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In the framework of the quark delocalization color screening model, we search for the double-charm and
double-strange tetraquark Xccs̄ s̄ with two structures: Qq̄ −Qq̄ and QQ − q̄ q̄. The bound-state calculation
shows that there is no bound state in the present work. However, by applying a stabilization calculation and
coupling all channels of both structures, two new resonance states with IJP ¼ 00þ are obtained, one with
mass and width around 4250 and 6 MeV, respectively, and another one with mass and width around 4300
and 19 MeV, respectively. Both of these states are more likely to be the compact resonance states. Although
no significant signals were observed in the present experiment at the Belle Collaboration, there are still
some structures around 4.3 GeV in the distributions of MDþ

s D
þ
s
and MD�þ

s D�þ
s
. We suggest that the

experiment can be further tested with a larger amount of data.
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I. INTRODUCTION

Over the past decades, dozens of exotic hadron states
have been reported in experiments worldwide. These states
provide us with an ideal platform to deepen our under-
standing of nonperturbative quantum chromodynamics
(QCD). Although none of the exotic states is now definitely
confirmed by experiment, more and more theoretical work
has been done to investigate the exotic states. Searching for
new exotic states is one of the most significant research
topics in hadron physics.
The hidden-charm and hidden-strange tetraquark, which

is composed of csc̄ s̄, is one type of exotic states. In 2009,
the CDF Collaboration reported the Xð4140Þ in the J=ψϕ
invariant mass distribution [1]. Later, the Xð4140Þ was
successively observed by other experiments, such as the
Belle [2], CMS [3], D0 [4], BABAR [5], and LHCb [6]
Collaborations. In 2010, a narrow resonance Xð4350Þ was
observed in the γγ → J=ψϕ process by the Belle

Collaboration [2]. In 2016, the LHCb Collaboration
reported four exotic states Xð4140Þ, Xð4274Þ, Xð4500Þ,
and Xð4700Þ from the amplitude analysis of the
Bþ → J=ψϕKþ decays [7,8]. In 2017, the Xð4274Þ was
reported by the CDF Collaboration in the process of Bþ →
J=ψϕKþ [9]. In 2020, the LHCb Collaboration reported a
new state χc0ð3930Þ, which is just below the D−

s Dþ
s

threshold [10,11]. In 2021, two new hadron states
Xð4685Þ and Xð4630Þ were reported with the help of
the improved full amplitude analysis of the Bþ → J=ψϕKþ
decay by the LHCb Collaboration [12].
These experimental developments aroused great interest

in studying the hidden-charm and hidden-strange tetra-
quarks. In Ref. [13], Liu et al. investigated the tetraquark
composed of csc̄s̄ and found that the Xð4350Þ, Xð4500Þ,
and Xð4700Þ could be explained as the compact tetraquarks
with IJP ¼ 00þ and the Xð4274Þ was explained as a
compact tetraquark with IJ ¼ 01þ. In the framework of
the chiral quark model, Yang and Ping found that the
Xð4274Þ could be the csc̄s̄ tetraquark with JPC ¼ 1þþ
and the Xð4350Þ could be assigned as a candidate of the
compact tetraquark with JPC ¼ 0þþ. For the Xð4700Þ,
it is explained as the 2S radial excited tetraquark with
JPC ¼ 0þþ [14]. In Ref. [15], the csc̄ s̄ tetraquarks were
studied within the QQ − q̄q̄ configuration by using the
QCD sum rule. They claimed that the Xð4140Þ and
Xð4274Þ could be assigned as the S-wave csc̄ s̄ tetraquarks
with opposite color structures and both the Xð4500Þ and
Xð4700Þ were the D-wave csc̄s̄ tetraquarks with opposite
color structures, too. More results and discussions are given
in Refs. [16–22].
Recently, the BESIII Collaboration reported a new

structure Zcsð3985Þ− near the D−
s D�0=D�−

s D0 thresholds
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in the processes of eþe− → KþðD−
s D�0 þD�−

s D0Þ. The
mass and width of this state are (3982.5þ1.8

−2.6 � 2.1) and
ð12.8þ5.3

−4.4 � 3.0Þ MeV, respectively [23]. From the produc-
tion mode, the minimum quark component of Zcsð3985Þ−
is csc̄ ū, so it is the first candidate of the charged
hidden-charm tetraquark state with strangeness. Later, the
LHCb Collaboration reported two new states Zcsð4000Þþ
and Zcsð4220Þþ with the quark content of cuc̄s̄ decaying to
the J=ψKþ [12]. The decay widths of these two states
are Γ ¼ 131� 15� 26 MeV and Γ ¼ 233� 52þ97

−73 MeV,
respectively. Obviously, the masses of Zcsð3985Þ− and
Zcsð4000Þþ are close, but the decay widths are largely
different. These observations immediately stimulated a lot
of theoretical studies of the open-strange and hidden-charm
tetraquarks [24–39]. Some works showed that Zcsð3985Þ−
and Zcsð4000Þþ are the same state [40,41], while some
indicated that they are not the same state [29,42–44].
Inspired by the study progress of the hidden-charm

and hidden-strange tetraquarks and the open-strange and
hidden-charm tetraquarks, it is natural to investigate the
existence of the open-charm and open-strange tetraquarks.
Very recently, the Belle Collaboration searched for the
double-heavy tetraquark state candidates Xccs̄̄s decaying to
Dþ

s Dþ
s and D�þ

s D�þ
s , but no significant signals were

observed [45]. In Ref. [46], the double-charm and double-
strange tetraquarks ccs̄s̄ were studied within the chiral
quark model, and some resonance states with IJP ¼ 00þ
and 02þ were obtained. In Ref. [47], the D�þ

s D�þ
s systems

with IJP ¼ 00þ and 02þ were studied in a coupled channel
unitary approach, but no bound state was found because of
the strong repulsion.
As is commonly believed, QCD is the fundamental

theory of the strong interaction. However, the low-energy
physics of QCD, such as hadron structure, hadron-hadron
interactions, and the structure of multiquark systems, is
much harder to calculate directly from QCD. The quark
delocalization color screening model (QDCSM), which
was developed in the 1990s with the aim of explaining the
similarities between nuclear and molecular forces [48], is

one of the effective approaches for studying multiquark
systems. Two new ingredients were introduced: quark
delocalization (to enlarge the model variational space to
take into account the mutual distortion or the internal
excitations of nucleons in the course of their interactions,
the distortion of wave functions in the existence of other
nucleons is also considered in the quark-meson-coupling
model [49]) and color screening (assuming the quark-quark
interaction dependent on quark states aimed to take into
account the QCD effect which has not yet been included
in the two-body confinement and effective one-gluon
exchange). This model has been applied to the study of
the dibaryons [50,51], pentaquarks [52,53] and some
tetraquark systems [13]. It is also interesting to extend
this model to study the open-charm and open-strange
tetraquarks. As the first step, we investigate the existence
of the double-charm and double-strange tetraquarks ccs̄ s̄
in this work. Different structures and the effect of channel
coupling are considered.
The structure of this paper is as follows. Section II gives

a brief description of the quark model and wave functions.
Section III is devoted to the numerical results and dis-
cussions. The summary is shown in the last section.

II. MODEL AND WAVE FUNCTIONS

A. The QDCSM

In this paper, we use the QDCSM to investigate the ccs̄ s̄
tetraquark system. The details of the QDCSM can be found
in Refs. [48,50,51]. Here, we just present the Hamiltonian
of the model:

H ¼
X4
i¼1

�
mi þ

p2
i

2mi

�
− TCM

þ
X4
j>i¼1

ðVCON
ij þ VOGE

ij þ VOBE
ij Þ; ð1Þ

VCON
ij ¼

8<
:

−acλci · λcjðr2ij þ a0ijÞ; if i; j in the same cluster;

−acλci · λcj
�
1−e

−μijr
2
ij

μij
þ a0ij

�
; otherwise;

ð2Þ

VOGE
ij ¼ 1

4
αsλci · λ

c
j

�
1

rij
−
π

2
δðrijÞ

�
1

m2
i
þ 1

m2
j
þ 4σi · σj

3mimj

��
;

ð3Þ

VOBE
ij ¼ VηðrijÞ½ðλ8i · λ8jÞ cos θP − ðλ0i · λ0jÞ sin θP�; ð4Þ

VηðrijÞ ¼
g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η −m2

η
mη

×

�
ðσi · σjÞ

�
YðmηrijÞ −

Λ3
η

m3
η
YðΛηrijÞ

�	
; ð5Þ

where TCM is the kinetic energy of the center of mass; VCON
ij

and VOGE
ij are the confinement and one-gluon-exchange
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interactions, respectively; and VOBE
ij is the Goldstone-boson

exchange interaction. In Eq. (2), the μij is the color
screening parameter, which is determined by fitting the
deuteron properties, NN scattering phase shifts, and NΛ
and NΣ scattering phase shifts, with μuu ¼ 0.45 fm−2,
μus ¼ 0.19 fm−2, and μss ¼ 0.08 fm−2, satisfying the rela-
tion μ2us ¼ μuuμss. When extending to the heavy-quark
sector, we found that the dependence of the parameter μcc is
not very significant in the calculation of the Pc states [52]
by taking it from 0.0001 to 0.01 fm−2. So here we take
μcc ¼ 0.01 fm−2. Then μsc and μuc are obtained by the
relation μ2 ¼ μssμcc and μ2 ¼ μuuμcc, respectively. Here,
we focus on the S-wave ccs̄ s̄ states, so the tensor force
interaction is not included. The VOGE

ij can be briefly written
as Eq. (3), where the αs is the quark-gluon coupling
constant. For the VOBE

ij , there are no π and K meson
exchanges in the ccs̄ s̄ system. So, we use only the η
exchange here. In Eq. (5), the YðxÞ ¼ e−x=x is the standard
Yukawa function; gch is the coupling constant for chiral
field, which is determined from the NNπ coupling constant
through

g2ch
4π

¼
�
3

5

�
2 g2πNN

4π

m2
u;d

m2
N
: ð6Þ

The other symbols in the above expressions have their
usual meanings. All model parameters, which are deter-
mined by fitting the meson spectrum, are from the work of
the cc̄ss̄ system [13].

B. Wave function

The resonating group method (RGM) [54], a well-
established method for studying a bound state or a
scattering problem, is used to calculate the energy of all
these states in this work. The wave function of the four-
quark system is of the form

Ψ4q ¼ A½½ΨAΨB�½σ�IS ⊗ χðRÞ�J: ð7Þ

The symbol A is the antisymmetrization operator. For the
ccs̄ s̄ system, we label two c quarks as quarks 1 and 3 and
two s̄ as 2 and 4. Then, A ¼ 1 − P13 − P24 þ P13P24.
½σ� ¼ ½222� gives the total color symmetry, except that all
other symbols have the usual meanings. ΨA and ΨB are the
two-quark cluster wave functions:

ΨA ¼
�

1

2πb2

�
3=4

e−ρ
2
A=ð4b2ÞηIASAχ

c
A; ð8Þ

ΨB ¼
�

1

2πb2

�
3=4

e−ρ
2
B=ð4b2ÞηIBSBχ

c
B; ð9Þ

where ηIASA (ηIBSB) represent the multiplied wave functions
of flavor and spin of cluster A (B). χcA (χcB) are the internal

color wave functions of cluster A (B). Different Jacobi
coordinates are defined for different structures. For the
meson-meson configuration (cs̄ − cs̄), the Jacobi coordi-
nates are defined as

ρA ¼ r1 − r2; ρB ¼ r3 − r4;

RA ¼ m1r1 þm2r2
m1 þm2

; RB ¼ m3r3 þm4r4
m3 þm4

;

R ¼ RA −RB;

RC ¼ m1r1 þm2r2 þm3r3 þm4r4
m1 þm2 þm3 þm4

: ð10Þ

For the diquark-antidiquark configuration (cc − s̄ s̄), the
Jacobi coordinates are defined as

ρA ¼ r1 − r3; ρB ¼ r2 − r4;

RA ¼ m1r1 þm3r3
m1 þm3

; RB ¼ m2r2 þm4r4
m2 þm4

;

R ¼ RA −RB;

RC ¼ m1r1 þm2r2 þm3r3 þm4r4
m1 þm2 þm3 þm4

; ð11Þ

From the variational principle, after variation with
respect to the relative motion wave function χðRÞ ¼P

L χLðRÞ, one obtains the RGM equation

Z
HðR;R0ÞχðR0ÞdR0 ¼ E

Z
NðR;R0ÞχðR0ÞdR0; ð12Þ

where HðR;R0Þ and NðR;R0Þ are the Hamiltonian and
norm kernels, respectively. By solving the RGM equation,
we can get the energies E and the wave functions. In fact, it
is not convenient to work with the RGM expressions. Then,
we use the Gaussian bases to expand the relative motion
wave function χðRÞ, respectively:

χðRÞ ¼ 1ffiffiffiffiffiffi
4π

p
�

1

πb2

�3
4
X
i;L;M

Ci;L

×
Z

e−
1

2b2
ðR−SiÞ2YLMðŜiÞdŜi; ð13Þ

where Si is the separation of two reference centers and
plays the role of the generator coordinate in the model; Ci;L

is the expansion coefficient. After the inclusion of the
center of mass motion,

ΦCðRCÞ ¼
�

4

πb2

�
3=4

e−
2R2

C
b2 ; ð14Þ

the ansatz [Eq. (7)] can be rewritten as
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Ψ4q ¼ A
X
i;L;M

Ci;L

Z
dΩSiffiffiffiffiffiffi
4π

p
Y2
α¼1

ϕαðSiÞ
Y4
β¼3

ϕβð−SiÞ

× ½½ηIASAηIBSB �ISYLMðSiÞ�J½χcAχcB�½σ�; ð15Þ

where ϕαðSiÞ and ϕβð−SiÞ are the single-particle orbital
wave functions with different reference centers:

ϕαðSiÞ ¼
�

1

πb2

�
3=4

e−
1

2b2
ðrα−μAB

MA
SiÞ2 ;

ϕβð−SiÞ ¼
�

1

πb2

�
3=4

e−
1

2b2
ðrβþμAB

MB
SiÞ2 : ð16Þ

Here, μAB ¼ MAMB
MAþMB

; MA ¼ m1 þm2 and MB ¼ m3 þm4

for the cs − cs̄ structure, and MA ¼ m1 þm3 and MB ¼
m2 þm4 for the cc − s̄ s̄ structure. With the reformulated
ansatz [Eq. (15)], the RGM equation (12) becomes an
algebraic eigenvalue equation:

X
j;L

Cj;LH
L;L0
i;j ¼ E

X
j

Cj;L0NL0
i;j; ð17Þ

where HL;L0
i;j and NL0

i;j are the Hamiltonian matrix elements
and overlaps (without the summation over L0), respectively.
By solving the generalized eigenproblem, we can obtain the
energies of the four-quark systems E and corresponding
expansion coefficient Cj;L. Finally, the relative motion
wave function between two clusters can be obtained by
substituting Cj;L into Eq. (13). Besides, the overlaps and
Hamiltonian matrix elements can be used to calculate the
effective potential. The effective potential between two
mesons is defined as VðSiÞ ¼ EðSiÞ − Eð∞Þ, where EðSiÞ
is the energy of the system with the separation Si of two
reference centers, and EðSiÞ ¼ Hi;i=Ni;i, where Ni;i and
Hi;i are overlaps and Hamiltonian matrix elements with the
separation Si, respectively.
In QDCSM, the quark delocalization is achieved by

writing the single-particle orbital wave function as a linear
combination of the left and right Gaussian functions, the
single-particle orbital wave functions used in the ordinary
quark cluster model:

ψαðSi; ϵðSiÞÞ ¼ ðϕαðSiÞ þ ϵðSiÞϕαð−SiÞÞ=NðϵðSiÞÞ;
ψβð−Si; ϵðSiÞÞ ¼ ðϕβð−SiÞ þ ϵðSiÞϕβðSiÞÞ=NðϵðSiÞÞ;

NðϵðSiÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2ðSiÞ þ 2ϵðSiÞe−s2i =4b2

q
: ð18Þ

The ϵðSiÞ is determined variationally by the dynamics of
the multiquark system itself rather than an adjustable one,
which can make the system choose the favorable configu-
ration in the interacting process.
The flavor, spin, and color wave functions are con-

structed in the following part. In this work, the flavor wave

function for the tetraquark system we investigate is ccs̄ s̄.
Different structures are obtained according to different
coupling sequences. For the Qq̄ −Qq̄ structure, the cou-
pling sequence is

χf1m ¼ cs̄ − cs̄: ð19Þ

For the QQ − q̄ q̄ structure, the coupling sequence is

χf1d ¼ cc − s̄ s̄ : ð20Þ

For the spin wave functions of the Qq̄ −Qq̄ structure,
first, we construct the two-body spin wave functions as

χ1σ11 ¼ αα; χ2σ10 ¼
ffiffiffi
1

2

r
ðαβ þ βαÞ;

χ3σ1−1 ¼ ββ; χ4σ00 ¼
ffiffiffi
1

2

r
ðαβ − βαÞ: ð21Þ

Then the spin wave functions of theQq̄ −Qq̄ structure can
be obtained by coupling the wave functions of two clusters:

ψ1
0 ¼ χ4σ00χ

4
σ00 ;

ψ2
0 ¼

ffiffiffi
1

3

r �
χ1σ11χ

3
σ1−1 − χ2σ10χ

2
σ10 þ χ3σ1−1χ

1
σ11

�
;

ψ3
1 ¼ χ4σ00χ

1
σ11 ;

ψ4
1 ¼ χ1σ11χ

4
σ00 ;

ψ5
1 ¼

ffiffiffi
1

2

r �
χ1σ11χ

2
σ10 − χ2σ10χ

1
σ11

�
;

ψ6
1 ¼ χ1σ11χ

1
σ11 : ð22Þ

For the QQ − q̄ q̄ structure, the spin wave functions are the
same as the Qq̄ −Qq̄ structure.
Finally, for the color wave function, the two structures

are much different. The color wave function for a Qq̄
cluster is

χ1½111� ¼
ffiffiffi
1

3

r
ðrr̄þ gḡþ bb̄Þ: ð23Þ

Then the color wave function for the Qq̄ −Qq̄ structure is

ψc1 ¼ χ1½111�χ
1
½111�: ð24Þ

However, the situation is even more complicated for the
QQ − q̄q̄ structure. We construct the color wave function
for the QQ and q̄q̄ clusters first. The color wave functions
of the QQ clusters are
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χ1½2� ¼ rr; χ2½2� ¼
1ffiffiffi
2

p ðrgþ grÞ; χ3½2� ¼ gg;

χ4½2� ¼
1ffiffiffi
2

p ðrbþ brÞ; χ5½2� ¼
1ffiffiffi
2

p ðgbþ bgÞ;

χ6½2� ¼ bb; χ7½11� ¼
1ffiffiffi
2

p ðrg − grÞ;

χ8½11� ¼
1ffiffiffi
2

p ðrb − brÞ; χ9½11� ¼
1ffiffiffi
2

p ðgb − bgÞ; ð25Þ

and the color wave functions of the q̄ q̄ clusters are

χ1½22� ¼ r̄ r̄; χ2½22� ¼ −
1ffiffiffi
2

p ðr̄ ḡþḡ r̄Þ; χ3½22� ¼ ḡ ḡ;

χ4½22� ¼
1ffiffiffiffiffi
22

p ðr̄ b̄þb̄ r̄Þ; χ5½22� ¼ −
1ffiffiffi
2

p ðḡ b̄þb̄ ḡÞ;

χ6½22� ¼ b̄ b̄; χ7½211� ¼
1ffiffiffi
2

p ðr̄ ḡ−ḡ r̄Þ;

χ8½211� ¼ −
1ffiffiffi
2

p ðr̄ b̄−b̄ r̄Þ; χ9½211� ¼
1ffiffiffi
2

p ðḡ b̄−b̄ ḡÞ: ð26Þ

Then the color wave functions of QQ − q̄ q̄ structure are
shown as

ψc1 ¼
ffiffiffi
1

6

r h
χ1½2�χ

1
½22� − χ2½2�χ

2
½22� þ χ3½2�χ

3
½22�

þ χ4½2�χ
4
½22� − χ5½2�χ

5
½22� þ χ6½2�χ

6
½22�

i
;

ψc2 ¼
ffiffiffi
1

3

r h
χ7½11�χ

7
½211� − χ8½11�χ

8
½211� þ χ9½11�χ

9
½211�

i
: ð27Þ

Finally, we can acquire the total wave functions by
substituting the wave functions of the orbital, the spin, the
flavor, and the color parts into Eq. (7) according to the
definite quantum number of the system.

III. RESULT AND DISCUSSION

In this work, we investigate the double-charm and
double-strange tetraquark system ccs̄ s̄ in the framework
of QDCSM. Two structures, Qq̄ −Qq̄ and QQ − q̄q̄
structures, as well as the channel coupling of the two
configurations are considered. Since we focus on the
S-wave states, the orbital angular momentum is set to be
zero. The spin quantum number of the ccs̄ s̄ system can be
0, 1, and 2, so the total angular momentum can be J ¼ 0, 1,
and 2 for this system. The isospin of the c or s quark is zero.
In this way, the quantum number of the ccs̄ s̄ tetraquark
system can be IJP ¼ 00þ, 01þ, and 02þ. The energy of the
ccs̄s̄ tetraquark systems for both the Qq̄ −Qq̄ and QQ −
q̄q̄ structures, as well as the channel coupling of these two
structures, is listed in Table I, where Esc is the energy of
every single channel, Ecc shows the energy by channel
coupling of one certain configuration, and Emix is the

lowest energy of the system by coupling all channels of
both configurations.
Here, we should mention that the definition of different

Qq̄ −Qq̄ channels, like the channels Dþ
s Dþ

s , D�þ
s D�þ

s , and
so on, just represents the coupling sequences. In the real
Qq̄ −Qq̄ system, the identical quarks in different clusters
will exchange between two clusters due to the antisym-
metrization operator. Besides, the introduction of the
delocalization parameter in QDCSM also allows the quark
to run between two clusters, especially when two clusters
are very close. So the Dþ

s Dþ
s channel does not simply refer

to the state composed of two Dþ
s ’s. Instead, it stands only

for the coupling sequence. However, when two clusters are
far apart, the exchange interaction between two clusters
will approach zero, and the delocalization parameter will be
zero, too. Then the Dþ

s Dþ
s channel in this case really

represents the two Dþ
s mesons. For convenience, we use

this kind of representation for eachQq̄ −Qq̄ channel in the
following discussions. For the IJP ¼ 00þ system, there are
four channels, which are Dþ

s Dþ
s , D�þ

s D�þ
s , and two QQ −

q̄ q̄ channels with the color configurations ð3̄ × 3Þ and
ð6̄ × 6Þ. For theQq̄ −Qq̄ structure, the energies of both the
Dþ

s Dþ
s and D�þ

s D�þ
s channels are above the corresponding

threshold, which means that neither of them are a bound
state. The lowest energy is almost unchanged after the
channel-coupling calculation, which means that the effect
of the channel coupling cannot help too much to form the
bound state. This is mainly due to the large mass gap
between the Dþ

s Dþ
s and D�þ

s D�þ
s channels. For the QQ −

q̄q̄ structure, it is obvious that the energies of both channels
are much higher than those of the Qq̄ −Qq̄ structure.
Although the energy is pushed down about 60 MeV by
coupling these two channels, it is still higher than theQq̄ −
Qq̄ structure. By coupling all channels of both structures,
the lowest energy is still above the threshold of the Dþ

s Dþ
s ,

which indicates that there is no bound state below the
minimum threshold (3936MeV) for the IJP ¼ 00þ system.
For the IJP ¼ 01þ system, the threshold of Dþ

s D�þ
s is

4080 MeV, and the energies of the two structures are 4086
and 4393 MeV, respectively, both of which are higher than

TABLE I. The energies of the ccs̄ s̄ system.

IJP Channel Threshold Esc Ecc Emix

00þ Dþ
s Dþ

s 3936 3942 3942 3939
D�þ

s D�þ
s 4224 4228

ðccÞ3̄ðs̄s̄Þ3 4372 4312
ðccÞ6̄ðs̄s̄Þ6 4410

01þ Dþ
s D�þ

s 4080 4086 4086 4083
ðccÞ3̄ðs̄s̄Þ3 4393 4393

02þ D�þ
s D�þ

s 4224 4230 4230 4225
ðccÞ3̄ðs̄s̄Þ3 4422 4422
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the threshold of Dþ
s D�þ

s . Then, channel coupling of two
structures has been performed and the energy Emix ¼
4083 MeV is obtained, which is still higher than the
threshold. Therefore, no bound state below the threshold
(4080 MeV) is obtained for the IJP ¼ 01þ system.
For the IJP ¼ 02þ system, the case is similar to the one

of the IJP ¼ 01þ system. The energy of each single
channel is above the threshold of theD�þ

s D�þ
s . The channel

coupling cannot help too much. So there is no bound state
below the threshold (4224MeV) for the IJP ¼ 02þ system,
either.
To study the interaction between two clusters, we also

carry out an adiabatic calculation of the effective potentials
for the ccs̄ s̄ system with two structures, the results of
which are shown in Figs. 1 and 2, respectively. For systems
with the cs̄ − cs̄ configuration, it is obvious that the
effective potentials of the IJP ¼ 00þ Dþ

s Dþ
s , IJP ¼ 01þ

Dþ
s D�þ

s , and IJP ¼ 02þ D�þ
s D�þ

s channels are all repul-
sive. That is why none of these channels are bound.
However, the effective potential of the IJP ¼ 00þ
D�þ

s D�þ
s channel is attractive, which indicates that it is

possible for this channel to form a bound state or resonance

state. Although the bound-state calculation shows that this
channel is unbound, it is possible to be a resonance state by
channel coupling, which will be discussed later.
For systems with the cc − s̄s̄ configuration, the colorful

subclusters diquark and antidiquark cannot fall apart
directly due to the color confinement, so it is possible
for them to be resonance states. From Fig. 2, we can see that
the minimum potential of each channel appears at the
separation of ∼0.7 fm, which indicates that two subclusters
are not willing to huddle together or fall apart. Besides, the
energy of each channel is higher than the corresponding
threshold according to Table I, so each channel is possible
to be a resonance state.
To find out if there is any genuine resonance state, a

stabilization method, also named as a real-scaling method,
which has proven to be a valuable tool for estimating the
energies of the metastable states of electron-atom, electron-
molecule, and atom-diatom complexes [55], is employed
here. In this method, with the increase of the distance
between two clusters, the continuum state will fall off
toward its threshold, while a resonance state will tend to be
stable. In this situation, the resonance line acts as an avoid-
crossing structure, as shown in Fig. 3. The appearance of
the avoid-crossing structure is due to one of the energy of
the scattering states getting close to the energy of the
genuine resonance with the increasing of the scaling factor,
and the coupling will become stronger. The avoid-crossing
structure is a general property of interacting two-level
systems. If the avoid-crossing structure can repeat with the
increasing of the scaling factor, the avoid-crossing structure
may be a genuine resonance. This method has been
successfully applied to pentaquark systems [56,57], fully
heavy tetraquark systems [58], and cc̄ss̄ tetraquark systems
[13]. A similar idea was also applied to probe the Δ
resonance properties from the finite-volume energy spec-
trum [59]. In this work, the distance between two clusters is
labeled as Si, and the largest one is Sm. Here, we calculate
the energy eigenvalues of the ccs̄ s̄ tetraquark systems by
taking the value of the distance (Sm) between two clusters

FIG. 1. The effective potentials for the systems with the cs̄ − cs̄
configuration.

FIG. 2. The effective potentials for the systems with the
cc − s̄s̄ configuration.

FIG. 3. The shape of the resonance in the real-scaling method.
Taken from Ref. [55].
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from 4.7 to 8.4 fm to see if there is any resonance state. The
results of the ccs̄ s̄ tetraquark systems with IJP ¼ 00þ,
01þ, and 02þ are shown in Figs. 4–7, respectively.
For the ccs̄ s̄ system with IJP ¼ 00þ in Fig. 4, it is clear

that the first two horizontal lines locate at the corresponding

physical threshold of two channels Dþ
s Dþ

s and D�þ
s D�þ

s .
We mark them with red lines. The genuine resonances,
which appear as the avoid-crossing structure, are marked
with blue lines. To better distinguish the resonant states, we
observe the resonant states in the energy range from 4150
to 4500 MeV, which are shown in Fig. 5. In Fig. 5, three
avoid-crossing structures appear around the energy of
4250 MeV, which indicates the existence of a resonance
state. We mark the avoid-crossing structure with a red
circle. Besides, there are two avoid-crossing structures
around the energy 4300 MeV, which corresponds to
another resonance state.
To calculate the decay width of the resonance state, we

use the formula in Ref. [55]:

Γ ¼ 4VðSiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkr × kcj

p
jkr − kcj

; ð28Þ

where the VðSiÞ is the minimal energy difference between
the resonance state and the scattering state. Actually, either
of these two states can be coupled by many channels. So
Eq. (28) can be viewed as calculating the total widths of
resonance states. Take the work of Ref. [57], for example;
the C ¼ 1 and 2 are the contributions from “continuum”
(scattering) channels, and C ¼ 3 and 4 are the connected
Jacobi coordinate systems, which are the closed channels.
In Fig. 5(a) in Ref. [57], only scattering configurations of
C ¼ 1 and 2 are included, so there is no resonance state;
while in Fig. 5(b) in Ref. [57], full configurations of
C ¼ 1–4 are considered, which include two scattering
channels and two closed channels, and finally one reso-
nance state is obtained around 4690 MeV. The decay width
of this resonance state calculated by Eq. (9) in Ref. [55] is
the total width of the state decaying to two scattering
channels. We have checked the validity of the approach in
the multichannel problem, and the results show that the
generalization from a two-channel problem to a multichan-
nel problem is reasonable. For example, we calculated the
partial decay width of the Pcs state to each open channel

FIG. 4. The stabilization plots of the energies of the ccs̄ s̄
system with IJP ¼ 00þ.

FIG. 5. The stabilization plots of the energies of the ccs̄ s̄
system with IJP ¼ 00þ in the energy range from 4150 to
4500 MeV.

FIG. 6. The stabilization plots of the energies of the ccs̄ s̄
system with IJP ¼ 01þ.

FIG. 7. The stabilization plots of the energies of the ccs̄ s̄ with
IJP ¼ 02þ.
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and added them to obtain the total width [60]. On the other
hand, we directly coupled all open and closed channels to
obtain the total width. Finally, we found that the decay
widths obtained by these two methods were basically
the same.
In Fig. 5, one can extract the total decay widths from

every avoid-crossing structure. However, the larger the
space, the more stable the result, so we generally choose to
calculate the decay width in a larger space. kr and kc in
Eq. (28) stand for the slope of the resonance state and the
scattering state, respectively. In Fig. 5, taking the resonance
state of 4300 MeV, for example, the blue line represents the
slope kr, which is about−14.7, and the green line stands for
the slope kc, which is about −90. Substituting these values
into Eq. (28), we obtain the width of the resonance state
4300 MeV, which is about 19 MeV. For the resonance state
of 4250 MeV, the decay width is 6 MeV.
Besides, to investigate the structure of these two reso-

nance states, we also calculate the component of each
channel for these two resonance states, as well as the root
mean square radius for them. Actually, the wave function of
the resonance state is not a square-integrable function, but
the one of the bound state is a square-integrable function. So
we can calculate the root mean square radius by using the
wave function of the bound state, which is obtained without
coupling to the open channels. The bound statewill decay to
the corresponding open channels and becomes a resonance
state. For the resonance statewith themass of 4250MeV, the
proportions of the channels Dþ

s Dþ
s and D�þ

s D�þ
s are about

10% and 80%, respectively, while the one of the cc − s̄s̄
channels is about 10%. This is possible, because the
attractive potential of the D�þ

s D�þ
s channel shown in

Fig. 1 provides the mechanism for forming a resonance
state. When we carry out the three-channel coupling
calculation of D�þ

s D�þ
s and two cc − s̄ s̄ channels, a bound

state is obtained with the D�þ
s D�þ

s channel as the main
component. So we calculate the root mean square radius by
using the wave function of this three-channel coupling
situation. The root mean square radius of this resonance
is around 0.48 fm, which indicates that two clusters are not
willing to huddle together or to separate too far. So this
resonance state is more inclined to be the compact structure
rather than the molecular structure, though the main com-
ponent is the Dþ

s Dþ
s and D�þ

s D�þ
s channels. This is under-

standable in QDCSM. Since the quark delocalization and
color screening in QDCSM include the effective description
of hidden-color channel coupling [61], it is possible for the
Qq̄ −Qq̄ structure to form color structure resonance states,
which is not a pure molecular state.
For the resonance state with the mass of 4300 MeV, the

proportion of the channels Dþ
s Dþ

s and D�þ
s D�þ

s is about
20% and 20%, respectively, while the one of the cc − s̄s̄
structure is about 60%. So the root mean square radius of
this resonance is calculated by using the wave function of
the two-channel coupling of the cc − s̄s̄ structure, and it is

also around 0.48 fm. It means that this resonance state is
also more likely to be a compact state.
The results of the ccs̄ s̄ systems with IJP ¼ 01þ and 02þ

are shown in Figs. 6 and 7, respectively. The first horizontal
line in the two figures represents the threshold of the
Dþ

s D�þ
s and D�þ

s D�þ
s , respectively. It is obvious that, with

the increase of the distance between two clusters, the
energy of the continuum state falls off toward its threshold.
So there is no resonance state for the ccs̄ s̄ systems with
IJP ¼ 01þ and 02þ.

IV. SUMMARY

In this work, we systematically investigate the low-lying
double-charm and double-strange tetraquark systems ccs̄ s̄
in the framework of the QDCSM. Two structures,Qq̄ −Qq̄
and QQ − q̄q̄, as well as the coupling of these two
configurations are considered. The dynamical bound-state
calculation is carried out to search for any bound state in the
ccs̄s̄ systems. Meanwhile, an adiabatic calculation of the
effective potentials is added to study the interactions of
the systems, and a stabilization calculation is carried out to
find any resonance state.
The bound-state calculation shows that there is no bound

state lower than the lowest threshold for the ccs̄ s̄ system in
QDCSM. However, two resonance states with IJP ¼ 00þ
are obtained, one with a mass and width around 4250 and
6 MeV, respectively, and another one with a mass and width
around 4300 and 19 MeV, respectively. The root mean
square radius of these two resonance states indicates that
both of these states are more inclined to be compact
resonance states. Besides, our results show that the cou-
pling calculation is indispensable to explore the resonance
states. In the work of the chiral quark model [46], there was
no bound state for the ccs̄s̄ system, either. However, several
resonance states were obtained for ccs̄s̄ tetraquarks, which
were one IJP ¼ 00þ state with a resonance mass around
4.9 GeVand three IJP ¼ 02þ states with a resonance mass
around 4.8 GeV. Besides, the work in Ref. [47] also studied
the state with C ¼ 2, S ¼ 2, I ¼ 0, and J ¼ 0, 2, and no
state was obtained in this sector. However, only the D�

sD�
s

channel was studied there. The coupling with other
channels is worthy of consideration to find some resonance
states.
Besides, although no significant signals were observed

in the present experiment at the Belle Collaboration [45],
there are still some structures around 4.3 GeV in the
distributions of MDþ

s D
þ
s

and MD�þ
s D�þ

s
. We suggest that

the experiment check with a larger amount of data in the
future.

ACKNOWLEDGMENTS

This work is supported partly by the National Natural
Science Foundation of China under Contracts No. 11675
080, No. 11775118, and No. 11535005.

WU, JIN, LIU, ZHU, HUANG, and PING PHYS. REV. D 107, 094011 (2023)

094011-8



[1] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.
102, 242002 (2009).

[2] C. P. Shen et al. (Belle Collaboration), Phys. Rev. Lett. 104,
112004 (2010).

[3] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
734, 261 (2014).

[4] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 89,
012004 (2014).

[5] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 91,
012003 (2015).

[6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 85,
091103 (2012).

[7] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118,
022003 (2017).

[8] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 95,
012002 (2017).

[9] T. Aaltonen et al. (CDF Collaboration), Phys. Lett. A 32,
1750139 (2017).

[10] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 125,
242001 (2020).

[11] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 102,
112003 (2020).

[12] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 127,
082001 (2021).

[13] X. J. Liu, H. X. Huang, J. L. Ping, D. Y. Chen, and X. M.
Zhu, Eur. Phys. J. C 81, 950 (2021).

[14] Y. F. Yang and J. L. Ping, Phys. Rev. D 99, 094032 (2019).
[15] H. X. Chen, E. L. Cui, W. Chen, X. Liu, and S. L. Zhu,

Eur. Phys. J. C 77, 160 (2017).
[16] J. Wu, Y. R. Liu, K. Chen, X. Liu, and S. L. Zhu, Phys. Rev.

D 94, 094031 (2016).
[17] Z. G. Wang, Eur. Phys. J. C 77, 78 (2017).
[18] Q. F. Lv and Y. B. Dong, Phys. Rev. D 94, 074007 (2016).
[19] P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernandez,

Phys. Rev. D 94, 114018 (2016).
[20] L. Maiani, A. D. Polosa, and V. Riquer, Phys. Rev. D 94,

054026 (2016).
[21] C. R. Deng, J. L. Ping, H. X. Huang, and F. Wang, Phys.

Rev. D 98, 014026 (2018).
[22] E. S. Swanson, Phys. Rev. D 91, 034009 (2015).
[23] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.

126, 102001 (2021).
[24] X. Jin, Y. H. Wu, X. J. Liu, H. X. Huang, J. L. Ping, and B.

Zhong, Eur. Phys. J. C 81, 1108 (2021).
[25] Z. F. Sun and C.W. Xiao, arXiv:2011.09404.
[26] X. Cao, J. P. Dai, and Z. Yang, Eur. Phys. J. C 81, 184 (2021).
[27] M. C. Du, Q. Wang, and Q. Zhao, arXiv:2011.09225.
[28] J. Z. Wang, Q. S. Zhou, X. Liu, and T. Matsuki, Eur. Phys. J.

C 81, 51 (2021).
[29] Z. Yang, X. Cao, F. K. Guo, J. Nieves, and M. P.

Valderrama, Phys. Rev. D 103, 074029 (2021).
[30] K. Azizi and N. Er, Eur. Phys. J. C 81, 61 (2021).
[31] B. Wang, L. Meng, and S. L. Zhu, Phys. Rev. D 103,

L021501 (2021).

[32] Y. A. Simonov, J. High Energy Phys. 04 (2021) 051.
[33] Z. G. Wang, Chin. Phys. C 45, 073107 (2021).
[34] R. Chen and Q. Huang, Phys. Rev. D 103, 034008

(2021).
[35] L. Meng, B. Wang, and S. L. Zhu, Phys. Rev. D 102, 111502

(2020).
[36] B. D. Wan and C. F. Qiao, Nucl. Phys. B968, 115450

(2021).
[37] G. C. Rossi and G. Veneziano, Nucl. Part. Phys. Proc. 312,

140 (2021).
[38] M. J. Yan, F. Z. Peng, M. Sanchez Sanchez, and M. Pavon

Valderrama, Phys. Rev. D 104, 114025 (2021).
[39] Q. N. Wang, W. Chen, and H. X. Chen, Chin. Phys. C 45,

093102 (2021).
[40] P. G. Ortega, D. R. Entem, and F. Fernandez, Phys. Lett. B

818, 136382 (2021).
[41] J. F. Giron, R. F. Lebed, and S. R. Martinez, Phys. Rev. D

104, 054001 (2021).
[42] L. Meng, B. Wang, G. J. Wang, and S. L. Zhu, Sci. Bull. 66,

2065 (2021).
[43] H. X. Chen, Phys. Rev. D 105, 094003 (2022).
[44] P. P. Shi, F. Huang, and W. L. Wang, Phys. Rev. D 103,

094038 (2021).
[45] X. Y. Gao et al. (Belle Collaboration), Phys. Rev. D 105,

032002 (2022).
[46] G. Yang, J. L. Ping, and J. Segovia, Phys. Rev. D 102,

054023 (2020).
[47] R. Molina, T. Branz, and E. Oset, Phys. Rev. D 82, 014010

(2010).
[48] F. Wang, G. H. Wu, L. Jian, and T. Goldman, Phys. Rev.

Lett. 69, 2901 (1992).
[49] P. A. M. Guichon, J. R. Stone, and A.W. Thomas, Prog.

Part. Nucl. Phys. 100, 262 (2018).
[50] J. L. Ping, H. X. Huang, H. R. Pang, F. Wang, and C.W.

Wong, Phys. Rev. C 79, 024001 (2009).
[51] H. X. Huang, J. L. Ping, and F. Wang, Phys. Rev. C 92,

065202 (2015).
[52] H. X. Huang, C. R. Deng, J. L. Ping, and Fan Wang, Eur.

Phys. J. C 76, 624 (2016).
[53] H. X. Huang and J. L. Ping, Phys. Rev. D 99, 014010

(2019).
[54] M. Kamimura, Prog. Theor. Phys. Suppl. 62, 236 (1977).
[55] J. Simon, J. Chem. Phys. 75, 2465 (1981).
[56] E. Hiyama, M. Kamimura, A. Hosaka, H. Toki, and M.

Yahiro, Phys. Lett. B 633, 237 (2006).
[57] E. Hiyama, A. Hosaka, M. Oka, and J. M. Richard, Phys.

Rev. C 98, 045208 (2018).
[58] X. Jin, Y. Xue, H. Huang, and J. Ping, Eur. Phys. J. C 80,

1083 (2020).
[59] V. Bernard, M. Lage, U. G. Meissner, and A. Rusetsky,

J. High Energy Phys. 08 (2008) 024.
[60] X. H. Hu and J. L. Ping, Eur. Phys. J. C 82, 118 (2022).
[61] H. X. Huang, P. Xu, J. L. Ping, and F. Wang, Phys. Rev. C

84, 064001 (2011).

STUDY OF DOUBLE-CHARM AND DOUBLE-STRANGE … PHYS. REV. D 107, 094011 (2023)

094011-9

https://doi.org/10.1103/PhysRevLett.102.242002
https://doi.org/10.1103/PhysRevLett.102.242002
https://doi.org/10.1103/PhysRevLett.104.112004
https://doi.org/10.1103/PhysRevLett.104.112004
https://doi.org/10.1016/j.physletb.2014.05.055
https://doi.org/10.1016/j.physletb.2014.05.055
https://doi.org/10.1103/PhysRevD.89.012004
https://doi.org/10.1103/PhysRevD.89.012004
https://doi.org/10.1103/PhysRevD.91.012003
https://doi.org/10.1103/PhysRevD.91.012003
https://doi.org/10.1103/PhysRevD.85.091103
https://doi.org/10.1103/PhysRevD.85.091103
https://doi.org/10.1103/PhysRevLett.118.022003
https://doi.org/10.1103/PhysRevLett.118.022003
https://doi.org/10.1103/PhysRevD.95.012002
https://doi.org/10.1103/PhysRevD.95.012002
https://doi.org/10.1142/S0217732317501395
https://doi.org/10.1142/S0217732317501395
https://doi.org/10.1103/PhysRevLett.125.242001
https://doi.org/10.1103/PhysRevLett.125.242001
https://doi.org/10.1103/PhysRevD.102.112003
https://doi.org/10.1103/PhysRevD.102.112003
https://doi.org/10.1103/PhysRevLett.127.082001
https://doi.org/10.1103/PhysRevLett.127.082001
https://doi.org/10.1140/epjc/s10052-021-09752-y
https://doi.org/10.1103/PhysRevD.99.094032
https://doi.org/10.1140/epjc/s10052-017-4737-5
https://doi.org/10.1103/PhysRevD.94.094031
https://doi.org/10.1103/PhysRevD.94.094031
https://doi.org/10.1140/epjc/s10052-017-4640-0
https://doi.org/10.1103/PhysRevD.94.074007
https://doi.org/10.1103/PhysRevD.94.114018
https://doi.org/10.1103/PhysRevD.94.054026
https://doi.org/10.1103/PhysRevD.94.054026
https://doi.org/10.1103/PhysRevD.98.014026
https://doi.org/10.1103/PhysRevD.98.014026
https://doi.org/10.1103/PhysRevD.91.034009
https://doi.org/10.1103/PhysRevLett.126.102001
https://doi.org/10.1103/PhysRevLett.126.102001
https://doi.org/10.1140/epjc/s10052-021-09916-w
https://arXiv.org/abs/2011.09404
https://doi.org/10.1140/epjc/s10052-021-08858-7
https://arXiv.org/abs/2011.09225
https://doi.org/10.1140/epjc/s10052-021-08877-4
https://doi.org/10.1140/epjc/s10052-021-08877-4
https://doi.org/10.1103/PhysRevD.103.074029
https://doi.org/10.1140/epjc/s10052-021-08859-6
https://doi.org/10.1103/PhysRevD.103.L021501
https://doi.org/10.1103/PhysRevD.103.L021501
https://doi.org/10.1007/JHEP04(2021)051
https://doi.org/10.1088/1674-1137/abfa83
https://doi.org/10.1103/PhysRevD.103.034008
https://doi.org/10.1103/PhysRevD.103.034008
https://doi.org/10.1103/PhysRevD.102.111502
https://doi.org/10.1103/PhysRevD.102.111502
https://doi.org/10.1016/j.nuclphysb.2021.115450
https://doi.org/10.1016/j.nuclphysb.2021.115450
https://doi.org/10.1016/j.nuclphysbps.2021.05.036
https://doi.org/10.1016/j.nuclphysbps.2021.05.036
https://doi.org/10.1103/PhysRevD.104.114025
https://doi.org/10.1088/1674-1137/ac0b3b
https://doi.org/10.1088/1674-1137/ac0b3b
https://doi.org/10.1016/j.physletb.2021.136382
https://doi.org/10.1016/j.physletb.2021.136382
https://doi.org/10.1103/PhysRevD.104.054001
https://doi.org/10.1103/PhysRevD.104.054001
https://doi.org/10.1016/j.nuclphysbps.2023.01.015
https://doi.org/10.1016/j.nuclphysbps.2023.01.015
https://doi.org/10.1103/PhysRevD.105.094003
https://doi.org/10.1103/PhysRevD.103.094038
https://doi.org/10.1103/PhysRevD.103.094038
https://doi.org/10.1103/PhysRevD.105.032002
https://doi.org/10.1103/PhysRevD.105.032002
https://doi.org/10.1103/PhysRevD.102.054023
https://doi.org/10.1103/PhysRevD.102.054023
https://doi.org/10.1103/PhysRevD.82.014010
https://doi.org/10.1103/PhysRevD.82.014010
https://doi.org/10.1103/PhysRevLett.69.2901
https://doi.org/10.1103/PhysRevLett.69.2901
https://doi.org/10.1016/j.ppnp.2018.01.008
https://doi.org/10.1016/j.ppnp.2018.01.008
https://doi.org/10.1103/PhysRevC.79.024001
https://doi.org/10.1103/PhysRevC.92.065202
https://doi.org/10.1103/PhysRevC.92.065202
https://doi.org/10.1140/epjc/s10052-016-4476-z
https://doi.org/10.1140/epjc/s10052-016-4476-z
https://doi.org/10.1103/PhysRevD.99.014010
https://doi.org/10.1103/PhysRevD.99.014010
https://doi.org/10.1143/PTPS.62.236
https://doi.org/10.1063/1.442271
https://doi.org/10.1016/j.physletb.2005.11.086
https://doi.org/10.1103/PhysRevC.98.045208
https://doi.org/10.1103/PhysRevC.98.045208
https://doi.org/10.1140/epjc/s10052-020-08650-z
https://doi.org/10.1140/epjc/s10052-020-08650-z
https://doi.org/10.1088/1126-6708/2008/08/024
https://doi.org/10.1140/epjc/s10052-022-10047-z
https://doi.org/10.1103/PhysRevC.84.064001
https://doi.org/10.1103/PhysRevC.84.064001

