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We evaluate the full opacity dependence of collective flow in high-energy heavy-ion collisions within
a microscopic kinetic description based on the Boltzmann equation in the conformal relaxation time
approximation. By comparing kinetic theory calculations to hydrodynamic and hybrid simulations for an
average initial state, we point out shortcomings and inaccuracies of hydrodynamic models and present
modified simulation setups to improve them.
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I. INTRODUCTION

Relativistic heavy ion collisions have proven to be an
important tool for probing the dynamical properties of
QCDmatter in and out of equilibrium. Many current efforts
are concerned with using experimental data to assess the
conditions under which a quark gluon plasma (QGP) forms
in the collision, as well as its properties [1–3]. Since the
QGP itself cannot be directly observed, its properties have
to be inferred by studying suitable aspects of the data
and comparing with model descriptions. Hydrodynamics
has proven to be a powerful tool for simulating the QGP
dynamics [4–9] and can accurately describe data for
transverse flow, which is an important indicator of collec-
tive behavior. Modern Bayesian inference frameworks
based on simulations using hydrodynamics are able to
provide significant constraints on the transport properties of
the medium created in the collision [1,3,10].
However, the conditions for applicability of hydrody-

namics to describe hadronic collisions is still an open
question. It is doubtful whether it can be applied to small
systems with a dilute medium and large local gradients.
Certainly it cannot describe the far-from-equilibrium stage
right after the collision. The system will quickly approach
equilibrium and start behaving hydrodynamically, but the
timescales of its applicability in realistic systems are yet

unclear. The topics of applicability to small systems and the
properties of the preequilibrium stage have been the focus
of many recent endeavors, as described below.
In an effort to find clear distinctive features that indicate

the presence or absence of a QGP, small systems have been
extensively studied in experiment and have proven to feature
nonvanishing transverse flow [11–16] and therefore display
an onset of collective behavior. There have beenmany efforts
in simulating these systems in hydrodynamics [17–31],
which have produced reasonable results. However, in con-
trast to nucleus-nucleus collisions, such calculations are
subject to much larger uncertainties, where in addition to
the poorly constrained initial state geometry [26,32,33], one
may question the theoretical justification for employing a
hydrodynamic description for a systemwhich features a very
short lifetime and consists of very few degrees of freedom.
Hence, alternative descriptionswith amore soundmotivation
of their applicability have been put forward. For example, it
has been studied whether initial state effects as described
by the color glass condensate model could be the source
of collective flow in small systems [34–45]. However, it
turns out that these dynamics fail to describe the important
systematics [46].
On the other front, significant progress has been made in

pushing the theoretical understanding of the dynamics in
the preequilibrium stage and the approach to hydrodynamic
behavior and eventually equilibrium in large and small
systems [47–49] (see also [50,51] for recent reviews).
Descriptions of Bjorken flow have been found to exhibit
universal behavior across different dynamical models and
initial conditions [52–67]. The far-from-equilibrium behav-
ior depends on the setup, but the approach to equilibrium
proceeds in the same way by means of an attractor solution
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that has been studied extensively. This concept has since
also been applied to systems with trivial and nontrivial
transverse expansion [68–71]. Phenomenologically, it has
been shown that the preequilibrium stage has a non-
negligible influence on final state observables [71–75]
and it is therefore crucial to employ realistic descriptions
thereof.
An appropriate alternative dynamical model for small

systems aswell as preequilibrium is kinetic theory, which is a
mesoscopic description of the phase space distribution of
interacting particles and is therefore less constrained in its
applicability to very dilute systems and far-from-equilibrium
dynamics. Applications of kinetic theory to heavy ion col-
lisions have been proposed already 30 years ago [76–79]
and have been used in different model scenarios to vari-
ous levels in complexity. Among others, this has lead to
the simulation code Boltzmann Approach to Multi-Parton
Scattering (BAMPS) [80,81]. Several efforts have succeeded
in describing transverse dynamics and the buildup of trans-
verse flow within this description [82–92], in some cases
even with event-by-event simulations [39,49,93,94].
The success of relativistic hydrodynamics in describing

experimental observables, demonstrated repeatedly during
the past two decades [95], is heavily dependent on thevarious
theoreticalmodels that lead to such an effective descriptionof
strongly-interacting matter. Key ingredients include initial-
state generators such as IP-Glasma [96] orMC-Glauber [97],
QCD equation of state and realistic transport coefficients
[98], hadronization models [99], as well as particle-based
hadronic transport such as UrQMD [100]. All of these stages
introduce sometimes unquantifiable uncertainties, while
statistical approaches such as the Bayesian analysis can be
used to pinpoint the most probable parameter-set values of
each of these models [101].
In our previous work [71], we found that for final state

observables related to transverse flow, results from purely
hydrodynamic simulations are in disagreement with results
from kinetic theory even at very large opacities due to
differences between the dynamics in these two theories
during the preequilibrium phase. Even though equilibration
proceeds on arbitrarily short timescales for sufficiently large
opacities, conversely the rate of change of observables in this
period increases, such that it still has a tangible effect on their
final values. We also examined how, at early times, even an
inhomogeneous system obeying boost invariance can be
described locally by 0þ 1D Bjorken flow and used the
corresponding universal attractor solution to predict the time
evolution before the onset of transverse expansion. This also
allowed us to describe the discrepancies between hydro-
dynamics and kinetic theory due to preequilibrium in quan-
titative detail and verify that the size of this effect matches
with the described discrepancy of final state observables.
Motivated by these results, the aim of this paper and its

companion paper [102] is to examine how in practice
simulations of heavy ion collisions based on hydrodynam-
ics can be brought into agreement with kinetic theory

simulations. In the present paper, we perform an in-depth
theoretical analysis of the nonequilibrium dynamics in
different time evolution models based exclusively on
midcentral collision events, while a broad phenomenologi-
cal analysis inferring conclusions for the applicability of
hydrodynamics in small systems is presented in Ref. [102].
The time evolution is modeled in a simplified description

based on the relaxation time approximation (RTA) of
conformal kinetic theory. In such a simplistic model, the
ultrarelativistic equation of state ϵ ¼ 3P ¼ aT4 can realis-
tically describe the quark-gluon plasma only in the ultrahigh
temperature phase, when interactions become negligible
[103]. Furthermore, the bulk viscous pressure vanishes
identically for a conformal fluid, while Bayesian studies
indicate that bulk viscosity can play a significant role on
final-state observables [104]. Also, our conformal model
gives a constant shear viscosity to entropy density ratio,
η=s ¼ const, which is a crude approximation for the
expected temperature variation of this ratio [101,105].
Nevertheless, due to its simplistic evaluation of the collision
kernel, the RTA has the clear advantage of being computa-
tionally cheaper over more realistic collision kernels
(e.g. AMY [106]). Such kernels are typically too expensive
to be implemented in deterministic solvers, such as the
lattice Boltzmann approach that we employ in this paper
[71,107,108]. Previous implementations of higher-dimen-
sional dynamics (e.g. BAMPS [80,81]) therefore rely on a
test particle algorithm and thus suffer from statistical noise.
Furthermore, the first- and second-order transport coeffi-
cients computed for the RTA can be readily implemented in
the relativistic hydrodynamics solver, allowing for a well-
defined comparison between the two theories. Within this
model, we perform an analysis of the circumstances under
which hydrodynamics becomes applicable as a function of
opacity and time, as determinedbycomparing results for a set
of observables related to cooling and transverse flow to
kinetic theory. Due to the above simplifications our simu-
lation results cannot be expected to realistically describe
experimental data, nevertheless we expect that our conclu-
sions regarding the applicability of hydrodynamics also hold
for more realistic models. One argument for this is that the
low-momentum behavior close to equilibrium—which is the
relevant part for a comparison to hydrodynamics—should
be qualitatively similar between all collision kernels. The
model setup, initial conditions and the set of observables are
introduced in Sec. II.
Apart from kinetic theory and hydrodynamics, in our

work we also used other evolution models, which are
discussed in Sec. III. We employed an expansion scheme of
kinetic theory that linearizes in opacity and should agree
with full kinetic theory in the limit of small interaction
rates. We also employed KøMPøST [109,110] as an
alternative to using a full kinetic theory simulation of
the pre-equilibrium phase. Switching from this description
to hydrodynamics for the equilibrated system in a hybrid
simulation framework is one way to properly include
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preequilibrium dynamics. KøMPøST is an approximation
of the dynamics of kinetic theory, which we were able to
verify in quantitative detail by comparing to full kinetic
theory, the results of which are presented in Sec. III E.
Before presenting our results, we first discuss in detail

how preequilibrium is described in hydrodynamics and
kinetic theory, pointing out the differences between the
two theories. To this end, in Sec. IV we introduce the 1D
Bjorken flow attractor solution. This description is valid
locally also for early times in 3D simulations assuming
boost invariance. We use it to make predictions of the
preequilibrium behavior in both evolution models, includ-
ing a prediction of preflow. Based on our results for the
differences of kinetic theory and hydrodynamics in this
phase, we then introduce a scaling scheme for the initial
condition of hydro that can counteract these differences.
This scheme relies on a timescale separation of equilibra-
tion and the onset of transverse expansion.
In Sec. V, we discuss the time evolution of the system at

three example opacities. On the basis of transverse profiles,
we indicate how the picture changes from a close-to-free
streaming to an almost fully equilibrated system in kinetic
theory. We compare the time evolution in kinetic theory and
viscous hydrodynamics as well as in hybrid schemes.
Within these hybrid schemes, the first part of the system’s
evolution is modeled using kinetic theory. Afterwards, we
switch to hydrodynamics to model the remainder of the
evolution. For sufficiently large opacities, our proposed
scaling scheme indeed brings hydrodynamics into agree-
ment with kinetic theory after preequilibrium. Based on
the system’s equilibration, we present a useful criterion for
the applicability of hydrodynamics, which can be used
to define the switching times for hybrid schemes. This
criterion is reached at later evolution times for smaller
opacities and in some cases is never fulfilled. We find that
when switching sufficiently late, hybrid schemes are also
in good agreement with kinetic theory. KøMPøSTþ
viscous hydro simulations yield similar results as simu-
lations with full kinetic theoryþ viscous hydrodynamics.
The range of applicability of the different schemes can best

be assessed by studying the opacity dependence of final state
observables. In Sec. VI, we compare first naive and scaled
hydrodynamics to kinetic theory and establish 4πη=s≲ 3 as
the opacity range where the scaling scheme brings agree-
ment. We then show results from the two hybrid simulation
schemes, which can improve on scaled hydro results in the
intermediate opacity range around 4πη=s ∼ 3.
In Sec. VII, we present our conclusions and give a brief

outlook. Appendix A summarizes the details regarding the
relativistic lattice Boltzmann solver that we employ for
solving the kinetic equation. Appendices B 1 and B 2
provide further details on how the linearized results in
opacity expansion were obtained, while in Appendices C
and D we discuss some additional results for the time
evolution of the system.

II. INITIAL STATE AND OBSERVABLES

We will describe the time evolution of the plasma created
in a collision under the assumption of boost invariance in the
longitudinal direction, when the phase-space distribution
f ≡ fðx; pÞ of single particles depends only on the differ-
ence of the pseudorapidity y ¼ artanhðpz=ptÞ and the
spacetime rapidity η ¼ artanhðz=tÞ. We also assume that
at initial time τ0, the particles comprising the fluid have
an isotropic distribution in transverse momentum p⊥ and
vanishing momentum along the longitudinal direction, or, in
other words, the longitudinal pressure PL measured in the
local rest frame vanishes [111]. For the latter assumption to
be valid in kinetic theory simulations, we choose the
initialization time τ0 to be small enough for the system to
start from the early time free-streaming attractor of kinetic
theory [60]. Further assuming that the interparticle inter-
actions can be modeled in the RTA, and describing only a
reduced distribution function with no dependence on total
momentum [71,88], the initial state is fully determined
by the initial transverse energy density per unit rapidity,
dE0⊥=dηd2x⊥. The detailed reduced distribution functions
are given in Appendix A.

A. Initial state

We will use a realistic average initial condition for the
30–40% most central Pb-Pb collisions (see also our
companion paper [102] for a comparison of hydrodynam-
ization in different centrality classes). This initial condition
was generated numerically on a transverse grid of size
512 × 512 in the following way. A saturation model based
initial state generator was used to generate 8 × 106 events
with aligned directions of the impact parameter, which
were then divided into centrality classes. Then the point-
wise average of all events in each centrality class was taken.
We made sure that in the resulting event averages statistical
fluctuations are sufficiently suppressed by checking that
they feature no local peaks above an energy density level of
10−6 times its maximum. More details on this event
generation procedure can be found in [112].
Given this initial condition for dE0⊥=dηd2x⊥, the full

initial state can be constructed according to the model
assumptions. Enforcing at initial time τ0 a vanishing
longitudinal pressure PL and ignoring possible initial-state
transverse-plane dynamics, the initial energy-momentum
tensor is diagonal and has the following components:

Tμνðτ0;x⊥Þ ¼ diagðϵ0; ϵ0=2; ϵ0=2; 0Þ; ð1Þ
where the initial energy density ϵ0 ≡ ϵðτ0;x⊥Þ is given by

ϵðτ0;x⊥Þ ¼
1

τ0

dE0⊥
dηd2x⊥

: ð2Þ

In order to characterize the initial energy distribution, we
define the total transverse energy per rapidity dE0⊥=dη
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dE0⊥
dη

¼
Z
x⊥

τ0ϵ0 ð3Þ

and effective radius R

R2
dE0⊥
dη

¼
Z
x⊥

τ0ϵ0x2⊥; ð4Þ

where
R
x⊥ ≡

R
d2x⊥, as well as the eccentricities ϵn

ϵnðτÞ ¼ −
hxn⊥ cos ½nðϕx −ΨnÞ�iϵ

hxn⊥iϵ
; ð5Þ

where Ψn are event plane angles and the energy density
weighted average over transverse space is defined as

hOiϵðτÞ ¼
R
x⊥ Oðτ;x⊥Þϵðτ;x⊥ÞR

x⊥ ϵðτ;x⊥Þ
: ð6Þ

Based on the definitions in Eqs. (3) and (4), we introduce
the opacity of a system with shear viscosity to entropy
density ratio η=s via

γ̂ ¼ 1

5η=s

�
R
πa

dE0⊥
dη

�
1=4

; ð7Þ

where a is related to the equation of state via

a ¼ ϵ

T4
¼ π2νeff

30
; ð8Þ

where T is the local temperature and νeff ¼ 42.25 repre-
sents the effective number of degrees of freedom of high
temperature QCD [113,114]. The characteristic properties
for the initial condition we use are summarized in Table I.
As we use a fixed profile, the parameters R and dE0⊥=dη
are also fixed and we vary γ̂ by changing η=s. Hence,
throughout this paper, whenever discussing opacity depen-
dencies, we will characterize the opacity via the value of the
shear viscosity to entropy density ratio η=s. Note, however,
that these two quantities are inversely proportional.

B. Observables

We consider a set of observables which are measured as a
function of time τ. Their final state values are taken at finite

time, τ=R ¼ 4. These observables are chosen such that they
can be easily computed within the two frameworks con-
sidered in this paper, namely kinetic theory and
hydrodynamics.
Specifically, we focus on observables that are derived

from the energy-momentum tensor, which is the funda-
mental object of hydrodynamics and can be calculated in
kinetic theory as

Tμν ¼ hpμpνi; ð9Þ

where angular brackets denote the microscopic average of
an observable O with respect to the single-particle distri-
bution function f:

hOi≡
Z

dPfO; ð10Þ

while dP ¼ νeff
ffiffiffiffiffiffi−gp

d3p=½ð2πÞ3p0� is the generally covar-
iant integration measure in momentum space.
We work in the Landau frame, where the local rest

frame energy density ϵ and flow velocity uμ are given
as the timelike eigenvalue and eigenvector of the energy-
momentum tensor:

Tμνuν ¼ Tμν
equν ¼ ϵuμ; ð11Þ

where the energy-momentum tensor in thermal equilibrium
reads

Tμν
eq ¼ ðϵþ PÞuμuν − Pgμν: ð12Þ

In order to facilitate the comparison between kinetic
theory and relativistic hydrodynamics, we use as a sub-
stitute for dE⊥=dη ¼ τ

R
x⊥hpτp⊥i the integral of the trans-

verse part of the trace of the energy-momentum tensor,
ϵtr ≡ Tττ − τ2Tηη ¼ Txx þ Tyy, computed as

dEtr

dη
¼ τ

Z
x⊥
ðTxx þ TyyÞ; ð13Þ

which is equal to the actual transverse energy per rapidity
dE⊥=dη whenever the rapidity component of the particle
momentum is negligible, pη ≃ 0. Similarly, instead of the
flow harmonics vn, we will focus on the ellipticity of the
energy flow εp, defined in terms of the transverse compo-
nents of the energy-momentum tensor as

εpe2iΨp ¼
R
x⊥ðTxx − Tyy þ 2iTxyÞR

x⊥ðTxx þ TyyÞ ; ð14Þ

where Ψp is the symmetry plane angle of the elliptic
flow εp.
In order to characterize the expansion rate in the trans-

verse plane, we consider the energy-weighted average of
the transverse four-velocity, defined as

TABLE I. Characteristic properties of the initial condition for
the energy density used in this work, corresponding to an average
over profiles in the 30–40% centrality class of Pb-Pb collision atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [112], as discussed in Sec. II A.

dE0⊥=dη [GeV] R [fm] γ̂ × 4πη=s ϵ2 ϵ4 ϵ6

1280 2.78 11.3 0.416 0.210 0.0895
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hu⊥iϵ ¼ hðu2x þ u2yÞ1=2iϵ: ð15Þ

The local departure from equilibrium can be characterized
in terms of the inverse Reynolds number,

Re−1ðτ;x⊥Þ ¼
�
6πμνðτ;x⊥Þπμνðτ;x⊥Þ

ϵ2ðτ;x⊥Þ
�
1=2

; ð16Þ

where πμν is defined as the nonequilibrium part of the
energy-momentum tensor:

πμν ¼ Tμν − Tμν
eq : ð17Þ

With the above normalization, Re−1 ¼ 1 when Tμν ¼
diagðϵ; ϵ=2; ϵ=2; 0Þ, corresponding to the initial preequili-
brium free-streaming limit. As a global measure of
nonequilibrium effects in the system, we use the energy-
weighted average inverse Reynolds number hRe−1iϵ.

III. EVOLUTION MODELS

We want to compare the dynamics of several different
time evolution frameworks, which first have to be intro-
duced. In Sec. III A, we discuss the relativistic kinetic model
based on the RTA, which is solved using the relativistic
lattice Boltzmann approach [107]. Section III B discusses an
analytical approach aimed at approximating the solution of
the kinetic theory model for small opacities. Section III C
summarizes the equations of relativistic hydrodynamics,
which are solved using the vHLLE code [115]. Finally,
Sec. III D introduces the linear response framework
KøMPøST [109,110], which was modified to include
RTA Green’s functions [116].

A. Kinetic theory (RTA)

As the primary tool to investigate the time evolution of
the initial configurations discussed in Sec. II A, we employ
the relativistic Boltzmann equation in the Anderson-
Witting RTA [117–120]:

pμ
∂μf ¼ −

p · u
τR

ðf − feqÞ; ð18Þ

where pμ ¼ ðpτ;p⊥; pηÞ is the particle four-momentum of
massless on-shell particles (p2 ¼ 0), and τR ¼ 5ðη=sÞ=T is
the relaxation time [121]. The prefactor is determined
by the fact that in conformal RTA, the shear viscosity is
given as η ¼ 4τRP=5 and the entropy density as s ¼ 4P=T.
For the remainder of this paper, we will consider that the
specific shear viscosity η=s is constant. The rest frame
velocity uμ and energy density ϵ ¼ aT4 are determined
according to Eqs. (9), (11). As τR ∝ 1=T, the system obeys
conformal symmetry, which simplifies its dynamics.
Introducing the reference length scale lref ¼ R and refer-
ence energy density ϵref ¼ 1

πR3 ðdE0⊥=dηÞ, Eq. (18) can be
nondimensionalized as

vμ∂̃μf ¼ −vμuμγ̂ T̃ðf − feqÞ; ð19Þ

where vμ ¼ pμ=pτ, ∂̃μ ¼ lref∂μ, T̃ ¼ T=Tref , and
Tref ¼ ðϵref=aÞ1=4. In this formulation of the equation, it
becomes apparent that the time evolution of f parametri-
cally depends only on the opacity γ̂ introduced in Eq. (7).
The equilibrium distribution appearing on the right-hand
side of Eq. (18) can be identified as the Bose-Einstein
distribution

feq ¼
1

exp ðp · uðxÞ=TðxÞÞ − 1
; ð20Þ

however, as pointed out in [88], the dynamics depend only
on the fact that this distribution is isotropic in the local rest
frame. The initial state corresponding to vanishing longi-
tudinal pressure is modeled via

fðτ0;x⊥;p⊥; y − ηÞ ¼ ð2πÞ3
νeff

δðy − ηÞ
τ0p⊥

dN0

d2x⊥d2p⊥dy
;

ð21Þ

where y − η ¼ artanhðτpη=pτÞ. The initial particle distri-
bution is assumed to be isotropic with respect to the
azimuthal angle φp ¼ arctanðpy=pxÞ, being connected
with the initial transverse-plane energy distribution
dE0⊥=dηd2x⊥ via

dE0⊥
dηd2x⊥

¼ 2π

Z
∞

0

dp⊥p2⊥
dN0

d2x⊥d2p⊥dy
: ð22Þ

In this paper, we employ the relativistic lattice
Boltzmann (RLB) method [122–124] to solve Eq. (19).
The full details of the algorithm are given in Sec. IV.B of
Ref. [71]. The key ideas and simulation parameters
are summarized in Appendix A. In the following, we
will refer to the numerical solution obtained using the
lattice Boltzmann algorithm as described above as “kinetic
theory.”

B. Opacity expansion

For small systems, the dynamical behavior is expected to
be close to free streaming, with only slight corrections
coming from the small but finite number of interactions.
In the limit of small opacity, we expand the solution
of the Boltzmann equation in opacity up to linear order:
f ≈ fð0Þ þ fð1Þ. We follow the expansion scheme that was
introduced in [82,83], which has recently also been used in
other works examining small systems [84,86,87,89,92].
To zeroth order, there are no interactions, and the time
evolution of the phase space distribution is computed in the
free-streaming limit

pμ
∂μfð0Þ ¼ 0: ð23Þ
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Parametrizing the momentum space in terms of ðp⊥; yÞ,
fð0Þ can be related to the distribution at initial time via

fð0Þðτ;x⊥; η;p⊥; yÞ ¼ f

�
τ0;x⊥ − v⊥tðτ; τ0; y − ηÞ;

y − arcsinh

�
τ

τ0
sinhðy − ηÞ

�
;p⊥; y

�
; ð24Þ

where

tðτ; τ0; y − ηÞ ¼ τ coshðy − ηÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 þ τ2sinh2ðy − ηÞ

q
:

ð25Þ
The linear order correction fð1Þ vanishes at initial time.

Its time evolution is given by the scattering rates of the
zeroth order solution,

pμ
∂μfð1Þ ¼ C½fð0Þ�: ð26Þ

Its explicit expression and properties are presented in
Appendix B. As parametrically, the collision kernel is
proportional to the opacity γ̂, cf. Eq. (A3), we can indeed
identify it as the expansion parameter in this scheme.
To enable our scheme to deal with arbitrary input data,

the linear order results have to be computed numerically.
The computation requires performing a 6D integral, which
in part can be done analytically. The details of the code for
linear order results are explained in Appendix B.

C. Ideal and viscous hydrodynamics

Relativistic hydrodynamics [125] is an effective macro-
scopic description based on the conservation equations
∇μTμν ¼ 0 for energy and momentum. After decomposing
the energy-momentum tensor Tμν according to Eqs. (17),
(12), the equations can be cast in the form

_ϵþ ðϵþ PÞθ − πμνσμν ¼ 0;

ðϵþ PÞ _uμ −∇μPþ Δμ
λ∂νπ

λν ¼ 0; ð27Þ

where θ ¼ ∂μuμ is the expansion scalar and σμν ¼ ∇hμuνi is
the shear tensor, while Ahμνi ¼ Δμν

αβA
αβ, Δμν

αβ ¼ 1
2
ðΔμ

αΔν
β þ

Δν
αΔ

μ
βÞ − 1

3
ΔμνΔαβ and Δμν ¼ gμν − uμuν.

Equation (27) provides only four evolution equations,
governing the dynamics of ϵ and uμ, leaving the dissipative
shear-stress πμν as defined in Eqs. (17), (12) unspecified. In
ideal hydrodynamics, πμν ¼ 0 at all times, such that the
system of equations in (27) becomes closed.
Modeling dissipative effects by means of the Navier-

Stokes constitutive equation πμν ≃ πμνNS ¼ 2ησμν, where η is
the shear viscosity, leads to parabolic equations which
violate causality and are thus incompatible with special
relativity [126,127]. In this paper, we will consider
the Müller-Israel-Stewart-type theory of second-order

hydrodynamics [128,129], by which πμν evolves according
to the following equation [120,130]:

τπ _π
hμνi þ πμν ¼ 2ησμν þ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ − τπππ

λhμσνiλ

þ ϕ7π
hμ
α πνiα; ð28Þ

where ωμν ¼ 1
2
½∇μuν −∇νuμ� is the vorticity tensor. The

relaxation time τπ , as well as the other coupling coefficients,
represent second-order transport coefficients, the values of
which are chosen for compatibility with RTA [131–133]:

η ¼ 4

5
τπP; δππ ¼

4τπ
3

; τππ ¼
10τπ
7

; ϕ7 ¼ 0; ð29Þ

while τπ ¼ τR.
Numerical solutions of Eqs. (27) and (28) reported in this

paper are obtained using the open-source viscous HLLE
(vHLLE) code [115],1 which we modified to allow the
implementation of the initial state considered in this paper
(we employed vHLLE also in Ref. [71] for a similar
application). Specifically, we employed the square simu-
lation domain ½−8R; 8R� × ½−8R; 8R�, which we discre-
tized using 401 × 401 equidistant points. The simulations
were performed until the final time τf ¼ 5R. The initial
state was prepared using insight on the hydrodynamic
attractor, as will be discussed in Sec. IV D. In the initial
state, a background value of 10−7 × R

τ0
ϵref was added to the

energy density to prevent free-streaming artifacts in the
system outskirts. The time step δτ was chosen dynamically,

δτðτÞ ¼ min
�
τ

�
δτ

τ

�
M
; R

�
δτ

R

�
M

�
; ð30Þ

where ðδτ=τÞM ¼ 0.01 and ðδτ=RÞM ¼ 10−3.

D. KøMPøST

The open-source simulation code KøMPøST [109]
implements a linearized nonequilibrium time evolution
of the energy-momentum tensor Tμν based on the dynamics
of a kinetic theory description. It has been developed as
a practical tool for describing the early time far-from-
equilibrium dynamics of heavy ion collisions, where the
system has not yet hydrodynamized and a nonequilibrium
description is required. The original version of KøMPøST
was based specifically on the effective kinetic theory for
pure glue QCD [106]. To perform accurate comparisons
with the other evolution models used in this paper, a
modified version based on the dynamics of RTAwas used.
For this, we imported the RTAGreen’s functions calculated
in [116]. This version of KøMPøST is available on Git.

1Commit number efa9e28d24d5115a8d8134852–
32fb342b38380f0.
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KøMPøST evolves a given input initial state from an
initial time τ0 to a final time τ in a single propagation
step. Conceptionally, the output is expected to describe a
hydrodynamized system and can be used as input for a
subsequent hydrodynamic evolution model. Since the
computation of this step involves linearizations in pertur-
bations around a local average value, KøMPøST has a
limited range of applicability in the evolution time.
More specifically, in its default mode with energy

perturbations, KøMPøST propagates the energy momen-
tum tensor in the following way: the values at each
point x in the final state are computed from the initial
values of Tμν at all causally connected points x0 in the
initial state, meaning points that fulfill jx − x0j < cðτ − τ0Þ.
The energy-momentum tensor is divided into a spatial

average of the causal past and perturbations around this
average:

Tμν
x ðτ0;x0Þ ¼ T̄μν

x ðτ0Þ þ δTμν
x ðτ0;x0Þ;

where the subscript x denotes the fact that the average
depends on the position for which the causal past is
considered. The average value is evolved according to the
lawsofBjorken flowdynamics, assuming local homogeneity
in the transverse plane and boost invariance, while the
perturbations are propagated in a linear response scheme:

δTμνðτ;xÞ ¼
Z

d2x0Gμν
αβðx;x0; τ; τ0ÞδTαβ

x ðτ0;x0Þ T̄ττ
x ðτÞ

T̄ττ
x ðτ0Þ

:

ð31Þ

FIG. 1. Time evolution of transverse energy dEtr=dη [top left, cf. Eq. (13)], transverse flow velocity hu⊥iϵ [top right, cf. Eq. (15)],
elliptic flow εp [bottom left, cf. Eq. (14)] and inverse Reynolds number hRe−1iϵ [bottom right, cf. Eq. (16)]. Plotted are results from
KøMPøST (RTA) with (þ symbols) and without (× symbols) energy perturbations compared to full kinetic theory results (solid lines) at
three different opacities 4πη=s ¼ 0.5 (green), 2 (yellow) and 10 (blue). In the plot of transverse flow velocity, results at different
opacities are shifted in value in order to be distinguishable.
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The Green’s functions Gμν
αβðx;x0; τ; τ0Þ have been computed

in the respective underlying kinetic theory description and
are included in KøMPøST.
Energy perturbations (δTμν) can also be switched off, in

which case KøMPøST propagates only the average energy-
momentum tensor taken over the causal past, as discussed
above. Some of the phenomenological implications of this
mode are discussed below. For all other results in this paper,
we employed the modified RTA-KøMPøST with energy
perturbations.

E. Validation of KøMPøST

Before employing KøMPøST to describe preequili-
brium, we first checked to what extent results from
modified RTA-KøMPøST are in agreement with results
from full kinetic theory in RTA for our specific initial
condition. This comparison was done on the basis of the

time evolution of the observables we examined in this paper
but also for cross sections through profiles of the energy-
momentum tensor after some evolution time. All
KøMPøST results presented here were obtained using an
initial time of τ0 ¼ 10−6R.
Figure 1 shows a comparison of the time evolution of

four different transverse space integrated observables
at three different values of the shear viscosity, namely
4πη=s ¼ 0.5, 2, 10. The results from KøMPøST are plotted
with symbols “þ” for the mode with and “×” for the mode
without energy perturbations and are benchmarked for
times up to τ ¼ 0.5R against the results obtained using a
full kinetic theory description, which are plotted with lines.
The decrease of transverse energy dEtr=dη is described

very well in both modes. As without energy perturbations,
the energy-momentum tensor is propagated as if there
were no local gradients, it predicts zero transverse flow
velocity hu⊥iϵ and elliptic flow εp. The mode with energy

FIG. 2. Comparison of KøMPøST (RTA) and full kinetic theory via results for the energy-momentum tensor on the line x ¼ 0,
represented at fixed times τ=R ≃ 0.1 in blue, 0.3 in yellow and 0.5 in green. The full kinetic theory results are plotted with points (þ,×),
while the KøMPøST ones obtained with and without energy perturbations are plotted with solid and dashed lines, respectively.
Anisotropic observables are nonzero only with energy perturbations and are plotted with point-dashed lines. The upper row shows, from
left to right, the following components of the energy-momentum tensor: Tττ (left), Tτy (middle), as well as Txx þ Tyy and Txx − Tyy

(right). The lower row shows analogous local rest-frame quantities, namely ϵ (left), ϵuy (middle), as well as πxx þ πyy and πyy − πxx

(right). Notice the change in sign for the latter when compared to the upper panel. All observables were multiplied with τ and rescaled
with a constant factor to adjust their magnitudes such that they can be plotted on the same total range of 80 GeV=fm2 c.
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perturbations can describe the buildup of hu⊥iϵ correctly.
On the other hand, while giving nonzero results, it still
vastly underestimates the buildup of anisotropic flow εp.
The inverse Reynolds number hRe−1iϵ is well described by
both modes at early times, but results from the mode with
energy perturbations deviate at very late times.
Generally, the comparison suggests that, for certain

observables, KøMPøST results can be accurate way beyond
the timeframe it was intended for, which is on the order of
0.1 fm. Other observables, in particular those related to
anisotropies, are not described correctly.
In a further comparison of KøMPøST to full kinetic

theory data, we also investigated profiles of certain com-
ponents of Tμν at fixed shear viscosity 4πη=s ¼ 2 and three
different fixed times τ ¼ 0.1R, 0.3R and 0.5R. The same
comparisons were also performed in the local rest frame
with analogous quantities that are defined via the variables
ϵ, uμ and πμν. Figure 2 illustrates our findings. This time,
KøMPøST results are plotted with lines and full kinetic
theory results with symbols.
The results confirm that for energy or energy flow

observables like Tττ, Tτy and Txx þ Tyy, KøMPøST works
well even on a local level and in the outskirts of the system
for all evolution times that we examined. The only part of
the energy-momentum tensor for which KøMPøST results
shows significant deviations are anisotropies in the shear
stress, as measured by Txx − Tyy. While this observable is
still correctly reproduced in the central part of the system, it
exhibits sizeable deviations of up to a factor of five at a
radial distance of r≳ R. These deviations also explain the
errors in elliptic flow εp.

IV. EARLY TIME DYNAMICS
OF DIFFERENT MODELS

Before the onset of transverse expansion, at times τ ≪ R,
the system’s dynamics is dominated by longitudinal
expansion and the effects of transverse expansion can
be neglected. Under these conditions, at each point in
the transverse plane, the system evolves independently of
the transverse neighborhood and can locally be described
by ð0þ 1ÞD longitudinally boost-invariant Bjorken flow.
In Bjorken flow, the trajectories of energy, pressure and
stress for different initial conditions are known to rapidly
converge to a common time evolution curve called the
Bjorken flow attractor curve [59,60]. This means that at late
times the system always evolves in the same way. If it is
initialized on the attractor, then its entire time evolution is
given by the attractor curve. Wewill describe the features of
the attractor scaling solution for both the Müller-Israel-
Stewart-type second-order hydrodynamics theory and
for the conformal kinetic theory in RTA. In Sec. IVA,
the quantities describing the attractor solutions are intro-
duced. Sections IV B and IV C discuss how the preequili-
brium evolution impacts the observables of interest,
highlighting the possible discrepancies between RTA,

viscous hydrodynamics and ideal hydrodynamics. Finally,
in Sec. IV D, we discuss how viscous and ideal hydro-
dynamics can be brought in agreement with RTA at late
times by scaling the initial conditions.

A. Bjorken attractor

The ð0þ 1ÞD Bjorken flow can be described in terms of
the Bjorken coordinates ðτ; x; y; ηÞ, with respect to which
the velocity becomes uμ∂μ ¼ ∂τ. The energy-momentum
tensor takes the diagonal form

Tμν ¼ diagðϵ; PT; PT; τ−2PLÞ; ð32Þ

where PT and PL are the transverse and longitudinal
pressures, respectively. The shear-stress tensor also
becomes diagonal,

πμν ¼ diag

�
0;−

1

2
πd;−

1

2
πd;

1

τ2
πd

�
; ð33Þ

where πd can be related to PT and PL via

PT ¼ P −
πd
2
; PL ¼ Pþ πd; ð34Þ

such that πd ¼ 2
3
ðPL − PTÞ. The observables of interest for

the following section are the inverse Reynolds number
defined in Eq. (16), and the sum ϵtr ¼ Txx þ Tyy, which
become

Re−1 ¼ −
3πd
ϵ

; ϵtr ¼
2ϵ

3
− πd ¼

ϵ

3
ð2þ Re−1Þ: ð35Þ

The evolution of the energy density ϵ is governed by the
conservation equation ∇μTμν, where ∇μ is the covariant
derivative, which reduces to

τ
∂ϵ

∂τ
þ 4

3
ϵþ πd ¼ 0: ð36Þ

In ideal hydrodynamics, πd ¼ 0 and τ4=3ϵðτÞ ¼ τ4=30 ϵ0,
where ϵ0 is the energy density at initial time τ0.
In RTA, the dynamics of πd is governed directly by the

Boltzmann equation. In viscous hydrodynamics, the evo-
lution of πd can be found from Eq. (28) and reads:

τ
∂πd
∂τ

þ
�
λþ 4πw̃

5
þ 2πw̃

5
ϕ7πd

�
πd þ

16ϵ

45
¼ 0; ð37Þ

where w̃ is the conformal parameter,

w̃ ¼ 5τ

4πτπ
¼ τT

4πη=s
: ð38Þ

In the above, s ¼ ðϵþ PÞ=T is the entropy density for an
ultrarelativistic gas at vanishing chemical potential, while
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η ¼ 4
5
τπP, as shown in Eq. (29). In Eq. (37), we introduced

the notation

λ ¼ δππ
τπ

þ τππ
3τπ

; ð39Þ

which evaluates to 38=21 when using the values for the
second-order transport coefficients given in Eq. (29). We
note that in the original MIS theory, λ evaluates to 4=3,
while the value 31=15 was advocated in Ref. [65] in order
to mimic the early time attractor of RTA.
Equations (36) and (37) admit scaling solutions with

respect to the conformal parameter w̃. To see this, we note
that the time derivative of w̃ satisfies

τ
dw̃
dτ

¼ w̃

�
2

3
−
fπ
4

�
; ð40Þ

where we defined

fπ ¼
πd
ϵ
: ð41Þ

Using Eqs. (36), (37) and (40), fπ can be shown to satisfy

w̃

�
2

3
−
fπ
4

�
dfπ
dw̃

þ 16

45

þ
�
λ −

4

3
þ 4πw̃

5
þ 2πw̃

5
ϕ7ϵfπ − fπ

�
fπ ¼ 0; ð42Þ

where ϕ7 ¼ 0 for consistency with RTA [see Eq. (29)].
Demanding that fπ remains finite when w̃ → 0, its early
time behavior in viscous hydro can be obtained as

fπðw̃ ≪ 1Þ ¼ fπ;0 þ fπ;1w̃þ fπ;2w̃2 þOðw̃3Þ; ð43Þ

where

fπ;0 ¼
1

2

"
λ −

4

3
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λ −

4

3

�
2

þ 64

45

s #
;

fπ;1 ¼
16π
25

f2π;0
ðfπ;0 − 4

15
Þ2 þ 16

75

�
1þ 1

2
ϕ7ϵfπ;0

�
;

fπ;2 ¼
8π
15
fπ;0fπ;1

ðfπ;0 − 4
9
Þ2 þ 16

405

�
1 −

25fπ;1
16π

þ fπ;0ϕ7ϵ

�
: ð44Þ

When λ¼38=21, we find fπ;0¼ 1
105

ð25−3
ffiffiffiffiffiffiffiffi
505

p Þ≃−0.404,
which is different from the limit −1=3 in kinetic theory.2 At
large values of w̃, fπðw̃Þ behaves like

fπðw̃ ≫ 1Þ ¼ −
4

9πw̃
þOðw̃−2Þ; ð45Þ

which is the leading order gradient expansion [54] and
therefore valid in both viscous hydrodynamics and in RTA.
Due to the relations inEq. (35), our observableRe−1 ¼ −3fπ
also exhibits attractor behavior. Its attractor curve is repre-
sented as a function of w̃ in the top panel of Fig. 3. Its
asymptotic forms at small and large w̃ can be found from
Eqs. (43) and (45), respectively.
We now turn to the energy equation, Eq. (36). On the

attractor, when fπ depends only on w̃, it is possible to write
(cf. [59,67])

τ4=3ϵðτÞ ¼ τ4=30 ϵ0
Eðw̃0Þ

Eðw̃Þ; ð46Þ

where the scaling function Eðw̃Þ satisfies

w̃

�
2

3
−
fπ
4

�
dE
dw̃

þ fπE ¼ 0: ð47Þ

Due to Eq. (35), ϵtr also admits a scaling solution,

τ4=3ϵtrðτÞ ¼
τ4=30 ϵ0
Eðw̃0Þ

Etrðw̃Þ;

Etrðw̃Þ ¼
�
2

3
− fπðw̃Þ

�
Eðw̃Þ: ð48Þ

For w̃ ≪ 1, Eðw̃Þ can be obtained as

Eðw̃ ≪ 1Þ ¼ C−1
∞ w̃γð1þ E1w̃þ…Þ; ð49Þ

where the exponent γ and the correction E1 are given by

γ ¼ 12fπ;0
3fπ;0 − 8

; E1 ¼ −
32
3
fπ;1

ðfπ;0 − 8
3
Þ2 : ð50Þ

The constant C∞ appearing in Eq. (49) is taken such that
limw̃→∞ Eðw̃Þ ¼ 1, in which case E has the following late-
time asymptotic behavior:

Eðw̃ ≫ 1Þ ¼ 1 −
2

3πw̃
: ð51Þ

In the case of ideal hydrodynamics, obviously fπ ¼ 0
(such that fπ;0 ¼ γ ¼ 0) and Eðw̃Þ ¼ C∞ ¼ 1. The func-
tions Eðw̃Þ and Etrðw̃Þ are shown in the bottom panel of
Fig. 3 for both viscous hydrodynamics and for kinetic
theory. The normalization factor C∞ can be obtained in
each theory by computing the attractor curve [59]. For
completeness, we list below the values of γ and C∞ in the
relevant theories:

RTA∶ γ ¼ 4

9
; C∞ ≃ 0.88; ð52aÞ

Visc Hydro∶ γ ¼
ffiffiffiffiffiffiffiffi
505

p
− 13

18
; C∞ ≃ 0.80; ð52bÞ

Ideal Hydro∶ γ ¼ 0; C∞ ¼ 1: ð52cÞ
2Expressing λ ¼ fπ;0 þ 4

3
− 16

45fπ;0
, it can be seen that

fπ;0 ¼ −1=3 leads to λ ¼ 31=15, as pointed out in Ref. [65].
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Due to the normalization limw̃→∞ Eðw̃Þ ¼ 1, the quantities
τ−2=3w̃ and τ4=3ϵ can be rewritten as

τ−2=3w̃ ¼ ðτ−2=3w̃Þ∞E1=4ðw̃Þ; ð53aÞ

τ4=3ϵ ¼ ðτ4=3ϵÞ∞Eðw̃Þ; ð53bÞ

where ðτ−2=3w̃Þ∞ and ðτ4=3ϵÞ∞ represent the corresponding
asymptotic, late-time hydrodynamic limits, satisfying

ðτ−2=3w̃Þ∞ ¼ ðτ4=3ϵÞ1=4∞

a1=44πη=s
; ðτ4=3ϵÞ∞ ¼ τ4=30 ϵ0

Eðw̃0Þ
: ð54Þ

Taking now the initial time such that w̃0 ≪ 1, Eq. (49) can
be used to obtain

ðτ4=3ϵÞ∞ ≃ C∞

�
4πη

s
a1=4

�
γ
�
τ
ð4
3
−γÞ=ð1−γ=4Þ

0 ϵ0

�
1−γ=4

: ð55Þ

Equation (55) tells us that the equilibration dynamics
introduce a nontrivial relation between energy densities
in equilibrium and in the initial state, as the dependence is
nonlinear and the exponents depend on the model descrip-
tion, which was one of the main points of Ref. [59].
In the preequilibrium regime, w̃ ≪ 1. Under the early

time approximation (49), w̃ can be written in terms of
ðτ−2=3w̃Þ∞ as

w̃ ≃ τ
2
3
=ð1−γ=4Þ½C−1=4

∞ ðτ−2=3w̃Þ∞�1=ð1−γ=4Þ; ð56Þ

which allows ϵðw̃ ≪ 1Þ to be obtained as

ϵðw̃ ≪ 1Þ ≃ τðγ−
4
3
Þ=ð1−γ=4Þ

×

�
C−1
∞

�
4πη

s
a1=4

�
−γ
ðτ4=3ϵÞ∞

�
1=ð1−γ=4Þ

: ð57Þ

Substituting the expression (55) for ðτ4=3ϵÞ∞ manifestly
shows that τð43−γÞ=ð1−γ=4Þϵ becomes independent of τ as
τ → 0:

ϵðw̃ ≪ 1Þ ≃
�
τ0
τ

�ð4
3
−γÞ=ð1−γ

4
Þ
ϵ0: ð58Þ

B. Preequilibrium evolution

We now consider a system which is no longer
homogeneous in the transverse plane, such that the
energy density becomes a function of both τ and x⊥,
ϵ≡ ϵðτ;x⊥Þ. At early times τ ≪ R we can neglect trans-
verse dynamics and describe the dynamics locally by
Bjorken flow (we will discuss early time transverse expan-
sion effects on the buildup of flow in the Sec. IV C). Under
this approximation, at each point x⊥ of the transverse
plane, we can assume that ϵðτ;x⊥Þ follows an evolution
along the attractor curve according to the local value of the
conformal variable, w̃≡ w̃ðτ;x⊥Þ. Moreover, we consider
that w̃0ðx⊥Þ ≪ 1 throughout the system, such that the full
preequilibrium evolution is captured during the system’s
evolution.

FIG. 3. Attractor curves for the scaling functions (top) Re−1

[cf. Eq. (35)], (bottom) Eðw̃Þ [upper two curves, light colors,
cf. Eq. (46)] and Etrðw̃Þ [lower two curves, dark colors,
cf. Eq. (48)] obtained for RTA (blue) and for second-order
hydrodynamics (green). The large-w̃ asymptotics are shown with
dashed gray curves. The small-w̃ asymptotics are shown with
black and red dashed curves for RTA and hydro, respectively.
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Neglecting the dynamics in the transverse plane, such
that Txx ¼ Tyy ¼ 1

2
ϵtr, dEtr=dη defined in Eq. (13) can be

written as

dEtr

dη
¼ τ

Z
x⊥

�
2

3
− fπ

�
ϵ; ð59Þ

where Eq. (35) was employed to replace ϵtr and
fπ ¼ −Re−1=3. Using now Eqs. (53b) and (55) to replace
ϵ, we arrive at

dEtr

dη
¼ τ−1=3a

�
4πη

s

�
γ
Z
x⊥

�
τ
ð4
3
−γÞ=ð1−γ=4Þ

0

ϵ0
a

�
1−γ

4

×

�
2

3
− fπ

�
C∞E: ð60Þ

The above equation can be employed to estimate the
evolution of dEtr=dη due solely to longitudinal expansion
over the whole range of τ.
At a fixed value of τ, the conformal parameter w̃ spans

the interval 0 (reached at infinitely large distances from the
system’s center of mass) up to the value w̃max correspond-
ing to the maximum value of the temperature. For suffi-
ciently small values of τ, w̃max ≪ 1 and Eqs. (43), (58) can
be used to approximate fπ and ϵ, leading to

dEtr

dη
≃
�
τ0
τ

�1
3
ð1−9γ=4Þ=ð1−γ=4Þ dE0

tr

dη
: ð61Þ

The above relation shows that in RTA (γ ¼ 4=9), dEtr=dη
remains constant during preequilibrium. Conversely, in
viscous hydrodynamics, γ > 4=9 and consequently
dEtr=dη increases with time. As expected, in ideal hydro-
dynamics, dEtr=dη decreases as τ−1=3.
In the limit w̃ ≫ 1, fπ ∼ w̃−1 and E ≃ 1, as shown in

Eqs. (45) and (51), such that τ4=3ϵ can be approximated by
ðτ4=3ϵÞ∞ by virtue of Eq. (53b). Using Eq. (55), dEtr=dη
reduces to

dEtr

dη
≃
2τ−1=3

3
C∞

�
4πη

s
a1=4

�
γ

τ
4
3
−γ
0

Z
x⊥

ϵ1−γ=40 : ð62Þ

The above equation shows that, at late times, dEtr=dη
decrease as τ−1=3. The amount of energy available at a given
time τ depends explicitly on the dynamical theory (ideal
and viscous hydrodynamics, RTA).
We now consider another important effect arising due

to the preequilibrium evolution, namely inhomogeneous
cooling. During preequilibrium, neighboring points in the
transverse plane undergo cooling at differing rates accord-
ing to their local attractors. As pointed out in Refs. [59,71],
the characteristics of the inhomogeneities in the transverse
plane change during preequilibrium, as can be seen by
looking at the eccentricity ϵn, defined as

ϵn ¼ −

R
x⊥ x

n⊥ϵ cos½nðϕx − ΨnÞ�R
x⊥ x

n⊥ϵ
: ð63Þ

When w̃ ≪ 1, Eq. (58) can be employed to show that
ϵnðτÞ ≃ ϵnðτ0Þ and the eccentricities ϵn remain constant
during pre-equilibrium. When w̃ ≫ 1, ϵn is modified to

ϵn ≃ −

R
x⊥ x

n⊥ϵ
1−γ=4
0 cos½nðϕx −ΨnÞ�R

x⊥ x
n⊥ϵ

1−γ=4
0

: ð64Þ

The above relation shows that inhomogeneous cooling
leads to modifications of all eccentricities of the initial
profile, except in the case of ideal hydrodynamics (γ ¼ 0).
The effects of the different behavior for global and

inhomogeneous cooling in different model descriptions are
illustrated in Fig. 4. It shows the preequilibrium evolution
of the energy density profile multiplied by the Bjorken
time, τϵ, for an example event in the 30–40% centrality
class of Pb-Pb collisions in kinetic theory and viscous
hydrodynamics with either the same or a scaled initial
condition. At very early times, this quantity is constant
in kinetic theory, but later it decreases slightly due to
equilibration. Meanwhile, in hydrodynamics it increases
first before transitioning to a decreasing trend. The speed
of these transitions in both cases depends on the local
temperature, meaning that e.g. the peak values will start
decreasing earlier than the values in the outskirts of the
system; i.e. the system cools inhomogeneously. After
equilibration, the time evolution will uniformly follow
the same power law in both models, but the differences

FIG. 4. Early time evolution of the transverse profile of the rest
frame energy density τϵ for an example event in the 30–40%
centrality class of Pb-Pb collisions in naive viscous hydrody-
namics (top), kinetic theory (middle) and scaled viscous hydro-
dynamics (bottom) at an opacity 4πη=s ¼ 0.05.
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due to the different preequilibrium evolution will persist.
But the knowledge of the local attractor scaling behavior
allows us to anticipate the differences between kinetic
theory and hydrodynamics and apply a corresponding
local scaling prescription to the initial condition of hydro.
It then initially takes smaller values than in kinetic theory
but dynamically approaches it during preequilibrium and
reaches agreement after equilibration. This initialization
scheme is explained in more detail in Sec. IV D.

C. Preflow estimation

We now estimate the buildup of flow during the
preequilibrium evolution, which we quantify via the obser-
vable hu⊥iϵ defined in Eq. (15). The basis of our analysis is
to consider that the transverse dynamics represent a small
perturbation on top of the purely-longitudinal dynamics
discussed in Secs. IVA and IV B, which we consider to be
dominant. The idea of this calculation is similar to the one
presented in Ref. [134].
At early times τ ≪ R, when the transverse flow is

negligible, we can write Tμν ¼ Tμν
B þ δTμν, where Tμν

B ¼
diagðϵB; PB;T; PB;T; τ−2PB;LÞ is the background (Bjorken)
solution of the local, equivalent ð0þ 1ÞD system (we
also consider that at initial time w̃0 ≪ 1 throughout the
transverse plane). Further assuming that δTμν is small and
imposing the Landau frame condition, Tμ

νuν ¼ ϵuμ, we
write uμ ¼ uμB þ δuμ and ϵ ¼ ϵB þ δϵ and find

δϵ ¼ δTττ; δui ¼ δTτi

ϵB þ PB;T
; ð65Þ

while δuτ ¼ 0 as required by uμBδuμ ¼ 0. Thus, the flow
buildup can be estimated from the buildup of δTτi.
We can now derive a dynamical equation for Tτi via

the conservation equation ∇μTμν ¼ 0, which in a general
coordinate system reads

∇μTμν ¼ ∂μTμν þ Γμ
λμTλν þ Γν

λμTμλ; ð66Þ

where Γλ
μν ¼ 1

2
gλρð∂νgρμ þ ∂μgρν − ∂ρgμνÞ are the

Christoffel symbols. In the Bjorken coordinate system
ðτ; x; y; ηÞ, the only nonvanishing Christoffel symbols
are Γτ

ηη ¼ τ and Γη
τη ¼ Γη

ητ ¼ τ−1, such that the equation
for ν ¼ i becomes

1

τ

∂ðτTτiÞ
∂τ

þ ∂jTij ¼ 0: ð67Þ

Splitting the energy-momentum tensor into a local Bjorken
flow part and a small perturbation as discussed above,
we find

1

τ

∂ðτδTτiÞ
∂τ

þ ∂iPB;T þ ∂jδTij ¼ 0: ð68Þ

Noting that δTij represents a higher-order correction, the
leading-order contribution to δTτi can be obtained by
solving

∂ðτδTτiÞ
∂τ

≃ −τ∂iPB;T: ð69Þ

In the above, PB;T evolves according to the local Bjorken
attractor, such that PB;T ≃ ϵBð13 − 1

2
fπ;BÞ. Using Eq. (53b) to

replace ϵB, the spatial gradient of PB;T can be obtained as

∂iPT

PT
¼ ∂iðτ4=3ϵÞ∞

ðτ4=3ϵÞ∞
þ
�
E0

E
−

1
2
f0π

1
3
− 1

2
fπ

�
∂iw̃; ð70Þ

where the prime denotes differentiation with respect to w̃.
Here and henceforth, we will drop the B subscript for
brevity, keeping in mind that all instances of PT , ϵ, fπ and
the corresponding conformal variable w̃ are evaluated
according to the background ð0þ 1ÞD Bjorken attractor.
Since ðτ4=3ϵÞ∞ depends on the transverse coordinates

only through the initial profile [see Eq. (55)], the first term
on the right-hand side of the above relation evaluates in the
limit w̃0 ≪ 1 to

∂iðτ4=3ϵÞ∞
ðτ4=3ϵÞ∞

¼
�
1 −

γ

4

�
∂iϵ0
ϵ0

: ð71Þ

The gradient of w̃ appearing in Eq. (70) can be written in
terms of that of ðτ−2=3w̃Þ∞ starting from Eq. (53a),

∂iw̃
w̃

¼
�
1 −

w̃E0

4E

�
−1 ∂iðτ−2=3w̃Þ∞

ðτ−2=3w̃Þ∞
;

¼ 1

4

�
1 −

γ

4

��
1 −

w̃E0

4E

�
−1 ∂iϵ0

ϵ0
; ð72Þ

where the equality on the second line is established using
the relations (54) and (71). Substituting Eqs. (71) and (72)
into Eq. (70) gives

∂iPT

PT
¼ 1 − γ=4

1 − w̃E0
4E

�
1 −

w̃f0π
8
3
− 4fπ

�
∂iϵ0
ϵ0

: ð73Þ

Substituting Eq. (73) in Eq. (69) and integrating with
respect to τ, we arrive at

δTτi ¼ −
1

τ

�
1 −

γ

4

�
∂iϵ0
ϵ0

Z
τ

τ0

dτ
1
3
− 1

2
fπ − w̃

8
f0π

1 − w̃
4E E

0 τϵ: ð74Þ

Considering now that w̃ ≪ 1 throughout the system, we
can use Eqs. (49), (43) and (58) to approximate fπ ≃ fπ;0 ¼
−ð2γ=3Þ=ð1 − γ=4Þ, E ≃ C−1

∞ w̃γ and ϵ ¼ ðτ0=τÞ2−αϵ0,
where α ¼ ðγ þ 4=3Þ=½2ð1 − γ=4Þ�, which reduces to
α ¼ 2=3, 1 and 1.071 in ideal hydro, RTA and viscous
hydro, respectively. To leading order, we find
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τ2−αδTτi ¼ −
τ

2

�
1 −

�
τ0
τ

�
α
�
∂iðτ2−α0 ϵ0Þ; ð75Þ

which allows the macroscopic velocity to be estimated as

δuiðw̃ ≪ 1Þ ≃ −
3τ

8

�
1 −

γ

4

��
1 −

�
τ0
τ

�
α
�
∂iϵ0
ϵ0

: ð76Þ

As expected, the flow velocity is driven by the gradients of
the initial energy density profile. In addition, when τ ≫ τ0,
δui exhibits a linear increase with τ, independently of the
value of γ. The prefactor governing the overall amplitude of
δui is however γ dependent. We can now estimate the early
time evolution of hu⊥iϵ, defined in Eq. (15), as follows:

hu⊥iϵ;early ≃
3τ

8

�
1 −

γ

4

��
1 −

�
τ0
τ

�
α
�

×

�Z
x⊥

ϵ0

�
−1 Z

x⊥
j∇⊥ϵ0j; ð77Þ

where j∇⊥ϵ0j ¼ ½ð∂xϵ0Þ2 þ ð∂yϵ0Þ2�1=2.
In general, the time dependence of the integrand in

Eq. (74) is too complicated to integrate analytically. But it
again takes a simple form in the Bjorken flow equilibrium
stage, where τ4=3PT ≃ 1

3
ðτ4=3ϵÞ∞. At late times, when the

duration of preequilibrium is small compared to the elapsed
time, its contribution in the time integration is negligible
and δTτi and δui asymptote to

δTτiðw̃ ≫ 1Þ ≃ −
1

2τ1=3

�
1 −

�
τ0
τ

�
2=3

�
∂iðτ4=3ϵÞ∞; ð78aÞ

δuiðw̃ ≫ 1Þ ≃ −
3τ

8

�
1 −

�
τ0
τ

�
2=3

�
∂iðτ4=3ϵÞ∞
ðτ4=3ϵÞ∞

; ð78bÞ

such that hu⊥iϵ becomes

hu⊥iϵ; late ≃
3τ

8

�
1 −

�
τ0
τ

�
2=3

� R
x⊥ j∇⊥ϵ1−γ=40 jR

x⊥ ϵ
1−γ=4
0

: ð79Þ

Note that the above equation was derived under the
assumption that δui is small and thus holds only when
the system hydrodynamizes before transverse expansion
sets in.
The right-hand side of Eqs. (77) and (79) can be

evaluated numerically for the 30–40% centrality profile
that we are considering in this paper. The results for the
different theories (kinetic theory, ideal hydrodynamics
and viscous hydrodynamics) are shown in Table II.
Here, we contrast the “naive” and “scaled” initial con-
ditions for hydrodynamics, which will be discussed in
detail in the following subsection. In the early time regime,
it can be seen that kinetic theory leads to more flow than

viscous hydrodynamics (2% and 1%more for the naive and
scaled initialization, respectively), while ideal hydrody-
namics leads to more flow than kinetic theory (13% and 7%
more for the naive and scaled initializations, respectively).
In the late-time limit, both ideal and viscous hydrody-
namics are brought in agreement with kinetic theory when
the scaled initialization is employed. In the case of the naive
initialization, ideal hydrodynamics gives about 5% more
flow, while viscous hydrodynamics underestimates the
flow by less than 1%.

D. Setting initial conditions

From the discussion in the previous subsection, it
becomes clear that the preequilibrium evolution of the
fluid depends on the theory employed to describe it. We
take as the “correct” evolution that described by kinetic
theory, when dEtr=dη remains constant during the free-
streaming stage of preequilibrium. This can be seen by
setting γ ¼ 4=9 in Eq. (61). Since in viscous hydrody-
namics, γ ≃ 0.526 > 4=9, dEtr=dη will actually increase
during preequilibrium, thus leading for the same initial
energy profile to an unphysically higher transverse plane
energy at late times, as illustrated in Fig. 4. Similarly, the
change in eccentricity due to the preequilibrium evolution
will be different compared to kinetic theory. We will now
discuss how these phenomena specifically affect the pre-
equilibrium evolution of our initial state as given in
Sec. II A and how they are counteracted by locally scaling
the initial condition. We will then give the quantitative
details of the scaling prescription.
Figure 5 illustrates the size of the effect on transverse

energy dEtr=dη in the top panel and ellipticity ϵ2 in the
bottom panel. In naive hydrodynamics using the same
initial condition for the energy density as kinetic theory and
initial pressure determined by the hydrodynamic attractor,
dEtr=dη rises to a value which is about 1.5 times larger than
in kinetic theory at the onset of equilibration and will
remain in disagreement throughout the rest of the evolution.
The dashed lines show predictions of the behavior in
the local Bjorken flow scaling approximation according
to Eq. (60). In our proposed scheme the initial value of

TABLE II. Estimates for the preflow generated in kinetic
theory, ideal hydrodynamics and viscous hydrodynamics (see
Sec. IV D for details regarding the naive and scaled hydro-
dynamics setups).

Kinetic Naive hydro Scaled hydro

theory Ideal Viscous Ideal Viscous

γ 4=9 0 0.526 0 0.526
α 1 2=3 1.071 2=3 1.071
R
τ
hu⊥iϵ;early
1−ðτ0=τÞα

0.614 0.691 0.600 0.658 0.606

R
τ

hu⊥iϵ;late
1−ðτ0=τÞ2=3

0.658 0.691 0.652 0.658 0.658
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dEtr=dη is scaled down in such a way that it dynamically
reaches agreement with kinetic theory. Similarly, we find
that the ellipticity decreases in both kinetic theory and in
hydro, but more so in the latter case. This means that in
naive hydro the eccentricity will have a smaller value at the
onset of the buildup of transverse flow than in kinetic
theory, which will result in smaller final values of elliptic
flow. With the scaling scheme, the initial ellipticity is scaled
up in hydrodynamics and will come into agreement with
kinetic theory after equilibration.
As the local scaling factor for the hydrodynamic initial

condition is computed in the local Bjorken flow approxi-
mation, it assumes that the system will fully equilibrate
before the onset of transverse expansion. How well this
works in practice will be discussed in Sec. V B.
We now move to the quantitative analysis of the

preequilibrium behavior in the two hydro schemes. In
the first one, dubbed “naive hydrodynamics,” we will
impose the same energy density ϵ0 at initial time τ0 as

in kinetic theory. We first note that the RTA initial
conditions given in Eq. (1) are not compatible with the
hydrodynamic attractor.
Indeed, noting the relations PT ¼ ϵð1

3
− fπ

2
Þ and PL ¼

ϵð1
3
þ fπÞ, the early time expression for Tμν reads

Tμν
0 ¼ ϵ0 × diag

�
1;
1

3
−
fπ
2
;
1

3
−
fπ
2
;
1

3τ2
þ fπ

τ2

�
; ð80Þ

where fπ ≡ fπðw̃0Þ depends on the local value of the
conformal variable, w̃0 ≡ w̃0ðx⊥Þ ¼ τ0T0ðx⊥Þ=ð4πη=sÞ,
with T0ðx⊥Þ¼ ½ϵ0ðx⊥Þ=a�1=4. In order to evaluate fπðw̃0Þ,
we follow Ref. [135] and employ a simple Padé approxi-
mation interpolating between the w̃ ≪ 1 and w̃ ≫ 1 limits
given in Eqs. (43) and (45):

fπðw̃Þ ≃
c0 þ c1w̃

d0 þ d1w̃þ d2w̃2
; ð81Þ

where the coefficients c0, c1, d0, d1 and d2 are computed to
ensure second order accuracy at small w̃ and first order
accuracy at large w̃:

d0¼
4fπ;1
9π

−f2π;0; d1¼ fπ;0fπ;1−
4fπ;2
9π

;

d2¼ fπ;0fπ;2−f2π;1; c0 ¼ d0fπ;0; c1¼−
4d2
9π

: ð82Þ

The coefficientsfπ;0,fπ;1 andfπ;2 aregiven inEq. (44). In the
limit w̃ → 0, when fπ → fπ;0 ¼ − 2γ

3
=ð1 − γ=4Þ, Eq. (80)

reduces to

Tμν
0 ¼ ϵ0

1 − γ=4
diag

�
1 −

γ

4
;
1

3
þ γ

4
;
1

3
þ γ

4
;
1

3τ2
−

3γ

4τ2

�
;

ð83Þ

which coincides with the initialization employed for RTA
[shown in Eq. (1)] in the case when γ ¼ 4=9. Since in
hydrodynamics, γ > 4=9, the initial transverse-plane energy
when w̃0 ≪ 1 will be larger than in RTA:

dE0
tr;γ

dη
¼ 2

3

1þ 3γ=4
1 − γ=4

dE0
tr;RTA

dη
: ð84Þ

This explains why at initial time the naive hydro curve in
Fig. 5 starts above the kinetic theory one.
Acknowledging that viscous hydrodynamics does not

capture correctly the preequilibrium evolution of the fluid,
we propose to change the initialization of hydrodynamics
in such a way that the energy density ϵ locally agrees with
the kinetic theory prediction at late times. In principle, this
works only when the preequilibrium evolution ends before
the onset of transverse expansion. Taking a and η=s to be
identical in the two theories and demanding that they both

FIG. 5. Early time evolution of transverse energy dEtr=dη [top,
cf. Eq. (13)] and ellipticity ϵ2 [bottom, cf. Eq. (5)] in kinetic
theory (blue), naive hydrodynamics (red) and scaled hydro-
dynamics (green). Hydrodynamics behaves differently in pree-
quilibrium, such that differences to a kinetic theory description
build up. This can be counteracted by scaling the initial condition.
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reach the same ðτ4=3ϵÞ∞ value when τ → ∞, Eq. (55) shows
that the local modification of the initial energy density in
hydrodynamics (denoted ϵ0;γ) is

ϵ0;γ ¼
��

4πη=s
τ0

a1=4
�1

2
−9γ

8

�
CRTA
∞

Cγ
∞

�
9=8

ϵ0;RTA

� 8=9
1−γ=4

; ð85Þ

where the specific shear viscosity η=s is considered to have
the same value in viscous hydrodynamics and in kinetic
theory. Using the above energy profile in Eqs. (62), (64)
and (79) shows that after preequilibrium (i.e. at large w̃),
dEtr=dη, the eccentricities ϵn and the average flow velocity
hu⊥iϵ will reach the corresponding RTA limits, irrespective
of the value of γ. We note, however, that the preequilibrium
behavior of all of the above observables will still be
different from that in RTA.
Before ending this section, we emphasize that the

rescaling of the initial conditions shown in Eq. (85) is
not only possible, but also mandatory for ideal hydro-
dynamics simulations, when γ ¼ 0 and C∞ ¼ 1. While
when applying the scaling procedure to viscous hydro-
dynamics, η=s was considered as an invariant physical
parameter, in ideal hydrodynamics (when η ¼ 0), this is no
longer the case. Instead, the factor η=s helps rescale the
initial energy density such that, at late times, τ4=3ϵ obtained
in ideal hydrodynamics would match the one in a hypo-
thetical RTA system with that given value of η=s. The
agreement between ideal hydro and RTA can be expected
of course only in the limit η=s → 0. Specifically, Eq. (85)
reduces in the case of ideal hydro to

ϵ0;id ¼
�
4πη

s

�
4=9

RTA
CRTA
∞

a1=9

τ4=90

ϵ8=90;RTA: ð86Þ

When comparing the ideal hydro result to kinetic
theory calculations, we employ the above formula with
4πη=s ¼ 1, and for dEtr=dηwe rescale the final results with
ð4πη=sÞ4=9 according to Eq. (86) when comparing to
kinetic theory at other values of 4πη=s.

V. SPACE-TIME EVOLUTION AT DIFFERENT
OPACITIES AND IN DIFFERENT SETUPS

The different behavior of hydrodynamics compared
to kinetic theory in preequilibrium can best be assessed
via the time dependence of the studied observables. This
also allows to study the behavior during different stages of
the collision. In Sec. VA, we discuss the time evolution
of transverse profiles of the system in kinetic theory.
Section V B compares the time evolution of the tracked
observables in kinetic theory and scaled viscous hydro-
dynamics. These are then used as the basis for a discus-
sion of the time evolution in hybrid simulation schemes
in Sec. V C.

A. Evolution of transverse profiles in kinetic theory

We now want to discuss the system’s time evolution at
different opacities resolved in transverse space. This is
illustrated in Fig. 6 via heat map plots of the timescaled
local rest frame energy density τϵ together with a vector
plot of the transverse components of the flow velocity uμ at
three different values of the shear viscosity, 4πη=s ¼ 0.5, 3,
10, which are representative of the regimes of hydro-
dynamic behavior, close-to-free-streaming behavior and
the intermediate transitioning regime. The time evolution
of these profiles is sampled at three different times,
τ ¼ 0.1R, 1R and 2R, which mark the beginning, peak
and end of the buildup of elliptic flow εp, as will be
discussed in Sec. V B.
At the earliest time, τ ¼ 0.1R, transverse dynamics have

not had a large effect yet: flow velocities are negligible and
the main geometric properties of the profile remain
unchanged. The only obvious difference is the overall scale.
At smaller η=s, the system starts cooling sooner, performing
more work against the longitudinal expansion, resulting in
significantly smaller energy densities when compared to
larger η=s.
τ ¼ 1R marks the characteristic time where transverse

expansion effects become significant. Here, we see the
profile taking on a more circular shape. We also see
significant flow velocities, which rise in magnitude with
the distance from the center. For smaller shear viscosity
η=s, meaning larger interaction rates, the system tends to
lump together more, resulting in a smaller spatial extent and
smaller flow velocities compared to larger η=s.
At the largest selected time, τ ¼ 2R, the interaction rate in

the system has significantly decreased due to the dilution
caused by the transverse expansion. Over time, the dynamics
will approach a free-streaming expansion in all directions. It
is apparent in all three cases that the system has expanded
mainly in the directions of larger gradients in the initial state.
For small shear viscosity η=s, the system’s energy density is
still peaked in the center due to stronger collective behavior.
On the other hand, at large η=s, the system evolution is closer
to a free-streamingpropagationof the initial state, resulting in
two high-density areas at distances r ≈ τ from the center.
Though the difference is barely visible, the built-up flow
velocities are larger for larger η=s.
We can discern additional spatially resolved information

on the opacity dependence of the system’s evolution by also
comparing profile plots of the anisotropic stress, Txx − Tyy,
which are presented in Fig. 7. Per definition in Eq. (14), the
transverse integral of this quantity is proportional to elliptic
flow εp, which builds up more at smaller values of η=s.
Note that the symmetry-plane phase factor takes the value
e2iΨp ¼ −1 in this case, such that a negative integral results
in positive εp. The plots show that the transverse plane
separates into regions with different sign of the anisotropic
stress. The behavior in the outskirts is dictated by trans-
verse expansion, resulting in positive values in�x direction
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and negative values in �y direction. The buildup of elliptic
flow seems to proceed mainly via the positive parts
decaying more than negative ones. At small opacities in
the right panel, particles propagate with few interactions.
Due to the initial almond shape, most of the particles in the
center propagate in �x direction, resulting in a larger Txx

than Tyy. At large opacities in the left panel, the system is
hydrodynamized and the anisotropic stress comes mostly
from the direction of flow. Since the flow components ux
and uy are zero in the center of the system, the anisotropic
stress vanishes there.

B. Time evolution of observables in kinetic theory
and hydrodynamics

We will now examine the time evolution of certain
characteristic transverse space integrated observables in

both kinetic theory and the scaled hydrodynamics scheme
that was proposed in Sec. IV D as a countermeasure to
the unphysical preequilibrium behavior of hydrodynamics
discussed in Sec. IV B. This will provide additional insights
into the system’s behavior but also reveal how well the
scaled hydro scheme works at different opacities. Figure 8
shows comparisons of the time evolution of transverse
energy dEtr=dη, elliptic flow εp, average transverse flow
velocity hu⊥iϵ and average inverse Reynolds number
hRe−1iϵ in both models at three different opacities. Since
we are using a fixed initial profile, we plot εp without
normalization to the initial state eccentricity ϵ2. As an
illustration of the motivation for the scaling scheme in
hydrodynamics, for dEtr=dη and hRe−1iϵ we also compare
with the time evolution in the absence of transverse
expansion, where we describe the system as a collection
of local Bjorken flows.

FIG. 6. Time evolution of transverse profiles of the rest frame energy density τϵ in a heat map plot together with transverse
components of the flow velocity ðux; uyÞ as a vector field plot for the averaged initial condition used in this work at different opacities
4πη=s ¼ 0.5 (left), 3 (middle) and 10 (right). The snapshot times τ ¼ 0.1R (top), τ ¼ 1R (middle) and τ ¼ 2R (bottom) were chosen as
the beginning, peak and end of the buildup of elliptic flow εp.
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The time evolution of transverse energy dEtr=dη closely
follows results from Bjorken flow scaling at early times,
as predicted in Sec. IV B. In Bjorken flow scaling, this
observable starts out being constant in the free-streaming
period of kinetic theory, while, in hydrodynamics, it
follows a positive power law, cf. Eq. (61). From there,
in both cases the time evolution smoothly transitions to a
late time equilibrium power law dEtr=dη ∼ τ−1=3. The
timescale of this transition depends on the opacity and is
smaller at smaller η=s. In RTA,3 it scales as τeq ∼ ðη=sÞ4=3
[71]. By construction, results from scaled hydrodynamics
agree with kinetic theory results in the late time limit of
Bjorken flow scaling. The time evolution in full simulations
follows this behavior up to times τ ∼ R, when effects
of transverse expansion become significant. The rapid
dilution due to transverse expansion decreases interaction
rates and causes dEtr=dη to approach a constant value.
For large opacities like 4πη=s ¼ 0.5, the Bjorken flow
equilibrium where both models agree sets in long before
transverse expansion and even afterwards the results
will stay in agreement. Intermediate opacities around
4πη=s ¼ 3 mark the transition region where results for
dEtr=dη from both models just barely come into agreement
before approaching a constant value. At small opacities like
in the case of 4πη=s ¼ 10, the onset of transverse expan-
sion interrupts the Bjorken flow scaling period before the
two model descriptions have come into agreement. The
residual discrepancy then persists throughout the evolution
of the system and leads to a mismatch of final state
observables, which becomes worse as η=s is increased.
The second line of Fig. 8 shows the time evolution of the

elliptic flow coefficient εp. Again, like in the case of
dEtr=dη, because of the decrease of interaction rates due to
the dilution caused by transverse expansion, εp reaches a

late-time plateau. Thus, at all opacities, εp builds up in a
time frame of τ ≲ 2R. Contributions from early times are
negligible, such that effectively the buildup starts at
τ ≳ 0.1R. As indicated in the log-log insets, the kinetic
theory curves exhibit at early times an approximate power-
law increase, εp ∝ τ8=3. In contrast, the scaled hydro curve
for εp first dips to negative values. For 4πη=s ¼ 0.5, when
equilibration is achieved before the onset of transverse
expansion, the scaled hydro curve merges into the RTA one
as implied by the discussion in Sec. IV D. At small opacity
(4πη=s ¼ 10), the merging process is interrupted by trans-
verse expansion. The scaled hydro result for εp is in perfect
agreement with kinetic theory at large opacities and stays in
good agreement at intermediate opacities. Due to a smaller
overall interaction rate, the εp response decreases with
decreasing opacity. For small opacities, a negative trend in
the early time behavior of hydrodynamics causes discrep-
ancies with kinetic theory. This trend will become dom-
inant at even smaller opacities, resulting in negative values
of the late time plateaus.
As discussed in Sec. IV C, at early times, hu⊥iϵ builds up

linearly with the elapsed timeΔτ ¼ τ − τ0 in kinetic theory.
For finite initialization time τ0, the detailed behavior in
hydrodynamics is slightly different, but almost indistin-

guishable from linearity inΔτ. Hence, we plot the ratio hu⊥iϵ
Δτ=R

and indicate the early time limit using horizontal dashed
blue lines. The plots confirm that there are slight
differences in the early time behavior of the flow velocities
in hydrodynamics and kinetic theory; however they come
into agreement on similar timescales as dEtr=dη. This is
partly owing to the fact that early time contributions to the
total hu⊥iϵ are negligible. hu⊥iϵ enters a period of super-
linear rise during transverse expansion. While this period
ends earlier at larger opacities due to dilution of the system

and transition to free streaming, the total rise of hu⊥iϵ
Δτ=R is

nevertheless larger. Comparing hydrodynamic results to
kinetic theory results, the late time free-streaming does
not seem to be accurately reproduced, as hydrodynamics

FIG. 7. Transverse profiles of the transverse anisotropy τðTxx − TyyÞ in kinetic theory at time τ ¼ 1R for different opacities 4πη=s ¼
0.5 (left), 3 (middle), 10 (right).

3In general, the equilibration timescale scales with
ðη=sÞ3ð1−γ=4Þ=2, with γ as defined in Eq. (50). Numerically, the
exponent 1.30 for viscous hydrodynamics is close to the one
for RTA.
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FIG. 8. Time evolution of (from top to bottom) transverse energy dEtr=dη [cf. Eq. (13)], elliptic flow εp [cf. Eq. (14)], transverse flow
velocity hu⊥iϵ [cf. Eq. (15)] and inverse Reynolds number hRe−1iϵ [cf. Eq. (16)] in kinetic theory (black) and scaled viscous
hydrodynamics (purple). The time axis is scaled logarithmically in all plots. The plots showing elliptic flow εp feature an inset plot of the
same quantity plotted in log-log scale. The plots of flow velocity also show the preflow result from Table II for the early time limit for
hu⊥iϵ=ðΔτ=RÞ (0.614 for kinetic theory and 0.606 for scaled hydrodynamics). Bjorken scaling results are shown with dashed lines for
dEtr=dη (top) and hRe−1iϵ (bottom).
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underestimates hu⊥iϵ. Problems in the late time behavior
are less relevant for the other observables we discuss, as
they tend to plateau at late times. This late time discrepancy
between hydrodynamics and kinetic theory is thus a
phenomenon that mainly affects hu⊥iϵ among the observ-
ables that were tracked in this work, and is not related to
preequilibrium.
Finally, we look at the time evolution of the average

inverse Reynolds number, which is a measure of the size
of nonequilibrium effects in the system. We normalized
this in such a way that, in RTA, its initial value is equal to
one (note that on the hydro attractor, Re−1 ∼ 1.212 when
τ0 → 0). Like for dEtr=dη, the two model descriptions will
come into agreement in the late time limit of Bjorken flow
scaling, on timescales that are larger for smaller opacities.
Due to equilibration, in this period hRe−1iϵ experiences a
phase of rapid decay towards 0, as expected since Re−1

measures nonequilibrium effects. The effect of transverse
expansion on this observable is not straightforwardly under-
stood, except for the fact that due to the additional dilution,
hRe−1iϵ must be larger in full simulations than in Bjorken
flow scaling. For large opacities, transverse expansion seems
to only slow down the approach to equilibrium. However, at
intermediate opacities we see a significant rise in hRe−1iϵ.
We also computed results for the limit of vanishing opacity.
Here, the inverse Reynolds number remains constant at early
times, but later increases due to transverse expansion, e.g. at
τ ¼ 4R to a value of hRe−1iϵðτ ¼ 4RÞ ¼ 1.322. However, an
increase due to transverse expansion cannot be the only late
time effect, as we can see from the results at 4πη=s ¼ 10,
where the trend of this quantity changes multiple times.
It first departs from the local Bjorken flow prediction at
τ=R ∼ 0.3, but later the curve returns to decreasing at a rate
comparable to that during the Bjorken flow stage. At late
times, the behavior transitions to a rise in the inverse
Reynolds number. Despite this peculiar behavior, our
numerical results indicate that hRe−1iϵ reaches a minimum
value that is larger for smaller opacities. For very small
opacities, it will not drop significantly below its initial value
of 1 before starting to rise.
For a more detailed examination of the opacity depend-

ence of the time evolution in kinetic theory ranging
from very small (4πη=s ¼ 1000) to very large opacities
(4πη=s ¼ 0.01), please see Appendix C.
After examining the time evolution of these observ-

ables and establishing some understanding about the
implications of their buildup, we now want to invert
this logic. As the change in these observables carries
information on the state of the system, e.g. the progress
of its equilibration or the onset of transverse expansion,
we want to track the first times when these observables
reach a specific milestone of their time evolution as a
function of opacity. Figure 9 shows plots of kinetic
theory results for these curves for five different milestone
criteria. Specifically, we tracked when the average

transverse flow velocity reaches a value of 0.1 as a
criterion for the onset of transverse expansion, the time
when the elliptic flow response builds up to 5% of its
maximum value at the given opacity as a criterion for the
beginning of the buildup of flow, and the time when the
average inverse Reynolds number reaches values of 0.4,
0.6 and 0.8, which tells us to what degree hydrodynam-
ization has progressed. As it turns out, the curve for the
flow velocity criterion is almost perfectly flat at a value
of τc ≈ 0.15R, meaning that the early time buildup of
hu⊥iϵ is mostly independent of the opacity. The elliptic
flow criterion is met at similar times as the flow velocity
criterion at large opacities, but at slightly later times τc ≈
0.3R for small opacities. Despite the general time frame
of εp-buildup being independent of opacity, it seems to
start slightly earlier at larger opacities. The most inter-
esting criterion curves are those for the average inverse
Reynolds number. The system’s adherence to early time
Bjorken flow scaling leads to a power law behavior τc ∝
ðη=sÞ4=3 for all three of these curves at large opacities.
The curves deviate from this power law when the
criterion is not reached before transverse expansion sets
in at times τ ∼ R. For small opacities, the criteria are
never met, as the average inverse Reynolds number
reaches a minimum value larger than the criterion value,
as already stated in the discussion of Fig. 8. The behavior
of dEtr=dη resembles that of dE⊥=dη, which we already

FIG. 9. Opacity (γ̂ ¼ 11.3
4πη=s) dependence of the characteristic

times where the elliptic flow εp [cf. Eq. (14)] reaches 5% of its
late time (τ ¼ 4R) value (red), the transverse flow velocity
[cf. Eq. (15)] builds up to a value of hu⊥iϵ ¼ 0.1 (purple), or
the inverse Reynolds number [cf. Eq. (16)] drops to a value of
hRe−1iϵ ¼ 0.8 (pink, dashed), 0.6 (pink, solid) or 0.4 (pink, long-
short dashed). The buildup in transverse flow velocity marks the
transition from the Bjorken flow scaling regime to the regime of
transverse expansion, while the drop in inverse Reynolds number
marks the region where hydrodynamics is applicable.

AMBRUŞ, SCHLICHTING, and WERTHMANN PHYS. REV. D 107, 094013 (2023)

094013-20



discussed in our previous paper [71]. Similarly to hRe−1iϵ,
it follows Bjorken flow scaling at early times, resulting in a
similar power law behavior.

C. Time evolution in hybrid schemes

Another way to alleviate discrepancies due to the
behavior of hydrodynamics in the preequilibrium phase
as discussed in Sec. IV B is to model the time evolution
via a hybrid scheme, switching from a kinetic theory
based description at early times to hydrodynamics at later
times, i.e. initializing the hydrodynamic simulation with
the energy-momentum tensor computed from the kinetic
theory based time evolution. This requires to fix a criterion
for when to switch descriptions.
As we argue that hydrodynamics becomes viable only

after some timescale related to equilibration, we also expect
the accuracy of hybrid scheme results to depend on the
switching times. Due to the opacity dependence of equili-
bration, it might be beneficial to choose switching times as a
function of opacity. Hence we tested both a hybrid scheme
with fixed switching times at two different times τ ¼ 0.4 fm
and τ ¼ 1 fm, which are in the range of switching times
typically used in phenomenological descriptions, and with
dynamically determined switching times.
In order to tie this definition to the phenomenon of

equilibration, we determine the dynamical switching times
on the basis of the decrease of the average inverse Reynolds
number hRe−1iϵ; i.e. we switch as soon as this quantity first
reaches a specific value. Specifically, we chose the values
hRe−1iϵ ¼ 0.8, 0.6 and 0.4 (sometimes we will consider
switching alsowhen hRe−1iϵ drops below 0.2). In the case of
a transversally homogeneous system, Fig. 3 shows that these
values for the inverse Reynolds number correspond to
various degrees of hydrodynamization of the system.
Specifically, Re−1 ¼ 0.8 (w̃ ≃ 0.2) corresponds to the onset
of hydrodynamization. When Re−1 ¼ 0.6 (w̃ ≃ 0.6), the
system significantly progressed through the hydrodynam-
ization process, while when Re−1 ¼ 0.4 (w̃ ≃ 1), the system
has hydrodynamized and the kinetic theory and hydrody-
namics attractor curves are almost merged. Due to the
relation (38) between w̃ and the Bjorken time τ, the
characteristic times τc when Re−1 drops below a certain
threshold increase with 4πη=s (see Sec. V B for a detailed
discussion).
The results are illustrated by the time evolution of

transverse energy dEtr=dη, elliptic flow εp and average
transverse flow velocity hu⊥iϵ compared for different
choices of the switching times, as plotted in Fig. 10 at
three different opacities. The early time evolution was
computed with the RLB method of simulating kinetic
theory. The plots also compare to results from a pure
kinetic theory simulation as well as from our scaled viscous
hydro scheme. Here we plot all results including the ones
for elliptic flow εp on a logarithmic scale of the time axis so

that the different switching times are discernible. The εp
plots also feature an inset plot on log-log scale. It can be
seen that the curves corresponding to the hybrid setups tend
to detach from the RTA curve towards lower values of εp.
Since in viscous hydro, the equilibration process leads to a
decrease of spatial eccentricity ϵ2 (see lower panel of
Fig. 5), the hybrid simulations with early switching times
will lead to lower late-time values of εp (see the discussion
in the next section).
At a small shear viscosity of 4πη=s ¼ 0.5, all switching

schemes yield accurate results for all three observables.
Since the equilibration timescale is small for this opacity,
the system has equilibrated by the time we switch descrip-
tions such that kinetic theory and hydrodynamics are in
agreement. The hRe−1iϵ-based criteria are fulfilled early on
in the system’s evolution such that the dynamically chosen
switching times are significantly smaller than the fixed
ones. However, when comparing results from pure kinetic
theory or viscous hydrodynamics, they are within the time
frame where both descriptions are in acceptable agreement.
The only curve where a deviation from kinetic theory is
clearly visible is the one for Re−1 ¼ 0.8, where hydro-
dynamization has only partly progressed by the time this
criterion is fulfilled.
The results at 4πη=s ¼ 3 now show that it is indeed

necessary to give the choice of switching times some
thought, as here we see a significant increase in accuracy of
results for dEtr=dη and hu⊥iϵ with later switching times.
For this opacity, the dynamically chosen switching times
are on a similar scale as the fixed ones. We also see that the
nature of any discrepancies with pure kinetic theory results
is the same as in the case of hydrodynamics. As soon as we
switch, the curves of these observables follow a trajectory
that is qualitatively similar to the pure hydrodynamics
result, meaning that dEtr=dη is increased, while hu⊥iϵ and
εp are decreased relative to the kinetic theory result.
The strength of the dynamically chosen switching times

is well displayed for results at 4πη=s ¼ 10. In this case, the
system is still far from hydrodynamized at the two fixed
switching times, leading to sizeable inaccuracies in the
corresponding hybrid scheme results for all three observ-
ables, but especially for dEtr=dη. As hRe−1iϵ does not
drop low enough, two of the three criteria for the dyna-
mical switching were not reached. However, the result for
switching at the largest of the three values of hRe−1iϵ
retains a similar level of accuracy as at smaller shear
viscosity and is a significant improvement to fixed time
switching results.
Overall, we find that while switching at fixed time is

conceptionally straightforward and always possible, the
accuracy of this scheme strongly depends on the opacity
and results at small opacity show large deviations from
full kinetic theory. On the other hand, switching based on
hRe−1iϵ is not always possible because this quantity does
not drop to the desired values at small opacities, but
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whenever it is possible, the accuracy of the result can
be estimated beforehand and depends only little on opacity.
In other words, the dynamical definition yields the
earliest possible switching time for a desired accuracy,
and whenever hRe−1iϵ does not drop enough for it to be
determined, hydrodynamics is not viable in the first place.

Finally, we also tested hybrid schemes with the same
switching times butwith an early time evolution computed in
KøMPøST. We found that due to its limited range of appli-
cability, some of the later switching times could not be viably
reached with this description. But whenever we were able to
obtain results, they were in good agreement with the results

FIG. 10. Time evolution of transverse energy dEtr=dη [top, cf. Eq. (13)], elliptic flow εp [middle, cf. Eq. (14)] and transverse flow
velocity hu⊥iϵ [bottom, cf. Eq. (15)] in hybrid kinetic theoryþ viscous hydro simulations at opacities 4πη=s ¼ 0.5 (left), 3 (middle)
and 10 (right) when switching at different values of the inverse Reynolds number [cf. Eq. (16)] hRe−1iϵ ¼ 0.8 (light red), 0.6 (red) and
0.4 (dark red) or fixed time τ ¼ 0.4 fm (light green) and τ ¼ 1 fm (dark green). The switching points are marked with filled symbols.
The time axis is scaled logarithmically. The plots showing elliptic flow εp feature an inset plot of the same quantity plotted in log-log
scale. In the flow velocity plots, we also show the estimate hu⊥iϵ;RTA ¼ 0.614Δτ=R for the early time buildup of preflow in kinetic
theory (see Table II).
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from the previously discussed scheme, except for some
systematic errors in εp and hu⊥iϵ. These results are presented
in more detail in Appendix D, together with analogous time
dependence plots to those presented in Fig. 10.

VI. OPACITY DEPENDENCE OF FINAL STATE
OBSERVABLES IN DIFFERENT TIME

EVOLUTION MODELS

The previous section’s comparison of the time evolution
in different models has provided insights into the nature of
different sources of discrepancies and at what opacities to
expect them. For a detailed opacity-resolved analysis, it is
convenient to study the dependence of final-state observables
on a wide range of opacity, from the free-streaming regime
to ideal fluid behavior. In Sec. VI A, we present opacity
dependencies in kinetic theory, naiveviscous hydrodynamics
and scaled viscous hydrodynamics. Section VI B discusses
results for hybrid simulation schemes.

A. Scaled and naive hydrodynamics compared
to kinetic theory

First, we assess the performance of scaled hydro-
dynamics as described in Sec. IV D when compared to
a common naive initialization scheme of hydrodyna-
mics, where the simulation is started at a time τ0 where
hydrodynamization is likely to have set in, with the same
initial condition for τ0ϵðτ0;x⊥Þ as we are using for
kinetic theory simulations initialized in the early time
free-streaming limit. Figure 11 shows the opacity depend-
ences of transverse energy dEtr=dη, elliptic flow εp and
average transverse flow velocity hu⊥iϵ in kinetic theory,
scaled hydrodynamics and naive hydrodynamics initial-
ized on the hydrodynamic attractor at two different times
τ0 ¼ 0.4 fm and τ0 ¼ 1 fm, which are in the range of
values typically used in phenomenological descriptions.
For all three observables, the kinetic theory results

smoothly interpolate between limiting cases of small and
large opacities. For dEtr=dη and εp, we compare at small
opacities to results from the linear order opacity expan-
sion that is introduced in Sec. III B. Results from full
kinetic theory are in excellent agreement with these
approximations for 4πη=s≳ 20. In the case of hu⊥iϵ,
we present results for the free-streaming limit γ̂ → 0, to
which the full kinetic theory results converge at small
opacities.
On the other end of the opacity spectrum, the results

from both kinetic theory and scaled viscous hydrody-
namics converge to those of scaled ideal hydrodynamics
in the limit η=s → 0. Even though η=s ¼ 0 by definition
in ideal hydrodynamics, we represent the scaled ideal
hydro results as a function of 4πη=s in the equivalent
RTA simulation [see discussion around Eq. (86)], leading
to a power-law dependence dEtr=dη ∝ ð4πη=sÞ4=9, which
is confirmed by the scaled viscous hydrodynamics and

FIG. 11. Opacity (η=s) dependence of the final (τ ¼ 4R) values
of transverse energy dEtr=dη [top, cf. Eq. (13)], elliptic flow εp
[middle, cf. Eq. (14)] and transverse flow velocity hu⊥iϵ [bottom,
cf. Eq. (15)] for kinetic theory (black), scaled hydro (purple) and
naive hydro at two different initialization times τ0 ¼ 0.4 fm
(brown) and 1 fm (yellow). Also plotted are the small opacity
limits of an opacity-linearized result (blue) in the top two plots,
the free-streaming result (blue, dashed) in the bottom plot as well
as the opacity-scaled ideal hydrodynamics results (gray, dashed).
The latter follows a ðη=sÞ4=9 scaling law for dEtr=dη as per the
initialization scheme in Eq. (86). The ideal hydro results are
611GeV · ð4πη=sÞ4=9 for dEtr=dη, 0.244 for εp and 3.01 for
hu⊥iϵ. The red shaded region shows the realistic values for QCD
according to Bayesian estimates.
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kinetic theory results (this result was derived from early
time Bjorken scaling in [71]). The curves for εp and
hu⊥iϵ converge at large opacities to the ideal hydro-
dynamics limit that was obtained with a scaled initial
condition. This is not a priori obvious but rather an
achievement of our proposed scheme. Ideal hydro-
dynamics is the large opacity limit of kinetic theory
only after hydrodynamization. At any finite opacity,
kinetic theory simulations feature a preequilibrium
period which is absent in ideal hydro. In this period,
the ellipticity ϵ2 decreases in kinetic theory, such that,
with the same initial condition, it would result in a
smaller elliptic flow εp than in ideal hydro. The agree-
ment is only reached after scaling the hydro initial
condition as discussed in Sec. IV D.
Comparing now to hydrodynamic results, for all three

obserables, the large opacity limits of scaled hydro-
dynamics and kinetic theory are in excellent agreement.
Going to small opacities, all observables are underesti-
mated in hydro, as will be further discussed in the
following. Agreement holds for 4πη=s≲ 3.
On the other hand, for naive hydrodynamics initialized

at τ0 ¼ 0.4 and 1.0 fm, the opacity dependence curves
show qualitatively similar behavior to kinetic theory but
remain in quantitative disagreement for all opacities. This
is obvious in the case of dEtr=dη, which is significantly
overestimated. We find that the large opacity power law
is not captured. There are different reasons for this in the
two limiting cases of large and small opacity. For small
opacities 4πη=s≳ 10, despite the initialization time being
large, it is still smaller than the equilibration timescale
and the simulation will partly undergo a preequilibrium
phase. As we have seen, in the hydrodynamic description
of this phase dEtr=dη increases before the onset of
transverse expansion, while staying constant in kinetic
theory, so it is overestimated in hydro. For the smaller
initialization time τ0 ¼ 0.4 fm, the system is in preequi-
librium for a longer time compared to τ0 ¼ 1 fm. This is
why results for τ0 ¼ 0.4 fm yield a larger final value of
dEtr=dη at small opacities. On the other hand, for large
opacities 4πη=s≲ 3, the system would have been in
equilibrium for a significant amount of time if it had been
initialized at an earlier time. In the equilibrated phase
before transverse expansion, dEtr=dη drops proportionally
to τ−1=3. The larger the initialization time, the more of
this period is cut out of the simulation, resulting in a
larger final value. This is why the curve for initialization
at τ0 ¼ 1 fm is above the one for τ0 ¼ 0.4 fm at large
opacities, resulting in a crossing of the two at inter-
mediate opacities 4πη=s ∼ 5. The equilibration timescale
becomes smaller and smaller at larger and larger opac-
ities, meaning that for fixed initialization time more and
more of the τ−1=3-scaling period is cut out. This is why
the large opacity power law is not reproduced in naive
hydrodynamics.

These problems are cured in scaled hydrodynamics.
It is initialized at very early times, so no part of the time
evolution is lost. The discrepancies due to hydrody-
namic preequilibrium behavior are cured via scaling the
initial energy density as discussed in Sec. IV D such that
agreement with kinetic theory is reached only after
equilibration. However, for small opacities 4πη=s≳ 3,
the underlying assumption of a timescale separation
of equilibration and transverse expansion no longer
holds. In this case, scaled hydrodynamics underesti-
mates dEtr=dη, as transverse expansion interrupts its
approach to kinetic theory behavior before agreement is
reached.
Of the three presented observables, εp in naive hydro-

dynamics shows the weakest deviations from kinetic
theory. This is in alignment with our expectations, as
we know that hydro has been very successful in phe-
nomenological descriptions of anisotropic flow. The
reasons might be that εp builds up on timescales that
are fully captured by simulations at initialization times of
∼1 fm and depends very little on the overall energy scale.
But certainly, this level of agreement was not to be
expected a priori and should be regarded as a coinci-
dence. The influence of the initialization time is as
follows. At small opacities 4πη=s≳ 10, a part of the
early time negative trend in hydrodynamics is cut out,
resulting in larger results for later initialization times. For
large opacities 4πη=s≲ 1, εp already has positive con-
tributions at early times which might be cut out, resulting
in smaller final values for later initialization times. But
very early initialization times cannot bring hydro into
agreement with kinetic theory. As discussed in Sec. IV B,
hydrodynamics initialized at very early times exhibits a
larger decrease of the eccentricity during preequilibrium,
resulting in lower final values of εp than in kinetic
theory. However, the scaling procedure counteracts this
phenomenon by increasing the eccentricity in the initial
state of hydrodynamic simulations, such that scaled
hydrodynamics is in perfect agreement with kinetic
theory at large opacities 4πη=s≲ 3. For small opacities
4πη=s≳ 10, on the other hand, due to the early initial-
ization scaled hydrodynamics features a longer period of
the aforementioned early time negative buildup of εp,
resulting in final values which are lower than in the case
of the naive hydro initializations discussed above.
The flow velocity results from naive hydrodynamics

again show two effects. One of them is straightforward:
as this observable rises monotonically with time, for
larger initialization times, there is less time for hu⊥iϵ to
build up, resulting in an underestimate. This effect is
cured in scaled hydrodynamics due to the early initial-
ization. At small opacities 4πη=s≳ 10, we see an addi-
tional decrease of hydrodynamic results compared to
kinetic theory due to its inability to describe the late-
time free-streaming behavior. This is an effect that both
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FIG. 12. Opacity (η=s) dependence of the final (τ ¼ 4R) values of transverse energy dEtr=dη [top, cf. Eq. (13)], elliptic flow εp
[middle, cf. Eq. (14)] and transverse flow velocity hu⊥iϵ [bottom, cf. Eq. (15)] in hybrid kinetic theoryþ viscous hydro (left) and
KøMPøSTþ viscous hydro simulations (right) when switching at different values of the inverse Reynolds number [cf. Eq. (16)]
hRe−1iϵ ¼ 0.8, 0.6, 0.4 and 0.2 plotted in different shades of red from light to dark. Results from simulations with switching times after
τ ¼ 0.5R are plotted with smaller points (þ) and dashed lines. The results are compared to kinetic theory (black), scaled hydro (purple)
and the small opacity limits of an opacity-linearized result (blue) in the top two plots, the free-streaming result (blue, dashed) in the
bottom plot as well as the large opacity limit of scaled ideal hydro (gray, dashed), which scales as ðη=sÞ4=9 in the top plot. The red shaded
region shows the realistic values for QCD according to Bayesian estimates. The bottom part of each plot shows the ratios of all results to
those from kinetic theory.
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hydro schemes (based on naive and scaled initial con-
ditions) have in common.

B. Hybrid simulations

As described in Sec. V C, another way to bring hydro-
dynamic results into agreement with kinetic theory is to use
hybrid schemes switching from a kinetic theory based early
time description to hydrodynamics at later times. We tried
switching both at fixed times as well as at the first times
equilibration has proceeded to a given extent, which we
quantified by the inverse Reynolds number dropping to a
specific value. We also tested two different model descrip-
tions for early times: full kinetic theory and KøMPøST.
As described in the previous section, the time evolution
curves of all observables instantaneously change behavior
when the models are switched, such that switching too
early will be affected by the inaccurate description of
preequilibrium in hydrodynamics. We now want to quan-
titatively assess the accuracy of various switching schemes
as a function of opacity.
We first discuss results for the opacity dependence in

hybrid simulations with hRe−1iϵ-based switching, which
are plotted in Fig. 12. For early switching times on the
timescale of equilibration, hybrid results may reflect the
inaccurate preequilibrium behavior in hydrodynamics.
Of course, in this case, there is no scaling of the initial
condition to counteract this behavior. However, this also
means that these schemes do not suffer from discrepancies
due to an incomplete approach of a scaled initial condition
to kinetic theory behavior before the onset of transverse
expansion, and therefore tend to be more accurate than
scaled hydrodynamics at intermediate opacities, i.e. for
4πη=s ∼ 3. However, results plotted with smaller crosses
and dashed lines were obtained in simulations with switch-
ing times larger than 0.5R, so in this case it is questionable
whether these schemes could be considered hybrid results,
as the crucial parts of the time evolution were actually
described in kinetic theory.
Going into more detail, hybrid results typically over-

estimate dEtr=dη because of the hydrodynamic pre-
equilibrium increase after switching. εp is underesti-
mated, however, the hydrodynamic negative early time
trend is alleviated, such that results from kinetic theoryþ
viscous hydro are typically larger than scaled hydro
results. Hybrid results show a consistent underestimation
of hu⊥iϵ, but on a relative scale this error is negligible.
This could be due to hydrodynamic flow velocities
typically being smaller than those in kinetic theory at
early times, causing a dip in hu⊥iϵ relative to kinetic
theory after switching.
Comparing kinetic theoryþ viscous hydrodynamics in

the left column of the figure to KøMPøSTþ viscous
hydrodynamics in the right column, one obvious difference
is that, in the latter, some of the results for smaller opacities
are missing, because there the hRe−1iϵ-based switching

times were too late to be reached with KøMPøST.4 Where it
does work, it produces almost the same results for dEtr=dη
as kinetic theory. The underestimation of hu⊥iϵ is slightly
more severe in KøMPøST. It does seem to have a
systematic component on top of the one related to switch-
ing early. But the total deviation is still negligible. The
largest difference is seen in εp, which is not built up at all in
KøMPøST simulations, thus there is a significantly larger
underestimation at smaller opacities, where a larger part of
the time evolution is described in KøMPøST.
Next, we shift our attention to results from hybrid

schemes at fixed switching times τs ¼ 0.4 fm and
τs ¼ 1 fm, which are presented in Fig. 13. As expected
from the discussion of the time evolution in Sec. V C, again
kinetic theoryþ viscous hydrodynamics yields perfectly
accurate results at large opacities 4πη=s≲ 1 and improves
on scaled hydrodynamics at intermediate opacities
4πη=s ∼ 3, but less so than for dynamically chosen switch-
ing times. The upshot is that hybrid schemes with fixed
switching times are applicable for arbitrarily small opac-
ities. However, here the results for the three tracked
observables show similar problems to those obtained in
naive hydrodynamics simulations discussed earlier in this
section. Due to incomplete equilibration at early switching
times, dEtr=dη increases after switching. εp suffers from the
early time negative trend in hydrodynamics but slightly less
than scaled hydrodynamics. hu⊥iϵ is again only slightly
underestimated in hybrid schemes when compared to
scaled hydrodynamics due to the different preequilibrium.
This is an improvement over naive hydrodynamics, as
instead of starting at late times with no flow velocity, the
early time buildup is described in kinetic theory. Both
schemes suffer equally from the inability of hydrodynamics
to describe flow velocities in the late time free-streaming
limit.
Also for fixed switching times, KøMPøSTþ viscous

hydrodynamics results for dEtr=dη and hu⊥iϵ are in good
agreement with those obtained in kinetic theoryþ viscous
hydrodynamics simulations. We again see the effect of the
absence of εp buildup in KøMPøST. Since we do not
increase the duration of time evolution in KøMPøST,
the effect is not larger at small opacities 4πη=s≳ 10. In
fact, here we see agreement with results from kinetic
theoryþ viscous hydrodynamics, as there is no significant
buildup of εp at early times. However, at large opacities
4πη=s≲ 5, this buildup starts earlier, which is why
KøMPøSTþ viscous hydrodynamics results underestimate
the final values in these cases.

4For large evolution times, KøMPøST crashes in the setup
stage when computing the Green’s functions. This is because they
are only implemented for a finite number of points in momentum
space and have to be convolved with a Gaussian smearing kernel
expð−σ2jkj=2Þ. But the Green’s functions scale in jkjðτ − τ0Þ
such that for too large of an evolution time this smearing is no
longer sufficient.
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VII. CONCLUSIONS

In this work, we examined hydrodynamic and kinetic
theory simulations of hadronic collisions. Within a sim-
plified model setup based on RTA and using a fixed initial
profile that was obtained as an average of events in the
30–40% centrality class of Pb-Pb collisions, we scanned
the dynamical behavior on the whole range in interaction
rates as parametrized by the opacity γ̂ defined in Eq. (7),
which for our fixed profile is inversely proportional to shear
viscosity, γ̂ ¼ 11.3=ð4πη=sÞ. This study was based on
results for the transverse energy dEtr=dη, elliptic flow εp,
radial flow hu⊥iϵ and shear stress as measured via the
inverse Reynolds number hRe−1iϵ. At small opacities
4πη=s≳ 20, kinetic theory agrees with results from a
linearization in opacity. Here, the system is too dilute
for hydrodynamics to be applicable, which was confirmed
quantitatively in Sec. VI A: the time evolution of transverse
energy, radial flow and shear stress is in significant
disagreement in hydrodynamic simulations compared to
kinetic theory. For large opacities 4πη=s≲ 0.1, in the limit
of high interaction rates, kinetic theory is expected to
converge to hydrodynamics. Our results confirm that the
two descriptions are in agreement after preequilibrium.
Going down to intermediate opacities, we found that for
suitable setups of hydrodynamics, results for final state
transverse energy, elliptic flow and radial flow are in good
agreement with kinetic theory up to shear viscosities
4πη=s≲ 3 for the examined profile, which translates to
opacity values γ̂ ≳ 4.
However, hydrodynamics is not suitable for describing

out-of-equilibrium behavior in the early preequilibrium
stage and the late time period where the microscopic
description of kinetic theory approaches a free-streaming
behavior. In both of these regimes, hydrodynamic results
are in quantitative disagreement with kinetic theory, which

FIG. 13. (Continued).

FIG. 13. Opacity (η=s) dependence of the final (τ ¼ 4R) values
of transverse energy dEtr=dη [top, cf. Eq. (13)], elliptic flow εp
[middle, cf. Eq. (14)] and transverse flow velocity hu⊥i [bottom,
cf. Eq. (15)] in hybrid kinetic theoryþ viscous hydro (solid
lines) and KøMPøSTþ viscous hydro simulations (dashed lines)
when switching at fixed times τ ¼ 0.4 fm (light red) and τ ¼
1 fm (dark red). The results are compared to kinetic theory
(black), scaled hydro (purple) and the small opacity limits of an
opacity-linearized result (blue) in the top two plots, the free-
streaming result (blue, dashed) in the bottom plot, as well as to
the large opacity limit of scaled ideal hydro (gray, dashed), which
scales as ðη=sÞ4=9 in the top plot. The red shaded region shows the
realistic values for QCD according to Bayesian estimates. The
bottom part of the plot shows the ratios of all results to those from
kinetic theory.
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can be seen at the level of final state observables, as discussed
in Sec. IV B. Omitting the preequilibrium period or naively
employing hydrodynamics to describe itwill yield inaccurate
results. On the other hand, at late times where interactions
die out, these observables no longer build up and approach
constant values, such that hydrodynamic descriptions yield
similar results to kinetic theory. However, the late time free-
streaming stage does have an effect on radial flow, which is
underestimated in hydrodynamics.
We examined two different modified setups of hydro-

dynamic simulations that can alleviate problems with the
preequilibrium evolution. The first setup follows the idea
of an early initialization of hydrodynamics with a scaled
initial condition relative to kinetic theory to counteract
the differences in the preequilibrium evolution. These
differences are predicted locally based on insights from
Bjorken flow, which is accurate in systems with a timescale
separation of equilibration and the onset of transverse flow.
By construction, this setup yields accurate results at large
opacities 4πη=s≲ 3, but fails at smaller opacities, where
equilibration takes longer and is interrupted by transverse
expansion. The results obtained in this setup are presented
in Secs. V B and VI A.
The second setup is a hybrid simulation switching

from kinetic theory based descriptions at early times to
hydrodynamics for later times. In these schemes, as
described in Sec. V C, we saw an immediate change of
the time evolution behavior at the moment that we switch
the dynamical descriptions. Thus, the accuracy of hybrid
simulations depends on the extent to which the kinetic
theory and hydrodynamic descriptions of the system’s time
evolution have come into agreement by the time of the
switch. This approach to agreement between the two
descriptions is what we call hydrodynamization. We found
that this criterion can in practice be quantified via the
inverse Reynolds number. Figure 3 shows that the system is
partly hydrodynamized when Re−1 ¼ 0.8, significantly
hydrodynamized when Re−1 ¼ 0.6 and has reached almost
perfect agreement of the two descriptions at Re−1 ¼ 0.4.
The accuracy of hybrid simulations when switching at a
fixed value of hRe−1iϵ can be estimated beforehand and is
almost independent of the opacity. As detailed in Sec. VI B,
results from simulations with late switching times are
accurate at high opacities 4πη=s≲ 1 and can slightly
improve on our first setup at intermediate opacities
4πη=s ∼ 3. At small opacities 4πη=s≳ 20, hRe−1iϵ does
not drop below 0.8, meaning the system does not equili-
brate enough for hydrodynamics to become applicable at
any point during the system’s evolution.
For the early time kinetic theory description in hybrid

models, we used both full kinetic theory and the compact
KøMPøST code. The latter uses a linearization scheme in
perturbations around local homogeneity to propagate the
energy-momentum tensor according to the Boltzmann equa-
tion under the relaxation time approximation (the original

version [109,110] is based on the QCD effective kinetic
theory [106]). We first tested the performance of KøMPøST
as detailed in Sec. III E and found that it can accurately
reproduce full kinetic theory results for transverse energy,
radial flow and isotropic shear stress, but due to the
linearization it significantly underestimates elliptic flow. It
is by construction limited to times on the order of 0.5R. In
hybrid simulations with switching times in this regime,
transverse energy and radial flow results reach similar
accuracy as when employing full kinetic theory. However,
the underestimation of elliptic flow causes discrepancies
when the switching time is non-negligible compared to the
timescale of transverse expansion. These shortcomings have
already been reported in the original KøMPøST paper [136]
and will require further investigation in the future.
This work provides the baseline for analyses of hadronic

collisions in frameworks based on the microscopic dynam-
ics of kinetic theory. It is part of a series of recent efforts
[49,71,88,89,94] to push the practical applicability of these
dynamics in theoretical simulations. One important goal
that has yet to be reached is to improve the codes that
implement them in order to be able to also run event-by-
event simulations. At the moment, the tool that is closest
to fulfilling this goal is KøMPøST, which we confirmed to
function properly for its intended use, but it is confined to
the preequilibrium phase of heavy-ion collisions.
Broadly speaking, our results confirm that in principle

hydrodynamics is the proper tool for describing midcentral
collisions, if and only if preequilibrium is described
correctly. Issues with this phase in hydrodynamic descrip-
tions can be alleviated by changing the interpretation of the
initial state in the way discussed in Sec. IV D. As alluded to
in Sec. IVA as well as in previous works [65,137,138],
appropriate changes to the evolution equations might
achieve similar improvements. If such changes are not
incorporated, we discussed in Sec. VI that hydrodynamic
results can be in significant disagreement with kinetic
theory. We also refer the interested reader to our companion
paper [102], where we extract a more general criterion for
the applicability of hydrodynamics and infer phenomeno-
logical conclusions for the description of the space-time
dynamics of high-energy collisions.
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APPENDIX A: RELATIVISTIC LATTICE
BOLTZMANN IMPLEMENTATION DETAILS

The first step in applying the RLB method is the
parametrization of the momentum space, which we perform
using two sets of coordinates, namely the spherical (sub-
script s) and free-streaming (subscript fs) coordinates:

ðps; vz;sÞ ¼
�
pτ;

τpη

pτ

�
; ðA1aÞ

ðpfs; vz;fsÞ ¼
�
psΔs;

τvz;s
τ0Δs

�
; ðA1bÞ

where Δs ¼ ½1þ ðτ2
τ2
0

− 1Þv2z;s�1=2 [139]. The azimuthal

coordinate φp ¼ arctanðpy=pxÞ is employed in both
parametrizations.
Due to the particularly simple nature of RTA, the

dynamics of the observables introduced in Sec. II are fully
described by the reduced distribution F � (� ∈ fs; fsg),
obtained from the phase-space distribution f via

F � ¼
νeffπR2τ0
ð2πÞ3

�
dE0⊥
dη

�−1 Z ∞

0

dp�p3�f: ðA2Þ

Using the nondimensionalization conventions introduced
around Eq. (19), the nondimensional function F s ≡
F sðτ̃; x̃T;φp; vz;sÞ satisfies�
∂̃τ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z;s

q
v⊥ · ∇̃⊥ þ 1þ v2z;s

τ̃

�
F s

−
1

τ̃

∂½vz;sð1 − v2z;sÞF s�
∂vz;s

¼ −γ̂vμuμT̃ðF s − F eq
s Þ; ðA3Þ

while F fs ≡ F fsðτ̃; x̃T;φp; vz;fsÞ obeys�
∂̃τ þ

1

Δfs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2z;fs

q
v⊥ · ∇̃⊥

�
F fs ¼−γ̂vμuμT̃ðF fs−F eq

fs Þ;

ðA4Þ

with Δfs ¼ ½1 − ð1 − τ̃2
0

τ̃2
Þv2z;fs�1=2. The equilibrium functions

F eq
� are given by

F eq
s ¼ Δ4

fsF
eq
fs ¼ τ̃0ϵ̃

4πðvμuμÞ4
; ðA5Þ

where

vμuμ ¼ γð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z;s

q
v⊥ · βÞ

¼ γ

�
1 −

1

Δfs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z;fs

q
v⊥ · β

�
; ðA6Þ

with γ ¼ uτ ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
being the local Lorentz factor. In

the above, β ¼ βðcosφu; sinφuÞ and v⊥ ¼ ðcosφp; sinφpÞ
are transverse-plane vectors.
Vanishing longitudinal pressure and azimuthal momen-

tum isotropy imply the following initial state for the
reduced distributions F �:

F �ðτ̃0; x̃⊥;φp; vz;�Þ ¼
δðvz;�Þ
2π

τ̃0ϵ̃0ðx⊥Þ ðA7Þ

and depends only on the initial transverse energy distri-
bution dE0⊥=dηd2x⊥ ¼ τ0ϵ0 [see Eq. (2)]. Note that at
τ ¼ τ0, Δs ¼ Δfs ¼ 1 and ðpfs; vz;fsÞ ¼ ðps; vz;sÞ.
Due to the singular nature of the Dirac delta func-

tion δðvzÞ, Eq. (A7) cannot be achieved exactly with our
numerical approach. We instead employ the Romatschke-
Strickland distribution with anisotropy parameter ξ0,

fRS ¼
�
exp

�
pτ

Λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0v2z

q �
− 1

�
−1
; ðA8Þ

where ξ0 ¼ 0 corresponds to the isotropic Bose-Einstein
distribution, while ξ0 → ∞ is required in order to achieve
Eq. (A7). The parameterΛ0 ≡ Λ0ðx⊥Þ represents an energy
scale satisfying

Λ0 ¼ 21=4T0

�
arctan

ffiffiffiffiffi
ξ0

pffiffiffiffiffi
ξ0

p þ 1

1þ ξ0

�−1=4
; ðA9Þ

reducing to the initial temperature T0 when ξ0 ¼ 0. Thus,
the system is initialized according to

F 0;s ¼ F 0;fs ¼
τ̃0ϵ̃0
2π

ð1þ ξ0v2zÞ2
�
arctan

ffiffiffiffiffi
ξ0

pffiffiffiffiffi
ξ0

p þ 1

1þ ξ0

�−1
:

ðA10Þ

We now summarize the characteristics and parameters
of our RLB solver. The advection operator v⊥ · ∇⊥ is
implemented using the upwind-biased finite-difference
fifth-order weighted essentially nonoscillatory (WENO-5)
scheme [125,140] (see Ref. [107] for details). The spatial
domain consists of a square box of size 16R centered on the
system’s center of mass and is discretized equidistantly
using S2 cells. Periodic boundary conditions are employed
at the domain edges. When initializing the system, a
background value ϵth ¼ 10−10 × R

τ0
ϵref is added to the

energy density to avoid numerical underflow.
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The time stepping is performed by solving the equation
∂̃τF � ¼ L½τ̃;F �ðτ̃Þ� using the third-order Runge-Kutta
scheme [125,141,142], as described in Ref. [107]. The
time step δτ̃ is chosen dynamically as

δτ̃ðτ̃Þ ¼ min

�
τ̃

�
δτ̃

τ̃

�
M
;
max⊥ðτ̃RÞ

2
; δτ̃M

�
; ðA11Þ

wheremax⊥ðτ̃RÞ represents themaximumvalue of τ̃Rðτ̃; x̃⊥Þ
taken over the entire flow domain at time τ̃ ¼ τ=R, while the
values of ðδτ̃=τ̃ÞM and δτ̃M are shown in Table III.
The discretization of δφp is done equidistantly using

Qφ points (the employed values of Qφ are summarized
in Table III).
The vz;� degree of freedom is discretized usingQz values.

When employing the spherical coordinate vz;s, these points
are chosen according to theGauss-Legendre quadrature rules
as the roots of the Legendre polynomial of order Qz, i.e.
PQz

ðvz;jÞ ¼ 0. When vz;fs is employed, the discretization is
performed equidistantly at the level of the parameter
χ ¼ artanhðAvz;fsÞ, namely χj ¼ ð2j−1Qz

− 1ÞartanhA. In this

paper, we take 1 − A ¼ 10−6 (see Sec. IV.B of Ref. [71] for
more details).
As shown in Table III, the (s) and (fs) approaches are

employed when 4πη=s ≤ 5 and 4πη=s ≥ 10, respectively.
Employing the (s) approach at larger values of 4πη=s
requires increasing Qz, otherwise the time evolution leads
to energy-momentum tensor configurations which are
incompatible with the Landau frame. Using Qz ¼ 200
gives reliable results for 4πη=s≲ 10. Because the compu-
tation of the force term involving ∂vzF is quadratic with
respect toQz (see Sec. III.E of Ref. [107] for details), the (s)
strategy becomes inefficient when Qz ≳ 200.
Conversely, the (fs) approach requires larger Qz as τf=τ0

is increased (we ran all simulations up to τf ¼ 5R). Since in
the (fs) approach, the computational time scales linearly
with Qz, we employed Qz ¼ 1000. With our choice of
parameters, this limits the lower value of τ0 to 10−3R,
which is insufficient to correctly capture the early time
dynamics of the system when 4πη=s≲ 1.
Finally, the choice of ξ0 in preparing the initial state

depends on the vz;� resolution offered by the chosen
discretization. As ξ0 → ∞, the initial state becomes peaked

around vz ¼ 0, hence the vz;� discretization must include
sufficient points around this value. We found that the
influence of the initial value of ξ0 on the observables is less
significant at smaller values of 4πη=s. Thus, we employed
progressively larger values of ξ0 as we increased η=s, which
were compatible with the discretization of vz;�, as shown
in Table III.

APPENDIX B: NUMERICAL CODE COMPUTING
LINEAR ORDER RESULTS

In this appendix, we discuss the numerical code needed
for obtaining the linear order results discussed in Sec. III B.
Section B 1 discusses the conceptual setup of the code and
Sec. B 2 deals with the details of how the integration is
performed.

1. Setup of the linear order code

The code is set up to compute the zeroth and first order
contributions to the energy-momentum tensor, which is
given in terms of the phase space density as

Tμν ¼ νeff
ð2πÞ3

Z
d2p⊥

Z
dypμpνf: ðB1Þ

For simplicity, observables that are nonlinear in Tμν with
contributions from both zeroth and first order in the opacity
expansion were computed only to zeroth order.
The code is set up as follows. For an arbitrary initial

energy density distribution ϵ0ðτ0;x⊥Þ, the free-streaming
energy momentum tensor is given as

Tð0Þμν ¼ τ0
τ

Z
dϕv

2π
vμ⊥vν⊥ϵðτ0;x⊥ − Δτv⊥Þ; ðB2Þ

where Δτ ¼ τ − τ0. The integral over ϕv is performed
numerically, using the same stencils for all entries to
prevent errors later on. Now, to go to first order in the
opacity expansion, we first have to compute the zeroth
order results for the rest frame energy density ϵðτ;x⊥Þ and
the flow velocity uμðτ;x⊥Þ, as they are required for
evaluating the RTA collision kernel. This is achieved by
numerical diagonalization of Tð0Þμν.
As computed before [71], the first order correction to the

phase space distribution is given as an integral of the zeroth
order collision kernel:

fð1Þðτ;x⊥;p⊥; y − ηÞ ¼
Z

τ

τ0

dτ0
C½fð0Þ�
pτ ðτ0;x0⊥;p⊥; y0 − ηÞ;

ðB3Þ

where fð0Þ is the free-streaming solution given in Eq. (24).
The primes on the variables indicate the use of free-
streaming coordinates,

TABLE III. Simulation parameters for the RLB solver, as
employed for the ranges of 4πη=s displayed in the left column.
The notation is explained in this appendix.

4πη=s S ðδτ̃τ̃ ÞM δτ̃M Qφ Qzð�Þ τ̃0 ξ0 PL=PT

½0.01∶0.5� 200 0.05 0.002 80 40ðsÞ 10−6 20 0.08
½1∶5� 100 0.02 0.005 40 200ðsÞ 10−6 100 0.02
½10∶1000� 100 0.1 0.005 40 1000ðfsÞ 10−3 1000 0.002
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x0⊥ ¼ x⊥ − v⊥tðτ; τ0; y − ηÞ;

y0 ¼ ηþ arcsinh

�
τ

τ0
sinhðy − ηÞ

�
; ðB4Þ

with tðτ; τ0; y − ηÞ being given in Eq. (25).
From this, the first order correction to the energy-

momentum tensor is obtained as

Tð1Þμν ¼ νeff
ð2πÞ3

Z
p⊥

Z
dypμpν

Z
τ

τ0

dτ0

×
C½fð0Þ�ðτ0;x0⊥;p⊥; y0 − ηÞ

pτðp⊥; y0 − ηÞ ; ðB5Þ

where
R
p⊥ ≡

R
d2p⊥. As it turns out, the observables that are

to be computed to first order in opacity depend only on
transverse integrals of the components of Tij. Thus, we
need to perform a 6D integral, which can be done in part
analytically, reducing the complexity of the numerical
integration. For further details of the analytical prepara-
tory groundwork for the numerical implementation, see
Appendix B 2.
The observables are now computed from these results in

the following way. In the case of the transverse-plane
energy, we have

dEtr

dη
¼ τ

Z
x⊥
ðT11 þ T22Þ;

¼ τ

Z
x⊥
ðTð0Þ11 þ Tð0Þ22 þ Tð1Þ11 þ Tð1Þ22Þ: ðB6Þ

As elliptic flow is given as a quotient of two transverse
integrals of components of Tμν where the numerator
vanishes at zeroth order, the first order result is given as

e2iΨpεp ¼
R
x⊥ðT11 − T22 þ 2iT12ÞR

x⊥ðT11 þ T22Þ ;

¼
R
x⊥ðTð1Þ11 − Tð1Þ22 þ 2iTð1Þ12ÞR

x⊥ðTð0Þ11 þ Tð0Þ22Þ : ðB7Þ

Both of these observables depend on the transverse integral
of Tð0Þ11 þ Tð0Þ22, which using (B2) can be straightfor-
wardly evaluated toZ

x⊥
Tð0Þ11 þ Tð0Þ22 ¼ 1

τ

dE0⊥
dη

: ðB8Þ

In particular, the quantity dEtr=dη, which we introduced as
the analog of dE⊥=dη ¼

R
x⊥hpτp⊥i, is in fact identical to

dE⊥=dη to zeroth order. Furthermore it is constant in time,
so only the first order correction has to be computed. We
furthermore compute zeroth order results for the average
transverse flow velocity and the average inverse Reynolds
number as

hu⊥i ¼
R
x⊥ ϵ

ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuð0Þ1 Þ2 þ ðuð0Þ2 Þ2

q
R
x⊥ ϵ

ð0Þ ; ðB9Þ

hRe−1i ¼
R
x⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πð0Þμνπð0Þμν

q
R
x⊥ ϵ

ð0Þ

¼
R
x⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Tð0ÞμνTð0Þ

μν − 24
3
ðϵð0ÞÞ2

q
R
x⊥ ϵ

ð0Þ : ðB10Þ

2. Analytical and numerical integration in the
computation of linear order results

As discussed in the previous appendix, obtaining numeri-
cal results for the linear order term in the energy momentum
tensor requires the computation of a 6D integral. In this
appendix, we explain what part of this integral is performed
analytically and give the specific form of the remaining
integral which the code computes numerically.
We start from the expression in Eq. (B5) for the purely

spatial components of the energy momentum tensor,Z
x⊥

Tð1Þij ¼ νeff
ð2πÞ3

Z
x⊥

Z
p⊥

Z
dypi⊥p

j
⊥

×
Z

τ

τ0

dτ0
C½fð0Þ�
pτ ðτ0;x0⊥;p⊥; y0 − ηÞ; ðB11Þ

where the free-streaming coordinates x0⊥ and y0 were
introduced in Eq. (B4).
The integration variables can be changed from ðx⊥; yÞ to

ðx0⊥; y0Þ, where

dy0d2x0⊥ ¼ τ

τ0
coshðy − ηÞ
coshðy0 − ηÞ dyd

2x⊥; ðB12Þ

¼ τ

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðτ0τÞ2 sinh2ðy0 − ηÞ

q
coshðy0 − ηÞ dyd2x⊥: ðB13Þ

Right away and from this point on, we will drop the primes
on all coordinates except τ0 for convenience. The specific
form of the RTA kernel is

C½f� ¼ −
pμuμ
τR

ðf − feqÞ; ðB14Þ

where τR ¼ 5ðη=sÞT−1 is the relaxation time and

pμuμ ¼ γp⊥½coshðy − ηÞ − v⊥ · β�; ðB15Þ

where v⊥ ¼ p⊥=p⊥ ¼ ðcosφp; sinφpÞ is a unit vector
in the transverse plane. Similarly, β≡ u⊥=uτ ¼
βðcosφu; sinφuÞ is the transverse-plane fluid velocity
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and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
is the local Lorentz factor. Plugging

Eqs. (B13)–(B15) into Eq. (B11), we arrive atZ
x⊥

Tð1Þij ¼ −
νeff
ð2πÞ3

Z
p⊥

Z
x⊥

Z
dy

Z
τ

τ0

τ0dτ0

τ

×
vi⊥v

j
⊥

τR

γ½coshðy − ηÞ − v⊥ · β�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðτ0τÞ2 sinh2ðy − ηÞ

q
× p2⊥ðfð0Þ − feqÞðτ0;x⊥;p⊥; y − ηÞ: ðB16Þ

In the above, all macroscopic quantities τR, γ and β are
computed from the zeroth order solution, fð0Þ.
It is convenient to consider separately the contributions

involving fð0Þ and feq. In the case of the former, we plug in

fð0Þðτ;x⊥;p⊥; y − ηÞ ¼ ð2πÞ3
νeff

δðy − ηÞ
τp⊥

×
dN0

d2x⊥d2p⊥dy
ðx⊥ − v⊥Δτ;p⊥Þ:

ðB17Þ
Using the relation

ϵðτ0;x⊥ − v⊥ΔτÞ ¼
2π

τ0

Z
dp⊥ p2⊥

×
dN0

d2x⊥d2p⊥dy
ðx⊥ − v⊥Δτ;p⊥Þ;

ðB18Þ
it is not difficult to obtainZ
x⊥

Tð1Þij
ð0Þ ¼ −

τ0
τ

Z
τ

τ0

dτ0
Z
x⊥

γ

τR

Z
dφp

2π

× vi⊥v
j
⊥ð1 − v⊥ · βÞϵðτ0;x⊥ − v⊥Δτ0Þ; ðB19Þ

where γ, τR and β are evaluated at ðτ0;x⊥Þ.
For the equilibrium buildup contribution, we can use the

property

νeff
ð2πÞ3

Z
∞

0

dp⊥p3⊥feq
�
pμuμ
T

�
¼ 1

4π

ϵ

ðpμuμ=p⊥Þ4
; ðB20Þ

leading to

Z
x⊥

Tð1Þij
eq ¼

Z
x⊥

Z
τ

τ0

τ0dτ0

τ

ϵð0Þ

τR
Fij
eq; ðB21Þ

where

Fij
eq ¼

Z
dy
2

Z
dφp

2π

ðpμuμ=p⊥Þ−3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðτ0τÞ2 sinh2ðy − ηÞ

q vi⊥v
j
⊥;

¼ δijI3=2 þ 3βiβjI5=2: ðB22Þ

In the above, we introduced

Iα ¼
1

4

Z
∞

−∞
dy

½cosh2ðy − ηÞ − β2�−α

γ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðτ0τÞ2 sinh2ðy − ηÞ

q : ðB23Þ

It is understood that, in Eq. (B21), the quantities ϵð0Þ, τR, γ
and Fij

eq are evaluated at ðτ0;x⊥Þ.
Altogether, Tð1Þij can be computed using the following

formula:Z
x⊥

Tð1Þij ¼
Z

τ

τ0

dτ0
Z
x⊥

1

τR

Z
dφp

2π

�
τ0

τ
ϵð0ÞFij

eq

−
τ0
τ
ϵðτ0;x⊥ − v⊥Δτ0Þγvi⊥vj⊥ð1 − v⊥ · βÞ

�
;

ðB24Þ
where γ, τR, β, ϵð0Þ and Fij

eq are evaluated at ðτ0;x⊥Þ. Note
that the zeroth order results for the flow velocity uð0Þμ and
the rest frame energy density ϵð0Þ entering τR via the
temperature have been computed in the first step of
diagonalizing Tð0Þμν. Thus, all quantities appearing in the
above integrand are known and the remaining 4D integral
can be performed numerically.

APPENDIX C: OVERVIEW OF TIME
EVOLUTION AT DIFFERENT OPACITIES

In Sec. V B we compared the time evolution of the
tracked observables in kinetic theory and scaled viscous
hydro and pointed out some qualitative differences for
results at three different opacities. To get a better over-
view of the opacity dependence in the time evolution, we
can also compare results coming exclusively from kinetic
theory on a wide range in opacity. This comparison for the
time evolution of transverse energy dEtr=dη, elliptic flow
εp, transverse flow velocity hu⊥iϵ and inverse Reynolds
number hRe−1iϵ is presented in Fig. 14 for opacities
ranging from 4πη=s ¼ 0.01 to 1000.
For very small opacities 4πη=s ∼ 1000, the system is

close to free streaming and transverse energy dEtr=dη is
almost constant. At larger opacities, due to more work
being performed against the longitudinal expansion,
dEtr=dη decreases by a larger total amount. The opacity
also sets the timescale for this cooling, as it sets in earlier
for larger opacities.
Elliptic flow εp stays close to zero at small opacities

4πη=s ∼ 1000 and rises monotonically with opacity at each
point in time. Qualitatively, the curves look the same at all
opacities, with a buildup period at times 0.1R≲ τ ≲ 2R
and almost constant behavior afterwards. The onset of
this buildup is slightly earlier at larger opacities, but this
difference is negligible.
As expected, the transverse flow velocity hu⊥iϵ starts

with the same early time linear behavior for all opacities.
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The proportionality constant with elapsed timeΔτ ¼ τ − τ0
can be computed according to Eq. (77) and evaluates to
hu⊥iϵ ¼ 0.614Δτ=R. The larger the opacity, the earlier the
system starts to deviate from this behavior. For the largest
opacities 4πη=s≲ 0.1, the system is in its local Bjorken
flow equilibrium state long enough for early time contri-
butions to become negligible, such that it transitions to
the late time preflow proportionality law. According to
Eq. (79), in this regime, the flow velocity is given by
hu⊥iϵ ¼ 0.658Δτ=R. All curves exhibit their strongest rise
on the timescale of transverse expansion, τ ∼ R. The rise is
stronger at smaller opacities and in all cases contributes the
most to the buildup, such that the final (τ ¼ 4R) values of
transverse flow velocity are also larger at smaller opacities.
The inverse Reynolds number hRe−1iϵ stays almost

constant at early times for small opacities 4πη=s ∼ 1000,
but then slightly increases due to transverse expansion. At
large enough opacities 4πη=s≲ 10, interactions equilibrate
the system and decrease its value. This process sets in

earlier at larger opacities and brings the value of the inverse
Reynolds number down to almost zero for the largest
opacities 4πη=s≲ 0.05. In these cases, the value stays
close to zero even during transverse expansion. At slightly
smaller opacities 0.05≲ 4πη=s≲ 1, there is a small rise in
inverse Reynolds number due to transverse expansion.
However, this sets in later than in the case of the smallest
opacities. The curves for intermediate to small opacities
1≲ 4πη=s≲ 100 exhibit a bumpy behavior during trans-
verse expansion.

APPENDIX D: TIME EVOLUTION IN
KøMPøST+VISCOUS HYDRO SIMULATIONS

In Sec. V C we considered hybrid simulation frame-
works as a solution for alleviating problems with preequi-
librium in hydrodynamic simulations and discussed the
time evolution mainly in hybrid kinetic theoryþ viscous
hydro simulations. The alternative hybrid framework using

FIG. 14. Time evolution of transverse energy dEtr=dη [top left, cf. Eq. (13)], elliptic flow εp [top right, cf. Eq. (14)], transverse flow
velocity hu⊥iϵ [bottom left, cf. Eq. (15)] and inverse Reynolds number hRe−1iϵ [bottom right, cf. Eq. (16)] in kinetic theory for a wide
range of opacities (η=s) plotted in different colors. The plot of transverse flow velocity hu⊥iϵ also shows the preflow result hu⊥iϵ;early ¼
0.614Δτ=R according to Eq. (77) and the late preflow result hu⊥iϵ;late ¼ 0.658Δτ=R according to Eq. (79) (see also Table II).
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KøMPøST instead of full kinetic theory for the preequili-
brium evolution has some limitations but, when applicable,
yields results of similar accuracy. The time evolution of
transverse energy dEtr=dη, elliptic flow εp and transverse
flow velocity hu⊥iϵ in KøMPøST + viscous hydro simu-
lations switching at fixed time τs or fixed value of the
inverse Reynolds number hRe−1iϵ is shown in Fig. 15 for
three different opacities 4πη=s ¼ 0.5, 3 and 10.
The values of dEtr=dη at the time of switching are

reproduced by KøMPøST almost perfectly. As one would

expect, the time evolution afterwards follows a very simi-
lar behavior to kinetic theoryþ viscous hydrodynamics,
including the inaccuracies of hydrodynamic preequilibrium
when switching too early.
AsKøMPøST produces almost no elliptic flow, its value at

switching time is close to zero. But the buildup during the
hydro part of the simulation proceeds similarly to other
simulation schemes, such that the discrepancy to kinetic
theory in the final state (τ ¼ 4R) is of similar size to the one at
switching time. It is therefore larger at larger switching times.

FIG. 15. Time evolution of transverse energy dEtr=dη [top, cf. Eq. (13)], elliptic flow εp [middle, cf. Eq. (14)] and transverse flow
velocity hu⊥iϵ [bottom, cf. Eq. (15)] in hybrid KøMPøSTþ viscous hydro simulations at opacities 4πη=s ¼ 0.5 (left), 3 (middle) and
10 (right) when switching at different values of the inverse Reynolds number [cf. Eq. (16)] hRe−1iϵ ¼ 0.8 (light red), 0.6 (red) and 0.4
(dark red) or fixed time τ ¼ 0.4 fm (light green) and τ ¼ 1 fm (dark green). The switching points are marked with filled symbols. The
time axis is scaled logarithmically. The plots showing elliptic flow εp feature an inset plot of the same quantity plotted in log-log scale.
Again, the flow velocity plots also show the preflow result hu⊥iϵ ¼ 0.614Δτ=R according to Eq. (77).
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The values of transverse flow velocity hu⊥iϵ are in
KøMPøST slightly underestimated for small switching times
and slightly overestimated for large switching times. After
switching, the curves seem to bend towards the hydro-
dynamic curve. This bending is mainly due to the division
byΔτ. hu⊥iϵ in the hydro phase of hybrid simulations builds

up similarly as in pure hydrodynamic simulations. The
contributions from later times are much larger than those
at early times, such that the discrepancy from early times
becomes negligible. At late times, results from all switching
times underestimate hu⊥iϵ by almost the same amount,
similarly to hybrid kinetic theoryþ viscous hydro simulations.
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