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We evaluate the full opacity dependence of collective flow in high-energy heavy-ion collisions within
a microscopic kinetic description based on the Boltzmann equation in the conformal relaxation time
approximation. By comparing kinetic theory calculations to hydrodynamic and hybrid simulations for an
average initial state, we point out shortcomings and inaccuracies of hydrodynamic models and present

modified simulation setups to improve them.
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I. INTRODUCTION

Relativistic heavy ion collisions have proven to be an
important tool for probing the dynamical properties of
QCD matter in and out of equilibrium. Many current efforts
are concerned with using experimental data to assess the
conditions under which a quark gluon plasma (QGP) forms
in the collision, as well as its properties [1-3]. Since the
QGP itself cannot be directly observed, its properties have
to be inferred by studying suitable aspects of the data
and comparing with model descriptions. Hydrodynamics
has proven to be a powerful tool for simulating the QGP
dynamics [4-9] and can accurately describe data for
transverse flow, which is an important indicator of collec-
tive behavior. Modern Bayesian inference frameworks
based on simulations using hydrodynamics are able to
provide significant constraints on the transport properties of
the medium created in the collision [1,3,10].

However, the conditions for applicability of hydrody-
namics to describe hadronic collisions is still an open
question. It is doubtful whether it can be applied to small
systems with a dilute medium and large local gradients.
Certainly it cannot describe the far-from-equilibrium stage
right after the collision. The system will quickly approach
equilibrium and start behaving hydrodynamically, but the
timescales of its applicability in realistic systems are yet

“cwerthmann @physik.uni-bielefeld.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2023,/107(9)/094013(37)

094013-1

unclear. The topics of applicability to small systems and the
properties of the preequilibrium stage have been the focus
of many recent endeavors, as described below.

In an effort to find clear distinctive features that indicate
the presence or absence of a QGP, small systems have been
extensively studied in experiment and have proven to feature
nonvanishing transverse flow [11-16] and therefore display
an onset of collective behavior. There have been many efforts
in simulating these systems in hydrodynamics [17-31],
which have produced reasonable results. However, in con-
trast to nucleus-nucleus collisions, such calculations are
subject to much larger uncertainties, where in addition to
the poorly constrained initial state geometry [26,32,33], one
may question the theoretical justification for employing a
hydrodynamic description for a system which features a very
short lifetime and consists of very few degrees of freedom.
Hence, alternative descriptions with a more sound motivation
of their applicability have been put forward. For example, it
has been studied whether initial state effects as described
by the color glass condensate model could be the source
of collective flow in small systems [34-45]. However, it
turns out that these dynamics fail to describe the important
systematics [46].

On the other front, significant progress has been made in
pushing the theoretical understanding of the dynamics in
the preequilibrium stage and the approach to hydrodynamic
behavior and eventually equilibrium in large and small
systems [47-49] (see also [50,51] for recent reviews).
Descriptions of Bjorken flow have been found to exhibit
universal behavior across different dynamical models and
initial conditions [52-67]. The far-from-equilibrium behav-
ior depends on the setup, but the approach to equilibrium
proceeds in the same way by means of an attractor solution
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that has been studied extensively. This concept has since
also been applied to systems with trivial and nontrivial
transverse expansion [68—71]. Phenomenologically, it has
been shown that the preequilibrium stage has a non-
negligible influence on final state observables [71-75]
and it is therefore crucial to employ realistic descriptions
thereof.

An appropriate alternative dynamical model for small
systems as well as preequilibrium is kinetic theory, whichis a
mesoscopic description of the phase space distribution of
interacting particles and is therefore less constrained in its
applicability to very dilute systems and far-from-equilibrium
dynamics. Applications of kinetic theory to heavy ion col-
lisions have been proposed already 30 years ago [76-79]
and have been used in different model scenarios to vari-
ous levels in complexity. Among others, this has lead to
the simulation code Boltzmann Approach to Multi-Parton
Scattering (BAMPS) [80,81]. Several efforts have succeeded
in describing transverse dynamics and the buildup of trans-
verse flow within this description [82-92], in some cases
even with event-by-event simulations [39,49,93,94].

The success of relativistic hydrodynamics in describing
experimental observables, demonstrated repeatedly during
the past two decades [95], is heavily dependent on the various
theoretical models that lead to such an effective description of
strongly-interacting matter. Key ingredients include initial-
state generators such as IP-Glasma [96] or MC-Glauber [97],
QCD equation of state and realistic transport coefficients
[98], hadronization models [99], as well as particle-based
hadronic transport such as UrQMD [100]. All of these stages
introduce sometimes unquantifiable uncertainties, while
statistical approaches such as the Bayesian analysis can be
used to pinpoint the most probable parameter-set values of
each of these models [101].

In our previous work [71], we found that for final state
observables related to transverse flow, results from purely
hydrodynamic simulations are in disagreement with results
from kinetic theory even at very large opacities due to
differences between the dynamics in these two theories
during the preequilibrium phase. Even though equilibration
proceeds on arbitrarily short timescales for sufficiently large
opacities, conversely the rate of change of observables in this
period increases, such that it still has a tangible effect on their
final values. We also examined how, at early times, even an
inhomogeneous system obeying boost invariance can be
described locally by O+ 1D Bjorken flow and used the
corresponding universal attractor solution to predict the time
evolution before the onset of transverse expansion. This also
allowed us to describe the discrepancies between hydro-
dynamics and kinetic theory due to preequilibrium in quan-
titative detail and verify that the size of this effect matches
with the described discrepancy of final state observables.

Motivated by these results, the aim of this paper and its
companion paper [102] is to examine how in practice
simulations of heavy ion collisions based on hydrodynam-
ics can be brought into agreement with kinetic theory

simulations. In the present paper, we perform an in-depth
theoretical analysis of the nonequilibrium dynamics in
different time evolution models based exclusively on
midcentral collision events, while a broad phenomenologi-
cal analysis inferring conclusions for the applicability of
hydrodynamics in small systems is presented in Ref. [102].

The time evolution is modeled in a simplified description
based on the relaxation time approximation (RTA) of
conformal kinetic theory. In such a simplistic model, the
ultrarelativistic equation of state € = 3P = aT* can realis-
tically describe the quark-gluon plasma only in the ultrahigh
temperature phase, when interactions become negligible
[103]. Furthermore, the bulk viscous pressure vanishes
identically for a conformal fluid, while Bayesian studies
indicate that bulk viscosity can play a significant role on
final-state observables [104]. Also, our conformal model
gives a constant shear viscosity to entropy density ratio,
n/s = const, which is a crude approximation for the
expected temperature variation of this ratio [101,105].
Nevertheless, due to its simplistic evaluation of the collision
kernel, the RTA has the clear advantage of being computa-
tionally cheaper over more realistic collision kernels
(e.g. AMY [106]). Such kernels are typically too expensive
to be implemented in deterministic solvers, such as the
lattice Boltzmann approach that we employ in this paper
[71,107,108]. Previous implementations of higher-dimen-
sional dynamics (e.g. BAMPS [80,81]) therefore rely on a
test particle algorithm and thus suffer from statistical noise.
Furthermore, the first- and second-order transport coeffi-
cients computed for the RTA can be readily implemented in
the relativistic hydrodynamics solver, allowing for a well-
defined comparison between the two theories. Within this
model, we perform an analysis of the circumstances under
which hydrodynamics becomes applicable as a function of
opacity and time, as determined by comparing results for a set
of observables related to cooling and transverse flow to
kinetic theory. Due to the above simplifications our simu-
lation results cannot be expected to realistically describe
experimental data, nevertheless we expect that our conclu-
sions regarding the applicability of hydrodynamics also hold
for more realistic models. One argument for this is that the
low-momentum behavior close to equilibrium—which is the
relevant part for a comparison to hydrodynamics—should
be qualitatively similar between all collision kernels. The
model setup, initial conditions and the set of observables are
introduced in Sec. IL

Apart from kinetic theory and hydrodynamics, in our
work we also used other evolution models, which are
discussed in Sec. III. We employed an expansion scheme of
kinetic theory that linearizes in opacity and should agree
with full kinetic theory in the limit of small interaction
rates. We also employed KgMPgST [109,110] as an
alternative to using a full kinetic theory simulation of
the pre-equilibrium phase. Switching from this description
to hydrodynamics for the equilibrated system in a hybrid
simulation framework is one way to properly include
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preequilibrium dynamics. KgMPgST is an approximation
of the dynamics of kinetic theory, which we were able to
verify in quantitative detail by comparing to full kinetic
theory, the results of which are presented in Sec. III E.

Before presenting our results, we first discuss in detail
how preequilibrium is described in hydrodynamics and
kinetic theory, pointing out the differences between the
two theories. To this end, in Sec. IV we introduce the 1D
Bjorken flow attractor solution. This description is valid
locally also for early times in 3D simulations assuming
boost invariance. We use it to make predictions of the
preequilibrium behavior in both evolution models, includ-
ing a prediction of preflow. Based on our results for the
differences of kinetic theory and hydrodynamics in this
phase, we then introduce a scaling scheme for the initial
condition of hydro that can counteract these differences.
This scheme relies on a timescale separation of equilibra-
tion and the onset of transverse expansion.

In Sec. V, we discuss the time evolution of the system at
three example opacities. On the basis of transverse profiles,
we indicate how the picture changes from a close-to-free
streaming to an almost fully equilibrated system in kinetic
theory. We compare the time evolution in kinetic theory and
viscous hydrodynamics as well as in hybrid schemes.
Within these hybrid schemes, the first part of the system’s
evolution is modeled using kinetic theory. Afterwards, we
switch to hydrodynamics to model the remainder of the
evolution. For sufficiently large opacities, our proposed
scaling scheme indeed brings hydrodynamics into agree-
ment with kinetic theory after preequilibrium. Based on
the system’s equilibration, we present a useful criterion for
the applicability of hydrodynamics, which can be used
to define the switching times for hybrid schemes. This
criterion is reached at later evolution times for smaller
opacities and in some cases is never fulfilled. We find that
when switching sufficiently late, hybrid schemes are also
in good agreement with kinetic theory. KgMPgST +
viscous hydro simulations yield similar results as simu-
lations with full kinetic theory + viscous hydrodynamics.

The range of applicability of the different schemes can best
be assessed by studying the opacity dependence of final state
observables. In Sec. VI, we compare first naive and scaled
hydrodynamics to kinetic theory and establish 47z5/s < 3 as
the opacity range where the scaling scheme brings agree-
ment. We then show results from the two hybrid simulation
schemes, which can improve on scaled hydro results in the
intermediate opacity range around 4zn/s ~ 3.

In Sec. VII, we present our conclusions and give a brief
outlook. Appendix A summarizes the details regarding the
relativistic lattice Boltzmann solver that we employ for
solving the kinetic equation. Appendices B1 and B2
provide further details on how the linearized results in
opacity expansion were obtained, while in Appendices C
and D we discuss some additional results for the time
evolution of the system.

II. INITIAL STATE AND OBSERVABLES

We will describe the time evolution of the plasma created
in a collision under the assumption of boost invariance in the
longitudinal direction, when the phase-space distribution
f = f(x, p) of single particles depends only on the differ-
ence of the pseudorapidity y = artanh(p?/p’) and the
spacetime rapidity » = artanh(z/¢). We also assume that
at initial time 7,, the particles comprising the fluid have
an isotropic distribution in transverse momentum p; and
vanishing momentum along the longitudinal direction, or, in
other words, the longitudinal pressure P; measured in the
local rest frame vanishes [111]. For the latter assumption to
be valid in kinetic theory simulations, we choose the
initialization time 7, to be small enough for the system to
start from the early time free-streaming attractor of kinetic
theory [60]. Further assuming that the interparticle inter-
actions can be modeled in the RTA, and describing only a
reduced distribution function with no dependence on total
momentum [71,88], the initial state is fully determined
by the initial transverse energy density per unit rapidity,
dEY /dnd®x . The detailed reduced distribution functions
are given in Appendix A.

A. Initial state

We will use a realistic average initial condition for the
30-40% most central Pb-Pb collisions (see also our
companion paper [102] for a comparison of hydrodynam-
ization in different centrality classes). This initial condition
was generated numerically on a transverse grid of size
512 x 512 in the following way. A saturation model based
initial state generator was used to generate 8 x 10° events
with aligned directions of the impact parameter, which
were then divided into centrality classes. Then the point-
wise average of all events in each centrality class was taken.
We made sure that in the resulting event averages statistical
fluctuations are sufficiently suppressed by checking that
they feature no local peaks above an energy density level of
107 times its maximum. More details on this event
generation procedure can be found in [112].

Given this initial condition for dE(i /dnd?x |, the full
initial state can be constructed according to the model
assumptions. Enforcing at initial time 7z, a vanishing
longitudinal pressure P; and ignoring possible initial-state
transverse-plane dynamics, the initial energy-momentum
tensor is diagonal and has the following components:

T (19, x| ) = diag(eo, €9/2, €y/2,0), (1)

where the initial energy density €, = €(zy, x| ) is given by

1 dEY
e(t9.X1) = %dﬂd;’;l :

(2)

In order to characterize the initial energy distribution, we
define the total transverse energy per rapidity dEOL /dn
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dEY
d—nL = Al To€o (3)

and effective radius R

dEY
Rz—l_—/ To€X 2 , 4
d77 © €0 | ()

where fxl =/ d’x |, as well as the eccentricities ¢,

Gn(T) — _ <xﬁl_ cos [n<¢x — an)De , (5)

(L)

where W, are event plane angles and the energy density
weighted average over transverse space is defined as

_ fxl O(T’ XL)G(T’ XL)
Jx, e(z.x1)

Based on the definitions in Eqs. (3) and (4), we introduce
the opacity of a system with shear viscosity to entropy
density ratio 7/s via

0\ 1/4
o 1 (RAEL)VY 7)
Sn/s \zxa dn

(0)e(7) (6)

where a is related to the equation of state via

€ ﬂzﬂeff

“TTT 30

(8)

where T is the local temperature and vy = 42.25 repre-
sents the effective number of degrees of freedom of high
temperature QCD [113,114]. The characteristic properties
for the initial condition we use are summarized in Table I.
As we use a fixed profile, the parameters R and dEY /dy
are also fixed and we vary § by changing #/s. Hence,
throughout this paper, whenever discussing opacity depen-
dencies, we will characterize the opacity via the value of the
shear viscosity to entropy density ratio 77/s. Note, however,
that these two quantities are inversely proportional.

B. Observables

We consider a set of observables which are measured as a
function of time 7. Their final state values are taken at finite

TABLE I. Characteristic properties of the initial condition for
the energy density used in this work, corresponding to an average
over profiles in the 30-40% centrality class of Pb-Pb collision at
/Syn = 5.02 TeV [112], as discussed in Sec. IT A.

dEY /dn [GeV] R [fm] 7 x 4an/s € €4 €6
1280 2.78 11.3 0416 0.210 0.0895

time, 7/R = 4. These observables are chosen such that they
can be easily computed within the two frameworks con-
sidered in this paper, namely kinetic theory and
hydrodynamics.

Specifically, we focus on observables that are derived
from the energy-momentum tensor, which is the funda-
mental object of hydrodynamics and can be calculated in
kinetic theory as

™ = (p"p"), ©)

where angular brackets denote the microscopic average of
an observable O with respect to the single-particle distri-
bution function f:

(0) = /deO, (10)

while dP = veg\/=gd? p/[(27) po) is the generally covar-
iant integration measure in momentum space.

We work in the Landau frame, where the local rest
frame energy density ¢ and flow velocity u* are given
as the timelike eigenvalue and eigenvector of the energy-
momentum tensor:

THu, = Tequ, = eu*, (11)

where the energy-momentum tensor in thermal equilibrium
reads

Thy = (e + P)u'u* — Pg™. (12)

In order to facilitate the comparison between kinetic
theory and relativistic hydrodynamics, we use as a sub-
stitute for dE | /dn =7 fo (p*p.) the integral of the trans-

verse part of the trace of the energy-momentum tensor,
€y =TT — ?TM = T + T, computed as

dE, / .
— =1 T +T17), 13
o=t ) (13)

which is equal to the actual transverse energy per rapidity
dE | /dn whenever the rapidity component of the particle
momentum is negligible, p” ~ (. Similarly, instead of the
flow harmonics v,,, we will focus on the ellipticity of the
energy flow ¢, defined in terms of the transverse compo-
nents of the energy-momentum tensor as

, T =T 4 2iTY
62”{11) = fXL( ) s (14)

’ Ji (T2 +T17)

p

where ¥, is the symmetry plane angle of the elliptic
flow e,,.

In order to characterize the expansion rate in the trans-
verse plane, we consider the energy-weighted average of

the transverse four-velocity, defined as
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(ui)e = ((u +u))'’?),. (15)

The local departure from equilibrium can be characterized
in terms of the inverse Reynolds number,

67+ (7,x ) )1y, (z,%x )] 1/2

e*(r,x )

Re7!(r,x,) = . (16)

where 7/¥ is defined as the nonequilibrium part of the
energy-momentum tensor:

v = TH — T (17)

With the above normalization, Re™! =1 when T# =
diag(e, €/2,¢/2,0), corresponding to the initial preequili-
brium free-streaming limit. As a global measure of
nonequilibrium effects in the system, we use the energy-
weighted average inverse Reynolds number (Re™!)..

III. EVOLUTION MODELS

We want to compare the dynamics of several different
time evolution frameworks, which first have to be intro-
duced. In Sec. III A, we discuss the relativistic kinetic model
based on the RTA, which is solved using the relativistic
lattice Boltzmann approach [107]. Section III B discusses an
analytical approach aimed at approximating the solution of
the kinetic theory model for small opacities. Section III C
summarizes the equations of relativistic hydrodynamics,
which are solved using the VHLLE code [115]. Finally,
Sec. HID introduces the linear response framework
KgMPgST [109,110], which was modified to include
RTA Green’s functions [116].

A. Kinetic theory (RTA)

As the primary tool to investigate the time evolution of
the initial configurations discussed in Sec. Il A, we employ

the relativistic Boltzmann equation in the Anderson-
Witting RTA [117-120]:

Pouf = =22 (f = fg): (18)
TR

where p* = (p*,p, p") is the particle four-momentum of
massless on-shell particles (p? = 0), and 7z = 5(n/s)/T is
the relaxation time [121]. The prefactor is determined
by the fact that in conformal RTA, the shear viscosity is
given as § = 4tz P/5 and the entropy density as s = 4P/T.
For the remainder of this paper, we will consider that the
specific shear viscosity #/s is constant. The rest frame
velocity u# and energy density € = aT* are determined
according to Egs. (9), (11). As 7z « 1/T, the system obeys
conformal symmetry, which simplifies its dynamics.
Introducing the reference length scale Z,.; = R and refer-
ence energy density €, = ”—11?3 (dES /dn), Eq. (18) can be
nondimensionalized as

Uﬂéyf: _U””y?T(f_feq>’ (19)

ot = py/pr’ 5/4 = Z’ﬂrefaw T = T/Tref" and
Tyt = (€rer/a)"*. In this formulation of the equation, it
becomes apparent that the time evolution of f parametri-
cally depends only on the opacity 7 introduced in Eq. (7).
The equilibrium distribution appearing on the right-hand
side of Eq. (18) can be identified as the Bose-Einstein
distribution

where

1
exp(pru(x)/T(x) -1

however, as pointed out in [88], the dynamics depend only
on the fact that this distribution is isotropic in the local rest
frame. The initial state corresponding to vanishing longi-
tudinal pressure is modeled via

Jeq (20)

(2z)*6(y—n)  dN,

Vet Topy d*x,d’p dy’

f(ro, X, pL,y—n) =
(21)

where y — 5 = artanh(zp"/p®). The initial particle distri-
bution is assumed to be isotropic with respect to the
azimuthal angle ¢, = arctan(p*/p*), being connected
with the initial transverse-plane energy distribution
dES /dpd*x | via

dES. o0 dN,
=2 dp, p? —0 (»
dndx, " A PLPLy dp dy (22)

In this paper, we employ the relativistic lattice
Boltzmann (RLB) method [122-124] to solve Eq. (19).
The full details of the algorithm are given in Sec. IV.B of
Ref. [71]. The key ideas and simulation parameters
are summarized in Appendix A. In the following, we
will refer to the numerical solution obtained using the
lattice Boltzmann algorithm as described above as “kinetic
theory.”

B. Opacity expansion

For small systems, the dynamical behavior is expected to
be close to free streaming, with only slight corrections
coming from the small but finite number of interactions.
In the limit of small opacity, we expand the solution
of the Boltzmann equation in opacity up to linear order:
f~f9 4 £, We follow the expansion scheme that was
introduced in [82,83], which has recently also been used in
other works examining small systems [84,86,87,89,92].
To zeroth order, there are no interactions, and the time
evolution of the phase space distribution is computed in the
free-streaming limit

"o, f9 =o0. (23)
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Parametrizing the momentum space in terms of (p,y),
£© can be related to the distribution at initial time via

SO x.n.pLy) = f<To7 X, = vii(z, 70,y — 1),
y — arcsinh <T sinh(y — 77)) P y>, (24)
7o

where

t(z, 79,y —n) = tcosh(y —n) — \/1(2) + 72sinh?(y — 17).
(25)

The linear order correction f(!) vanishes at initial time.
Its time evolution is given by the scattering rates of the
zeroth order solution,

p o,/ = C[fO]. (26)

Its explicit expression and properties are presented in
Appendix B. As parametrically, the collision kernel is
proportional to the opacity 7, cf. Eq. (A3), we can indeed
identify it as the expansion parameter in this scheme.

To enable our scheme to deal with arbitrary input data,
the linear order results have to be computed numerically.
The computation requires performing a 6D integral, which
in part can be done analytically. The details of the code for
linear order results are explained in Appendix B.

C. Ideal and viscous hydrodynamics

Relativistic hydrodynamics [125] is an effective macro-
scopic description based on the conservation equations
V, 1" = 0 for energy and momentum. After decomposing
the energy-momentum tensor 7** according to Eqgs. (17),
(12), the equations can be cast in the form

¢+ (e+ P)o— e, =0,
(€ + P)it — VFP + A0, = 0, (27)

P . B .
where 6 = d,u* is the expansion scalar and o, = V,u,) is

the shear tensor, while A*) = A’;;A"‘ﬂ , A’;; = %(AZA/”; +
ALAR) —FAM Ay and AP = ¢ — u'u”.

Equation (27) provides only four evolution equations,
governing the dynamics of € and u*, leaving the dissipative
shear-stress 7#* as defined in Eqgs. (17), (12) unspecified. In
ideal hydrodynamics, ##* = 0 at all times, such that the
system of equations in (27) becomes closed.

Modeling dissipative effects by means of the Navier-
Stokes constitutive equation 7/ ~ zhg = 2nc**, where 1 is
the shear viscosity, leads to parabolic equations which
violate causality and are thus incompatible with special
relativity [126,127]. In this paper, we will consider
the Miiller-Israel-Stewart-type theory of second-order

hydrodynamics [128,129], by which ##* evolves according
to the following equation [120,130]:

T, 7 W) gk = 2ot + 21,,71&” W — 8, "0 — T,mﬂ'/w‘O'Z)

+ poatiae, 28
¢7

where w,, = %[V,u, — V,u,] is the vorticity tensor. The
relaxation time 7, as well as the other coupling coefficients,
represent second-order transport coefficients, the values of

which are chosen for compatibility with RTA [131-133]:

4z, 10z,
I/IZETJIP’ 571'7[:_’ Tar = 7

¢ =0, (29)

while 7, = 73.

Numerical solutions of Egs. (27) and (28) reported in this
paper are obtained using the open-source viscous HLLE
(VHLLE) code [115]," which we modified to allow the
implementation of the initial state considered in this paper
(we employed VHLLE also in Ref. [71] for a similar
application). Specifically, we employed the square simu-
lation domain [—8R,8R] x [-8R,8R], which we discre-
tized using 401 x 401 equidistant points. The simulations
were performed until the final time 7, = SR. The initial
state was prepared using insight on the hydrodynamic
attractor, as will be discussed in Sec. IV D. In the initial
state, a background value of 1077 x %eref was added to the
energy density to prevent free-streaming artifacts in the
system outskirts. The time step 67 was chosen dynamically,

wo-wmli3), 55} o

where (67/7)y; = 0.01 and (67/R)y = 1073,

D. KeMPgST

The open-source simulation code KgMPgST [109]
implements a linearized nonequilibrium time evolution
of the energy-momentum tensor 7+ based on the dynamics
of a kinetic theory description. It has been developed as
a practical tool for describing the early time far-from-
equilibrium dynamics of heavy ion collisions, where the
system has not yet hydrodynamized and a nonequilibrium
description is required. The original version of KgMPgST
was based specifically on the effective kinetic theory for
pure glue QCD [106]. To perform accurate comparisons
with the other evolution models used in this paper, a
modified version based on the dynamics of RTA was used.
For this, we imported the RTA Green’s functions calculated
in [116]. This version of KsMPgST is available on Git.

'Commit number efa9e28d24d5115a8d8134852—

32fb342b38380f£0.
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K@gMPgST evolves a given input initial state from an
initial time 7, to a final time 7z in a single propagation
step. Conceptionally, the output is expected to describe a
hydrodynamized system and can be used as input for a
subsequent hydrodynamic evolution model. Since the
computation of this step involves linearizations in pertur-
bations around a local average value, K6MPgST has a
limited range of applicability in the evolution time.

More specifically, in its default mode with energy
perturbations, KgMPgST propagates the energy momen-
tum tensor in the following way: the values at each
point x in the final state are computed from the initial
values of T+ at all causally connected points x’ in the
initial state, meaning points that fulfill |x — x'| < ¢(z — 7).
The energy-momentum tensor is divided into a spatial

Time 7 [fm/c|
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Time 7 [fm/c|
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0.04 |

0.03

Elliptic flow ¢,

0.02

0.01

—0.01 . . .
0.1 0.2 0.3 0.4 0.5

Time 7/R

FIG. 1.

average of the causal past and perturbations around this
average:

T (20, x') = T (20) + 6T (2. X'),

where the subscript x denotes the fact that the average
depends on the position for which the causal past is
considered. The average value is evolved according to the
laws of Bjorken flow dynamics, assuming local homogeneity
in the transverse plane and boost invariance, while the
perturbations are propagated in a linear response scheme:

_T?(T)
T ()

ST (z, x) — / PXG(x, X', 7, 1)6T (20, X')

Time 7 [fm/c|
0.2 0.4 0.6 0.8 1 1.2 14

On5 T T T T _‘_\
Kinetic theory
0.45 F47p/s =10.0 —
2.0 (+0.05)
0.4 0.5 (+0.1)
KgMPgST  +
0.35 - w/o perturbations X

0.3
0.25

Flow velocity (u ).

0.1 0.2 0.3 0.4 0.5
Time 7/R
Time 7 [fm/c|
0.2 0.4 0.6 0.8 1 1.2 14

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Inverse Reynolds number (Re '),

0.2

0.1 1 1 1
0.1 0.2 0.3 0.4 0.5

Time 7/R

Time evolution of transverse energy dE, /dy [top left, cf. Eq. (13)], transverse flow velocity (u, ), [top right, cf. Eq. (15)],

elliptic flow ¢, [bottom left, cf. Eq. (14)] and inverse Reynolds number (Re™!), [bottom right, cf. Eq. (16)]. Plotted are results from
K@MPgST (RTA) with (4 symbols) and without (x symbols) energy perturbations compared to full kinetic theory results (solid lines) at
three different opacities 4zn/s = 0.5 (green), 2 (yellow) and 10 (blue). In the plot of transverse flow velocity, results at different

opacities are shifted in value in order to be distinguishable.
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The Green’s functions Gﬁ;(x, x’, 7, 7’) have been computed

in the respective underlying kinetic theory description and
are included in KgMPgST.

Energy perturbations (67#*) can also be switched off, in
which case KgMPgST propagates only the average energy-
momentum tensor taken over the causal past, as discussed
above. Some of the phenomenological implications of this
mode are discussed below. For all other results in this paper,
we employed the modified RTA-KgMPgST with energy
perturbations.

E. Validation of KeMPgST

Before employing KgMPgST to describe preequili-
brium, we first checked to what extent results from
modified RTA-KgMPgST are in agreement with results
from full kinetic theory in RTA for our specific initial
condition. This comparison was done on the basis of the

time evolution of the observables we examined in this paper
but also for cross sections through profiles of the energy-
momentum tensor after some evolution time. All
KgMPgST results presented here were obtained using an
initial time of 7, = 107°R.

Figure 1 shows a comparison of the time evolution of
four different transverse space integrated observables
at three different values of the shear viscosity, namely
4rzn/s = 0.5, 2, 10. The results from KgMP@ST are plotted
with symbols “+” for the mode with and “x” for the mode
without energy perturbations and are benchmarked for
times up to 7 = 0.5R against the results obtained using a
full kinetic theory description, which are plotted with lines.

The decrease of transverse energy dE, /dy is described
very well in both modes. As without energy perturbations,
the energy-momentum tensor is propagated as if there
were no local gradients, it predicts zero transverse flow
velocity (u ). and elliptic flow ¢,. The mode with energy
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= _ r~05R + x x &
) ! X x 5]
£ 10 i KgMPgST + S . 1 =
é \( d L L L L L L Il Il Il Il W/(\) pert\. - \- - Il xX Il X 20\7—(T.Zf — T;Uy) X Il Xx Il g
~+= T T T T T T T T T T T T T T T T T T T T T ~+=
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FIG. 2. Comparison of KgMPgST (RTA) and full kinetic theory via results for the energy-momentum tensor on the line x =0,
represented at fixed times 7/R ~ 0.1 in blue, 0.3 in yellow and 0.5 in green. The full kinetic theory results are plotted with points (+,x),
while the KgMP@ST ones obtained with and without energy perturbations are plotted with solid and dashed lines, respectively.
Anisotropic observables are nonzero only with energy perturbations and are plotted with point-dashed lines. The upper row shows, from
left to right, the following components of the energy-momentum tensor: 7°° (left), 7% (middle), as well as 7 4 7% and T** — 7%
(right). The lower row shows analogous local rest-frame quantities, namely e (left), ex” (middle), as well as #%* + z*¥ and 77 — z*
(right). Notice the change in sign for the latter when compared to the upper panel. All observables were multiplied with 7 and rescaled
with a constant factor to adjust their magnitudes such that they can be plotted on the same total range of 80 GeV/fm? c.
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perturbations can describe the buildup of (u, ), correctly.
On the other hand, while giving nonzero results, it still
vastly underestimates the buildup of anisotropic flow &,,.
The inverse Reynolds number (Re™!), is well described by
both modes at early times, but results from the mode with
energy perturbations deviate at very late times.

Generally, the comparison suggests that, for certain
observables, KsMPgST results can be accurate way beyond
the timeframe it was intended for, which is on the order of
0.1 fm. Other observables, in particular those related to
anisotropies, are not described correctly.

In a further comparison of KgMPgST to full kinetic
theory data, we also investigated profiles of certain com-
ponents of T# at fixed shear viscosity 47z#/s = 2 and three
different fixed times 7 = 0.1R, 0.3R and 0.5R. The same
comparisons were also performed in the local rest frame
with analogous quantities that are defined via the variables
€, u* and 7#*. Figure 2 illustrates our findings. This time,
KoMPgST results are plotted with lines and full kinetic
theory results with symbols.

The results confirm that for energy or energy flow
observables like 77, T% and T** + 777, KsMPgST works
well even on a local level and in the outskirts of the system
for all evolution times that we examined. The only part of
the energy-momentum tensor for which KgMPgST results
shows significant deviations are anisotropies in the shear
stress, as measured by 7 — 7°?. While this observable is
still correctly reproduced in the central part of the system, it
exhibits sizeable deviations of up to a factor of five at a
radial distance of r 2 R. These deviations also explain the
errors in elliptic flow &,,.

IV. EARLY TIME DYNAMICS
OF DIFFERENT MODELS

Before the onset of transverse expansion, at times 7 < R,
the system’s dynamics is dominated by longitudinal
expansion and the effects of transverse expansion can
be neglected. Under these conditions, at each point in
the transverse plane, the system evolves independently of
the transverse neighborhood and can locally be described
by (0 + 1)D longitudinally boost-invariant Bjorken flow.
In Bjorken flow, the trajectories of energy, pressure and
stress for different initial conditions are known to rapidly
converge to a common time evolution curve called the
Bjorken flow attractor curve [59,60]. This means that at late
times the system always evolves in the same way. If it is
initialized on the attractor, then its entire time evolution is
given by the attractor curve. We will describe the features of
the attractor scaling solution for both the Miiller-Israel-
Stewart-type second-order hydrodynamics theory and
for the conformal kinetic theory in RTA. In Sec. IVA,
the quantities describing the attractor solutions are intro-
duced. Sections IV B and IV C discuss how the preequili-
brium evolution impacts the observables of interest,
highlighting the possible discrepancies between RTA,

viscous hydrodynamics and ideal hydrodynamics. Finally,
in Sec. IVD, we discuss how viscous and ideal hydro-
dynamics can be brought in agreement with RTA at late
times by scaling the initial conditions.

A. Bjorken attractor

The (0 + 1)D Bjorken flow can be described in terms of
the Bjorken coordinates (z, x, y,7), with respect to which
the velocity becomes 0, = d,. The energy-momentum
tensor takes the diagonal form

T = diag(e, Py, Py, 772Py), (32)

where P; and P; are the transverse and longitudinal
pressures, respectively. The shear-stress tensor also
becomes diagonal,

, o1
Y = dlag<0,—2ﬂ'd,—2ﬂ'd,7:2”d>, (33)

where 7, can be related to Py and P; via

pr=prP-"2

5 Py =P+ my, (34)

such that 7, = % (P, — Pr). The observables of interest for
the following section are the inverse Reynolds number
defined in Eq. (16), and the sum ¢, = T** + T*¥, which
become

3n, 2¢e
Re™! = ——°, € = —— g =

: S 2+Re).  (35)

€
3

The evolution of the energy density ¢ is governed by the
conservation equation V,T*, where V,, is the covariant
derivative, which reduces to

oe 4
€+—€+ﬂ'd=0. (36)

or 3

In ideal hydrodynamics, 7, = 0 and *3¢(z) = ¢,

where €, is the energy density at initial time 7.

In RTA, the dynamics of 7, is governed directly by the
Boltzmann equation. In viscous hydrodynamics, the evo-
lution of z,; can be found from Eq. (28) and reads:

aﬂd
A
T +< +

5 +T¢7”d ”d"’E:Ov (37)

dgw 27w > 16¢
where W is the conformal parameter,

50 7T
drt, dmn/s’

ﬂ/:

(38)

In the above, s = (¢ + P)/T is the entropy density for an
ultrarelativistic gas at vanishing chemical potential, while
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n= ‘g‘r,[P, as shown in Eq. (29). In Eq. (37), we introduced
the notation

j= O | Ton (39)
T, 31,
which evaluates to 38/21 when using the values for the
second-order transport coefficients given in Eq. (29). We
note that in the original MIS theory, 4 evaluates to 4/3,
while the value 31/15 was advocated in Ref. [65] in order
to mimic the early time attractor of RTA.
Equations (36) and (37) admit scaling solutions with
respect to the conformal parameter w. To see this, we note
that the time derivative of W satisfies

dw 2 f.
W , 40
Tar " <3 4 > (40)
where we defined
Ty
=—. 41
fa=Z (41)

Using Egs. (36), (37) and (40), f, can be shown to satisfy

(2 fa dfﬂ+16
"\37a ) aw 45

( 4 471’W 27w

A——
3+ 5

¢7€fﬂ fzr) f/r = 0’ (42)

where ¢; = 0 for consistency with RTA [see Eq. (29)].
Demanding that f, remains finite when w — 0, its early
time behavior in viscous hydro can be obtained as

fﬂ(ﬂ} < 1) :fﬂ;O +fn;1w+fn;2w2+0(w3)’ (43)

where

1 4 4\2 64
fmo—z[l‘r (“5) %}*

fﬂ;lz—”;< +5 ¢7€fn'0>
(fﬂ;O - 14_5)2 75
Sz p o f 25F..
15J m0J ;1 w1
5= 1- . (44
fﬂ,2 (fﬂ;(] _ 3)2 + % < 167[ + fﬂ,0¢7€) ( )

When 2=38/21, we find f 5o = 1< (25 —3+/505 5)=~0.404,

which is different from the limit —1/3 in kinetic theory At
large values of w, f,(W) behaves like

fﬂ(w>> 1):_

(w72), (45)

Expressmg A= fro + :—1~ it can be seen that
fzo=—1/31leads to A = 31/15 as pomted out in Ref. [65].

which is the leading order gradient expansion [54] and
therefore valid in both viscous hydrodynamics and in RTA.
Due to the relations in Eq. (35), our observable Re™! = —3f,
also exhibits attractor behavior. Its attractor curve is repre-
sented as a function of W in the top panel of Fig. 3. Its
asymptotic forms at small and large W can be found from
Egs. (43) and (45), respectively.

We now turn to the energy equation, Eq. (36). On the
attractor, when f, depends only on 7, it is possible to write
(ct. [59,67])

4/3

#e(r) = 20 ~€0 £ 46
(0= B=em) (46)
where the scaling function £ (v"v) satisfies
2 fa

Due to Eq. (35), ¢, also admits a scaling solution,
T3/3€0

&) "
e = (3-120))ew. 6y

T4/3€tr (7) & r(w)’

For w < 1, £(W) can be obtained as

EWw<1)=Cw(1+&Ww+...), (49)

where the exponent y and the correction &, are given by

_ 12f Fa
3f7z;0_8’ (fﬂO__) .
The constant C, appearing in Eq. (49) is taken such that

limg_ o, £(W) = 1, in which case £ has the following late-
time asymptotic behavior:

&= (50)

2

Ew>1)=1 e (51)
In the case of ideal hydrodynamics, obviously f, =10
(such that f, o=y =0) and £(Ww) = C,, = 1. The func-
tions £(w) and &, (W) are shown in the bottom panel of
Fig. 3 for both viscous hydrodynamics and for kinetic
theory. The normalization factor C, can be obtained in
each theory by computing the attractor curve [59]. For

completeness, we list below the values of y and C, in the
relevant theories:
4
RTA: y= 9 C, ~0.88, (52a)
V505 - 13
Visc Hydro: y = 15 Co, ~0.80, (52b)
Ideal Hydro: y =0, C,=1. (52¢)
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FIG. 3. Attractor curves for the scaling functions (top) Re™!

[cf. Eq. (35)], (bottom) E(W) [upper two curves, light colors,
cf. Eq. (46)] and &,(Ww) [lower two curves, dark colors,
cf. Eq. (48)] obtained for RTA (blue) and for second-order
hydrodynamics (green). The large-w asymptotics are shown with
dashed gray curves. The small-w asymptotics are shown with
black and red dashed curves for RTA and hydro, respectively.

Due to the normalization lim;,_,o, £(W) = 1, the quantities
7723 and 7*/3€ can be rewritten as

T2 = (723) LEVA (W), (53a)

™3¢ = (1%3€) E(W), (53b)

where (77%/3W), and (7*/3€) , represent the corresponding
asymptotic, late-time hydrodynamic limits, satisfying

(74/3€>c1x<4

4/3
= = —TO 60
© a'*amy/s’ o)

23y
( ) )

(r*7€) (54)

[o5]

Taking now the initial time such that Wy, < 1, Eq. (49) can
be used to obtain

4 v/ 4 _ 1-y/4
(*3€) , =~ Coy <ﬂal/4> (T((E n/{ J//4)€O> . (55)
s

Equation (55) tells us that the equilibration dynamics
introduce a nontrivial relation between energy densities
in equilibrium and in the initial state, as the dependence is
nonlinear and the exponents depend on the model descrip-
tion, which was one of the main points of Ref. [59].

In the preequilibrium regime, w < 1. Under the early
time approximation (49), W can be written in terms of
(723W), as

W~ 73/ (1=7/4) [C;l/4(r‘2/3ﬂ/)oo]1/(1_”4), (56)
which allows e(Ww < 1) to be obtained as
€(W << 1) ~ T(y_%>/(1_Y/4)

4 - 1/(1-y/4)
X [C;} <%’7a1/4> (74/36)00] . (57)

Substituting the expression (55) for (7*/3¢), manifestly

shows that G=7)/(1-7/4¢ becomes independent of 7 as
7—0:

[so]

B. Preequilibrium evolution

We now consider a system which is no longer
homogeneous in the transverse plane, such that the
energy density becomes a function of both 7 and x|,
e =¢(z,x ). At early times 7 < R we can neglect trans-
verse dynamics and describe the dynamics locally by
Bjorken flow (we will discuss early time transverse expan-
sion effects on the buildup of flow in the Sec. IV C). Under
this approximation, at each point x; of the transverse
plane, we can assume that ¢(z,x ) follows an evolution
along the attractor curve according to the local value of the
conformal variable, w = W(z, x | ). Moreover, we consider
that wo(x, ) < 1 throughout the system, such that the full
preequilibrium evolution is captured during the system’s
evolution.
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Neglecting the dynamics in the transverse plane, such
that 7" = 77 = %ﬂr’ dE,./dn defined in Eq. (13) can be

written as
dE, / <2 >
=7 _— f” €, 59
dﬂ X, 3 ( )

where Eq. (35) was employed to replace ¢, and
f. = —Re~!/3. Using now Egs. (53b) and (55) to replace
€, we arrive at

dEtr:T—vsa<4’”’l)y / <fg%—r>/<1—y/4> €o>l‘§
dy s - a

« @ _ f,,> C.E. (60)

The above equation can be employed to estimate the
evolution of dE,./dn due solely to longitudinal expansion
over the whole range of 7.

At a fixed value of 7, the conformal parameter W spans
the interval O (reached at infinitely large distances from the
system’s center of mass) up to the value W,,,, correspond-
ing to the maximum value of the temperature. For suffi-
ciently small values of z, W, < 1 and Egs. (43), (58) can
be used to approximate f, and e, leading to
dE, N (To> 5(1-97/4)/(1~y/4) % (61)
dn T dn
The above relation shows that in RTA (y = 4/9), dE,./dn
remains constant during preequilibrium. Conversely, in
viscous hydrodynamics, y >4/9 and consequently
dE,/dn increases with time. As expected, in ideal hydro-
dynamics, dE,,/dy decreases as 7~'/3.

In the limit w> 1, f, ~Ww™' and £~1, as shown in
Eqs. (45) and (51), such that 7*/3¢ can be approximated by
(t*3¢€),, by virtue of Eq. (53b). Using Eq. (55), dE,/dn
reduces to

dE, 27773 4 voa _
d—tr:TTCoo (ﬂal/4> Tz) 7/ 6(1) 7/4' (62)
n s X,

The above equation shows that, at late times, dE,/dn
decrease as 7~!/3. The amount of energy available at a given
time 7 depends explicitly on the dynamical theory (ideal
and viscous hydrodynamics, RTA).

We now consider another important effect arising due
to the preequilibrium evolution, namely inhomogeneous
cooling. During preequilibrium, neighboring points in the
transverse plane undergo cooling at differing rates accord-
ing to their local attractors. As pointed out in Refs. [59,71],
the characteristics of the inhomogeneities in the transverse
plane change during preequilibrium, as can be seen by
looking at the eccentricity ¢,, defined as

_ fXL Xﬁl_é‘ COS{I’I(¢X - an)]

Jx, xie

(63)

€, =

When w <« 1, Eq. (58) can be employed to show that
€,(7) ~¢,(ry) and the eccentricities €, remain constant
during pre-equilibrium. When W > 1, €, is modified to

ey cosln(g, —¥,)]

n 1-r/4
X1 €

X1

(64)

€, —

X1

The above relation shows that inhomogeneous cooling
leads to modifications of all eccentricities of the initial
profile, except in the case of ideal hydrodynamics (y = 0).

The effects of the different behavior for global and
inhomogeneous cooling in different model descriptions are
illustrated in Fig. 4. It shows the preequilibrium evolution
of the energy density profile multiplied by the Bjorken
time, ze, for an example event in the 30—40% centrality
class of Pb-Pb collisions in kinetic theory and viscous
hydrodynamics with either the same or a scaled initial
condition. At very early times, this quantity is constant
in kinetic theory, but later it decreases slightly due to
equilibration. Meanwhile, in hydrodynamics it increases
first before transitioning to a decreasing trend. The speed
of these transitions in both cases depends on the local
temperature, meaning that e.g. the peak values will start
decreasing earlier than the values in the outskirts of the
system; i.e. the system cools inhomogeneously. After
equilibration, the time evolution will uniformly follow
the same power law in both models, but the differences

Naive Hydro

p © . " h ®
’ » .
. ' . . - . -
. e’ o !0 " ! '
. . ..
Kinetic theory‘ s . " .
» . " ® . " "
e’ e’ ¢’
» .
Scaled Hydro
\ - .
‘! ‘! 5 .! 5

‘r:3-10_6fm/c T:6-10_4fm/c ‘r:3-10_3fm/c

FIG. 4. Early time evolution of the transverse profile of the rest
frame energy density ze for an example event in the 30-40%
centrality class of Pb-Pb collisions in naive viscous hydrody-
namics (top), kinetic theory (middle) and scaled viscous hydro-

dynamics (bottom) at an opacity 4zn/s = 0.05.
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due to the different preequilibrium evolution will persist.
But the knowledge of the local attractor scaling behavior
allows us to anticipate the differences between kinetic
theory and hydrodynamics and apply a corresponding
local scaling prescription to the initial condition of hydro.
It then initially takes smaller values than in kinetic theory
but dynamically approaches it during preequilibrium and
reaches agreement after equilibration. This initialization
scheme is explained in more detail in Sec. IV D.

C. Preflow estimation

We now estimate the buildup of flow during the
preequilibrium evolution, which we quantify via the obser-
vable (u ), defined in Eq. (15). The basis of our analysis is
to consider that the transverse dynamics represent a small
perturbation on top of the purely-longitudinal dynamics
discussed in Secs. IVA and IV B, which we consider to be
dominant. The idea of this calculation is similar to the one
presented in Ref. [134].

At early times 7 < R, when the transverse flow is
negligible, we can write T# = T + 5T, where T% =
diag(ep, Pp.r, Pp.r, 7 2Py is the background (Bjorken)
solution of the local, equivalent (04 1)D system (we
also consider that at initial time W, < 1 throughout the
transverse plane). Further assuming that 67* is small and
imposing the Landau frame condition, Thu* = eu”, we
write u¥ = uly + Su* and € = e + e and find

) 5T7i
Sul =

oe = 6T, =
€g + Pgr

(65)

while §u® = 0 as required by uj;6u, = 0. Thus, the flow
buildup can be estimated from the buildup of 6T,

We can now derive a dynamical equation for 7% via
the conservation equation V,T# = 0, which in a general
coordinate system reads

V% = 9,T" + ¥, T% + %, T, (66)

where T*, =1¢"(d,9,, +0,9,, — 0,9,,) are the
Christoffel symbols. In the Bjorken coordinate system
(z,x,y,7n), the only nonvanishing Christoffel symbols
arel”,, =rand I, =1", = 77!, such that the equation
for v = i becomes

la(rT”)
T Ot

+0,T' =0, (67)

Splitting the energy-momentum tensor into a local Bjorken
flow part and a small perturbation as discussed above,
we find

10(z8T7)

T Or

Noting that §T" represents a higher-order correction, the
leading-order contribution to 87 can be obtained by
solving

o(z8T™)
or

>~ —Tal'PB;T. (69)

In the above, P .7 evolves according to the local Bjorken
attractor, such that Pp.; ~ 63(% - % fxp)- Using Eq. (53b) to
replace e, the spatial gradient of Pg.; can be obtained as

0;Pr ai(74/3€) & %f;z -
= © (2 ow, (70
PT (T4/3€>oo - & % - %fﬂ i ( )

where the prime denotes differentiation with respect to w.
Here and henceforth, we will drop the B subscript for
brevity, keeping in mind that all instances of Pr, €, f, and
the corresponding conformal variable W are evaluated
according to the background (0 + 1)D Bjorken attractor.
Since (7*/3¢),, depends on the transverse coordinates
only through the initial profile [see Eq. (55)], the first term
on the right-hand side of the above relation evaluates in the

limit Wy < 1 to
7\ 9i€o
=(1-= . 71
< 4) €o 7)

The gradient of W appearing in Eq. (70) can be written in
terms of that of (z=*/3W)_, starting from Eq. (53a),

oW 1_@5’ ~10,(z723W)
N 4 (t23w)

_1 ]/ Wg/ _10,60
ﬂ(“ﬂ(“@) o Y

where the equality on the second line is established using
the relations (54) and (71). Substituting Eqs. (71) and (72)
into Eq. (70) gives

0Py 1-y/4 (1_ Wie )aieo

- g -
Pr -5 341/ €

ai (7’-4/3 e)oo
(")

w

(73)

Substituting Eq. (73) in Eq. (69) and integrating with
respect to 7, we arrive at

) 1 0: ; 1_1 . _w %
5Tﬂ:——(1l> ‘60/ gei =2 mw gy
To

w el
T l—ﬁg

Considering now that Ww < 1 throughout the system, we
can use Egs. (49), (43) and (58) to approximate f, =~ f,., =
—(2y/3)/(1 —=y/4), ExCIw and €= (17/7)* %,
where a = (y+4/3)/[2(1 —y/4)], which reduces to
a=2/3, 1 and 1.071 in ideal hydro, RTA and viscous
hydro, respectively. To leading order, we find
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2asTr — _% |:1 — <7> :|ai(T(2)_a€o), (75)

which allows the macroscopic velocity to be estimated as

Sul (v < 1)~ —% (1 —%) {1 - (%)1 0;0_ (76)

As expected, the flow velocity is driven by the gradients of
the initial energy density profile. In addition, when 7 > 7,
Su' exhibits a linear increase with 7, independently of the
value of y. The prefactor governing the overall amplitude of
su' is however y dependent. We can now estimate the early
time evolution of (u, )., defined in Eq. (15), as follows:

e =g (1-5) 1= (2)]
* (L €0>_1 L Vel — (77)

where |V, eq| = [(9,60)? + (3ye0)] /2.

In general, the time dependence of the integrand in
Eq. (74) is too complicated to integrate analytically. But it
again takes a simple form in the Bjorken flow equilibrium
stage, where /3P ~1(¢%/3) . At late times, when the
duration of preequilibrium is small compared to the elapsed
time, its contribution in the time integration is negligible

and 6T% and Su’ asymptote to

il 1 70\ 2/3 43
oT (W>> l)ﬁ—m 1- ? 0,»(1 ‘6)00, (783)

i 2/37 9.(4/3
am»nzﬁ[l_(f_o) ]u

8 T (*3€) (780)

such that (u, ), becomes

37 79\ %3 fxl |VJ_€(1)_7/4|
(U1 )6 tate iy [1 - <—0> ] - (1)

t x; -0
Note that the above equation was derived under the
assumption that Su’ is small and thus holds only when
the system hydrodynamizes before transverse expansion
sets in.

The right-hand side of Eqs. (77) and (79) can be
evaluated numerically for the 30-40% centrality profile
that we are considering in this paper. The results for the
different theories (kinetic theory, ideal hydrodynamics
and viscous hydrodynamics) are shown in Table II.
Here, we contrast the “naive” and “scaled” initial con-
ditions for hydrodynamics, which will be discussed in
detail in the following subsection. In the early time regime,
it can be seen that kinetic theory leads to more flow than

TABLE II. Estimates for the preflow generated in kinetic
theory, ideal hydrodynamics and viscous hydrodynamics (see
Sec. IVD for details regarding the naive and scaled hydro-
dynamics setups).

Naive hydro Scaled hydro

Kinetic

theory Ideal ~ Viscous  Ideal  Viscous
Y 4/9 0 0.526 0 0.526
a 1 2/3 1.071 2/3 1.071
R 1<uf>t7.m 0.614 0.691 0.600 0.658 0.606
T 1=(79/7
R L(’L)r.l‘;le/] 0.658 0.691 0.652 0.658 0.658
7 1-(70/7

viscous hydrodynamics (2% and 1% more for the naive and
scaled initialization, respectively), while ideal hydrody-
namics leads to more flow than kinetic theory (13% and 7%
more for the naive and scaled initializations, respectively).
In the late-time limit, both ideal and viscous hydrody-
namics are brought in agreement with kinetic theory when
the scaled initialization is employed. In the case of the naive
initialization, ideal hydrodynamics gives about 5% more
flow, while viscous hydrodynamics underestimates the
flow by less than 1%.

D. Setting initial conditions

From the discussion in the previous subsection, it
becomes clear that the preequilibrium evolution of the
fluid depends on the theory employed to describe it. We
take as the “correct” evolution that described by kinetic
theory, when dE,/dy remains constant during the free-
streaming stage of preequilibrium. This can be seen by
setting y =4/9 in Eq. (61). Since in viscous hydrody-
namics, y ~0.526 > 4/9, dE,/dy will actually increase
during preequilibrium, thus leading for the same initial
energy profile to an unphysically higher transverse plane
energy at late times, as illustrated in Fig. 4. Similarly, the
change in eccentricity due to the preequilibrium evolution
will be different compared to kinetic theory. We will now
discuss how these phenomena specifically affect the pre-
equilibrium evolution of our initial state as given in
Sec. IT A and how they are counteracted by locally scaling
the initial condition. We will then give the quantitative
details of the scaling prescription.

Figure 5 illustrates the size of the effect on transverse
energy dE,/dn in the top panel and ellipticity ¢, in the
bottom panel. In naive hydrodynamics using the same
initial condition for the energy density as kinetic theory and
initial pressure determined by the hydrodynamic attractor,
dE, /dn rises to a value which is about 1.5 times larger than
in kinetic theory at the onset of equilibration and will
remain in disagreement throughout the rest of the evolution.
The dashed lines show predictions of the behavior in
the local Bjorken flow scaling approximation according
to Eq. (60). In our proposed scheme the initial value of
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FIG. 5. Early time evolution of transverse energy dE,./dn [top,
tr

cf. Eq. (13)] and ellipticity €, [bottom, cf. Eq. (5)] in kinetic
theory (blue), naive hydrodynamics (red) and scaled hydro-
dynamics (green). Hydrodynamics behaves differently in pree-
quilibrium, such that differences to a kinetic theory description
build up. This can be counteracted by scaling the initial condition.

dE,/dn is scaled down in such a way that it dynamically
reaches agreement with kinetic theory. Similarly, we find
that the ellipticity decreases in both kinetic theory and in
hydro, but more so in the latter case. This means that in
naive hydro the eccentricity will have a smaller value at the
onset of the buildup of transverse flow than in kinetic
theory, which will result in smaller final values of elliptic
flow. With the scaling scheme, the initial ellipticity is scaled
up in hydrodynamics and will come into agreement with
kinetic theory after equilibration.

As the local scaling factor for the hydrodynamic initial
condition is computed in the local Bjorken flow approxi-
mation, it assumes that the system will fully equilibrate
before the onset of transverse expansion. How well this
works in practice will be discussed in Sec. V B.

We now move to the quantitative analysis of the
preequilibrium behavior in the two hydro schemes. In
the first one, dubbed “naive hydrodynamics,” we will
impose the same energy density €, at initial time 7, as

in kinetic theory. We first note that the RTA initial
conditions given in Eq. (1) are not compatible with the
hydrodynamic attractor.

Indeed, noting the relations Py = e(3 ——”) and P; =
e(% + f,), the early time expression for T#* reads

1 1 1
Ty =€y X diag(l,g—%,g—% 32 —I—f”), (80)
where f, = f,(Wy) depends on the local value of the
conformal variable, Wy = wy(x,) = 70To(x,)/(4nn/s),
with To(x ) =[eo(x )/a]'/*. In order to evaluate f,(W,),
we follow Ref. [135] and employ a simple Padé approxi-
mation interpolating between the w < 1 and w > 1 limits
given in Egs. (43) and (45):

Co +C1W
d() +d1W+d2W

fr(W) = (81)

where the coefficients c, ¢, dy, d; and d, are computed to

ensure second order accuracy at small W and first order
accuracy at large w:

4fn:1 4f712

dy=

fﬂO’ fn'()fzrl

4d,

fﬂOfﬂZ 9]7'_-

fr1. co=dofro. C1=-— (82)

The coefficients f .o, f.; and f ., are givenin Eq. (44). In the
limit % — 0, when f, — fo = —2% /(1 —7/4), Eq. (80)

reduces to

€ .. y1 vy 1 v 1 3y
T = d 1-L —4+L 4L -0
0 T1 /4 lag< 233 32 Ta2)

which coincides with the initialization employed for RTA
[shown in Eq. (1)] in the case when y =4/9. Since in
hydrodynamics, y > 4/9, the initial transverse-plane energy
when W,y <« 1 will be larger than in RTA:

dE?ry 21 +37/4dE?rRTA
dp 3 1—y/4 dg

(84)

This explains why at initial time the naive hydro curve in
Fig. 5 starts above the kinetic theory one.

Acknowledging that viscous hydrodynamics does not
capture correctly the preequilibrium evolution of the fluid,
we propose to change the initialization of hydrodynamics
in such a way that the energy density e locally agrees with
the kinetic theory prediction at late times. In principle, this
works only when the preequilibrium evolution ends before
the onset of transverse expansion. Taking a and 7/s to be
identical in the two theories and demanding that they both
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reach the same (7*/3¢) _ value when 7 — o0, Eq. (55) shows
that the local modification of the initial energy density in
hydrodynamics (denoted ¢ ,) is

8/9
4mn/s % (CRTAN9/8 =i/
€0y = [(—al/4> . €0RTA ., (85)

) 00

where the specific shear viscosity #/s is considered to have
the same value in viscous hydrodynamics and in kinetic
theory. Using the above energy profile in Eqs. (62), (64)
and (79) shows that after preequilibrium (i.e. at large W),
dE,/dn, the eccentricities ¢, and the average flow velocity
(u, ), will reach the corresponding RTA limits, irrespective
of the value of y. We note, however, that the preequilibrium
behavior of all of the above observables will still be
different from that in RTA.

Before ending this section, we emphasize that the
rescaling of the initial conditions shown in Eq. (85) is
not only possible, but also mandatory for ideal hydro-
dynamics simulations, when y =0 and C, = 1. While
when applying the scaling procedure to viscous hydro-
dynamics, 7/s was considered as an invariant physical
parameter, in ideal hydrodynamics (when 5 = 0), this is no
longer the case. Instead, the factor 7/s helps rescale the
initial energy density such that, at late times, z*/3¢ obtained
in ideal hydrodynamics would match the one in a hypo-
thetical RTA system with that given value of 7/s. The
agreement between ideal hydro and RTA can be expected
of course only in the limit /s — 0. Specifically, Eq. (85)
reduces in the case of ideal hydro to

A\ 40 a® ¢
€0id = | —— CcRIA 49 €0,/RTA' (86)
S/ RTA 7,

When comparing the ideal hydro result to kinetic
theory calculations, we employ the above formula with
4zn/s = 1, and for dE. /dn we rescale the final results with
(47n/s)*° according to Eq. (86) when comparing to
kinetic theory at other values of 4z7/s.

V. SPACE-TIME EVOLUTION AT DIFFERENT
OPACITIES AND IN DIFFERENT SETUPS

The different behavior of hydrodynamics compared
to kinetic theory in preequilibrium can best be assessed
via the time dependence of the studied observables. This
also allows to study the behavior during different stages of
the collision. In Sec. VA, we discuss the time evolution
of transverse profiles of the system in kinetic theory.
Section V B compares the time evolution of the tracked
observables in kinetic theory and scaled viscous hydro-
dynamics. These are then used as the basis for a discus-
sion of the time evolution in hybrid simulation schemes
in Sec. VC.

A. Evolution of transverse profiles in Kinetic theory

We now want to discuss the system’s time evolution at
different opacities resolved in transverse space. This is
illustrated in Fig. 6 via heat map plots of the timescaled
local rest frame energy density ze together with a vector
plot of the transverse components of the flow velocity u* at
three different values of the shear viscosity, 4zn/s = 0.5, 3,
10, which are representative of the regimes of hydro-
dynamic behavior, close-to-free-streaming behavior and
the intermediate transitioning regime. The time evolution
of these profiles is sampled at three different times,
7=0.1R, 1R and 2R, which mark the beginning, peak
and end of the buildup of elliptic flow €,, as will be
discussed in Sec. V B.

At the earliest time, 7 = 0.1R, transverse dynamics have
not had a large effect yet: flow velocities are negligible and
the main geometric properties of the profile remain
unchanged. The only obvious difference is the overall scale.
At smaller 77/s, the system starts cooling sooner, performing
more work against the longitudinal expansion, resulting in
significantly smaller energy densities when compared to
larger 7/ s.

7 = 1R marks the characteristic time where transverse
expansion effects become significant. Here, we see the
profile taking on a more circular shape. We also see
significant flow velocities, which rise in magnitude with
the distance from the center. For smaller shear viscosity
n/s, meaning larger interaction rates, the system tends to
lump together more, resulting in a smaller spatial extent and
smaller flow velocities compared to larger 7/s.

At the largest selected time, 7 = 2R, the interaction rate in
the system has significantly decreased due to the dilution
caused by the transverse expansion. Over time, the dynamics
will approach a free-streaming expansion in all directions. It
is apparent in all three cases that the system has expanded
mainly in the directions of larger gradients in the initial state.
For small shear viscosity 7/, the system’s energy density is
still peaked in the center due to stronger collective behavior.
On the other hand, at large 5/ s, the system evolution is closer
to a free-streaming propagation of the initial state, resulting in
two high-density areas at distances r ~ 7 from the center.
Though the difference is barely visible, the built-up flow
velocities are larger for larger #/s.

We can discern additional spatially resolved information
on the opacity dependence of the system’s evolution by also
comparing profile plots of the anisotropic stress, 7 — 77,
which are presented in Fig. 7. Per definition in Eq. (14), the
transverse integral of this quantity is proportional to elliptic
flow &,, which builds up more at smaller values of #/s.
Note that the symmetry-plane phase factor takes the value
e?™» = —1 in this case, such that a negative integral results
in positive ¢,. The plots show that the transverse plane
separates into regions with different sign of the anisotropic
stress. The behavior in the outskirts is dictated by trans-
verse expansion, resulting in positive values in £x direction
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FIG. 6. Time evolution of transverse profiles

0

Position x

of the rest frame energy density ze in a heat map plot together with transverse

components of the flow velocity (u*, u”) as a vector field plot for the averaged initial condition used in this work at different opacities
4zn/s = 0.5 (left), 3 (middle) and 10 (right). The snapshot times 7 = 0.1R (top), 7 = 1R (middle) and 7 = 2R (bottom) were chosen as

the beginning, peak and end of the buildup of elliptic flow &,,.

and negative values in +y direction. The buildup of elliptic
flow seems to proceed mainly via the positive parts
decaying more than negative ones. At small opacities in
the right panel, particles propagate with few interactions.
Due to the initial almond shape, most of the particles in the
center propagate in +x direction, resulting in a larger 7**
than 7°7. At large opacities in the left panel, the system is
hydrodynamized and the anisotropic stress comes mostly
from the direction of flow. Since the flow components u,
and u, are zero in the center of the system, the anisotropic
stress vanishes there.

B. Time evolution of observables in kinetic theory
and hydrodynamics

We will now examine the time evolution of certain
characteristic transverse space integrated observables in

both kinetic theory and the scaled hydrodynamics scheme
that was proposed in Sec. IV D as a countermeasure to
the unphysical preequilibrium behavior of hydrodynamics
discussed in Sec. IV B. This will provide additional insights
into the system’s behavior but also reveal how well the
scaled hydro scheme works at different opacities. Figure 8
shows comparisons of the time evolution of transverse
energy dE/dn, elliptic flow ¢,, average transverse flow
velocity (u,). and average inverse Reynolds number
(Re~!). in both models at three different opacities. Since
we are using a fixed initial profile, we plot &, without
normalization to the initial state eccentricity €,. As an
illustration of the motivation for the scaling scheme in
hydrodynamics, for dE,./dn and (Re™!), we also compare
with the time evolution in the absence of transverse
expansion, where we describe the system as a collection
of local Bjorken flows.
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FIG. 7. Transverse profiles of the transverse anisotropy z(7** — 7%?) in kinetic theory at time 7 = 1R for different opacities 475/s =

0.5 (left), 3 (middle), 10 (right).

The time evolution of transverse energy dE,./dn closely
follows results from Bjorken flow scaling at early times,
as predicted in Sec. IV B. In Bjorken flow scaling, this
observable starts out being constant in the free-streaming
period of kinetic theory, while, in hydrodynamics, it
follows a positive power law, cf. Eq. (61). From there,
in both cases the time evolution smoothly transitions to a
late time equilibrium power law dE,/dy~z"'/3. The
timescale of this transition depends on the opacity and is
smaller at smaller 5/s. In RTA,” it scales as Teq ~ (n/5)*3
[71]. By construction, results from scaled hydrodynamics
agree with kinetic theory results in the late time limit of
Bjorken flow scaling. The time evolution in full simulations
follows this behavior up to times 7~ R, when effects
of transverse expansion become significant. The rapid
dilution due to transverse expansion decreases interaction
rates and causes dE,/dy to approach a constant value.
For large opacities like 4zn/s = 0.5, the Bjorken flow
equilibrium where both models agree sets in long before
transverse expansion and even afterwards the results
will stay in agreement. Intermediate opacities around
4zn/s = 3 mark the transition region where results for
dE,./dn from both models just barely come into agreement
before approaching a constant value. At small opacities like
in the case of 4z5/s = 10, the onset of transverse expan-
sion interrupts the Bjorken flow scaling period before the
two model descriptions have come into agreement. The
residual discrepancy then persists throughout the evolution
of the system and leads to a mismatch of final state
observables, which becomes worse as 7/s is increased.

The second line of Fig. 8 shows the time evolution of the
elliptic flow coefficient ¢,. Again, like in the case of
dE,/dn, because of the decrease of interaction rates due to

the dilution caused by transverse expansion, €, reaches a

’In general, the equilibration timescale scales with
(n/s)31=1/9/2 with y as defined in Eq. (50). Numerically, the
exponent 1.30 for viscous hydrodynamics is close to the one
for RTA.

late-time plateau. Thus, at all opacities, ¢, builds up in a
time frame of 7 < 2R. Contributions from early times are
negligible, such that effectively the buildup starts at
72 0.1R. As indicated in the log-log insets, the kinetic
theory curves exhibit at early times an approximate power-
law increase, €, o 73/3_In contrast, the scaled hydro curve
for e, first dips to negative values. For 4z7/s = 0.5, when
equilibration is achieved before the onset of transverse
expansion, the scaled hydro curve merges into the RTA one
as implied by the discussion in Sec. IV D. At small opacity
(47zn/s = 10), the merging process is interrupted by trans-
verse expansion. The scaled hydro result for &), is in perfect
agreement with kinetic theory at large opacities and stays in
good agreement at intermediate opacities. Due to a smaller
overall interaction rate, the ¢, response decreases with
decreasing opacity. For small opacities, a negative trend in
the early time behavior of hydrodynamics causes discrep-
ancies with kinetic theory. This trend will become dom-
inant at even smaller opacities, resulting in negative values
of the late time plateaus.

As discussed in Sec. IV C, at early times, (u ), builds up
linearly with the elapsed time Az = 7 — 7, in kinetic theory.
For finite initialization time 7, the detailed behavior in
hydrodynamics is slightly different, but almost indistin-

(uy)e
Az/R

and indicate the early time limit using horizontal dashed
blue lines. The plots confirm that there are slight
differences in the early time behavior of the flow velocities
in hydrodynamics and kinetic theory; however they come
into agreement on similar timescales as dE,/dy. This is
partly owing to the fact that early time contributions to the
total (u, ), are negligible. (u ), enters a period of super-
linear rise during transverse expansion. While this period
ends earlier at larger opacities due to dilution of the system

and transition to free streaming, the total rise of % is

nevertheless larger. Comparing hydrodynamic results to
kinetic theory results, the late time free-streaming does
not seem to be accurately reproduced, as hydrodynamics

guishable from linearity in Az. Hence, we plot the ratio
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FIG. 8. Time evolution of (from top to bottom) transverse energy dE,./dy [cf. Eq. (13)], elliptic flow ¢, [cf. Eq. (14)], transverse flow
velocity (u,), [cf. Eq. (15)] and inverse Reynolds number (Re™!'), [cf. Eq. (16)] in kinetic theory (black) and scaled viscous
hydrodynamics (purple). The time axis is scaled logarithmically in all plots. The plots showing elliptic flow ¢, feature an inset plot of the
same quantity plotted in log-log scale. The plots of flow velocity also show the preflow result from Table II for the early time limit for
(uy)./(At/R) (0.614 for kinetic theory and 0.606 for scaled hydrodynamics). Bjorken scaling results are shown with dashed lines for
dE,/dy (top) and (Re™!), (bottom).
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underestimates (u ). Problems in the late time behavior
are less relevant for the other observables we discuss, as
they tend to plateau at late times. This late time discrepancy
between hydrodynamics and kinetic theory is thus a
phenomenon that mainly affects (), among the observ-
ables that were tracked in this work, and is not related to
preequilibrium.

Finally, we look at the time evolution of the average
inverse Reynolds number, which is a measure of the size
of nonequilibrium effects in the system. We normalized
this in such a way that, in RTA, its initial value is equal to
one (note that on the hydro attractor, Re™! ~ 1.212 when
7o — 0). Like for dE,./d#, the two model descriptions will
come into agreement in the late time limit of Bjorken flow
scaling, on timescales that are larger for smaller opacities.
Due to equilibration, in this period (Re~!), experiences a
phase of rapid decay towards 0, as expected since Re™!
measures nonequilibrium effects. The effect of transverse
expansion on this observable is not straightforwardly under-
stood, except for the fact that due to the additional dilution,
(Re~!), must be larger in full simulations than in Bjorken
flow scaling. For large opacities, transverse expansion seems
to only slow down the approach to equilibrium. However, at
intermediate opacities we see a significant rise in (Re™!)..
We also computed results for the limit of vanishing opacity.
Here, the inverse Reynolds number remains constant at early
times, but later increases due to transverse expansion, e.g. at
7 = 4Rtoavalueof (Re™!) (z = 4R) = 1.322. However, an
increase due to transverse expansion cannot be the only late
time effect, as we can see from the results at 4z7/s = 10,
where the trend of this quantity changes multiple times.
It first departs from the local Bjorken flow prediction at
7/R ~ 0.3, but later the curve returns to decreasing at a rate
comparable to that during the Bjorken flow stage. At late
times, the behavior transitions to a rise in the inverse
Reynolds number. Despite this peculiar behavior, our
numerical results indicate that (Re™!), reaches a minimum
value that is larger for smaller opacities. For very small
opacities, it will not drop significantly below its initial value
of 1 before starting to rise.

For a more detailed examination of the opacity depend-
ence of the time evolution in kinetic theory ranging
from very small (4zn/s = 1000) to very large opacities
(4zn/s = 0.01), please see Appendix C.

After examining the time evolution of these observ-
ables and establishing some understanding about the
implications of their buildup, we now want to invert
this logic. As the change in these observables carries
information on the state of the system, e.g. the progress
of its equilibration or the onset of transverse expansion,
we want to track the first times when these observables
reach a specific milestone of their time evolution as a
function of opacity. Figure 9 shows plots of kinetic
theory results for these curves for five different milestone
criteria. Specifically, we tracked when the average
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107° : :
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Shear viscosity 47n/s

FIG. 9. Opacity (7 = %) dependence of the characteristic
times where the elliptic flow ¢, [cf. Eq. (14)] reaches 5% of its
late time (r =4R) value (red), the transverse flow velocity
[cf. Eq. (15)] builds up to a value of (u,), = 0.1 (purple), or
the inverse Reynolds number [cf. Eq. (16)] drops to a value of
(Re7!), = 0.8 (pink, dashed), 0.6 (pink, solid) or 0.4 (pink, long-
short dashed). The buildup in transverse flow velocity marks the
transition from the Bjorken flow scaling regime to the regime of
transverse expansion, while the drop in inverse Reynolds number
marks the region where hydrodynamics is applicable.

transverse flow velocity reaches a value of 0.1 as a
criterion for the onset of transverse expansion, the time
when the elliptic flow response builds up to 5% of its
maximum value at the given opacity as a criterion for the
beginning of the buildup of flow, and the time when the
average inverse Reynolds number reaches values of 0.4,
0.6 and 0.8, which tells us to what degree hydrodynam-
ization has progressed. As it turns out, the curve for the
flow velocity criterion is almost perfectly flat at a value
of 7.~ 0.15R, meaning that the early time buildup of
(u,), is mostly independent of the opacity. The elliptic
flow criterion is met at similar times as the flow velocity
criterion at large opacities, but at slightly later times 7, ~
0.3R for small opacities. Despite the general time frame
of &,-buildup being independent of opacity, it seems to
start slightly earlier at larger opacities. The most inter-
esting criterion curves are those for the average inverse
Reynolds number. The system’s adherence to early time
Bjorken flow scaling leads to a power law behavior 7,
(n/ s)*3 for all three of these curves at large opacities.
The curves deviate from this power law when the
criterion is not reached before transverse expansion sets
in at times 7~ R. For small opacities, the criteria are
never met, as the average inverse Reynolds number
reaches a minimum value larger than the criterion value,
as already stated in the discussion of Fig. 8. The behavior
of dE,/dn resembles that of dE | /dy, which we already
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discussed in our previous paper [71]. Similarly to (Re™!),,
it follows Bjorken flow scaling at early times, resulting in a
similar power law behavior.

C. Time evolution in hybrid schemes

Another way to alleviate discrepancies due to the
behavior of hydrodynamics in the preequilibrium phase
as discussed in Sec. IV B is to model the time evolution
via a hybrid scheme, switching from a kinetic theory
based description at early times to hydrodynamics at later
times, i.e. initializing the hydrodynamic simulation with
the energy-momentum tensor computed from the kinetic
theory based time evolution. This requires to fix a criterion
for when to switch descriptions.

As we argue that hydrodynamics becomes viable only
after some timescale related to equilibration, we also expect
the accuracy of hybrid scheme results to depend on the
switching times. Due to the opacity dependence of equili-
bration, it might be beneficial to choose switching times as a
function of opacity. Hence we tested both a hybrid scheme
with fixed switching times at two different times 7 = 0.4 fm
and 7 = 1 fm, which are in the range of switching times
typically used in phenomenological descriptions, and with
dynamically determined switching times.

In order to tie this definition to the phenomenon of
equilibration, we determine the dynamical switching times
on the basis of the decrease of the average inverse Reynolds
number (Re™!)_; i.e. we switch as soon as this quantity first
reaches a specific value. Specifically, we chose the values
(Re7!), = 0.8, 0.6 and 0.4 (sometimes we will consider
switching also when (Re™!), drops below 0.2). In the case of
a transversally homogeneous system, Fig. 3 shows that these
values for the inverse Reynolds number correspond to
various degrees of hydrodynamization of the system.
Specifically, Re™! = 0.8 (W ~ 0.2) corresponds to the onset
of hydrodynamization. When Re™! = 0.6 (W ~0.6), the
system significantly progressed through the hydrodynam-
ization process, while when Re™! = 0.4 (i =~ 1), the system
has hydrodynamized and the kinetic theory and hydrody-
namics attractor curves are almost merged. Due to the
relation (38) between w and the Bjorken time 7, the
characteristic times 7, when Re~! drops below a certain
threshold increase with 475/s (see Sec. V B for a detailed
discussion).

The results are illustrated by the time evolution of
transverse energy dE/dpy, elliptic flow e, and average
transverse flow velocity (u,), compared for different
choices of the switching times, as plotted in Fig. 10 at
three different opacities. The early time evolution was
computed with the RLB method of simulating kinetic
theory. The plots also compare to results from a pure
kinetic theory simulation as well as from our scaled viscous
hydro scheme. Here we plot all results including the ones
for elliptic flow ¢, on a logarithmic scale of the time axis so

that the different switching times are discernible. The ¢,
plots also feature an inset plot on log-log scale. It can be
seen that the curves corresponding to the hybrid setups tend
to detach from the RTA curve towards lower values of ¢,,.
Since in viscous hydro, the equilibration process leads to a
decrease of spatial eccentricity e, (see lower panel of
Fig. 5), the hybrid simulations with early switching times
will lead to lower late-time values of ¢, (see the discussion
in the next section).

At a small shear viscosity of 4zn/s = 0.5, all switching
schemes yield accurate results for all three observables.
Since the equilibration timescale is small for this opacity,
the system has equilibrated by the time we switch descrip-
tions such that kinetic theory and hydrodynamics are in
agreement. The (Re™!)_-based criteria are fulfilled early on
in the system’s evolution such that the dynamically chosen
switching times are significantly smaller than the fixed
ones. However, when comparing results from pure kinetic
theory or viscous hydrodynamics, they are within the time
frame where both descriptions are in acceptable agreement.
The only curve where a deviation from kinetic theory is
clearly visible is the one for Re™! = 0.8, where hydro-
dynamization has only partly progressed by the time this
criterion is fulfilled.

The results at 4z1n/s = 3 now show that it is indeed
necessary to give the choice of switching times some
thought, as here we see a significant increase in accuracy of
results for dE,/dn and (u, ), with later switching times.
For this opacity, the dynamically chosen switching times
are on a similar scale as the fixed ones. We also see that the
nature of any discrepancies with pure kinetic theory results
is the same as in the case of hydrodynamics. As soon as we
switch, the curves of these observables follow a trajectory
that is qualitatively similar to the pure hydrodynamics
result, meaning that dE,./dy is increased, while (u ), and
€, are decreased relative to the kinetic theory result.

The strength of the dynamically chosen switching times
is well displayed for results at 4z7/s = 10. In this case, the
system is still far from hydrodynamized at the two fixed
switching times, leading to sizeable inaccuracies in the
corresponding hybrid scheme results for all three observ-
ables, but especially for dE,/dn. As (Re™!'), does not
drop low enough, two of the three criteria for the dyna-
mical switching were not reached. However, the result for
switching at the largest of the three values of (Re™!).
retains a similar level of accuracy as at smaller shear
viscosity and is a significant improvement to fixed time
switching results.

Overall, we find that while switching at fixed time is
conceptionally straightforward and always possible, the
accuracy of this scheme strongly depends on the opacity
and results at small opacity show large deviations from
full kinetic theory. On the other hand, switching based on
(Re™!), is not always possible because this quantity does
not drop to the desired values at small opacities, but

p
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FIG. 10. Time evolution of transverse energy dE,./dy [top, cf. Eq. (13)], elliptic flow &, [middle, cf. Eq. (14)] and transverse flow
velocity (u ). [bottom, cf. Eq. (15)] in hybrid kinetic theory + viscous hydro simulations at opacities 4z5/s = 0.5 (left), 3 (middle)
and 10 (right) when switching at different values of the inverse Reynolds number [cf. Eq. (16)] (Re™!), = 0.8 (light red), 0.6 (red) and
0.4 (dark red) or fixed time 7 = 0.4 fm (light green) and 7 = 1 fm (dark green). The switching points are marked with filled symbols.
The time axis is scaled logarithmically. The plots showing elliptic flow €, feature an inset plot of the same quantity plotted in log-log
scale. In the flow velocity plots, we also show the estimate (u, ). rra = 0.614A7/R for the early time buildup of preflow in kinetic

theory (see Table II).

whenever it is possible, the accuracy of the result can Finally, we also tested hybrid schemes with the same
be estimated beforehand and depends only little on opacity. switching times but with an early time evolution computed in
In other words, the dynamical definition yields the  KoMP@ST. We found that due to its limited range of appli-
earliest possible switching time for a desired accuracy,  cability, some of the later switching times could not be viably
and whenever (Re™!), does not drop enough for it to be  reached with this description. But whenever we were able to
determined, hydrodynamics is not viable in the first place. obtain results, they were in good agreement with the results
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from the previously discussed scheme, except for some
systematic errors in &, and (u ). These results are presented
in more detail in Appendix D, together with analogous time
dependence plots to those presented in Fig. 10.

VI. OPACITY DEPENDENCE OF FINAL STATE
OBSERVABLES IN DIFFERENT TIME
EVOLUTION MODELS

The previous section’s comparison of the time evolution
in different models has provided insights into the nature of
different sources of discrepancies and at what opacities to
expect them. For a detailed opacity-resolved analysis, it is
convenient to study the dependence of final-state observables
on a wide range of opacity, from the free-streaming regime
to ideal fluid behavior. In Sec. VI A, we present opacity
dependencies in kinetic theory, naive viscous hydrodynamics
and scaled viscous hydrodynamics. Section VIB discusses
results for hybrid simulation schemes.

A. Scaled and naive hydrodynamics compared
to kinetic theory

First, we assess the performance of scaled hydro-
dynamics as described in Sec. IVD when compared to
a common naive initialization scheme of hydrodyna-
mics, where the simulation is started at a time 7, where
hydrodynamization is likely to have set in, with the same
initial condition for zye(zy,x,) as we are using for
kinetic theory simulations initialized in the early time
free-streaming limit. Figure 11 shows the opacity depend-
ences of transverse energy dE/dpy, elliptic flow ¢, and
average transverse flow velocity (u, ), in kinetic theory,
scaled hydrodynamics and naive hydrodynamics initial-
ized on the hydrodynamic attractor at two different times
79 = 0.4 fm and 7y = 1 fm, which are in the range of
values typically used in phenomenological descriptions.

For all three observables, the kinetic theory results
smoothly interpolate between limiting cases of small and
large opacities. For dE\,/dn and ¢,, we compare at small
opacities to results from the linear order opacity expan-
sion that is introduced in Sec. III B. Results from full
kinetic theory are in excellent agreement with these
approximations for 4zn/s 2 20. In the case of (u,),,
we present results for the free-streaming limit y — 0, to
which the full kinetic theory results converge at small
opacities.

On the other end of the opacity spectrum, the results
from both kinetic theory and scaled viscous hydrody-
namics converge to those of scaled ideal hydrodynamics
in the limit /s — 0. Even though #/s = 0 by definition
in ideal hydrodynamics, we represent the scaled ideal
hydro results as a function of 4zn/s in the equivalent
RTA simulation [see discussion around Eq. (86)], leading
to a power-law dependence dE,/dn « (4zn/s)*°, which
is confirmed by the scaled viscous hydrodynamics and
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FIG. 11. Opacity (/s) dependence of the final (z = 4R) values

of transverse energy dE/dn [top, cf. Eq. (13)], elliptic flow &,
[middle, cf. Eq. (14)] and transverse flow velocity (u ), [bottom,
cf. Eq. (15)] for kinetic theory (black), scaled hydro (purple) and
naive hydro at two different initialization times 7, = 0.4 fm
(brown) and 1 fm (yellow). Also plotted are the small opacity
limits of an opacity-linearized result (blue) in the top two plots,
the free-streaming result (blue, dashed) in the bottom plot as well
as the opacity-scaled ideal hydrodynamics results (gray, dashed).
The latter follows a (17/s)*° scaling law for dE,./dy as per the
initialization scheme in Eq. (86). The ideal hydro results are
611GeV - (4zn/s5)*° for dE,/dn, 0.244 for ¢, and 3.01 for
(u] ). The red shaded region shows the realistic values for QCD
according to Bayesian estimates.
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kinetic theory results (this result was derived from early
time Bjorken scaling in [71]). The curves for ¢, and
(u,), converge at large opacities to the ideal hydro-
dynamics limit that was obtained with a scaled initial
condition. This is not a priori obvious but rather an
achievement of our proposed scheme. Ideal hydro-
dynamics is the large opacity limit of kinetic theory
only after hydrodynamization. At any finite opacity,
kinetic theory simulations feature a preequilibrium
period which is absent in ideal hydro. In this period,
the ellipticity e, decreases in kinetic theory, such that,
with the same initial condition, it would result in a
smaller elliptic flow ¢, than in ideal hydro. The agree-
ment is only reached after scaling the hydro initial
condition as discussed in Sec. IV D.

Comparing now to hydrodynamic results, for all three
obserables, the large opacity limits of scaled hydro-
dynamics and kinetic theory are in excellent agreement.
Going to small opacities, all observables are underesti-
mated in hydro, as will be further discussed in the
following. Agreement holds for 4zn/s < 3.

On the other hand, for naive hydrodynamics initialized
at 7o = 0.4 and 1.0 fm, the opacity dependence curves
show qualitatively similar behavior to kinetic theory but
remain in quantitative disagreement for all opacities. This
is obvious in the case of dE/dy, which is significantly
overestimated. We find that the large opacity power law
is not captured. There are different reasons for this in the
two limiting cases of large and small opacity. For small
opacities 4zn/s = 10, despite the initialization time being
large, it is still smaller than the equilibration timescale
and the simulation will partly undergo a preequilibrium
phase. As we have seen, in the hydrodynamic description
of this phase dE,/dy increases before the onset of
transverse expansion, while staying constant in kinetic
theory, so it is overestimated in hydro. For the smaller
initialization time 7, = 0.4 fm, the system is in preequi-
librium for a longer time compared to 7y = 1 fm. This is
why results for 7, = 0.4 fm yield a larger final value of
dE,/dn at small opacities. On the other hand, for large
opacities 4zn/s <3, the system would have been in
equilibrium for a significant amount of time if it had been
initialized at an earlier time. In the equilibrated phase
before transverse expansion, dE,./dn drops proportionally
to 7~'/3. The larger the initialization time, the more of
this period is cut out of the simulation, resulting in a
larger final value. This is why the curve for initialization
at 7o = 1 fm is above the one for 7y, = 0.4 fm at large
opacities, resulting in a crossing of the two at inter-
mediate opacities 4z7/s ~ 5. The equilibration timescale
becomes smaller and smaller at larger and larger opac-
ities, meaning that for fixed initialization time more and
more of the 7~!/3-scaling period is cut out. This is why
the large opacity power law is not reproduced in naive
hydrodynamics.

These problems are cured in scaled hydrodynamics.
It is initialized at very early times, so no part of the time
evolution is lost. The discrepancies due to hydrody-
namic preequilibrium behavior are cured via scaling the
initial energy density as discussed in Sec. IV D such that
agreement with kinetic theory is reached only after
equilibration. However, for small opacities 4zn/s = 3,
the underlying assumption of a timescale separation
of equilibration and transverse expansion no longer
holds. In this case, scaled hydrodynamics underesti-
mates dE,/dn, as transverse expansion interrupts its
approach to kinetic theory behavior before agreement is
reached.

Of the three presented observables, ¢, in naive hydro-
dynamics shows the weakest deviations from kinetic
theory. This is in alignment with our expectations, as
we know that hydro has been very successful in phe-
nomenological descriptions of anisotropic flow. The
reasons might be that &, builds up on timescales that
are fully captured by simulations at initialization times of
~1 fm and depends very little on the overall energy scale.
But certainly, this level of agreement was not to be
expected a priori and should be regarded as a coinci-
dence. The influence of the initialization time is as
follows. At small opacities 4zn/s = 10, a part of the
early time negative trend in hydrodynamics is cut out,
resulting in larger results for later initialization times. For
large opacities 4zn/s <1, €, already has positive con-
tributions at early times which might be cut out, resulting
in smaller final values for later initialization times. But
very early initialization times cannot bring hydro into
agreement with kinetic theory. As discussed in Sec. IV B,
hydrodynamics initialized at very early times exhibits a
larger decrease of the eccentricity during preequilibrium,
resulting in lower final values of ¢, than in kinetic
theory. However, the scaling procedure counteracts this
phenomenon by increasing the eccentricity in the initial
state of hydrodynamic simulations, such that scaled
hydrodynamics is in perfect agreement with Kkinetic
theory at large opacities 4zn/s < 3. For small opacities
4zn/s 2 10, on the other hand, due to the early initial-
ization scaled hydrodynamics features a longer period of
the aforementioned early time negative buildup of ¢,,
resulting in final values which are lower than in the case
of the naive hydro initializations discussed above.

The flow velocity results from naive hydrodynamics
again show two effects. One of them is straightforward:
as this observable rises monotonically with time, for
larger initialization times, there is less time for (u ), to
build up, resulting in an underestimate. This effect is
cured in scaled hydrodynamics due to the early initial-
ization. At small opacities 4z1/s 2 10, we see an addi-
tional decrease of hydrodynamic results compared to
kinetic theory due to its inability to describe the late-
time free-streaming behavior. This is an effect that both
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FIG. 12. Opacity (1/s) dependence of the final (z = 4R) values of transverse energy dE/dn [top, cf. Eq. (13)], elliptic flow &,
[middle, cf. Eq. (14)] and transverse flow velocity (u ), [bottom, cf. Eq. (15)] in hybrid kinetic theory + viscous hydro (left) and
KgMPgST + viscous hydro simulations (right) when switching at different values of the inverse Reynolds number [cf. Eq. (16)]
(Re™!). = 0.8, 0.6, 0.4 and 0.2 plotted in different shades of red from light to dark. Results from simulations with switching times after
7 = 0.5R are plotted with smaller points (4+) and dashed lines. The results are compared to kinetic theory (black), scaled hydro (purple)
and the small opacity limits of an opacity-linearized result (blue) in the top two plots, the free-streaming result (blue, dashed) in the
bottom plot as well as the large opacity limit of scaled ideal hydro (gray, dashed), which scales as (17/s)* in the top plot. The red shaded
region shows the realistic values for QCD according to Bayesian estimates. The bottom part of each plot shows the ratios of all results to

those from kinetic theory.
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hydro schemes (based on naive and scaled initial con-
ditions) have in common.

B. Hybrid simulations

As described in Sec. V C, another way to bring hydro-
dynamic results into agreement with kinetic theory is to use
hybrid schemes switching from a kinetic theory based early
time description to hydrodynamics at later times. We tried
switching both at fixed times as well as at the first times
equilibration has proceeded to a given extent, which we
quantified by the inverse Reynolds number dropping to a
specific value. We also tested two different model descrip-
tions for early times: full kinetic theory and KgMPg@ST.
As described in the previous section, the time evolution
curves of all observables instantaneously change behavior
when the models are switched, such that switching too
early will be affected by the inaccurate description of
preequilibrium in hydrodynamics. We now want to quan-
titatively assess the accuracy of various switching schemes
as a function of opacity.

We first discuss results for the opacity dependence in
hybrid simulations with (Re~!')_-based switching, which
are plotted in Fig. 12. For early switching times on the
timescale of equilibration, hybrid results may reflect the
inaccurate preequilibrium behavior in hydrodynamics.
Of course, in this case, there is no scaling of the initial
condition to counteract this behavior. However, this also
means that these schemes do not suffer from discrepancies
due to an incomplete approach of a scaled initial condition
to kinetic theory behavior before the onset of transverse
expansion, and therefore tend to be more accurate than
scaled hydrodynamics at intermediate opacities, i.e. for
4zn/s ~ 3. However, results plotted with smaller crosses
and dashed lines were obtained in simulations with switch-
ing times larger than 0.5R, so in this case it is questionable
whether these schemes could be considered hybrid results,
as the crucial parts of the time evolution were actually
described in kinetic theory.

Going into more detail, hybrid results typically over-
estimate dE,/dny because of the hydrodynamic pre-
equilibrium increase after switching. ¢, is underesti-
mated, however, the hydrodynamic negative early time
trend is alleviated, such that results from kinetic theory +
viscous hydro are typically larger than scaled hydro
results. Hybrid results show a consistent underestimation
of (u,),, but on a relative scale this error is negligible.
This could be due to hydrodynamic flow velocities
typically being smaller than those in kinetic theory at
early times, causing a dip in (u,), relative to kinetic
theory after switching.

Comparing kinetic theory + viscous hydrodynamics in
the left column of the figure to KgMPgST + viscous
hydrodynamics in the right column, one obvious difference
is that, in the latter, some of the results for smaller opacities
are missing, because there the (Re~!).-based switching

times were too late to be reached with K¢MP¢ST.4 Where it
does work, it produces almost the same results for dE,/dn
as kinetic theory. The underestimation of (u ), is slightly
more severe in KgMPgST. It does seem to have a
systematic component on top of the one related to switch-
ing early. But the total deviation is still negligible. The
largest difference is seen in €,,, which is not built up at all in
KoMPgST simulations, thus there is a significantly larger
underestimation at smaller opacities, where a larger part of
the time evolution is described in KgMP@ST.

Next, we shift our attention to results from hybrid
schemes at fixed switching times 7, = 0.4 fm and
7, = 1 fm, which are presented in Fig. 13. As expected
from the discussion of the time evolution in Sec. V C, again
kinetic theory + viscous hydrodynamics yields perfectly
accurate results at large opacities 4z1/s < 1 and improves
on scaled hydrodynamics at intermediate opacities
47n/s ~ 3, but less so than for dynamically chosen switch-
ing times. The upshot is that hybrid schemes with fixed
switching times are applicable for arbitrarily small opac-
ities. However, here the results for the three tracked
observables show similar problems to those obtained in
naive hydrodynamics simulations discussed earlier in this
section. Due to incomplete equilibration at early switching
times, dE,, /dn increases after switching. &, suffers from the
early time negative trend in hydrodynamics but slightly less
than scaled hydrodynamics. (i), is again only slightly
underestimated in hybrid schemes when compared to
scaled hydrodynamics due to the different preequilibrium.
This is an improvement over naive hydrodynamics, as
instead of starting at late times with no flow velocity, the
early time buildup is described in kinetic theory. Both
schemes suffer equally from the inability of hydrodynamics
to describe flow velocities in the late time free-streaming
limit.

Also for fixed switching times, KgMP@ST -+ viscous
hydrodynamics results for dE,/dn and (u ), are in good
agreement with those obtained in kinetic theory + viscous
hydrodynamics simulations. We again see the effect of the
absence of ¢, buildup in KgMPg¢ST. Since we do not
increase the duration of time evolution in KgMP@ST,
the effect is not larger at small opacities 4zn/s 2 10. In
fact, here we see agreement with results from kinetic
theory + viscous hydrodynamics, as there is no significant
buildup of ¢, at early times. However, at large opacities
4zn/s <5, this buildup starts earlier, which is why
KoMPgST —+ viscous hydrodynamics results underestimate
the final values in these cases.

“For large evolution times, KeMP@ST crashes in the setup
stage when computing the Green’s functions. This is because they
are only implemented for a finite number of points in momentum
space and have to be convolved with a Gaussian smearing kernel
exp(—0c?|k|/2). But the Green’s functions scale in |k|(z — 7)
such that for too large of an evolution time this smearing is no
longer sufficient.
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FIG. 13. (Continued).

VII. CONCLUSIONS

In this work, we examined hydrodynamic and kinetic
theory simulations of hadronic collisions. Within a sim-
plified model setup based on RTA and using a fixed initial
profile that was obtained as an average of events in the
30—40% centrality class of Pb-Pb collisions, we scanned
the dynamical behavior on the whole range in interaction
rates as parametrized by the opacity 7 defined in Eq. (7),
which for our fixed profile is inversely proportional to shear
viscosity, 7 = 11.3/(4zn/s). This study was based on
results for the transverse energy dE,/dn, elliptic flow €,
radial flow (u,), and shear stress as measured via the
inverse Reynolds number (Re™!),.. At small opacities
4nn/s Z 20, kinetic theory agrees with results from a
linearization in opacity. Here, the system is too dilute
for hydrodynamics to be applicable, which was confirmed
quantitatively in Sec. VI A: the time evolution of transverse
energy, radial flow and shear stress is in significant
disagreement in hydrodynamic simulations compared to
kinetic theory. For large opacities 4z1/s < 0.1, in the limit
of high interaction rates, kinetic theory is expected to
converge to hydrodynamics. Our results confirm that the
two descriptions are in agreement after preequilibrium.
Going down to intermediate opacities, we found that for
suitable setups of hydrodynamics, results for final state
transverse energy, elliptic flow and radial flow are in good
agreement with kinetic theory up to shear viscosities
4zn/s <3 for the examined profile, which translates to
opacity values 7 2 4.

However, hydrodynamics is not suitable for describing
out-of-equilibrium behavior in the early preequilibrium
stage and the late time period where the microscopic
description of kinetic theory approaches a free-streaming
behavior. In both of these regimes, hydrodynamic results
are in quantitative disagreement with kinetic theory, which

FIG. 13. Opacity (/s) dependence of the final (r = 4R) values
of transverse energy dE,/dn [top, cf. Eq. (13)], elliptic flow &,
[middle, cf. Eq. (14)] and transverse flow velocity (u ) [bottom,
cf. Eq. (15)] in hybrid kinetic theory + viscous hydro (solid
lines) and KgMP@ST + viscous hydro simulations (dashed lines)
when switching at fixed times 7 = 0.4 fm (light red) and 7 =
1 fm (dark red). The results are compared to kinetic theory
(black), scaled hydro (purple) and the small opacity limits of an
opacity-linearized result (blue) in the top two plots, the free-
streaming result (blue, dashed) in the bottom plot, as well as to
the large opacity limit of scaled ideal hydro (gray, dashed), which
scales as (17/s)*° in the top plot. The red shaded region shows the
realistic values for QCD according to Bayesian estimates. The
bottom part of the plot shows the ratios of all results to those from
kinetic theory.

094013-27



AMBRUS, SCHLICHTING, and WERTHMANN

PHYS. REV. D 107, 094013 (2023)

can be seen at the level of final state observables, as discussed
in Sec. IV B. Omitting the preequilibrium period or naively
employing hydrodynamics to describe it will yield inaccurate
results. On the other hand, at late times where interactions
die out, these observables no longer build up and approach
constant values, such that hydrodynamic descriptions yield
similar results to kinetic theory. However, the late time free-
streaming stage does have an effect on radial flow, which is
underestimated in hydrodynamics.

We examined two different modified setups of hydro-
dynamic simulations that can alleviate problems with the
preequilibrium evolution. The first setup follows the idea
of an early initialization of hydrodynamics with a scaled
initial condition relative to kinetic theory to counteract
the differences in the preequilibrium evolution. These
differences are predicted locally based on insights from
Bjorken flow, which is accurate in systems with a timescale
separation of equilibration and the onset of transverse flow.
By construction, this setup yields accurate results at large
opacities 4zn/s < 3, but fails at smaller opacities, where
equilibration takes longer and is interrupted by transverse
expansion. The results obtained in this setup are presented
in Secs. VB and VIA.

The second setup is a hybrid simulation switching
from kinetic theory based descriptions at early times to
hydrodynamics for later times. In these schemes, as
described in Sec. VC, we saw an immediate change of
the time evolution behavior at the moment that we switch
the dynamical descriptions. Thus, the accuracy of hybrid
simulations depends on the extent to which the kinetic
theory and hydrodynamic descriptions of the system’s time
evolution have come into agreement by the time of the
switch. This approach to agreement between the two
descriptions is what we call hydrodynamization. We found
that this criterion can in practice be quantified via the
inverse Reynolds number. Figure 3 shows that the system is
partly hydrodynamized when Re~! = 0.8, significantly
hydrodynamized when Re~! = 0.6 and has reached almost
perfect agreement of the two descriptions at Re™! = 0.4.
The accuracy of hybrid simulations when switching at a
fixed value of (Re™!), can be estimated beforehand and is
almost independent of the opacity. As detailed in Sec. VI B,
results from simulations with late switching times are
accurate at high opacities 4zn/s <1 and can slightly
improve on our first setup at intermediate opacities
4zn/s ~ 3. At small opacities 4z5/s 2 20, (Re™!), does
not drop below 0.8, meaning the system does not equili-
brate enough for hydrodynamics to become applicable at
any point during the system’s evolution.

For the early time kinetic theory description in hybrid
models, we used both full kinetic theory and the compact
KoMPgST code. The latter uses a linearization scheme in
perturbations around local homogeneity to propagate the
energy-momentum tensor according to the Boltzmann equa-
tion under the relaxation time approximation (the original

version [109,110] is based on the QCD effective kinetic
theory [106]). We first tested the performance of KeMPgST
as detailed in Sec. IIIE and found that it can accurately
reproduce full kinetic theory results for transverse energy,
radial flow and isotropic shear stress, but due to the
linearization it significantly underestimates elliptic flow. It
is by construction limited to times on the order of 0.5R. In
hybrid simulations with switching times in this regime,
transverse energy and radial flow results reach similar
accuracy as when employing full kinetic theory. However,
the underestimation of elliptic flow causes discrepancies
when the switching time is non-negligible compared to the
timescale of transverse expansion. These shortcomings have
already been reported in the original KgMP@ST paper [136]
and will require further investigation in the future.

This work provides the baseline for analyses of hadronic
collisions in frameworks based on the microscopic dynam-
ics of kinetic theory. It is part of a series of recent efforts
[49,71,88,89,94] to push the practical applicability of these
dynamics in theoretical simulations. One important goal
that has yet to be reached is to improve the codes that
implement them in order to be able to also run event-by-
event simulations. At the moment, the tool that is closest
to fulfilling this goal is KgMP@ST, which we confirmed to
function properly for its intended use, but it is confined to
the preequilibrium phase of heavy-ion collisions.

Broadly speaking, our results confirm that in principle
hydrodynamics is the proper tool for describing midcentral
collisions, if and only if preequilibrium is described
correctly. Issues with this phase in hydrodynamic descrip-
tions can be alleviated by changing the interpretation of the
initial state in the way discussed in Sec. IV D. As alluded to
in Sec. IVA as well as in previous works [65,137,138],
appropriate changes to the evolution equations might
achieve similar improvements. If such changes are not
incorporated, we discussed in Sec. VI that hydrodynamic
results can be in significant disagreement with kinetic
theory. We also refer the interested reader to our companion
paper [102], where we extract a more general criterion for
the applicability of hydrodynamics and infer phenomeno-
logical conclusions for the description of the space-time
dynamics of high-energy collisions.

ACKNOWLEDGMENTS

We thank P. Aasha, N. Borghini, H. Elfner, A.
Mazeliauskas, H. Roch, A. Shark and U. A. Wiedemann
for valuable discussions. This work is supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) through the CRC-TR 211 “Strong-interaction
matter under extreme conditions”—Project No. 315477589
—TRR 211. V.E. A. gratefully acknowledges the support
through a grant of the Ministry of Research, Innovation and
Digitization, CNCS—UEFISCDI, Project No. PN-III-P1-
1.1-TE-2021-1707, within PNCDI III. C. W. was supported
by the program Excellence Initiative Research University of

094013-28



OPACITY DEPENDENCE OF TRANSVERSE FLOW, PRE ...

PHYS. REV. D 107, 094013 (2023)

the University of Wroctaw of the Ministry of Education and
Science. Numerical calculations presented in this work were
performed at the Paderborn Center for Parallel Computing
(PC2) and the Center for Scientific Computing (CSC) at the
Goethe-University of Frankfurt and we gratefully acknowl-
edge their support.

APPENDIX A: RELATIVISTIC LATTICE
BOLTZMANN IMPLEMENTATION DETAILS

The first step in applying the RLB method is the
parametrization of the momentum space, which we perform
using two sets of coordinates, namely the spherical (sub-
script s) and free-streaming (subscript fs) coordinates:

7"
(psv Uz;s) = <P T 7 > 5 (Ala)
p
TV,
(pfs’ vz;fs) = <PSAS, = ), (Alb)
T()AS

where A, = [1+ (5 - 1)22]"/? [139]. The azimuthal
0

paty
coordinate ¢, = arctan(p*/p*) is employed in both
parametrizations.

Due to the particularly simple nature of RTA, the
dynamics of the observables introduced in Sec. II are fully
described by the reduced distribution F, (x € {s,fs}),
obtained from the phase-space distribution f via

I/effﬂRZTO dEO -1 o
Fi= W (d—nl o dP*sz. (A2)

Using the nondimensionalization conventions introduced
around Eq. (19), the nondimensional function F =
F(7. X7, ¢, v,) satisfies

~ / ~ 1 ]
(6, =+ 1- visvj_ . VJ_ + +%vz,s> .7:5

_ 16[1}1;5(1 — v3)F]

T 0V

= —pv'u,T(F, - F),  (A3)

while F = F(7, X7, ¢, v,55) Obeys

| - L
<61+E 1—’UifSVJ_‘VJ_>ffS:—]/U”MMT(ffs—f?g),
S

(A4)

72

with A = [I — (1 —3)v%,]"/2. The equilibrium functions
F are given by

%08

FO_ptFa_ T
BEE T dg (vt )t

(AS)

where

v'u, = y(1—y/1—viv, -p)
1 7
:]/<1—Afs l—l)g;fsvl‘ﬂ>,

withy = u* = 1/4/1 — 8 being the local Lorentz factor. In
the above, # = f(cos ¢,.sing,) and v, = (cos@,,sing,)
are transverse-plane vectors.

Vanishing longitudinal pressure and azimuthal momen-
tum isotropy imply the following initial state for the
reduced distributions F:

(A6)

5(7)2;*)
2w

Fo(Z0. X1, @y, 0,0) = To€(X 1) (A7)
and depends only on the initial transverse energy distri-
bution dEY /dnd®x; = 7pey [see Eq. (2)]. Note that at
7 =19, A; = Ay = 1 and (py, Uz;fs) = (Ps, Uz;s)-

Due to the singular nature of the Dirac delta func-
tion 6(v,), Eq. (A7) cannot be achieved exactly with our
numerical approach. We instead employ the Romatschke-
Strickland distribution with anisotropy parameter &,

c _1
Sfrs = [CXP (/Ii_o 1+ 50”%) - 1} , (A8)

where &, = 0 corresponds to the isotropic Bose-Einstein

distribution, while &, — oo is required in order to achieve

Eq. (A7). The parameter Ay = Ay(xX | ) represents an energy
arctan /&, 1

scale satisfying
~1/4
., (A9)
Vo 1+ fo)

reducing to the initial temperature 7y when &, = 0. Thus,
the system is initialized according to

Ay = 2]/4T0(

7€ 5\, (arctan \/&, 1 )‘1
Fos = Fose = 201 + £y2? + .
0: ofs = (1+&ovz) ( @ 11é,

(A10)

We now summarize the characteristics and parameters
of our RLB solver. The advection operator v, -V, is
implemented using the upwind-biased finite-difference
fifth-order weighted essentially nonoscillatory (WENO-5)
scheme [125,140] (see Ref. [107] for details). The spatial
domain consists of a square box of size 16R centered on the
system’s center of mass and is discretized equidistantly
using S? cells. Periodic boundary conditions are employed
at the domain edges. When initializing the system, a
background value e = 10710 x %eref is added to the
energy density to avoid numerical underflow.
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TABLE III. Simulation parameters for the RLB solver, as
employed for the ranges of 4z5/s displayed in the left column.
The notation is explained in this appendix.

dmn/s S By tu 0, 0.x) T & P./Pr
0.01:05] 200 0.05 0.002 80  40(s) 106 20 0.08
(1:5] 100 0.02 0.005 40 200(s) 106 100 0.02

[10:1000] 100 0.1 0.005 40 1000(fs) 103 1000 0.002

The time stepping is performed by solving the equation
0.F, = L[#,F.(%)] using the third-order Runge-Kutta
scheme [125,141,142], as described in Ref. [107]. The
time step o7 is chosen dynamically as

&%(7) = min {%(§>M’M’&M . (Al

T 2

where max | (7 ) represents the maximum value of 75 (7, X, )
taken over the entire flow domain at time 7 = z/R, while the
values of (67/7)y and 67y are shown in Table TII.

The discretization of d¢, is done equidistantly using
Q, points (the employed values of Q, are summarized
in Table III).

The v,., degree of freedom is discretized using Q, values.
When employing the spherical coordinate v, these points
are chosen according to the Gauss-Legendre quadrature rules
as the roots of the Legendre polynomial of order O, i.e.
Py (v;) = 0. When v_ is employed, the discretization is
performed equidistantly at the level of the parameter

x = artanh(Av_.;), namely y; = (% — 1)artanhA. In this

paper, we take 1 — A = 107° (see Sec. IV.B of Ref. [71] for
more details).

As shown in Table III, the (s) and (fs) approaches are
employed when 4zn/s <5 and 4zn/s > 10, respectively.
Employing the (s) approach at larger values of 4zn/s
requires increasing Q,, otherwise the time evolution leads
to energy-momentum tensor configurations which are
incompatible with the Landau frame. Using O, = 200
gives reliable results for 4z7/s < 10. Because the compu-
tation of the force term involving d, F is quadratic with
respect to Q. (see Sec. IILE of Ref. [107] for details), the (s)
strategy becomes inefficient when Q, 2 200.

Conversely, the (fs) approach requires larger Q, as 7,/ 7
is increased (we ran all simulations up to 7y = 5R). Since in
the (fs) approach, the computational time scales linearly
with Q,, we employed Q, = 1000. With our choice of
parameters, this limits the lower value of 7, to 1073R,
which is insufficient to correctly capture the early time
dynamics of the system when 47zn/s < 1.

Finally, the choice of &, in preparing the initial state
depends on the v, resolution offered by the chosen
discretization. As &, — o0, the initial state becomes peaked

around v, = 0, hence the v, discretization must include
sufficient points around this value. We found that the
influence of the initial value of &, on the observables is less
significant at smaller values of 47#/s. Thus, we employed
progressively larger values of &, as we increased 7/ s, which
were compatible with the discretization of v,.,, as shown
in Table III.

APPENDIX B: NUMERICAL CODE COMPUTING
LINEAR ORDER RESULTS

In this appendix, we discuss the numerical code needed
for obtaining the linear order results discussed in Sec. III B.
Section B 1 discusses the conceptual setup of the code and
Sec. B2 deals with the details of how the integration is
performed.

1. Setup of the linear order code

The code is set up to compute the zeroth and first order
contributions to the energy-momentum tensor, which is
given in terms of the phase space density as

Veff B
et o [orrr

(B1)

For simplicity, observables that are nonlinear in 7" with
contributions from both zeroth and first order in the opacity
expansion were computed only to zeroth order.

The code is set up as follows. For an arbitrary initial
energy density distribution €((zg, X ), the free-streaming
energy momentum tensor is given as

7O —

d¢,
TO/ o L1t e(rg,x, —Azvy), (B2)

v
T 2t

where Az =7 —17,. The integral over ¢, is performed
numerically, using the same stencils for all entries to
prevent errors later on. Now, to go to first order in the
opacity expansion, we first have to compute the zeroth
order results for the rest frame energy density ¢(z, x| ) and
the flow velocity w”(z,x,), as they are required for
evaluating the RTA collision kernel. This is achieved by
numerical diagonalization of 7O,

As computed before [71], the first order correction to the
phase space distribution is given as an integral of the zeroth
order collision kernel:

C[fO
[pf ] (T/’X/J_’ pL,yl - ’1)’

f(l>(T’ X,PpL,y— ’7) = /TdT/
7o

(B3)

where f(¥) is the free-streaming solution given in Eq. (24).

The primes on the variables indicate the use of free-
streaming coordinates,
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x| =x; —vi(r, 7,y —n),

y' = n + arcsinh (% sinh(y — ;7)) , (B4)

with #(z, 7',y — ) being given in Eq. (25).
From this, the first order correction to the energy-
momentum tensor is obtained as

- l/eft / / d ﬂ / /
yp'p
(2” PL

ClfO x' . p..y —n)
pr(pL.y —n)

, (B5)

where [, = [ d’p ;. Asitturns out, the observables that are

to be computed to first order in opacity depend only on
transverse integrals of the components of 7%/. Thus, we
need to perform a 6D integral, which can be done in part
analytically, reducing the complexity of the numerical
integration. For further details of the analytical prepara-
tory groundwork for the numerical implementation, see
Appendix B 2.

The observables are now computed from these results in
the following way. In the case of the transverse-plane
energy, we have

dE
_”_T/ (T11—|—T22),
dn X1

—T/ (T(O)]l +T(0)22+T(1)H +T(])22). (B6)
XL

As elliptic flow is given as a quotient of two transverse
integrals of components of 7#” where the numerator
vanishes at zeroth order, the first order result is given as

Sy, Jo (T =T% +2iT")
p fo(T” +T22) ’
f (T(l)ll _ T(1)22 4 2lT(1)12)
X1

= [ (1O 70022y - (B7)
€L

Both of these observables depend on the transverse integral
of TO 1 7022 which using (B2) can be straightfor-
wardly evaluated to

1dEY,

/ T(O)ll + T(0)22 —
X

dy (B8)
In particular, the quantity dE,,./dy, which we introduced as
the analog of dE | /dy = fo (p*p.), is in fact identical to
dE | /dn to zeroth order. Furthermore it is constant in time,
so only the first order correction has to be computed. We
furthermore compute zeroth order results for the average
transverse flow velocity and the average inverse Reynolds
number as

(uy) = a0 , (B9)
/ L (0
<Re—1> = fXL 6”(0)” ﬂ’(‘”)
In e
6T(O)/u/T(g) _24 €(0) 2
:f’ﬁ\/ w5 ). (B10)

fx e

2. Analytical and numerical integration in the
computation of linear order results

As discussed in the previous appendix, obtaining numeri-
cal results for the linear order term in the energy momentum
tensor requires the computation of a 6D integral. In this
appendix, we explain what part of this integral is performed
analytically and give the specific form of the remaining
integral which the code computes numerically.

We start from the expression in Eq. (B5) for the purely
spatial components of the energy momentum tensor,

row =2 [ [avp)
KL (27T)3 X, JPL e

T C (0)
x/ dr’%(fﬂxl,l’p)’/—’?)’ (B11)

70

where the free-streaming coordinates x/, and y' were
introduced in Eq. (B4).

The integration variables can be changed from (x,,y) to
(x',,y), where

h(y —1n)
dyd?x, = LN TN 4 B12
ya X 7 cosh(y — 1) yarX,, ( )
1+ (Z)%sinh?(y' = 7)
—~ \/ ydle. (B13)

7 cosh(y -7)
Right away and from this point on, we will drop the primes
on all coordinates except 7’ for convenience. The specific
form of the RTA kernel is

p"u

C[f] = (f feq) (B14)
where 7z = 5(57/s)T~! is the relaxation time and
ptu, =ypileosh(y—n) —v.-pl.  (BIS)

where v, =p,/p, = (cosg,,sing,) is a unit vector
in the transverse plane. Similarly, f=u,/u" =
p(cos ¢,,sing,) is the transverse-plane fluid velocity
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and y = 1/4/1 — f? is the local Lorentz factor. Plugging
Egs. (B13)—(B15) into Eq. (B11), we arrive at

L= o [
X1 PL

VLVL y[cosh(y —n) — v, - B
TR \/1 '

ij_( feq)(T’XL’pJ_’y_’/l)-

2 sinh?(y — )
(B16)

In the above, all macroscopic quantities 7, y and f are

computed from the zeroth order solution, f(©
It is convenient to consider separately the contributions

involving £ and f, oq- In the case of the former, we plug in

2 y—n
fOx.ply—n = (27)°3y =)
Vetf  TPL
dN
X -V, Az, .
(B17)
Using the relation
2
e(t9. X, — v, A1) = a/dlu Pi
dn,
7 0 4 - A ) )
X dzde2pldy (XL VAT pi)
(B18)
it is not difficult to obtain
I =
X X TR
x Vv (1 =v, -ple(zg,x, — v, A7), (B19)

where y, 7z and f are evaluated at (7/,x ).
For the equilibrium buildup contribution, we can use the

property

Veff /°° (P” > 1 €
pipife =————. (B20)
(277)3 0 Hea\ T 4”(P”%/PL)4
leading to
i t/dr (0)
JE A B A 1
X X, J1y T TR
where
dy do, p“u /m)‘3 ,
o 2 1V
\/1 2 sinh?(y — )
=83, + 3p ﬁ’15/2- (B22)

In the above, we introduced

[Coshz(y n) -

I, — l/wd
N

It is understood that, in Eq. (B21), the quantities e, TRy Y
and F¢ are evaluated at (7/,x ).

Altogether, T()/ can be computed using the following
formula:

[ foe ] /e

—7e(ro,xl —v, A7 )vavL(l A ﬂ)}

(B23)

)2 sinh?(y —77)

(B24)

and F' éﬁl are evaluated at (7/,x ). Note

that the zeroth order results for the flow velocity ufto) and

the rest frame energy density ¢(©) entering 7z via the
temperature have been computed in the first step of
diagonalizing T(©#. Thus, all quantities appearing in the
above integrand are known and the remaining 4D integral
can be performed numerically.

where 7, g, B, €©)

APPENDIX C: OVERVIEW OF TIME
EVOLUTION AT DIFFERENT OPACITIES

In Sec. VB we compared the time evolution of the
tracked observables in kinetic theory and scaled viscous
hydro and pointed out some qualitative differences for
results at three different opacities. To get a better over-
view of the opacity dependence in the time evolution, we
can also compare results coming exclusively from kinetic
theory on a wide range in opacity. This comparison for the
time evolution of transverse energy dE,./dy, elliptic flow
€,, transverse flow velocity (u, ), and inverse Reynolds
number (Re™!). is presented in Fig. 14 for opacities
ranging from 4zn/s = 0.01 to 1000.

For very small opacities 4zn/s ~ 1000, the system is
close to free streaming and transverse energy dE,/dy is
almost constant. At larger opacities, due to more work
being performed against the longitudinal expansion,
dE,/dn decreases by a larger total amount. The opacity
also sets the timescale for this cooling, as it sets in earlier
for larger opacities.

Elliptic flow ¢, stays close to zero at small opacities
4zn/s ~ 1000 and rises monotonically with opacity at each
point in time. Qualitatively, the curves look the same at all
opacities, with a buildup period at times 0.1R <7 < 2R
and almost constant behavior afterwards. The onset of
this buildup is slightly earlier at larger opacities, but this
difference is negligible.

As expected, the transverse flow velocity (u ), starts
with the same early time linear behavior for all opacities.
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FIG. 14. Time evolution of transverse energy dE,/dy [top left, cf. Eq. (13)], elliptic flow €, [top right, cf. Eq. (14)], transverse flow
velocity (u, ), [bottom left, cf. Eq. (15)] and inverse Reynolds number (Re~!), [bottom right, cf. Eq. (16)] in kinetic theory for a wide
range of opacities (17/s) plotted in different colors. The plot of transverse flow velocity (u_ ). also shows the preflow result (i, ), corty =
0.614A7/R according to Eq. (77) and the late preflow result (u ), = 0.658A7/R according to Eq. (79) (see also Table II).

The proportionality constant with elapsed time A7 = 7 — 7,
can be computed according to Eq. (77) and evaluates to
(u,), = 0.614A7/R. The larger the opacity, the earlier the
system starts to deviate from this behavior. For the largest
opacities 4zn/s < 0.1, the system is in its local Bjorken
flow equilibrium state long enough for early time contri-
butions to become negligible, such that it transitions to
the late time preflow proportionality law. According to
Eq. (79), in this regime, the flow velocity is given by
(1), = 0.658A7/R. All curves exhibit their strongest rise
on the timescale of transverse expansion, 7 ~ R. The rise is
stronger at smaller opacities and in all cases contributes the
most to the buildup, such that the final (z = 4R) values of
transverse flow velocity are also larger at smaller opacities.

The inverse Reynolds number (Re™!)_ stays almost
constant at early times for small opacities 47n/s ~ 1000,
but then slightly increases due to transverse expansion. At
large enough opacities 4z57/s < 10, interactions equilibrate
the system and decrease its value. This process sets in

earlier at larger opacities and brings the value of the inverse
Reynolds number down to almost zero for the largest
opacities 4zn/s < 0.05. In these cases, the value stays
close to zero even during transverse expansion. At slightly
smaller opacities 0.05 < 4zn/s < 1, there is a small rise in
inverse Reynolds number due to transverse expansion.
Howeyver, this sets in later than in the case of the smallest
opacities. The curves for intermediate to small opacities
1 <4an/s < 100 exhibit a bumpy behavior during trans-
verse expansion.

APPENDIX D: TIME EVOLUTION IN
KgMPgST + VISCOUS HYDRO SIMULATIONS

In Sec. VC we considered hybrid simulation frame-
works as a solution for alleviating problems with preequi-
librium in hydrodynamic simulations and discussed the
time evolution mainly in hybrid kinetic theory 4 viscous
hydro simulations. The alternative hybrid framework using

094013-33



AMBRUS, SCHLICHTING, and WERTHMANN

PHYS. REV. D 107, 094013 (2023)

4mn/s = 0.5 4mn/s = 10
‘ Kinetic theory - ‘
1200 F Scaled hydro —— 1200 1200
Switching
_ éRe*igf =08 — | _ _
= i Re =06 — | = | == |
g 1000 {Re'}: — 04 <) 1000 & 1000
= 7=0.4fm/c —~ =
= 7=10fm/c = =
& 800 f & 800t & B0 p
= = =
= e ]
5 . = 5
g 600 | g 600 f g 600 |
5] 5] S|
400 | 400 | 400
0.001 0.01 0.1 1 0.01 1 1
Time 7/R Time 7/R
‘ 0.25
‘U& l:j& ma'
£ S S
= = =
£ = £
) 5] )
0.05 |
0
. 0.01 0.1 1
Time 7/R Time 7/R
1 1 1
L 09} 09} . 09F
< < <
-~ —~ ~
x ! =
e T oot g oost
o o o
2 2 ot} 2 o7}
[} () ()
B3 > B3
:é E pre-flow E pre-flow
= = 06 = 06
0.5 s s 0.5 s 05 s s
0.001 0.01 0.1 1 0.01 . 1 0.01 0.1 1
Time 7/R Time 7/R Time 7/R
FIG. 15. Time evolution of transverse energy dE/dy [top, cf. Eq. (13)], elliptic flow &, [middle, cf. Eq. (14)] and transverse flow

velocity (u, ), [bottom, cf. Eq. (15)] in hybrid KeMP@ST + viscous hydro simulations at opacities 4zn/s = 0.5 (left), 3 (middle) and
10 (right) when switching at different values of the inverse Reynolds number [cf. Eq. (16)] (Re‘1 )e = 0.8 (light red), 0.6 (red) and 0.4
(dark red) or fixed time 7 = 0.4 fm (light green) and 7 = 1 fm (dark green). The switching points are marked with filled symbols. The
time axis is scaled logarithmically. The plots showing elliptic flow €, feature an inset plot of the same quantity plotted in log-log scale.
Again, the flow velocity plots also show the preflow result (u, ), = 0.614Az/R according to Eq. (77).

KgMPgST instead of full kinetic theory for the preequili-
brium evolution has some limitations but, when applicable,
yields results of similar accuracy. The time evolution of
transverse energy dE, /dp, elliptic flow &, and transverse
flow velocity (u,), in K6MP@ST + viscous hydro simu-
lations switching at fixed time z, or fixed value of the
inverse Reynolds number (Re™!), is shown in Fig. 15 for
three different opacities 4zn/s = 0.5, 3 and 10.

The values of dE,/dy at the time of switching are
reproduced by KeMPgST almost perfectly. As one would

expect, the time evolution afterwards follows a very simi-
lar behavior to kinetic theory + viscous hydrodynamics,
including the inaccuracies of hydrodynamic preequilibrium
when switching too early.

As KgMPgST produces almost no elliptic flow, its value at
switching time is close to zero. But the buildup during the
hydro part of the simulation proceeds similarly to other
simulation schemes, such that the discrepancy to kinetic
theory in the final state (z = 4R) is of similar size to the one at
switching time. It is therefore larger at larger switching times.
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The values of transverse flow velocity (u,). are in
KgMPgST slightly underestimated for small switching times
and slightly overestimated for large switching times. After
switching, the curves seem to bend towards the hydro-
dynamic curve. This bending is mainly due to the division
by Az. (u ), in the hydro phase of hybrid simulations builds

up similarly as in pure hydrodynamic simulations. The

contributions from later times are much larger than those
at early times, such that the discrepancy from early times

becomes negligible. At late times, results from all switching

times underestimate (u ). by almost the same amount,
similarly to hybrid kinetic theory + viscous hydro simulations.
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