k¼0

fAk Ik½13�; Bπ ¼
X4
k¼0

fBk Ik½12�; ðA5Þ

where

Ik½ij� ¼
1

2

Z
1

−1
dη

vkηk

ð1þ vηaiÞð1 − vηajÞ

¼ vk

ai þ aj

X∞
n¼0

vn
anþ1
j þ ð−1Þnanþ1

i

nþ 1þ k
1

2

h
1þ ð−1Þnþk

i
;

ðA6Þ

with

aj ¼ δ1jð1 − δÞ y1 − u2
y1ū2 þ ȳ1u2

þ δ2jð1 − δÞ y2 − u1
y2ū1 þ ȳ2u1

− δ3jð1 − δÞ: ðA7Þ

The coefficients fA;Bk ≡ fA;Bk ðui; y; δÞ in Eq. (A5) read

fA0 ¼ δ

2
ð3u3 − 2 − δÞ; fA1 ¼ δ

2

ð1 − δÞ
ð2 − δÞ u3; ðA8Þ

fA2 ¼ 1

2

ð1 − δÞ2
ð2 − δÞ2 ð4 − 3ð2 − δÞu3 þ 2δð1 − δÞÞ; ðA9Þ

fA3 ¼ −
1

2

ð1 − δÞ3
ð2 − δÞ2 u3; fA4 ¼ −

1

2

ð1 − δÞ4
ð2 − δÞ2 : ðA10Þ
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fB0 ¼ u1y1 þ u1y2 −
δ

2
ðu1 þ u2 þ y1 þ y2 − δÞ ðA11Þ

þ δ

2 − δ
ðu1y1 þ u1y2 − ð2 − δÞðu1 þ u2 þ y1 þ y2Þ þ ð2 − δÞ2Þ; ðA12Þ

fB1 ¼ 1

2

ð1 − δÞ
ð2 − δÞ f4ðu1y1 − u2y2Þ þ δðu1 þ y1 − u2 − y2Þg; ðA13Þ

fB2 ¼ 1

2

ð1 − δÞ2
ð2 − δÞ2 f6ðu1 þ u2 þ y1 þ y2Þ − 2ðu1y1 þ u1y2Þ − 8 ðA14Þ

þδð4 − 3ðu1 þ u2 þ y1 þ y2ÞÞ þ 2δð2 − δÞg; ðA15Þ

fB3 ¼ −
1

2

ð1 − δÞ3
ð2 − δÞ2 ðu1 þ y1 − u2 − y2Þ; fB4 ¼ −

1

2

ð1 − δÞ4
ð2 − δÞ2 : ðA16Þ

The ρ-meson integral in Eq. (17) reads

Jρ ¼
Z

1

0

du
ϕ2πðuÞ
uū

Z
Dyi

1

y1y2y3

�
2Aρ

y3D2

þ Bρ

D1D2

�
: ðA17Þ

The numerators Aρ and Bρ can be written as

Aρ ¼ ϕ3ρðyiÞ
X4
k¼0

½fAk �Ik½23� þ ϕ̃3ρðyiÞ
X4
k¼0

h
f̃Ak

i
Ik½23�; ðA18Þ

Bρ ¼ ϕ3ρðyiÞ
X4
k¼0

½fBk �Ik½12� þ ϕ̃3ρðyiÞ
X4
k¼0

h
f̃Bk

i
Ik½12�; ðA19Þ

where the integrals Ik are defined in Eq. (A6) with a bit different combination aj

aj ¼ δ1jð1 − δÞ y1 − u2
y1ū2 þ ȳ1u2

þ δ2jð1 − δÞ y2 − u1
y2ū1 þ ȳ2u1

þ δ3jð1 − δÞ; ðA20Þ

and we again use for the two-particle LCDA u1 ¼ u, u2 ¼ 1 − u.
The coefficients fA;Bk and f̃A;Bk defined in Eqs. (A18) and (A19) read

fA0 ¼ 1

4
ðu1ð2y3 − δÞ þ δðδ − y2 − y3ÞÞ þ

δ2

2
ðA21Þ

þ 1

4

δ

ð2 − δÞ ðu1ð6þ 4y3 − 3δÞ þ ð2 − δÞð3y2 þ 2y3 − 2 − 3δÞÞ; ðA22Þ

fA1 ¼ −
1

4

1 − δ

2 − δ
ð4u1 þ δÞy3; ðA23Þ

fA2 ¼ −
1

4

ð1 − δÞ2
ð2 − δÞ2 ð2u1y3 þ ð2 − δÞð2u1 þ 2y2 þ y3Þ − 2ð1 − δÞð2 − δÞÞ; ðA24Þ

fA3 ¼ 1

4

ð1 − δÞ3
ð2 − δÞ2 y3; fA4 ¼ 0; ðA25Þ
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fB0 ¼ −fB2 ¼ δ

4
ðu1 − u2 − y1 þ y2Þ; ðA26Þ

fB1 ¼ −fB3 ¼ −
δ

4
ð1 − δÞðu1 þ u2 − y1 − y2Þ; fB4 ¼ 0; ðA27Þ

f̃A0 ¼ 1

4
ðu1ð2y3 − δÞ þ δðδ − y2 − y3ÞÞ ðA28Þ

þ 1

4

δ

ð2 − δÞ ðu1ð2þ 4y3 − δÞ þ ð2 − δÞð2þ y2 − 2y3 − 3δÞÞ; ðA29Þ

f̃A1 ¼ −
1

4

1 − δ

2 − δ
ð4u1y3 þ δð2u1 − 2y2 þ y3ÞÞ; ðA30Þ

f̃A2 ¼ −
1

4

ð1 − δÞ2
ð2 − δÞ2 ð2u1y3 − 3y3ð2 − δÞ þ δð2 − δÞÞ; ðA31Þ

f̃A3 ¼ 1

4

ð1 − δÞ3
ð2 − δÞ2 ð2u1 − 2y2 þ y3Þ; f̃A4 ¼ −

1

2

ð1 − δÞ4
ð2 − δÞ2 ; ðA32Þ

f̃B0 ¼ δ

4
ð3ðu1 þ u2 þ y1 þ y2Þ − 4 − 2δÞ; f̃B1 ¼ −

δ

4

1 − δ

2 − δ
ðu1 − u2 þ y1 − y2Þ; ðA33Þ

f̃B2 ¼ 1

4

ð1 − δÞ2
ð2 − δÞ2 ð8 − 3ð2 − δÞðu1 þ u2 þ y1 þ y2Þ þ 4δð1 − δÞÞ; ðA34Þ

f̃B3 ¼ 1

4

ð1 − δÞ3
ð2 − δÞ2 ðu1 − u2 þ y1 − y2Þ; f̃B4 ¼ −

1

2

ð1 − δÞ4
ð2 − δÞ2 : ðA35Þ
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