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We derive covariant equations describing the tetraquark in terms of an admixture of two-body states DD̄
(diquark-antidiquark), MM (meson-meson), and three-body-like states qq̄ðTqq̄Þ, qqðTq̄ q̄Þ, and q̄ q̄ðTqqÞ
where two of the quarks are spectators while the other two are interacting (their t matrices denoted
correspondingly as Tqq̄, Tq̄q̄, and Tqq). This has been achieved by describing the qqq̄ q̄ system using the
Faddeev-like four-body equations of Khvedelidze and Kvinikhidze [Theor. Math. Phys. 90, 62 (1992)] while
retaining all two-body interactions (in contrast to previous works where terms involving isolated two-quark
scattering were neglected). As such, our formulation, is able to unify seemingly unrelated models of the
tetraquark, like, for example, theDD̄model of theMoscow group [Faustov et al., Universe 7, 94 (2021)] and
the coupled channel DD̄ −MM model of the Giessen group [Heupel et al., Phys. Lett. B 718, 545 (2012)].

DOI: 10.1103/PhysRevD.107.094014

I. INTRODUCTION

With the inception of the quark model of hadrons in
1964, all known baryons and mesons could be described as
stable combinations of valence quarks q and antiquarks q̄,
baryons consisting of three quarks (qqq) and mesons of a
quark-antiquark pair (qq̄) [1,2]. Although multiquark states
such as the tetraquark (qqq̄ q̄) and pentaquark (qqqqq̄)
were also considered to be a possibility [1,3], it was not
until 2003 that the first experimental evidence for an exotic
multiquark state (a tetraquark) became available [4]. Since
then there has been a virtual explosion in the number of
multiquark hadron candidates discovered, together with a
correspondingly large variety of theoretical models devel-
oped in order to learn about the dynamics of their
formation, see [5] for a recent review.
Out of the many recent theoretical works on this subject,

we would like to address the works of the Moscow group
(Faustov et al.) [6–9], whomodeled tetraquarks as a diquark-
antidiquark ðDD̄Þ system, and the Giessen group (Fischer
et al.) [10–13], whomodeled tetraquarks as a coupledmix of
meson-meson ðMMÞ and diquark-antidiquark ðDD̄Þ states.
It has been noted that these works differ significantly not
only in their prediction of heavy tetraquark masses [8], but

moreover, in thevery attributionof the inner structure a heavy
tetraquark, with the Giessen group finding the MM compo-
nents to be generally dominant, with the DD̄ components
being small or even negligible [13]. In view of the strongly
differing predictions made by these models, it would be
interesting and important to express these seemingly unre-
lated models in terms of a common theoretical foundation.
It is to this end that we have derived a universal set of
tetraquark equations which produce both the above
approaches in different approximations.
In order to demonstrate how a unified theoretical

approach is achieved, we first note that the Moscow group’s
model can be viewed as being based on the solutions of the
bound-state equation for the DD̄-tetraquark amplitude ϕD,
as illustrated in Fig. 1. As seen from this figure, the kernel
of the equation consists of a single term where a qq̄ pair
scatters elastically in the presence of spectating q and q̄
quarks. More specifically, the Moscow model corresponds
to the case where Tqq̄, the t matrix describing the mentioned
qq̄ scattering, is expressed as a sum of two potentials

Tqq̄ ¼ Vgluon þ Vconf ; ð1Þ
where Vgluon is the qq̄ one-gluon-exchange potential and
Vconf is a local confining potential.1 However, in this paper
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1To be precise, the Moscow group uses quasipotential bound-
state form factors instead of the D → qq form factor Γ12ðp; PÞ
and the D̄ → q̄ q̄ form factor Γ34ðp; PÞ, appearing as small blue
circles in Fig. 1. Formally, this is equivalent to assuming that
Γ12ðp; PÞ and Γ34ðp; PÞ do not depend on the longitudinal
projection of the relative 4-momentum p with respect to the
total momentum P of the two quarks or two antiquarks.
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we shall consider the general case of the Tqq̄ t matrix, and
correspondingly refer to the intermediate state of the kernel
of Fig. 1 as qq̄ðTqq̄Þ. In a similar way, the Giessen group’s
model is based on the solutions of the coupled-channel
equations for theMM-tetraquark andDD̄-tetraquark ampli-
tudes ϕM and ϕD, respectively, as illustrated in Fig. 2. In
this case there are no contributions of type qq̄ðTqq̄Þ, with
DD̄ scattering taking place only via intermediate MM
states. One of the features of the Giessen group’s model is
that it is based on a rigorous field-theoretic derivation for
the 2q2q̄ system where all approximations can be clearly
specified. Thus, following the derivation presented in [10],
the model is covariant, retains only pairwise interactions
between the quarks, and thus leads to the use of the t matrix
Taa0 corresponding to the scattering of the four quarks
where all interactions are switched off except those within
the pairs labeled by a and a0. It can be shown [see Eq. (10)
of [10] ] that

Taa0 ¼ Ta þ Ta0 þ TaTa0 ; ð2Þ

where Ta and Ta0 are the separate two-body t matrices for
the scattering of the quarks within pairs a and a0,
respectively. The first two terms on the right-hand side
(rhs) of Eq. (2) were neglected in the derivation of [10], yet
are responsible for contributions like that of the qq̄ðTqq̄Þ
intermediate state in the Moscow group’s model. Imple-
menting a further approximation where Ta and Ta0 are
assumed to be dominated by meson and diquark pole
contributions, leads to the equations of Fig. 2.
In order to achieve a unified description where all the

contributions illustrated in Fig. 1 and Fig. 2 are taken into
account, we derive coupled equations similar to those of
Fig. 2, but where the first two terms on the rhs of Eq. (2) are
retained at least to first order at this stage. The resulting
equations have the same form as those of Fig. 2, but with a
kernel that contains additional diagrams illustrated in
Fig. 5. Thus, the qq̄ðTqq̄Þ contribution is included, as well
as corresponding qqðTq̄ q̄Þ and q̄ q̄ðTqqÞ contributions. In
this way we unify the Moscow and Giessen approaches,
and hope that the resulting unified tetraquark equations
will lead to a more accurate description of a tetraquark,

including an improved assessment of the relative roles
played by its DD̄ and MM components.

II. DERIVATION

For simplicity, in Sec. II A we derive general tetraquark
equations for the case of distinguishable quarks. Then,
in Sec. II B, corresponding equations for two identical
quarks and two identical antiquarks are obtained by
explicitly antisymmetrizing the distinguishable quark case.
In Sec. II C, after the introduction of separable approx-
imations for the two-body t matrices in the product term
TaTa0 of Eq. (2), the resulting coupled-channel MM −DD̄
equations are recast so as to expose three-body-like states of
the form qq̄ðTqq̄Þ, qqðTq̄ q̄Þ, and q̄ q̄ðTqqÞ. The final part of
the derivation, in Sec. II D, is devoted to symmetrizing the
two-meson states in the formalism, as these may not have
the required symmetry for the case of identical mesons.

A. Four-body equations for distinguishable quarks

To describe the 2q2q̄ system where coupling to qq̄
channels is neglected and only pairwise interactions
are taken into account, we follow the formulation of
Khvedelidze and Kvinikhidze [14] in the same way as
in Ref. [10] and in our previous work [15]. Thus, assigning
labels 1, 2 to the quarks and 3, 4 to the antiquarks, the qq̄-
irreducible 4-body kernel for distinguishable particles, Kd,
is written as a sum of three terms whose structure is
illustrated in Fig. 3, and correspondingly expressed as

Kd ¼
X
aa0

Kd
aa0 ¼

X
α

Kd
α; ð3Þ

where the index a ∈ f12; 13; 14; 23; 24; 34g enumerates
six possible pairs of particles, the double index aa0 ∈
fð13; 24Þ; ð14; 23Þ; ð12; 34Þg enumerates three possible
two pairs of particles, and the Greek index α is used
as an abbreviation for aa0 such that α ¼ 1 denotes
aa0 ¼ ð13; 24Þ, α ¼ 2 denotes aa0 ¼ ð14; 23Þ, and α ¼ 3

denotes aa0 ¼ ð12; 34Þ. Thus Kd
α ≡ Kd

aa0 describes the part
of the four-body kernel where all interactions are switched
off except those within the pairs a and a0. Figure 3

FIG. 1. Diquark-antidiquark bound-state equation encompass-
ing the Moscow group’s approach [6–9]. The form factor ϕD
couples the tetraquark to diquark and antidiquark states (both
represented by double-lines). Shown is the general form of the
kernel where one qq̄ pair interacts (the red circle representing the
corresponding t matrix Tqq̄) while the other qq̄ pair is spectating.
Quarks (antiquarks) are represented by left (right) directed lines.

FIG. 2. Tetraquark equations of the Giessen group [10–13].
Form factor ϕM couples the tetraquark to two mesons (dashed
lines), and form factors ϕD couples the tetraquark to diquark-
antidiquark states (double lines).
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illustrates the fact that Kd
α can be expressed in terms of the

two-body kernels Kd
a and Kd

a0 as [10,14,15],

Kd
α ¼ Kd

aG0
a0

−1 þ Kd
a0G

0
a
−1 − Kd

aKd
a0 ; ð4Þ

where G0
a (G0

a0 ) is the 2-body disconnected Green function
for particle pair a (a0). Of note is the presence of a minus
sign in the last term of Eq. (4), which is necessary to avoid
overcounting.
To simplify the notation, we shall suppress writing

disconnected Green functions whenever these are self-
evident; thus we may write Eq. (4) as the three expressions

Kd
1 ¼ Kd

13 þ Kd
24 − Kd

13K
d
24; ð5aÞ

Kd
2 ¼ Kd

14 þ Kd
23 − Kd

14K
d
23; ð5bÞ

Kd
3 ¼ Kd

12 þ Kd
34 − Kd

12K
d
34; ð5cÞ

and the 2q2q̄ kernel for distinguishable quarks in the
pairwise approximation, as

Kd ¼ Kd
1 þ Kd

2 þ Kd
3: ð6Þ

Although the superscript “d” (to indicate the distinguish-
able particle assumption) is redundant for quantities likeKd

1

and Kd
2 involving qq̄ pairs, we keep it for the moment in

order to avoid a mixed notation.
The 2q2q̄ bound-state form factor for distinguishable

quarks is then

Φd ¼ KdGð4Þ
0 Φd; ð7Þ

where Gð4Þ
0 is the fully disconnected part of the full 2q2q̄

Green function Gð4Þ [16]. The four-body kernels Kα can be
used to define the Faddeev components of Φd as

Φd
α ¼ Kd

αG
ð4Þ
0 Φd; ð8Þ

so that

X
α

Φd
α ¼ Φd: ð9Þ

From Eq. (7) follow Faddeev-like equations for the
components,

Φd
α ¼ Td

α

X
β

δ̄αβG
ð4Þ
0 Φd

β; ð10Þ

where δ̄αβ ¼ 1 − δαβ and Td
α is the t matrix corresponding to

kernel Kd
α; that is

Td
α ¼ Kd

α þ Kd
αG

ð4Þ
0 Td

α ð11Þ
with Td

α being expressed in terms of two-body t matrices Td
a

and Td
a0 as

Td
α ¼ Td

aG0
a0

−1 þ Td
a0G

0
a
−1 þ Td

aTd
a0 ; ð12Þ

or in the simplified notation analogous to Eq. (5),

Td
1 ¼ Td

13 þ Td
24 þ Td

13T
d
24; ð13aÞ

Td
2 ¼ Td

14 þ Td
23 þ Td

14T
d
23; ð13bÞ

Td
3 ¼ Td

12 þ Td
34 þ Td

12T
d
34: ð13cÞ

FIG. 3. Structure of the terms Kd
α (α ¼ 1, 2, 3) making up the four-body kernel Kd where only two-body forces are included. The

coloured circles represent two-body kernels Kd
ij for the scattering of quarks i and j, as indicated.

UNIFIED TETRAQUARK EQUATIONS PHYS. REV. D 107, 094014 (2023)

094014-3



Equations (10) can likewise be written with dropped

Gð4Þ
0 ’s as

Φd
1 ¼ Td

1ðΦd
2 þΦd

3Þ; ð14aÞ

Φd
2 ¼ Td

2ðΦd
3 þΦd

1Þ; ð14bÞ

Φd
3 ¼ Td

3ðΦd
1 þΦd

2Þ: ð14cÞ

B. Four-body equations for
indistinguishable quarks

The 2q2q̄ bound-state form factor Φ for two identical
quarks 1,2, and two identical antiquarks 3,4, satisfies the
equation

Φ ¼ 1

4
KGð4Þ

0 Φ; ð15Þ

where the kernel K is antisymmetric with respect to
swapping quark or antiquark quantum numbers either in
the initial or in the final state; that is

P34K ¼ P12K ¼ KP34 ¼ KP12 ¼ −K; ð16Þ

where the exchange operator Pij swaps the quantum
numbers associated with particles i and j in the quantity
on which it is operating; for example, P12Φðp1p2p3p4Þ ¼
Φðp2p1p3p4Þ and P34Φðp1p2p3p4Þ ¼ Φðp1p2p4p3Þ.
The factor 1

4
in Eq. (15) is a product of the combinatorial

factors 1
2
, one for identical quarks and another for identical

antiquarks. The in this way antisymmetric kernel K can be
represented as

K ¼ ð1 − P12Þð1 − P34ÞKd; ð17Þ

where Kd is symmetric with respect to swapping either
quark or antiquark quantum numbers in the initial and final
states simultaneously, P12KdP12 ¼ P34KdP34 ¼ Kd. This
symmetry property of Kd can be written in the form of
commutation relations

½P34; Kd� ¼ ½P12; Kd� ¼ 0; ð18Þ

and follows directly from the following relations implied by
Eqs. (5):

P12Kd
3P12 ¼ P34Kd

3P34 ¼ Kd
3; ð19aÞ

P12Kd
1P12 ¼ P34Kd

1P34 ¼ Kd
2: ð19bÞ

Due to the antisymmetry properties of K as specified in
Eq. (16), the solution of the identical particle bound-state
equation, Eq. (15), is correspondingly antisymmetric;
namely,P34Φ ¼ P12Φ ¼ −Φ. However, becauseKd usually

corresponds to a fewer number of diagrams thanK, rather than
solvingEq. (15), itmay bemore convenient to determineΦ by
antisymmetrizing the solutionΦd of the bound-state equation
for distinguishable quarks, as

Φ ¼ ð1 − P12Þð1 − P34ÞΦd: ð20Þ
Then, in view of the commutation relations of Eq. (18), if the
solution Φd exists, its antisymmetrized version as given by
Eq. (20), also satisfies the bound state equation for distinguish-
able quarks, Eq. (7), as well as the one for indistinguishable
quarks, Eq. (15),

Φ ¼ ð1 − P12Þð1 − P34ÞKdGð4Þ
0 Φd

¼ KdGð4Þ
0 ð1 − P12Þð1 − P34ÞΦd ¼ KdGð4Þ

0 Φ

¼ 1

4
KdGð4Þ

0 ð1 − P12Þð1 − P34ÞΦ

¼ 1

4
KGð4Þ

0 Φ: ð21Þ

A further consequence of the commutation relations of
Eq. (18), is that the system corresponding to the kernel Kd

is degenerate, having multiple linearly independent solutions
(eigenfunctions) corresponding to one eigenenergy (tetra-
quark mass), unless by chance Kd is symmetric or antisym-
metric in the final and initial state variables independently,
P34Kd ¼ P12Kd ¼ �Kd. In the case of the 2q2q̄ system,
there are four such eigenfunctions related to each other by
quark-swapping operators, or symmetrized in four possible
ways using ð1� P12Þ and ð1� P34Þ. By contrast, the system
corresponding to the kernelK is not degenerate, becauseK is
fully antisymmetric from both (initial and final state) sides
independently and consequently it has only one, fully anti-
symmetric, solution. Indeed, in this systemany swappingof the
identical-quark quantum numbers does not change the wave
function because only fully antisymmetric wave functions

satisfy the bound-state equation, PijΦ ¼ 1
4
PijKGð4Þ

0 Φ ¼
− 1

4
KGð4Þ

0 Φ ¼ −Φ.
As Φ satisfies the same bound-state equation as Φd,

Φ ¼ KdGð4Þ
0 Φ; ð22Þ

the kernels Kd
α can again be used to define Faddeev

components, but this time for Φ,

Φα ¼ Kd
αG

ð4Þ
0 Φ; ð23Þ

where

X
α

Φα ¼ Φ: ð24Þ

In view of Eqs. (19), the Faddeev components Φα have the
following properties:
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P12Φ3 ¼ −Φ3; P12Φ1 ¼ −Φ2; ð25aÞ

P34Φ3 ¼ −Φ3; P34Φ1 ¼ −Φ2: ð25bÞ

Since Φ satisfies the same bound-state equation as Φd, the
components Φα satisfy the same Faddeev-like equations as
for distinguishable quarks [Eqs. (14)],

Φ1 ¼ Td
1ðΦ2 þΦ3Þ; ð26aÞ

Φ2 ¼ Td
2ðΦ3 þΦ1Þ; ð26bÞ

Φ3 ¼ Td
3ðΦ1 þΦ2Þ: ð26cÞ

where, like in Eqs. (14), factors of Gð4Þ
0 have been dropped.

Although an arbitrary solution fΦ1;Φ2;Φ3g of Eqs. (34)
will not necessarily obey the symmetry properties of
Eq. (25), we note that if fΦ1;Φ2;Φ3g is a solution, then
so is P12fΦ2;Φ1;Φ3g and P34fΦ2;Φ1;Φ3g, and therefore
so are their linear combinations

fΦ0
1;Φ0

2;Φ0
3g ¼ fΦ1;Φ2;Φ3g − P12fΦ2;Φ1;Φ3g; ð27Þ

and

fΦ00
1;Φ00

2;Φ00
3g ¼ fΦ0

1;Φ0
2;Φ0

3g − P34fΦ0
2;Φ0

1;Φ0
3g ð28Þ

which does have these symmetry properties. Thus, without
loss of generality, we shall assume that we are dealing
with a solution fΦ1;Φ2;Φ3g of Eqs. (26) which has the
symmetry properties of Eq. (25). We also note that the input
2-body t matrices Td

12 and Td
34 can be antisymmetrized by

defining

T12 ¼
1

2
ð1 − P12ÞTd

12; T34 ¼
1

2
ð1 − P34ÞTd

34; ð29Þ

so that

T12P12 ¼ P12T12 ¼ −T12; ð30aÞ

T34P34 ¼ P34T34 ¼ −T34; ð30bÞ

which also allows Eq. (12) to be extended to the case of
identical particles as

Tα ¼ TaG0
a0

−1 þ Ta0G0
a
−1 þ TaTa0 ; ð31Þ

or explicitly with G0
a0

−1 and G0
a
−1 suppressed,

T1 ¼ T13 þ T24 þ T13T24; ð32aÞ

T2 ¼ T14 þ T23 þ T14T23; ð32bÞ

T3 ¼ T12 þ T34 þ T12T34; ð32cÞ

where the equations for T1 and T2 are just those of
Eqs. (13a) and (13b) written without the redundant “d”
superscripts, and where T3 is defined by Eq. (32c).
Furthermore, as the physical (antisymmetric) t matrices
for qq and q̄ q̄ scattering are Tqq ¼ ð1 − P12ÞTd

12 ¼ 2T12

and Tq̄ q̄ ¼ ð1 − P34ÞTd
34 ¼ 2T34, respectively, it is con-

venient to use the antisymmetric T12 and T34 as the input
qq and q̄ q̄ t matrices. This is accomplished by multiplying
Eq. (26c) by ð1 − P12Þ and using the symmetry properties
of Eq. (25) to obtain

Φ3 ¼
1

2
ð1 − P12ÞTd

3

1

2
ð1 − P34ÞðΦ1 þΦ2Þ

¼ T3ðΦ1 þΦ2Þ ð33Þ

thereby allowing us to write Eqs. (26) as

Φ1 ¼ T1ðΦ2 þΦ3Þ; ð34aÞ

Φ2 ¼ T2ðΦ3 þΦ1Þ; ð34bÞ

Φ3 ¼ T3ðΦ1 þΦ2Þ: ð34cÞ

For physical (antisymmetric) solutions of Eqs. (34), only
two of these three equations are independent. For example,
Eq. (34b) can be written as

−P12Φ1 ¼ P12T1P12ðΦ3 þΦ1Þ
¼ P12T1ð−Φ3 −Φ2Þ; ð35Þ

where Eq. (25) and T2 ¼ P12T1P12 have been used. Then,
after a further application of P12, one obtains Eq. (34a).
Choosing Eq. (34a) and Eq. (34c) as the two independent
equations, we can use Φ2 ¼ −P12Φ1 to obtain closed
equations

Φ1 ¼ T1ð−P12Φ1 þΦ3Þ; ð36aÞ

Φ3 ¼ T3ðΦ1 − P12Φ1Þ; ð36bÞ

where, necessarily, P12Φ3 ¼ −Φ3. In this way an arbitrary
solution of Eqs. (36) results in components fΦ1;Φ2;Φ3g
which obey the symmetry properties of Eqs. (25a) but not
necessarily of Eq. (25b); however, invoking a similar
argument as previously, no generality is lost in choosing
a solution of Eqs. (36) that has all the symmetry properties
of Eq. (25).
Equation (36b) can be further simplified using P12Φ1 ¼

P34Φ1 and the assumption that T12 and T34 are antisym-
metric in their labels, so that

T3P12Φ1 ¼ ðT12 þ T34 þ T12T34ÞP12Φ1 ¼ −T3Φ1: ð37Þ

In this way Eqs. (36) take the form
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Φ1 ¼ T1ð−P12Φ1 þΦ3Þ ð38aÞ
Φ3 ¼ 2T3Φ1: ð38bÞ

Again, without loss of generality, we choose a solution of
Eqs. (38) which has all the symmetry properties of Eq. (25).

C. Tetraquark equations with exposed qq̄ðTqq̄Þ,
qqðTq̄ q̄Þ, and q̄ q̄ðTqqÞ channels

Choosing Eqs. (38) as the four-body equations describ-
ing a tetraquark, they may be expressed in matrix form as

Φ ¼ T RΦ; ð39Þ

where

Φ ¼
�Φ1

Φ3

�
; T ¼

� 1
2
T1 0

0 T3

�
; R ¼ 2

�−P12 1

1 0

�
:

ð40Þ
Writing

T1 ¼ T×
1 þ Tþ

1 ; T3 ¼ T×
3 þ Tþ

3 ; ð41Þ
where

T×
1 ¼ T13T24; Tþ

1 ¼ T13 þ T24; ð42aÞ

T×
3 ¼ T12T34 Tþ

3 ¼ T12 þ T34; ð42bÞ

we have that

T ¼ T × þ T þ; ð43Þ
where

T × ¼
� 1

2
T×
1 0

0 T×
3

�
; T þ ¼

� 1
2
Tþ
1 0

0 Tþ
3

�
: ð44Þ

Thus,

Φ ¼ ðT × þ T þÞRΦ ð45Þ
and consequently

Φ ¼ ð1 − T þRÞ−1T ×RΦ: ð46Þ
To be close to previous publications we choose a

separable approximation for the two-body t matrices in
T×
1 and T×

3 (but not necessarily in Tþ
1 and Tþ

3 ); namely, for
a ∈ f13; 24; 12; 34g we take

Ta ¼ iΓaDaΓ̄a; ð47Þ
whereDa ¼ DaðPaÞ is a propagator whose structure can be
chosen to best describe the two-body t matrix Ta, and Γa is
a corresponding vertex function. In the simplest case, one
can follow previous publications and choose the pole

approximation where DaðPaÞ ¼ 1=ðP2
a −m2

aÞ is the propa-
gator for the bound particle (diquark, antidiquark, or
meson) of mass ma. In view of Eq. (30), note that

P12Γ12 ¼ −Γ12; Γ̄12P12 ¼ −Γ̄12; ð48aÞ
P34Γ34 ¼ −Γ34; Γ̄34P34 ¼ −Γ̄34: ð48bÞ

We can thus write

T × ¼ −ΓDΓ̄; ð49Þ

where

Γ ¼
�Γ13Γ24 0

0 Γ12Γ34

�
; D ¼

� 1
2
D13D24 0

0 D12D34

�
;

Γ̄ ¼
�
Γ̄13Γ̄24 0

0 Γ̄12Γ̄34

�
: ð50Þ

In this way T × exposes intermediate state meson-meson
ðD13D24Þ and diquark-antidiquark ðD12D34Þ channels.
Using Eq. (49) in Eq. (46),

ϕ ¼ −Γ̄Rð1 − T þRÞ−1ΓDϕ; ð51Þ

where

ϕ ¼ Γ̄RΦ: ð52Þ
In this way we obtain the bound-state equation for ϕ in
meson-meson ðMMÞ and diquark-antidiquark ðDD̄Þ space,

ϕ ¼ VDϕ; ð53Þ

where the 2 × 2 matrix potential (with reinserted Gð4Þ
0 ) is

V ¼ −Γ̄RGð4Þ
0 ð1 − T þRGð4Þ

0 Þ−1Γ: ð54Þ

Expanding the term in square brackets in powers of T þ
[i.e., with respect to the contribution of intermediate states
qq̄ðTqq̄Þ, qqðTq̄ q̄Þ, and q̄ q̄ðTqqÞ],

V ¼ −Γ̄RGð4Þ
0 ½1þ T þRGð4Þ

0 þ � � ��Γ; ð55Þ

it turns out that each of the first two terms of this expansion
corresponds to different existing approaches to modeling
tetraquarks in terms of MM −DD̄ coupled channels. In
particular, the lowest-order term

Vð0Þ ¼ −Γ̄RGð4Þ
0 Γ

¼ −2
�
Γ̄1 0

0 Γ̄3

��−P12 1

1 0

�
Gð4Þ

0

�Γ1 0

0 Γ3

�

¼ −2
�
−Γ̄1P12Γ1 Γ̄1Γ3

Γ̄3Γ1 0

�
; ð56Þ
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where

Γ̄1 ¼ Γ̄13Γ̄24; Γ1 ¼ Γ13Γ24; ð57aÞ

Γ̄3 ¼ Γ̄12Γ̄34; Γ3 ¼ Γ12Γ34; ð57bÞ

consists of Feynman diagrams illustrated in Fig. 4, and
corresponds to the Giessen group model of Heupel et al.
[10] where tetraquarks are modeled by solving the equation

ϕð0Þ ¼ Vð0ÞDϕð0Þ: ð58Þ

Similarly, the first-order correction (without the lowest
order term included) is

Vð1Þ ¼ −Γ̄RGð4Þ
0 T þRGð4Þ

0 Γ

¼ −4
�
Γ̄1 0

0 Γ̄3

�
Gð4Þ

0

�−P12 1

1 0

�� 1
2
Tþ
1 0

0 Tþ
3

�

×

�−P12 1

1 0

�
Gð4Þ

0

�Γ1 0

0 Γ3

�

¼ −2
� Γ̄1½P12T

þ
1 P12 þ 2Tþ

3 �Γ1 −Γ̄1P12T
þ
1 Γ3

−Γ̄3T
þ
1 P12Γ1 2Γ̄3T

þ
1 Γ3

�
;

ð59Þ

which consists of Feynman diagrams illustrated in Fig. 5,
and corresponds to the Moscow group model of Faustov
et al. [7] where they modeled tetraquarks by solving the
equation

ϕð1Þ ¼ Vð1ÞDϕð1Þ; ð60Þ

albeit, with only diquark-antidiquark channels retained. It is
an essential result of this paper, that it is the sum of the
potentials Vð0Þ and Vð1Þ, each associated with the separate
approaches of the Giessen and Moscow groups, with
tetraquarks modeled by the bound-state equation

ϕ ¼ ½Vð0Þ þ Vð1Þ�Dϕ; ð61Þ

that results in a complete MM −DD̄ coupled channel
description up to first order in T þ [i.e., up to first order in
intermediate states where one 2q pair (qq, qq̄, or q̄ q̄) is
mutually interacting while the other 2q pair is spectating].

D. Meson-meson symmetry

To discuss the symmetry of identical meson legs, we note
that the potential V consists of diagrams, some of which
are illustrated in Fig. 4 and Fig. 5, where a four-meson
leg contribution, for example Γ̄1P12Γ1 as illustrated in
Fig. 4(a), consists of a diagram which is not symmetric with
respect to meson quantum numbers, being only symmetric
with respect to swapping meson legs in both initial and final
states simultaneously. Thus, to establish a description in
terms of physical amplitudes, we will need to explicitly
symmetrize identical meson states in the bound-state
equation, Eq. (53). To do this, we define P to be the
operator that swaps meson quantum numbers, and note the
useful relations

PΓ̄1 ¼ Γ̄1P12P34; ð62aÞ

(a) (b) (c)

FIG. 4. Feynman diagrams making up the elements of the coupled channel MM −DD̄ kernel matrix Vð0Þ of Eq. (56): (a) Γ̄1P12Γ1,
(b) Γ̄1Γ3, and (c) Γ̄3Γ1. Solid lines with leftward (rightward) arrows represent quarks (antiquarks), dashed lines represent mesons, and
double lines represent diquarks and antidiquarks.

(a) (b) (c)

(d) (e)

FIG. 5. Feynman diagrams making up the elements of the coupled channel MM −DD̄ kernel matrix Vð1Þ of Eq. (59):
(a) Γ̄1P12T

þ
1 P12Γ1, (b) Γ̄1P12T

þ
3 P12Γ1, (c) Γ̄1P12T

þ
1 Γ3, (d) Γ̄3T

þ
1 P12Γ1, and (e) Γ̄3T

þ
1 Γ3. Solid lines with leftward (rightward)

arrows represent quarks (antiquarks), dashed lines represent mesons, and double lines represent diquarks and antidiquarks.
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P12P34Γ3 ¼ Γ3; ð62bÞ

the first of which shows that interchanging the two mesons
in the final state of the vertex function product Γ̄1 ¼ Γ̄13Γ̄24

is equivalent to interchanging the identical quarks and
antiquarks in the initial state, and the second of which
follows from the antisymmetry of the qq and q̄ q̄ vertex
functions in Γ3 ¼ Γ̄12Γ̄34. Using these relations it is
straightforward to prove

�
P 0

0 1

�
V ¼ V

�
P 0

0 1

�
ð63Þ

which shows the equivalence of exchanging identical
mesons in initial and final states. In turn this implies that
if ϕ is a solution of Eq. (53) then so is ðP

0
0
1
Þϕ, and therefore,

so is

ϕS ¼
�
1þ P 0

0 2

�
ϕ; ð64Þ

where ϕS is the physical solution which is symmetric with
respect to the exchange of the two identical mesons. One
can then write

ϕS ¼ VSDϕS; ð65Þ

where

VS ¼ 1

2

�
1þ P 0

0 2

�
V ð66Þ

is the properly symmetrized kernel. In particular,

VS ¼ VSð0Þ þ VSð1Þ; ð67Þ

where

VSð0Þ ¼ −
�
1þ P 0

0 2

��
−Γ̄1P12Γ1 Γ̄1Γ3

Γ̄3Γ1 0

�
; ð68aÞ

VSð1Þ ¼ −
�
1þ P 0

0 2

�

×

� Γ̄1½P12T
þ
1 P12 þ 2Tþ

3 �Γ1 −Γ̄1P12T
þ
1 Γ3

−Γ̄3T
þ
1 P12Γ1 Γ̄3T

þ
1 Γ3

�
:

ð68bÞ

According to the discussion below Eqs. (32), T12 ¼ 1
2
Tqq

and T34 ¼ 1
2
Tq̄ q̄, so that T3 ¼ 1

2
ðTqq þ Tq̄ q̄Þ, where

Tqq and Tq̄ q̄ are the physical (antisymmetric) scattering
amplitudes for identical quarks. In the separable appro-
ximation Tqq∼ iΓqqΓ̄qq=ðP2 −M2

qqÞ and Tq̄q̄∼ iΓq̄q̄Γ̄q̄ q̄=
ðP2−M2

q̄q̄Þwhich define the corresponding antisymmetrized

quark vertex functions Γqq, Γq̄ q̄, Γ̄qq, and Γ̄q̄ q̄. It follows
that Γ3 ¼ 1

2
ΓqqΓq̄ q̄. It is convenient to reexpress the

symmetric (in mesons) kernels of Eqs. (68) in terms of
these antisymmetric (in quarks) quantities. To do this in a
way that does not change notation, we shall implement the
following replacements: T12 →

1
2
T12, T34 →

1
2
T34, and

Γ3 →
1
2
Γ3. After these replacements T12 and T34 become

the physical scattering amplitudes for indistinguishable
quarks and antiquarks. In this way Eqs. (68) become

VSð0Þ ¼ −
�
1þ P 0

0 2

��−Γ̄1P12Γ1
1
2
Γ̄1Γ3

1
2
Γ̄3Γ1 0

�
; ð69aÞ

VSð1Þ ¼ −
�
1þ P 0

0 2

�

×

� Γ̄1½P12T
þ
1 P12 þ Tþ

3 �Γ1 − 1
2
Γ̄1P12T

þ
1 Γ3

− 1
2
Γ̄3T

þ
1 P12Γ1

1
4
Γ̄3T

þ
1 Γ3

�
;

ð69bÞ
which using Eqs. (62), simplify to

VSð0Þ ¼
� ð1þ PÞΓ̄1P12Γ1 −Γ̄1Γ3

−Γ̄3Γ1 0

�
; ð70aÞ

VSð1Þ ¼
�−ð1þPÞΓ̄1½P12T

þ
1 P12þTþ

3 �Γ1 Γ̄1P12T
þ
1 Γ3

Γ̄3T
þ
1 P12Γ1 − 1

2
Γ̄3T

þ
1 Γ3

�
:

ð70bÞ
A few observations are in order:
(1) The expression for the lowest order potential, VSð0Þ,

corresponds to the model of the Giessen group as
previously derived in [10].

(2) One can see explicitly that the Giessen group
potential VSð0Þ does not support DD̄ elastic tran-
sition, DD̄ ← DD̄, whereas the one of the Moscow
group, VS;ð1Þ, does (see the right lower-corner matrix
element 2Γ3T

þ
1 Γ3).

(3) Equation (70b) can be simplified by removing T24 in
Tþ
1 ¼ T13 þ T24, as follows. Using Eq. (62),

Γ̄1P12T
þ
1 P12Γ1 ¼ Γ̄1P12ðT13 þ T24ÞP12Γ1

¼ Γ̄1P12ðT13 þ P12P34T13P12P34ÞP12Γ1

¼ Γ̄1P12T13P12Γ1 þ PΓ̄1P12T13P12Γ1P; ð71aÞ

Γ̄1P12T
þ
1 Γ3 ¼ Γ̄1P12T13Γ3 þ PΓ̄1P12P34P12T24Γ3

¼ Γ1P12T13Γ3 þ PΓ̄1P12T13Γ3

¼ ð1þ PÞΓ̄1P12T13Γ3; ð71bÞ

Γ̄3T
þ
1 Γ3 ¼ Γ̄3ðT13 þ P12P34T24P12P34ÞΓ3

¼ 2Γ̄3T13Γ3: ð71cÞ

A. N. KVINIKHIDZE and B. BLANKLEIDER PHYS. REV. D 107, 094014 (2023)

094014-8



The simplification is in that when solving numeri-
cally Eq. (65), instead of calculating two integrals
of Eq. (71a), Γ̄1P12T13P12Γ1 þ Γ̄1P34T13P34Γ1, we
calculate only one of them, I ¼ Γ̄1P12T13P12Γ1, the
second integral being obtained by only swapping
meson quantum numbers in the first one, PIP.
Similarly for Γ̄1P12T

þ
1 Γ3.

III. SUMMARY AND DISCUSSION

We have derived tetraquark equations that take the
form of a Bethe-Salpeter equation in coupled MM −DD̄
space, Eq. (65), where the kernel VS is a sum of two terms:
VSð0Þ consisting of terms involving noninteracting quark
exchange, as illustrated in Fig. 4, and VSð1Þ consisting of
terms involving interacting quark exchange where one pair
of quarks mutually scatter in intermediate state, as illus-
trated in Fig. 5. The mathematical expressions for these
potentials are given by Eq. (70), which takes into account
the antisymmetry of identical quarks (qq and q̄ q̄), and the
symmetry of identical mesons ðMMÞ.
Assuming pairwise interactions between the quarks, our

derivation stems from the covariant four-body equations of
Khvedelidze and Kvinikhidze [14], which in this approxi-
mation, are exact equations for a four-body system in
relativistic quantum field theory. Only two additional
approximations are made to obtain our final equations:
(i) separable approximations were made for each of the
two-body t matrices in the product terms TaTa0 , of Eq. (31),
thereby exposing MM and DD̄ channels, and (ii) the two-
body t matrices in the sum Ta þ Ta0 , of Eq. (31), are
retained only to first order in the expression for the four-
body kernel V, Eq. (55), which is sufficient to introduce
qq̄ðTqq̄Þ, qqðTq̄ q̄Þ, and q̄ q̄ðTqqÞ states, as illustrated in
Fig. 5, into the resulting description.
A feature of our equations, is that they provide a unified

description of previous seemingly unrelated approaches. In
particular, neglecting VSð1Þ from our kernel of Eq. (67),
results in the MM −DD̄ coupled channels model of the
Giessen group (Fischer et al.) [10–13], while neglecting
VSð0Þ from our kernel of Eq. (67), encompasses the DD̄
model of the Moscow group (Faustov et al.) [6–9]. More
specifically, the Moscow group model corresponds to

keeping just the DD̄ → DD̄ element of the matrix VSð1Þ
given in Eq. (70b), namely

−
1

2
Γ̄3T

þ
1 Γ3 ¼ −Γ̄12Γ̄34T13Γ12Γ34

¼ −Γ̄DΓ̄D̄G
0
qq̄Tqq̄G0

qq̄ΓDΓD̄; ð72Þ

where ΓD ≡ Γ12, ΓD̄ ≡ Γ34, Γ̄D ≡ Γ̄12, Γ̄D̄ ≡ Γ̄34,
Tqq̄ ≡ T13, and G0

qq̄ is the product of propagators for q
and q̄. In this respect it is interesting to note that theory
specifies Tqq̄ to be the full t matrix for quark-antiquark
scattering, and as such, is expressible as a sum of three
types of contributions: (i) s-channel pole contributions
corresponding to the formation of mesons (the typical
approximation used for two-quark scattering amplitudes by
the Giessen group), (ii) a long-range contribution due to
one-gluon exchange, and (iii) all other possible contribu-
tions including those responsible for confinement. Indeed,
as shown in the Appendix, one can write the general
structure of Tqq̄ as

Tqq̄ ¼
Φqq̄Φ̄qq̄

P2 −M2
qq̄

þ Kg þ KC; ð73Þ

where the pole term corresponds to a meson of mass Mqq̄,
Kg is the one-gluon exchange potential, andKC includes all
other contributions to Tqq̄ including those responsible for
confinement. Correspondingly, the DD̄ kernel in our
approach is given by the sum of the three terms illustrated
in Fig. 6.
Comparison with the Moscow group’s DD̄ kernel shows

that they did not include the s-channel meson exchange
contribution (second diagram of Fig. 6), but did include
one-gluon exchange taking into account the finite sizes of
the diquark and antidiquark through corresponding form
factors, [first term of Eq. (10) in Ref. [8]], a contribution
corresponding to the third diagram of Fig. 6. The Moscow
group also included a phenomenological DD̄ confining
potential [second term of Eq. (10) in Ref. [8]], that
correspond to the last diagram of Fig. 6 for the case of
a local qq̄ potential. Note that the confining interaction
between a quark and an antiquark that are constitutents of a

FIG. 6. General structure of theDD̄ kernel in the unified tetraquark equations. Illustrated is theDD̄ kernel (left diagram where the red
circle represents the full qq̄ t matrix Tqq̄ in intermediate state), expressed as a sum of three terms (from left to right): (i) a qq̄ s-channel
meson exchange (dashed line) contribution, (ii) a qq̄ one-gluon-exchange (curly line) contribution, and (iii) all possible other
contributions to intermediate state qq̄ scattering (shaded circle).
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diquark and an antidiquark, results in diquark-antidiquark
confinement, i.e., the two-body diquark-antidiquark poten-
tial produced in this way also has a confining part. Given
the locality of the qq̄ confining potential, it only needs to be
multiplied by a diquark form factor to result in the diquark-
antidiquark confining potential, because the form factor
does not change the long-range (small momentum transfer)
behavior of the qq̄ potential.
Finally, it is worth noting that although we have singled

out the works of the Moscow and Giessen groups as a
means of demonstrating how our tetraquark equations can
provide a common theoretical basis for very different
approaches, it seems likely that these equations are able
to encompass yet other theoretical works on the tetraquark.
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APPENDIX: GENERAL STRUCTURE
OF THE qq̄ SCATTERING AMPLITUDE

Although it is not possible as yet to solve quantum
chromodynamics to obtain the precise form of the force
between a quark and an antiquark, there are three basic
features of this force that would be desirable to take into
account when constructing a phenomenological version of
the qq̄ scattering amplitude: (i) the force binds qq̄ pairs to
form mesons, (ii) one-gluon-exchange is an important
contribution to the short-range part of this force, and
(iii) the force has the property of color confinement. To
construct the qq̄ t matrix T with these features, one can
first write the full qq̄ Green function at total momentum P
in the form

G ¼ ΨΨ̄
P2 −M2

þGC; ðA1Þ

where the pole term takes into account the bound-state
meson of massM (one can of course take into account more
than one bound state by having a sum over such pole terms)

and GC is the rest of the Green function with no pole at
P2 ¼ M2. If K is the qq̄ potential that generatesG, that is if

G ¼ G0 þG0KG; ðA2Þ

then the corresponding t matrix T, defined as the solution of

T ¼ K þ KG0T; ðA3Þ

can be written as

T ¼ K þ KGK

¼ K þ K

�
ΨΨ̄

P2 −M2
þ GC

�
K

¼ K þ ΦΦ̄
P2 −M2

þ KGCK; ðA4Þ

whereΦ ¼ KΨ. It is seen that the pole term is generated by
the sum of the iterated terms of Eq. (A3), apart from K, i.e.,
the iteration series for the pole term starts with KG0K. This
means that adding the potential K to the pole term does not
overcount K, as one might otherwise expect. Writing K as

K ¼ Kg þ Kc; ðA5Þ

where Kg is the one-gluon exchange potential and
Kc ≡ K − Kg, one obtains the general structure of the
qq̄ t matrix,

T ¼ ΦΦ̄
P2 −M2

þ Kg þ KC; ðA6Þ

where

KC ≡ Kc þ KGCK ðA7Þ

is responsible for confinement in view of its contributions
from Kc. As noted, neither Kg nor KC is overcounted
in Eq. (A6).
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